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In this paper, a class of nonlinear systems in normal form is considered, which is composed of internal
and external dynamics. An adaptive finite time sliding mode observer (AFTSMO) is first designed so
that the system states, unmatched uncertain parameters and matched uncertainties can all be observed
in finite time (FT). Then, the systematic backstepping design procedure is employed to develop a novel
output feedback backstepping control (OFBC). The proposed OFBC method can stabilize the considered
nonlinear systems despite the presence of nonlinear internal dynamics and unmatched uncertainties. A
Lyapunov method is used to ensure that the closed-loop system is asymptotically stable. Two MATLAB
simulation examples are used to demonstrate the method.
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1. Introduction

In the systems and control area, increasing demands on systermnpenfee may require that infor-
mation about the system states is available for control desigfor system monitoring. However, the
measurement of state information may be challenging or castiyractice as in the case of reactant
concentration in chemical systems for examdegancor{2007); Clempner & Yu(2018). It becomes
of interest to develop effective methods to construct estisnatatate variables that cannot be readily
measured. One such approach is to develop a state observeraisotiserver will typically use the
available information from the known system inputs and outputswese this to obtain estimates of the
unmeasurable states.

For many of the existing observer formulations, such asth@bserver irRastegari et a2019,
L, Observer inHan et al.(2019, extended Luenberger observer4eitz (1987, only asymptotic
convergence of the observer error may be achieved. Moreovemdf@ity of state observers cannot
accommodate unmatched uncertainty well. Such uncertainggaap in many practical systems. This
motivates the current study which seeks to design a FT stagv@ysvhile considering the presence of
unmatched uncertainty.
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FT observers have received much attention in the literature and gteresting results have been
developed, such as the second-order sliding mode obserigmiita et al.(2005 and the terminal
sliding mode observer iMousavi et al(2019. A step by step sliding mode observer has been proposed
in Daly & Wang (2009 for a class of integrator systems where the observer error canderato in
FT. Nevertheless, unmatched uncertainty has not been coedigethis work. A novel FT dynamic
parameter estimator has been designed to deal with unmaperatheters by using low pass filters
in Na et al.(2015. This requires the system states to be available. In fact, wiene is unmatched
uncertainty present in a system, in order to recover the systmisformation in FT, the unmatched
uncertainty must first be compensated in FT. The developmeatFof observer in the presence of
unmatched uncertainties in the considered system is thusydarty challenging.

A FT output feedback controller has been designed for a secomi-gydtem irzhao et al(2016.
This can observe both the system unmatched uncertainty atedirstarmation in FT. The approach
proposed inzhao et al.(2016 has been extended to high-order systemg&hno et al.(2018. Note
that the nominal systems iBhao et al.(2018 are required to be lineamn practice, many systems
are nonlinear and it may be limiting to remove all the nonlineahaviour from the system model
for the purposes of analysis and design (see, lyi,(2021); Zhu et al.(2022). Observer paradigms
focussed on linear systems may not achieve satisfactory pernficeavels when applied to the physical
nonlinear system. This motivates consideration of framewarldetrelop FT observers for nonlinear
systems.

The development of a FT observer from a nonlinear nominal systeatel has been considered
and some important results have been obtained. By using tiee-8uisting method, a FT sliding mode
observer has been designed for a class of nonlinear systdfimjnet & Barbot(2007). However, this
observer imposes the requirement that the system can be atglingterized and only matched uncer-
tainty is considered. An adaptive sliding mode observer has lrevestigated for a class of systems
subject to unmatched uncertaintyYang et al.(2017), where the results are developed for a nominal
system representation that is a series of integrators.

In this paper, a novel AFTSMO is designed for a class of nonfisgatems in the presence of
unmatched uncertain parameters and matched lumped uncesaiftie proposed method does not
necessitate that the considered systems are linear or liablrizVhen compared with other FT obse-
rver approaches ilvang et al.(2017); Zhao et al.(2018, the considered system has a more general
form and the nominal system is nonlinear, which extends egstesults in terms of both potential
practical application as well as providing a contribution tedfetical research. Compared with current
FT state observers (see, e@aly & Wang(2009; Slotine et al(1986; Zhao et al(2013), the propo-
sed method can estimate the unmatched parameters in FT irofitie proposed adaptive law while
the matched uncertainties can also be estimated in FT. Cothpéttecurrent FT parameter estimators
(see, e.g.Kapetina et al(2019; Na et al.(2015; Xing et al.(2019), the proposed method can observe
the external dynamics in FT by employing the sliding mode ejant injection approach.

For this class of uncertain nonlinear systems with unmatcimeertainties, many of the existing
control methods are based on state feedback, sutiaag et al.(2016; Yu & Wu (2012; Zhang
et al. (2017, which may have limitations for practical applications. Thistivates the study of obse-
rver based dynamic output feedback control for uncertain namliggstems. The observer approaches
frequently used in these existing dynamic output feedbackalomiethods cannot observe the system
states and uncertain parameters simultaneously in FT as stethevhigh-gain observer based robust
output tracking control proposed Wu et al. (2018 and the fuzzy state observer based adaptive robust
control inTong & Li (2010; Xu et al.(2013. In summary, when the uncertain systems considered are
nonlinear and have unmatched uncertainties, difficultiesugatly exist due to: (i). the need to deal
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with the nonlinear internal dynamics; (ii). the need to ensuagttie system state can be observed in FT
while the uncertain parameters can be observed in FT; (iii). the toeese the observed information to
design the controller to ensure system stability and perform qurelng stability analysis.

In this paper, the observed system states and estimated ungamtameters are compensated by the
designed control using the step-by-step recursive backstepgihgique. A robust OFBC is obtained
using virtual Lyapunov-based control to enhance the systenstoess and improve system performa-
nce. The main contributions of this paper are: (i). an AFTSMO &igieed for a class of nonlinear
systems where the system states, unmatched uncertain paraaretenatched uncertainties can all be
observed in FT; (ii). using the system output and the observedniaiion, an OFBC is proposed to
ensure the closed-loop system is asymptotically stable ety presence of matched and unmatched
uncertainties; (iii). a Lyapunov approach is used to addresgistab

The paper is structured as follows. Section 2 formulates the prohted some basic assumptions
are given, which will be used in the following sections. An ARMMS is proposed for the external
dynamics and an adaptive law is designed to estimate thetancparameters in Section 3. An OFBC
is designed in Section 4. Section 5 uses two simulation elesrtp validate the designed approach
while Section 6 presents the conclusions.

2. Problem formulation and basic assumptions

Consider the following Multiple-Input Multiple-Output (MIMO) mdinear system:
71 =MA1721+Bg (Ul + &1 (t,Z)) +yn (t,Z)

Z=Az+B(u+&(t2)+ (2
2.1)
Zm = AmZm + Bm (Um+ &m (t,2)) + Ym(t,2)
P = w(y,zb> +0(t,2)

y=[zi1, 21, Zm] "

wherez := col (za,zb) €eZeR u:=col(ug, - ,un) € RM y:=col(ys, - ,¥m) € R"withy; =2z,
andl =1 2 --- ,;mrepresent the system state, input and output respectively and @eighborhood of
the origin. 2 := col(z,--- .7, ,Zm) € R TM++m = R with 7 = col (1,22, - ,2r,) € R
represents the external dynamics afide R™" represents the internal dynamicg. € R, j :=
col (Yi,-+ ., ¢r,) €RT, O(t,2) € R*", where all the nonlinear terms are smooth enough and

010 : 00 0
001 : 00O 0
A= . B =1|: (2.2)
0 0O 01 2
000 0 0], nx1
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It should be noted thaf; andy,, denote the matched uncertainties, whengas: - - , { ,_1 ando©
denote the unmatched uncertainties fol al1,2,--- ,m.

Remark 1 It should be noted that the uncertain nonlinear sys{én) is in output feedback normal
form. This can be obtained from a general affine nonlineatesysby local coordinate transformation
and feedback linearization as describedreng et al.(2020); Isidori (2013. In addition, the internal
dynamics gin (2.1) can also be viewed as the unmodeled dynamics or dynamictaimtgr(Jiang &
Praly (19998). Systen{2.1) has thus been extensively studied adiang (1999; Jiang & Hill (1999);
Xu et al.(2019, and many practical systems can be modeled in the forif2dj, such as a simple
pendulum (see, e.gliang & Hill (1999) and the field-controlled DC motor (see, elghalil & Grizzle
(2002).

The following assumptions will be imposed on systeéhi),

Assumption 1 (see, e.g.Yan et al (2016) There exists a Efunction \P (t, zb) :RxR"™" — R*" such

that
all# v (12) < 2]

avb dvb
St awo0?) < w2 @3
b
H % <=l
where @, -- -, C4 are positive constants. Meanwhde(y7 zb) is Lipschitz with respect to y and uniformly

for 2 in the considered domaid, that is, for any coly,2’) € Z and col(y,2°) € Z, there exists a
nonnegative functiory,, (zb) such that

|o(¥?) -0 (72)[ < Z(2)Iy-7 (24)
Assumption 2 There exist known nonnegative continuous functiis z) andr (t, z) such that

lot.2l <@t.2 Iy + (.22 (25)

The objective of this paper is to propose an AFTSMO for the eatetynamics of systen?(1) and
an adaptive law to estimate the uncertain parameters. Therystens ¢.1), an OFBC will be designed
such that the associated closed-loop system is stable. TMitustl block diagram of the proposed
method is given in Figl.

A 4
A 4

— OFBC Plant AFTSMO

The estimated states and parameters

FIG. 1. The structural block diagram of the proposed method
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3. An AFTSMO for the external dynamics

In this section, an AFTSMO is proposed for the external dynamicdsaa adaptive law is designed to
estimate the uncertain parameters. It follows frdr®) that the external dynamicg, can be further
described as:

21=722+ Y (t,2)
Z4o=273+Y2(t,2)

. : (3.1)
Z(r-1) = 2r, + Y1 -1) (4,2
2, = +¢ (1,2 + Yy, (t,2)

Yi=121

with1 =1,2,---.m.

Assumption 3 (see, e.g.Sun & Guo(2014; Wang et al(2017) The unmatched uncertaintig;
with j=1,2,--- r; — 1 satisfy

Wi =dij (2)) 6 (3.2)

wherez; = col (z1,22,--,2j), dj (zj) € R™% is a known functiongj € R4 is the uncertain
parameter vector, and, Fi(Z_| j) satisfies the persistently excited condition.

Assumption 4 The matched uncertainties satisfy
& (1,2 + i, (1,2)] < pi(t,2) (3.3)
wherep; (t,2) is a known function.
As in Na et al.(2019, define filters as:
, @21 +2j1=2;
BZ(jy1).f 2411t = ;ﬂl(j)Jrl) (3.4)
j

@dij_s+dijr =dj (

with initial conditionsZj ¢ = 0,2(j1) ¢ =0 andd]jj = 0 respectively, and wherg > 0 are filter
parameters.
Then it follows from 8.1) and @.4) that

S g eyt B — ey () (3:5)

where(); (t) represents the filter error caused by the observer.
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Define corresponding auxiliary filters as:

p; () =—yp; +d_¢djs

. 7 R 3.6
a; (t)= —14a; +d|J f ( qqzuj _Zl(i'*‘l)—f) 0
with corresponding solutions
By () = Joe " dl (1) dij_p (r)dr o
q; ®=Jo e Mt r)dlj,f (r) [Z”(r)_(;”’f(r) 4(j+1)_f (r)] dr '

wherey > 0 are auxiliary filter parameters.

Lemmal (see,e.gNa etal.(2019) If the regressor matrix g (z_l J-) satisfies the persistently excited
condition, then there exists; T 0 such that p (t) > Ofor t > T;.

Then from Lemmad. and @.7),
6, () =P (a, O+ (1) (3:8)
The adaptive observer fay; and adaptive law are designed as follows: wien1,

21="22+di1(21) B1+ an1sgn(z1)

N — (3.9)
011 = —F|1{p|T1 (t)sgn(wiz (1)) — dig (le) Z”-}

andwhenj =23,--- .r -1,
2 Z<J+l>+ dj (%) b +0’I159”(2'i _2”> (3.10)

61 =~y { Pl (V) son(wi; (1) — i (3)) 2 }

wherel|; € R4*% > 0 are constant diagonal gain matrices, > 0 are design parameters, (t) =

P, ()8, (t) —aj (1), 2 =2 —2;, B = 8; — 8, andz; = [ay(j_1)SIN(Z (1)) ] o 2 -
The observer fog,, is designed as:

Zr, = +alr|Sgn(/Z\lr| _2Ir|) (3-11)

wherez,, = oy, -1)59n(Z%r, ,1))]eq+2|r| anday, > p.
It should be noted thdio j,l)sgn(z(j,n)]eq represent equivalent injections, which can be realized

by passing the signa{bq(j,l)sgn(za,l))]eq through a low pass filter. The detailed explanation of the
equivalent injection has been discussetiaskarg1998.

Assumption 5 (see, e.g.Zhao et al(2018 2016)

’pH()ZH ’<‘p|] 9I ()’ (3-12)
foralll =1,2,---,mand j=1,2,---,r — 1.



SHORT ARTICLE TITLE 7

Remark 2 Assumptiqrﬁ shows that the effect of the deviatidp is less than that of the para-
meter estimation erroj, which can be realized as long as the observer parameterselected
appropriately by the designer.

The observer design process can be provided step by step inliweifng.
Step 1
At the first step, when = 1,

21="22+ di1 (1) B+ a11sgn(Z1)

Py - 3.13
611 =—Ti1{p{ (t)sgn(wi1 (t)) — di1 (21) Z1} (3-13)
wherez, = z1 — 21 andz4 is measurable.
It follows that
Z1="22+d1(21) B1+Adi1 (Z1) B1— a11Sgn(Z1) (3.14)
whereAdi1 (1) = di1 (z1) — di1 (Z1)-
A Lyapunov function is chosen as:
1. 1 ~rx
Vi = 52121+ﬁ9|T19I1 (3.15)

Differentiate 8.15 along 3.14):
Vi§ =21 {%2 + di1(21) B1+Adi1 (Z1) 81— a11sgn(Z1) }
+61 {p} (1) sgn(ws (1)) — dix (Z1) 21} (3.16)
= —011|21| + 21 (Z2 +Ddi1 (Z1) B1) + B Pl (V) sgn{ —pin b1+ padin ()}

It follows that _ .
VS < — 21| {an — Zi2 + A1 (Z1) B[} — | pia (1) Ba | (3.17)

Choose a large enough; so that
a1 — |42 +Adi1 (z1) 81| > mia (3.18)

wheren; > 0.
Then 3.17) can be described as:

VS < —malza| —|pa(t) Byl

1. 1 -~
—0i11/ §Z|21—C|12\/ 27r19|T19|1 (3.19)

I RVAY
whereAmin (P11) > a1 > 0,¢11= v2M11, G12 = 811/ 2/Amax (T 1Y), €1 = min{ci11,Ci12}-

2. /N2
/MO whereV,3(0)

It follows from (3.19, 71 and é|1 will converge to zero whem > tj; = oh

represents the initial value ¥fj.
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According to 8.14), whent > t4, §|1 =0,71=0,Ad;1(z1) =0, the following equation holds:

Zp = [allsgn(zl)]eq
Step 2
At the second step, whein= 2,
32 =23+ di2(22) 9|2+G|239n<2|2—212)
=—T2{pL (t)sgn(wiz (t)) — di2 (22) Z2}

CD>

wherez|, = [a|1sgn(2|1)}eq+ 2, andZ’, has been given ir3(20).
It follows that

%2 =23+ di2(Z2) B2 +Adi2(22) B2 — a1259N(Z2)

whereAdi2 (72) = di2(z2) — di2 (Z2)-
A Lyapunov function is chosen as:

1, 1 1=
Vi = §Z<22 + ﬁ9|T29I2
By the similar analysis as given in Step 1qib is large enough:

Oi2— %3 +Adi2(Z2) 62| > Ni2

wheren;2 > 0.

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

It follows from (3.24), 7, andB, will converge to zero when> tj, = %@ With Amin (P12) > 82 >

0, Ci21 = V212, Ci22 = 321/ 2/Amax (T3 %), €12 = min{ci21, Ci22}-

According to 6.23, whent >1ty2, 82 =0,7,=0,Ad (72) = 0, the following equation holds:

43 = [aIZSgn(zZ)]eq
Stepi (i=3~1 —1)
At thei-th step,
2i =2 +di (zi) 6i + Glisgn(fli - 2n)
B =~ { o (t)sgn(wi (t)) — o (Z) Zi }
wherez; = [ayi— sgn(z<i_1))] +2i andZ = [ay_1)sgn(Z; )]
It follows that . _
Zi =211y + i (zi) 6i +Adyi (2) 6i — anisgn(Z;)
whereAd;i (z) = dii (zi) — dii (i)-
A Lyapunov function is chosen as:

1. 1 1«
ViP = §Z<2i+f“9|iTeli

By the similar analysis as given in Step 1-2¢if is large enough so that:

|ZI i+1) +Ad|l le ’ 2 Nii

wheren;i > 0.

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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It follows from (3.29), Z; and@; will converge to zero wheh> t; = 2V with Amin (Pii) > &i > 0,

Cii
Ci1 = V2, Giz = &i\/2/Amax (T 1), Gi = min{cii1, Giiz}.
According to 8.27), whent > t;, 6 =0,%; =0, Ad, (zi) = 0, the following equation holds:

Z(i+1) = [0nisAN(Zi)]eq (3.30)

Stepr,
At ther| step, the state observer is designed as follows:

Zr. =Uu +alr|Sgn(2lr| —2Ir|) (3.31)

wherezi, = [a(r,—1)SIN(Z 1)) ] o+ 2 @A77, = [0 -1)SN(Z (1)) o
The observer error dynamic equation is given by:

2, =& (t,2) + Uy, (t,2) — air,SON(2y, ) (3.32)
A Lyapunov function is chosen as:
Wﬂ=%ﬁ. (3.33)
Differentiate 8.33 along (3.32:

\-/I(r)| = ZH {EI (t.2)+ Yir, (t,.2) — a|T|Sgn(zlr| )}

(3.34)
<- |zlr| ! (air, —p1)

If a, is large enough so that:

Qir, — P > Nir, (3.35)

whereny;, > 0.

AV
It follows from (3.34), Z,, will converge to zero wheh> t;,, = \/T' with ¢, = ﬁmr,.

Clr|

Lemma 2 Under Assumption$-5, the AFTSM0O3.9)-(3.11) can guarantee that the system external
dynamics and uncertain parameters of systé€m)(can be observed in FT i is large enough. In
addition, the matched uncertainties can be estimated in$T a

gl + ll’ln = [aInSgn(EIr, _2”')}eq (3-36)
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Proof Define the following Lyapunov function:

= Z|m—1 Zr'l—
r 1 4 (3.37)
7Z| 12] 12 ZI 1ZJ| 112|— 9“9“
Differentiate 8.37):
=Sy VS (3.38)

According to the above analysis, for = 1,--- mandj =1,---,r;, whent > maxt;,

Vg < —aj \/\Tf; (3.39)
Combine 8.38 and (.39,
V0<zI 12] 1 Clj\/>
<-cy Zjlzl\/\??
wherec = ming;;.

It follows from the inequality,/a; + /a2 +- -+ /@y > /a1 +az + - -- +-an whereay, ap, - - - ,a, are
positive constants,

(3.40)

m q]
PXIED N IRVATE=RVO P NI o (3.41)
Then from 8.40 and 3.41),
VO < —cVVo (3.42)
It follows from (3.42), whent > 2y \éow), 4 andé” will converge to zero.

Meanwhile according to3(32, whent >t , Z;, = 0. Then, the matched uncertainties can be
estimated from the following equivalent injection signal:

& + Qir, = [0, 9N (21, )] o (3.43)
Hence, Lemma& follows. O

Remark 3 So as to ensure that the system external dynamics can beveldserFT, the parameter
estimatoré” as shown ing.9 and @.10 has been designed to guarantee that the unmatched uncertai
parameter estimation errof}; converge to zero in FT by using the adaptive method and timeipte

of the equivalent injection.
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4. Output feedback backstepping control
For system3.1), it is necessary to design the following coordinate transformatio

Oi1=721—-B1

Oi2="22—Bp>

(4.2)
Oi(n-1) = 2n-1 — Bin-1
O—|I‘| = 2|I‘| - Blr|
wherefj (j =1,2,---,r) will be provided in the subsequent analysis.
Step 1
Let B1= 0. Consider thej; subsystem:
Gr=21—f
i1 fll ffll ) 42)
=Z2+22+d1(z1) 61
wherez, = Z, + 2, has been used singg is not available.
A Lyapunov function is chosen as:
1
Viz= S0 (4.3)
Differentiate ¢.3): _
M1=011(Z42+22+d1(Z1) 61) (4.4)
Then letB, = —di1 (z1) 61 — k1011, wherekj; > 0. It follows that:
Vi1 = 0i1 (Z2+ Gia+Bi2ti1 (Z1) Oi1)
(4.5)

=01 (Z2+ 02— di1 (Z1) B — kiroi1 +di1 (Z1) B1)

According to 8.16-(3.19, whent > tlol, 61=0,%,=0,Ad (z1) =0.Then ¢.5) can be described
by:
Vi1 = —Ki10f + 011012 + 0172 (4.6)
Step 2
Consider thégj1, gi2) subsystem. This can be described as:

0i1 = —kK10i1+0i2+ 7>

Gi2= 22— 22— B2 (4.7)
> 5 aBIZ'A
=2z3+d 62— 22— —>
Z3+di2(22) 82— 22 93, 21
A Lyapunov function is chosen as:
1,
Viz =M1+ 50 (4.8)

2
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Differentiate ¢.8):

Viz = —ki103 + 011012 + 01122

5 L5 _ 5 0B2s (4.9)
+0i2 {Z|3+Z|3+ di2(z2) 62— 22— @2211}
02,
wherezs = Z3 + 23 has been used sir_uzg is not available.
Let B3 =—0j1 —di2 (22) B2+ %21 —ki20i2, wherek; > 0.
Then @.9) can be described as:

Viz = —k10{% + 011012+ G172
+ 02 {23+B|3+ O3+ di2(Z2) B2 — 22— (ﬁzfll}
(4.10)

= —ki10{ + 0i1Z2

+ (7I2{2I3dlz (22) B

3B _ s OB }
Oi2+0;3+d — =
271 ki20i2+ 0iz+ di2(Z2) 62— 7 0211211

According to 8.23-(3.24), whent > t,oz, 6,=0,7,=0, Adi2(Z,) =0. Then ¢.10 becomes:
Viz = —k103 — Ki20(% + 012013+ Oi223 (4.11)

Stepi 3<i<n—-1)
Consider théagj1, 0y, - -, i ) subsystem,

Gi = zi — % — B
_ s ' 2agis (4.12)
=Z(ir1) + di (Zi) Bi — Zi —q; dg; 2q

A Lyapunov function is chosen as:

Vi =Vii-1+ %Ul% (4.13)
Differentiate ¢.13 along @.12):
Vi =— ziq;llqucﬁ% + 0i(i-1)0ii + Oi(i-1)Zi

+ Gii {a i+1) + 21 + i (i) z gg: } (4.14)

wherez i, 1) = Zi41) +2(i+1) has been used sinzgiﬂ) is not available.

Then letBi 1) = —0ji-1) —kigii + Z dz| L51q — dhi (Zi) B, wherek; > 0.
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Then,

1 )
== Zlqzl qu0|%| + 0i(i-1)0ii + Oi(i—1)4i

. th
+ Gji {Z|(+1 +2(i41) + di (i) Z 5Z|q } (4.15)
i-1 2 5 5 ~\ A = z
== -1 Ka0iq + Oi-1)Zi + Gii {Zir1) + Oi+1) — ki di —di (2i) B + di (7i) 6 —2i }
According to 3.28-(3.29, whent > tl?, i = 0,7 =0, Ad, (zj) =0, (4.15 becomes:

Vi = Zq 1k|qalq+0|l {Zi i+1) T Oi(i+1) — k||0||}

(4.16)
=- Zq:l KiqOi + G Z 1+1) + Oii O i+1)
Stepr
Based on the above analysis,
n— 2 BI . N "
Bir, = —0i(r,-2) = Ki(r-1)Oi(r—1) + Z ZI —di-1) (Z(-1) B -1
(4.17)
. -1 s
M- =— ;':1 k|q0|q + Oi(r,-1) 4r, + Oi(r,—1)Oir,
and ) ) . .
O-|I’| = Z|I'| - 2|I’| 7[3|I'|
. LB, (4.18)
:u|+f| (t7z)+l¢U|r| (t,z)_2|r| Zl dZ|q q
q
A Lyapunov function is chosen as:
1,
\/|I'| :Vl(r|71)+§o-lr| (419)
Differentiate ¢.19 along ¢.19:
. I'|71 2 ~
Vlr| - - q:]_ quo]q“"o-l(n—l)zln +O-|(I'|7l)o-|r|
) ( ) ) n-1 dﬁln . (420)
+ 0, U+ & (1,2 + Yy, (,2) — 4, — =—2q
| | | qu 0Z|q
Then design the output feedback control:
-1
2B
u = [alnsgn er| + Z Brl O'| (n-1) — klr. O'Ir| (421)

wherekj;, > 0.
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It follows (4.20 and @.21),
Vi = =3 o1 ka0l + O -1)%n + O {— [0, S9N(2r,) ] o+ &1 (6:2) + i, (8,2) — 2, } (4.22)
According to 8.34-(3.35, whent > tﬁl, Z;, =0, (4.29 can be described by:

Vi = =3 o1 ka0ig (4.23)

Lemma 3 Under Assumption$-5, the control(4.21) can guarantee thatiq tends to zero exponenti-
allyforalll =1,--- . m,q=1,2,---,r1

Proof Define the following Lyapunov function:

v m
V=3V =310 Y g 2% (4.24)
Differentiate ¢.24):
7 m m r
V=300V ==Y 0 Y o kadig (4.25)

It is obvious that

(4.26)

wherek = 2minkg.
Hence, Lemm& follows. O

Theorem 1 Under Assumption$-5, the closed-loop system employed by systef), the AFTSMO
(3.9-(3.11) and the control(4.21) is asymptotically stable if-c3 + 3c4-Z, + 2ca® + ca7 < 0 and
3C4Ln+ 2ca® —ky < Owith ky = 2minky.

Proof Define the following Lyapunov function:

V= vb(t zb)+vy(t Y)+V° (22, 8) +V (Z Bq) (4.27)

wherel =1,--- . mq=1,2,- {E ji=12,-- —1,Z;:=col(z1,---,7 -+ ,Zm)—coOl (29, , 2 - -+ , 2
Withz::C()'(le;zIZ' '7z|r|) _CO|(217 zl"'azm)Withzl::CO|(Z|172|2"'72|I'|)'
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It follows from Lemma2,
VO < —cVVO (4.28)

From @.25 and the definition objq in (4.1),
AR IEP YL BT
D XD PHPL AL R W (4.29)
== 2151 Y a-oMaig — k¥l
It follows from (2.3)-(2.5) and @.28-(4.29),
V =VP v ve v

V=G 550 (02) - 5 [0(12) ~0(02)] + Ggoa Ve
2o e 2] o1+ e+ e
(3ll#1"+ 37) s (G2« 37 et 2] o0

— S S 42 K0 — kallyllF — evve

2 /1 1 2
< 7c3+fC4$w+§c4¢+c4r szH +{ 56Z0+5ca®—ku | [yl

Z| 12 kiqoig —cvve

Hence,V < 0 follows from the conditions that-cs + 3¢4.%, + 3Ca® + €47 < 0 and 3ca. % +
1c4® — kg < 0 and Theoren holds. O

Remark 4 For the uncertain nonlinear system with unmodeled dynarttiese have been other obse-
rver based backstepping control methods developed. In a@uafilzontributions the systems are SISO
such asSui et al.(2021) and the unmatched uncertainti€gt, z) have not been considered such as in
Chang et al(2020); Jiang & Praly (1999. Furthermore, the closed-loop systems are uniformly boun-
ded rather than asymptotically stable with existing obseihased backstepping control methods such
asTong & Li(2010; Xu et al.(2013. Based on the designed AFTSMO, an OFBC has been designed for
a class of MIMO nonlinear systems in this paper to guaranteectbsed-loop system is asymptotically
stable, despite the presence of matched and unmatchedtaimties.

5. Simulation examples

Based on the MATLAB softwarehis section will test the effectiveness of the designed OBB@vo
simulation examples.
Example 1:
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Consider a nonlinear system described by:

n=Az1+Bi(ui+&(,2)+ (.2
=Pz + B (U2 +&2(1,2) + U2 (t,2)

i 74Zb+2b211+@(t,2) ®.1)

y=[z1 21 ]T

where z := col (A,2) € Z = { (A, 2)||P| <5}, 2 :=col(z,2), 7 = col(z1,2z2), 2 =
CO|(221,222),A1:A2: 8 é:| andBlzBZ:[ 0 1]T.
The uncertainties satisfy
o(t,2) = ly| +|2] 5:2)
& (t,2) = 0.1sin(t) &(t,2) = O.ZSin(i’) (5.3)
Yr(t,z) =] 212611 O ]T W2(t,2) = 21621 O ]T (5.4

wheref;; = —2 and6y = 1.

It is clear that Assumptionk-2 are all satisfied with?,, = ]zb| ,®=1,7=1whileVis chosen as
VO (t,22) = 1(2)? with ¢z = 4,4 = 1.

The main parameters of the adaptive observerfpz,, 6,1, 621 are given as:

Q=5@¢=10n=1y=2T1=Tp=x="2»n=5 (5.5)
The main parameters of the contrdlZ1) are given as:
kiz=kiz=ko1 =kp2=8 (5.6)

Thenk; = 8 and by direct computation, Theoreinholds inz < Z.

Note that-/(||-|| + B) is used to replace sgn to reduce the chattering witB = 0.001. Fig.2
and Fig.3 show the time response @&f, z and their estimates, respectively. According to Fi&8,
the proposed AFTSMO can observe the system external dynami€k ihhe parameter estimation is
shown in Fig4. The estimates of the matched uncertainties are shown ibFAg shown in Figs4-5,
the designed parameter estimator can construct the unmgieh@aheters and lumped matched uncer-
tainties in FT. Fig.6 shows the time response nf andu. From Figs.2-6, the considered system is
stabilized regardless of the matched and unmatched uncestaifihe simulation results demonstrate
that the designed OFBC is effective.
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(a) The system statg; and its estimate;;  (b) The system statg, and its estimate; >
FIG. 2. The system states and their estimates
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FIG. 3. The system states and their estimates
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FiIG. 4. Estimate of the parameters and their actual values
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(a) The estimate of; and its actual value (b) The estimate of, and its actual value

FiG. 5. The estimates of the matched uncertainties and theirlactiues

—u

0 5 0 15 2 25 30 3 4
time(s)

5 0 15 20 25 30 3B 4
time(s)

(a) The time response of the system stgte (b) The time response of the system control
signalsu

FIG. 6. The time response af andu

To further test the proposed method, the observer-based adgftitracking control proposed in
Chang et al(2020 will be compared with the proposed AFTSMO. Note that only a S§g§8lem was
considered irChang et al(2020, hence it is necessary to divide the systéni)(into the following two
subsystems:

21=Az1+Br(u1+ &)+ ¢n

P=-aP+Pz,+0 &7
Yi=211
2 =Pozp + By (U + &) + U (5.8)
Yo =712

wherez; := col (z11,212), 22 := €0l (221, 222), © = | 2| + |221] andAq, Az, By, Ba, &1, &2, Y1, U are as for
system 6.1).
The main control parameters for the methodCdfang et al(2020 are given by:
yr =0,u =10, =30,c=30,A =10,n =0.99 (5.9)
The time response df, andu are shown in Fig7 while Fig. 8 shows the time response of the

system stateg, z» and their estimates using the method propose@hang et al(2020. It should
be noted that the unmatched uncertaint®$,z) have not been considered directly @hang et al.
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(2020 in contrast to the proposed method. Furthermore the resulteamg et al(2020 show that the
closed-loop system is uniformly bounded while the closed-lgmbesn is asymptotically stable in this
paper. Comparing Fig®-8, the proposed method has better performance as would be exfested
the theoretical foundations.

— U

s U

0 5 10 15 20 25 30 35 40 o 5 10 15 20 25 30 35 40
time(s) time(s)

(a) The time response of the system stgte (b) The time response of the system control
signalsu

FIG. 7. The time response af andu using the method proposed@hang et al(2020

_211 02 _212
211 ot e 212
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0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
time(s) time(s)

(a) The time response of the system siaje (b) The time response of the system state

05 04

— 221

222

— 222

222

06fii

08 %

0 5 0 15 20 25 30 3 40 4 5 0 15 20 25 30 35 40
time(s) time(s)

(c) The time response of the system state (d) The time response of the system state
FiG. 8. The time response of the system statandz, using the method proposed@hang et al(2020

Example 2:
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Consider a pendulum, whose dynamic equation is describ&drigy & Hill (1999 by
mli :—mgsinn—klh+|}u+A (5.10)

whereu € Rrepresents the torqug, € Rrepresents the anticlockwise angleepresents the accelera-
tion of gravity, andm, |, k represent the mass of bob, length of rod and coefficient of fricéspectively.
Note that the constark is unknown and the angular velocity is not available in the subsequent
analysisA denotes the unmodeled dynamics.

The objective is to develop an OFBC to stabilize systém@ at n = . For convenience of the
observer and control design, the following coordinate transfaomas introduced:

7z =ml(n—m

. K (5.11)
— ml? 2 (n—
z=ml (n+ m(n n))
to bring the poin{n,n) = (m,0) into (z1,2) = (0,0).
Suppose that the unmodeled dynamics is given by
2
P 5Py (i’) 2+0(t,2), Azo.zsin<£°) (5.12)
wherez:= col (z1,2,2°) € Z = { (21,22, 2) | (2)% < 7}, O(t,2) =|a|+|2|.
In the newz-coordinates, the pendulum equati@nl( is written as
n=2+z26
Z=u+é (5.13)

=5+ (zb)zzl+e(t,z)

wheref = —% denotes the uncertain paramefes; mglsin (#21) +0.2l sin(zb) denotes the matched
uncertainty® (t,z) denotes the unmatched uncertainty.
It is clear that Assumptions-2 are all satisfied with%, = (zb)z, ® =1,7 =1 whileV® is chosen
asVP (t,2°) = %(zb)2 with cz = 5,c4 = 1.
The main parameters of the adaptive observerfpz,, 6 are given as:
@m=3n=2T1n=rp=5 (5.14)
The main parameters of the contrdlZ1) are given as:

kyp = kip = 4 (5.15)

Thenk; = 4 and by direct computation, Theoreinholds inz € Z.

For simulation, let = g = 9.8 withm= k = g~2. Fig. 9 shows the time response of the anticlockw-
ise angle and angular velocity. F@illustrates that the pendulum can be stabilized at the deamgte
by the proposed OFBC while the system shows good performancelFfpows the time response of
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2, 2o and their estimates. Fig.1 shows the time response nf andu. The estimates of the uncertain
parameter and matched uncertainty are shown in EigAs shown in Figs9-12, the designed AFT-
SMO can observe the system external dynamics in FT while theataimad parameter and the lumped
matched uncertainty also can be estimated in FT.

—— The desired angle

- The actual angle

a 6 8 10 12 14 16 18 20 o 2 4 6 8 10 12 14 16 18 20
time(s) time(s)

(a) The time response of the anticlockwig®) The time response of the angular velocity
angle

FIG. 9. The time response of the anticlockwise angle and angalacity

012 03

—21 —22
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01

Y 0

21
g
22

01

02

-0.04 03
0 2 4 & 8 10 12 14 16 18 20 o 2 4 & 8 10 12 14 16 18 20

time(s) time(s)
(a) The system statg and its estimate;”  (b) The system stat® and its estimate,”
FIG. 10. The system states, z, and their estimates

To further test the proposed method, the static sliding mod&aqroposed irFeng et al(2020
will be compared with the proposed AFTSMO. Note that the mefraosed inFeng et al (2020
aims to deal with a class of nonlinear interconnected syshermis used here to stabilize a subsystem.
The sliding function and controller are designed as:

S=221+2

u=[0 -2][za =z ]T—O.Olsgnis) (5-16)
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FiG. 11. The time response af andu
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FIG. 12. Estimate of the parameter, matched uncertainty and ttteialavalues
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FIG. 13. The time response of system states and control inpuy tisgnmethod proposed ireng et al(2020

Fig. 13 shows the time response of system states and control inpg tre@nmethod proposed in
Feng et al(2020. As shown in Fig13, the the method proposedheng et al(2020 can also stabilize
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the uncertain nonlinear syste® {3, but the system performance is poor. In addition, the systeiessta
are required to be measurableHang et al(2020.

From the above analysis, it can be concluded that the desigR&¢C shows strong robustness for
a class of uncertain nonlinear systems. The observed sysit®s sind estimated uncertain parameters
are effectively reconstructed by the AFTSMO in FT so that theylmoompensated by the controller.

6. Conclusion

An OFBC has been designed for a class of nonlinear systems.éntordbserve the external dynamics
and unmatched uncertain parameters in FT, a novel AFTSMO is fopbped. By using the backstep-
ping principle, a set of Constructive Lyapunov Functions sigieed to obtain the desired control while
the system stability is guaranteed. Numerical examples arktaskemonstrate the effectiveness of the
designed OFBGC-uture work will study how to further relax the requirements on bloéhslystem model
and unmatched uncertainties.
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