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An Iterative Centroid Approach for
Diffeomorphic Online Atlasing
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Abstract— Online atlasing, i.e., incrementing an atlas
with new images as they are acquired, is key when perform-
ing studies on very large, or still being gathered, databases.
Regular approachesto atlasinghoweverdo not focus on this
aspect and impose a complete reconstruction of the atlas
when adding images. We propose instead a diffeomorphic
online atlasing method that allows gradual updates to an
atlas. In this iterative centroid approach, we integrate new
subjects in the atlas in an iterative manner, gradually moving
the centroid of the images towards its final position. This
leads to a computationally cheap approach since it only
necessitates one additional registration per new subject
added. We validate our approach on several experiments
with three main goals: 1- to evaluate atlas image quality
of the obtained atlases with sharpness and overlap mea-
sures, 2- to assess the deviation in terms of transformations
with respect to a conventional atlasing method and 3- to
compare its computational time with regular approaches
of the literature. We demonstrate that the transformations
divergence with respect to a state-of-the-art atlas construc-
tion method is small and reaches a plateau, that the two
construction methods have the same ability to map subject
homologous regions onto a common space and produce
images of equivalent quality. The computational time of our
approach is also drastically reduced for regular updates.
Finally, we also present a direct extension of our method to
update spatio-temporal atlases, especially useful for devel-
opmental studies.

Index Terms— Atlasing, online, iterative centroid.

I. INTRODUCTION

WE REFER by the term atlas an average model of an
anatomical region (here the brain) from a geomet-

ric (shape) and iconic (image intensity) point of view. It is a
key component of many pipelines in medical image processing
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to create a neutral reference for a considered population for
common alignment [11], to segment regions [5], etc. This
tool is also crucial to understand brain variability [28] and
to compute statistics on populations [32].

The easiest way to construct atlases may seem very simple:
one may for example register all images towards a reference
image, and then average all images intensities in that common
space. This however creates a bias: constructing an atlas
towards a reference or another would give different atlases.
If registration was perfectly matching images, the resulting
atlas would be exactly the reference image in terms of shape
when the atlas is supposed to be an average model in terms
of intensities and shape. This is not desirable for many
applications and therefore two main families of approaches
are commonly used to produce a so-called unbiased atlas:

• Template-based approaches [10], [13], [16] require the
choice of an initial reference image onto which each
subject is registered. The bias toward this first reference
is then compensated using the inverse average transfor-
mation from the registration. Iterating over this process
and taking the average model of the previous iteration as
the new reference produces an unbiased atlas.

• Template-free approaches [33] on the other hand do
not rely on an initial reference image thus avoiding the
introduction of the bias in the first place. They can be
subdivided into two categories:

– Pairwise methods [25], [26]: they require to register
each subject towards all the others. From these pair-
wise registrations, so-called unbiased subjects can be
created that are then averaged.

– Groupwise methods [14], [18], [19]: they propose
to directly compute an average model through a
groupwise registration of all the subjects simultane-
ously. In [12], [31] and [34], it was proposed to take
advantage of the generative model developed in [1]
to embed atlas creation into a Bayesian framework
allowing especially to jointly estimate parameters
such as the coefficient balancing image similarity and
regularization.

Until the 2000s, magnetic resonance imaging (MRI) data-
bases remained fairly modest in size, often limited to a hun-
dred individuals and rarely in open-access. More recently, the
size of datasets has grown considerably, boosted in particular
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by the search for statistical power and the appetite of machine
learning algorithms. Spread over various periods of time, those
new large databases offer the opportunity to produce atlases
depicting the population variability across the lifespan. The
Human Connectome Project Young Adults, the first completed
of its kind, is constituted of about 1200 subjects [29]. Various
spin-off projects of the same order of magnitude have then
been initiated for lifespan development [27] and aging [4].
At an even bigger scale, the UK Biobank study [21] aspires
to include up to 100,000 subjects in 2022. In this context, the
recruitment process can take several years, researchers may
therefore start working on these databases before their com-
pletion. This causes two problems. All the above-mentioned
methods require a large number of heavy computations (reg-
istrations, transformation compositions, etc.) that increases
with the number of subjects (linearly or even quadratically
for exhaustive pairwise methods). Their computational cost
can thus be prohibitive for a large number of subjects. Fur-
thermore, a crucial aspect is that the computational cost of
adding new images to the atlas, for example when new images
come to enlarge an existing database, is prohibitive. For
most methods, the whole atlasing process has to be restarted
from scratch to update the atlas. A notable exception is the
exhaustive pairwise method that only requires a large number
of registrations (e.g. N registrations if adding a single image
to an atlas computed from N images). However, since their
computational cost is the largest of all methods in the first
place, the gain is relatively low and N registrations to add
one image is still long. The community therefore needs online
atlasing, i.e., methods which make it possible, as opposed to
the direct atlasing ones mentioned above, to update an existing
atlas with new images as they arrive without having to redo
the entire atlas construction process.

We propose a new atlas construction technique that con-
siders the problem from a different perspective. To do so,
we start back from the notion of centroid as it is defined for
a set of points in a Euclidean space. Following this common
formula, [8] noted that it may be reformulated in an iterative
series where one point is added at a time. They generalized this
formula to surfaces embedded in a Riemannian manifold to
propose an iterative and efficient diffeomorphic atlas construc-
tion method for surfaces. [22] presented a similar approach
for images using B-splines constrained to preserve topology.
We propose in this paper a generalization of the iterative dif-
feomorphic centroid approach to image atlasing, allowing the
atlas to be updated gradually as new images are incorporated.
The major advantage of this approach is that the integration
of a new image to an existing atlas does not impose to build
the atlas from scratch. A single registration step is required
which makes it computationally efficient. Benefiting from
the log-Euclidean framework for diffeomorphisms from [2],
the method also allows the construction of a diffeomorphic
atlas unbiased up to a linear transformation (rigid or affine
at the choosing of the user). We have formerly presented a
limited, basic version of this approach in the conference paper
available in [17]. Further, we present in Section II-D how to
extend the iterative centroid approach to the creation of spatio-
temporal (4D) atlases (i.e., a collection of 3D sub-atlases

from cross-sectional data, each at a given timepoint, where
the contribution of each subject is modulated by a weight
function that accounts for the distance in age to the timepoint).
A version to merge atlases allowing more parallel architectures
organizing the atlas creation is also presented in Section II-E.

Section II presents the iterative centroid approach, its
specificities for image atlasing and the different variants we
introduce. We then present in Section III implementation
details and experiments to compare the atlasing technique
behavior with direct atlasing (here a modified version of
the [13] method, developed in [16]). Using a geometric metric
we show that the methods diverge from each other as more
and more subjects are included, but stay relatively close.
We also compare the atlases using an overlap and a sharpness
metric; both showing almost identical results between the two
approaches. In addition, we evaluated how the ordering of
the subjects influences the result. We demonstrate once again
similar variations using both methods. Finally, we conducted
computational efficiency experiments showing the superiority
of our iterative centroid approach when adding new subjects
gradually to an existing atlas.

II. METHOD

A. Theoretical Background

Let us consider the registration of two images I and J ,
i.e., transforming J onto I so that J and I match as much
as possible. We denote by J̃ the image J resampled by a
transformation T : I (x) ∼ J̃ (x) = J ◦ T (x), where x are the
spatial coordinates. Going further, if we assume that T belongs
to a connected Riemannian manifold, we denote by γ (t) the
geodesic between identity Id and T defined by γ (0) = Id and
γ (1) = T . This framework is often named large deformation
diffeomorphic metric mapping (LDDMM). In this case, T is
defined by a time varying vector field integrated over time (the
geodesic γ ).

Diffeomorphisms are widely used in non-linear registra-
tion because of their interesting properties: differentiability,
bijectivity and differentiability of the inverse map. Another
framework for diffeomorphisms parametrizes the transforma-
tion T between two images by a stationary velocity field (SVF)
integrated over time [2]. In this context, diffeomorphisms
together with the composition law are given an infinite Lie
group structure to which is associated, via logarithm and
exponential maps, its Lie algebra. The latter is a vector space
where Euclidean operations are well defined [2]. One operation
of interest is the power of a diffeomorphism defined as T α =
exp (α log(T )). T α corresponds to the value at t = α of γ (t),
the diffeomorphic path between Id and T such that γ (0) = Id
and γ (1) = T . In the following, all non-linear transformations
are assumed to be diffeomorphisms parameterized with SVFs
as they allow for large diffeomorphic deformations and are
more computationally efficient than LDDMM.

The logarithm of diffeomorphisms parameterized by
SVFs is computationally very expensive. Several approaches
[3], [30] have therefore suggested to perform all computations,
especially composition, in the tangent space of the Lie group
and use the exponential (much faster) only when image
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resampling is needed. This requires a way to compute the
representation in the Lie algebra of the composition of two
elements of the Lie group without any logarithm computation.
The Baker-Campbell-Hausdorff (BCH) formula allows for
such an operation through a series of Lie bracket terms.
In particular, for two SVFs v and w close enough to 0, the
following series converges:

log(exp(v) ◦ exp(w)) ≈ BCH(v,w)=v + w + 1

2
[v,w] + . . .

(1)

where [v,w](x) = Jac(v)(x).w(x) − Jac(w)(x).v(x). It has
been shown in [3], [30] that the use of the BCH formula is
well suited for diffeomorphisms parameterized as SVFs, even
though it is not exactly a Lie group due to the infinite dimen-
sion aspect. To simplify notations, unless specified otherwise,
the composition of two transformations associated to two
SVFs v and w is performed via the BCH: exp(v) ◦ exp(w) =
exp(BCH(v,w)).

B. Iterative Centroid Atlas Construction

In a Euclidean space �, the centroid (barycenter) bn of a set
of n points {x1, . . . , xn} is defined as the point that minimizes
the sum of squared Euclidean distances between itself and each
point in the set: bn = argminy∈�

∑n
i=1 �y − xi�2. A direct

solution is 1
n

∑n
i=1 xi but one can also retrieve it through an

iterative approach following:⎧⎨
⎩

b1 x1

bk+1
k

k + 1
bk + 1

k + 1
xk+1

(2)

As depicted in [8], one can extend this formulation to the
Riemannian case for surfaces by using the generalization of
the notion of straight line to geodesics. In that context, the
updated centroid bk+1 is situated along the geodesic linking bk

and xk+1, at 1
k+1 times the distance between the two from bk .

We define our iterative centroid atlasing following the same
spirit, but on images and using diffeomorphisms parametrized
by SVFs. Thereafter we assume that the registration of an
image I onto an atlas A is performed in two steps: first
through the estimation of a linear transformation L and then
a diffeomorphism T , so that A ∼ I ◦ L ◦ T . Generalizing
Equation 2 to a set of images {I1, . . . , In}, we obtain the
following update formula:⎧⎨
⎩

A1 I1

Ak+1
k

k + 1
Ak ◦ T

− 1
k+1

k+1 + 1

k + 1
Ik+1 ◦ Lk+1 ◦ T

k
k+1

k+1

(3)

where Lk+1 and Tk+1 are respectively the linear and non
linear transformations to resample the new image Ik+1 onto
the current atlas Ak . The atlasing scheme is illustrated in
Fig. 1. We apply to Ak a transformation located at 1

k+1 of
the distance from the identity to T −1

k+1 along the diffeomorphic
path. We also apply to Ik+1, in addition to the linear trans-
formation, a diffeomorphism located at k

k+1 of the distance
from the identity to Tk+1 along the transformation path. Also,

Fig. 1. An illustration of the iterative centroid scheme.

Algorithm 1 Iterative Centroid
1) We register Ik+1 onto Ak :

Ak ∼ Ik+1 ◦ Lk+1 ◦ Tk+1 (1 registration)

2) For j = 1, . . . , k, we update � j,k+1 as:

� j,k+1 = � j,k ◦ T
− 1

k+1
k+1 (k BCH)

3) We assign �k+1,k+1 = T
k

k+1
k+1

4) Finally we build Ak+1 as:
Ak+1 = 1

k+1

∑k+1
j=1 I j ◦ L j ◦ � j,k+1.

Ak is made from k images so a weight k
k+1 is affected to its

intensities whereas Ik+1 intensities get a weight 1
k+1 . At the

end, those two images are transformed and weighted according
to their contribution to the atlas.

Now, as opposed to [8] dealing with surfaces, we intend to
create an atlas of images. This raises the question of resam-
pling, the images indeed require interpolations on a voxel
grid to be reconstructed after undergoing a transformation.
This resampling generates blurring effects; it should thus be
avoided as much as possible in order to obtain a sharp result,
that preserves as much detail as possible. To this end, it is
preferable not to use Ak (already a resampled image) when
constructing Ak+1, but instead to operate on the initial images
using transformation compositions such that each image under-
goes only one resampling. This is achieved by unravelling
Equation 3 such that the sequence (Ak) is expressed only using
the initial images {I1, . . . , Ik}. The following formulation then
emerges:

Ak+1 = 1

k + 1

⎛
⎝ k∑

j=1

(
I j ◦ L j ◦ � j,k ◦ T

− 1
k+1

k+1

)

+ Ik+1 ◦ Lk+1 ◦ T
k

k+1
k+1

⎞
⎠ (4)

where � j,k is the non-linear part of the transformation bring-
ing I j onto Ak . To the limit of approximations linked to dis-
cretization, the regularity of the transformations is preserved
after composition. There are k compositions (using BCH) to
perform at iteration k which correspond to the update of the
transformations � j,k for j ≤ k. Algorithm 1 summarizes the
process to obtain the new atlas Ak+1 by adding one image to
the current atlas Ak .
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We detail two more points to obtain the complete iterative
centroid atlas construction method.

1) Initialization: One can start at iteration 1 by initiating
A1 = I1 and �1,1 = Id. However, a key point of the method
is the possibility to complement an already existing atlas A p

constituted of p images as long as it can be written as A p =
1
p

∑p
j=1 I j ◦ L j ◦Tj . To do so, we assign � j,p = Tj , ∀ j ≤ p.

2) Iterative Procedure: At the end of iteration k we have,
for each j ≤ k, transformations � j,k that map images I j onto
the atlas Ak : Ak ∼ I j ◦ L j ◦� j,k. Algorithm 1 is then applied
iteratively for all images to add to the initial atlas.

C. Unbiased Atlas Construction

The proposed method, similarly to Guimond et al. atlas
construction process [13], allows the construction of an atlas
unbiased with respect to a linear transformation. So far,
we have thus only assumed that the registration produced a
linear and a non-linear part. Going in more details, let us now
assume that this registration can be written A ∼ I ◦ R ◦ S ◦ D
where: R ◦ S is an affine transformation decomposed into a
rigid part R and a stretching part S using polar decomposition
(as depicted in [16]), and D is a diffeomorphism.

We can now distinguish two cases:
• By taking L = R ◦ S and T = D: L encapsulate the

entire global part of the overall transformation i.e., rigid
and stretching aspects whereas T only account for local
displacements. The method will lead - similarly to [13] -
to an atlas unbiased up to an affine transformation.

• By taking L = R and T = S ◦ D: L only consider
rigid motion whereas T encapsulate both growth aspects
and local displacements. The method will lead to an
atlas unbiased up to a rigid transformation. This makes
the method eligible for spatio-temporal studies (similarly
to [16] for the direct atlasing case). This change to rigid
unbiasing will only cost one more composition per image
(one BCH), for the composition of S and D.

D. Spatio-Temporal Extension

Our iterative centroid atlas creation method considers by
default equal weights for each image. However it is also fully
eligible for a spatio-temporal extension where one wants to
constitute a series of atlases for a set of specific timepoints.
This may be done using weight functions that modulate the
contribution of each subject image according to its distance in
age to a desired timepoint. These weight functions, often cho-
sen as Gaussian kernels, can have adaptive width [26] to com-
pensate for uneven distribution. A more flexible approach [16]
allows in addition to adjust for asymmetric distributions of
the ages of the input subjects. Interestingly, and consistently
with the relevance of the iterative centroid approach, it is not
required to define the weights for all upcoming subjects from
the beginning. Only w j = K (t j , t), a kernel which tells the
unnormalized weight of the image of the j th subject with age
t j for the atlas at timepoint t , has to be known a priori. When
a new image arrives, its associated weight can be computed
on the fly according to the subjects age through the weight
function.

To account for those weights, the formulation is straight-
forward: it only consists in replacing the occurrences of two
terms representing the adjusted weights of the new image and
all the previous images. This leads to the following algorithm:

Algorithm 2 Spatio-Temporal Iterative Centroid
1) We register Ik+1 onto Ak :

Ak ∼ Ik+1 ◦ Lk+1 ◦ Tk+1 (1 registration)

2) We assign αk+1 = wk+1∑k+1
j=1 w j

3) For j = 1, . . . , k, we update � j,k+1 as:
� j,k+1 = � j,k ◦ T −αk+1

k+1 (k BCH)

4) We assign �k+1,k+1 = T 1−αk+1
k+1

5) Finally we build Ak+1 as:

Ak+1 = 1∑k+1
j=1 w j

∑k+1
j=1 w j I j ◦ L j ◦ � j,k+1.

Doing so, as a new image arrives, its weight is calculated
through the weight function according to the age of the subject.
The normalization of the weights is then adjusted to correctly
incorporate the new image in the existing atlas.

To properly account for brain development, the transforma-
tion T from registrations must embed both the stretching part
S (global changes in scaling) and the diffeomorphic part D
(local changes): T = S ◦ D.

E. Merging of Two Atlases, Parallel Extension

Finally, we detail an extension of our method to be executed
in parallel when adding more than a few subjects. This
relies on the possibility to merge two atlases A p and Ãq

made of respectively p and q images and their associated
transformations:{

A p : {I1, . . . , Ip}, {L1, . . . , L p}, {�1,p, . . . ,�p,p}
Ãq : { Ĩ1, . . . , Ĩq }, {L̃1, . . . , L̃q }, {�̃1,q, . . . , �̃q,q}.

These two atlases can be merged into a single one A p+q

containing p + q images as follows:
This algorithm is a generalized version of Algorithm 1 (one

can retrieve it with q = 1). It paves the way for various, more
parallel, architectures organizing the atlas creation. In partic-
ular, one can organize the atlas creation following a pairwise
design as in [9]. The interest of the iterative centroid method
is, however, rather to gradually update atlases at a cheap cost
rather than directly building an atlas from numerous existing
images. For the latter, direct atlasing methods such as the
template-based approach [13], [16] are already well adapted.

III. EXPERIMENTS AND RESULTS

In this section, we first showcase an atlas built with
(Algorithm 1) and a spatio-temporal one built with
(Algorithm 2). We then present a thorough evaluation of the
behavior of the core of our method (Algorithm 1). In particular,
results found on this core method generalize straightforwardly
to the spatio-temporal version (Algorithm 2), especially since
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Algorithm 3 Merging of Two Atlases

1) We register Ãq onto A p:
A p ∼ Ãq ◦ L p+q ◦ Tp+q (1 registration)

2) For j = 1, . . . , p + q , we update � j,p+q as:⎧⎨
⎩� j,p+q = � j,p ◦ T

− q
p+q

p+q , for j ≤ p

� j,p+q = �̃ j−p,q ◦ T
p

p+q
p+q , for j > p

(p BCH)

(q BCH)

3) For j = 1, . . . , q , we assign:
Ip+ j = Ĩ j , and L p+ j = L̃ j

4) Finally we build A p+q as:

A p+q = 1
p+q

(∑p+q
j=1 I j ◦ L j ◦ � j,p+q

)

we evaluate the core method unbiased up to a rigid trans-
formation. Moreover, the study of the influence of image
ordering detailed in the next sections also indirectly validates
the parallel extension of the method (Algorithm 3).

A. MRI Database

Our experiments have been conducted using data from the
Human Connectome Project Young Adults1 database [29]
(HCP-YA, age range: 22-35 years old). We have randomly
chosen 100 subjects from which we have used the T1-w
preprocessed images (brain extraction). The quality of those
data is very high: Siemens 3T scan, T1-w 3D MPRAGE, TR:
2400 ms, TE: 2.14 ms, TI: 1000 ms, flip angle: 8◦, image
dimensions: 260 × 311 × 260, voxel size: 0.7 × 0.7×0.7 mm,
acquisition time: 7 min 40 sec.

For the spatio-temporal atlas, we used data from the C-
MIND database.2 We selected 197 T1-weighted images of
subjects with ages ranging from less than a month to almost
19 years old. It therefore contains brains of different sizes and
maturation. In addition, this database has been constituted with
more challenging routine clinic acquisitions: Philips 3T scan,
T1-w 3D, TR: 8.1 ms, TE: 3.7 ms, TI: 939 ms, flip angle: 8◦,
image dimensions: 160×256×160 or 192×192×160, voxel
size: 1 × 1 × 1 mm, acquisition time: 5 min 16 sec.

B. Implementation Details

1) Registration: Our method is agnostic to the registration
algorithms used. We have chosen to perform all registrations in
two steps using the block matching algorithms from Anima3:

• An affine registration with the block-matching algorithm
proposed in [7]. This step outputs an affine transformation
matrix B that is then decomposed into two parts: a rigid
transformation R and a stretching transformation S. This
is achieved through polar decomposition (more details
in [16]).

1Human Connectome Project Young Adults:
https://humanconnectome.org/study/hcp-young-adult

2C-MIND database, created for the study of normal brain development
conducted by Cincinnati Childrens Hospital Medical Center and UCLA and
supported by the National Institute of Child Health and Human Development.

3Anima: Open source software for medical image processing from the
Empenn team. https://anima.irisa.fr - RRID:SCR_017017

Fig. 2. Illustration of the registrations and operations on transforma-
tions. Squares design images whereas circles represent transformations.
In blue the initial images (I new subject and A current atlas), in green the
outputs of the registrations (B terms for affine, and D for diffeomorphic),
and in red the components extracted from the operations on the regis-
tration transformations.

• A diffeomorphic registration using the algorithm from [6]
that directly outputs log(D) the SVF of the diffeomor-
phism D linking the two images. This allows to take
advantage of the log-Euclidean framework thus avoiding
heavy logarithm computations.

We used local (block-wise) squared correlation coefficient
as similarity metric. To avoid any bias toward one of the
images during the registration of Ik+1 onto Ak , the similarity
metric Sim was computed in an intermediate space between
the two images situated at distance 1

k+1 from Ak along the

transformation path: Sim

(
Ak ◦ T

− 1
k+1

k+1 , Ik+1 ◦ T
k

k+1
k+1

)
.

We have chosen to compute atlases up to a rigid transforma-
tion. Therefore, the linear transformation L is rigid: L = R and
the non-linear transformation is the combination of stretching
and local displacements: T = S◦D. The registration processes
and operations on transformations used for our implementation
are illustrated in Fig. 2.

2) Transformation Composition: Compositions of two diffeo-
morphisms are performed on their SVFs using 2nd order BCH.
To compose a linear transformation L and a SVF, we first
apply log(L) to the real coordinates of the same image grid
as the one of the SVF. This allows to encode the linear
transformation into an SVF and then compose it with the
non-linear part using 2nd order BCH.

3) Spatio-Temporal Weights: Weights modulating the con-
tribution of each subject for each timepoint of the
spatio-temporal atlas have been chosen following the strategy
developed in [16]. We chose the following timepoints for
constructing the atlas: 1, 1.5, 2, 2.5, 3, 6.5, 10 and 16 years
old, and chose an approximate number of 30 subjects per
timepoints.

C. Atlas Rendering

We first present an illustration of the atlases produced by
our method for visualization purposes. The atlases created by
adding one by one the images of the MRI database using
Algorithm 1 and above-mentioned processing tools are shown
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Fig. 3. Resulting consecutive atlases (bottom) obtained through iterative centroid construction as new images (top) are incorporated one by one.

in Fig. 3. The first atlas is obviously identical to the first image.
Then one can observe the gradual shift of the centroid that
accounts for the new images that are integrated. We obtain at
the end an atlas that is an average model of the brain in terms
of shape and intensity from the image database of subjects.

We display a spatio-temporal atlas in Fig. 5 i.e., a suc-
cession of sub-atlases, each corresponding to a given time-
point between birth and early adulthood, to observe brain
development. One can observe a quick general growth, more
pronounced along the temporal axis, in the early stages of
life until a stabilization around 5 years old. One can also
distinguish the myelination process gradually giving its char-
acteristic color to the white matter.

D. Comparison Between Iterative Centroid
and Direct Atlasing

We evaluate the results of our approach by comparing
its results with a state-of-the-art direct atlasing method: a
template-based method proposed in [16] and available as part
of Anima scripts.4 It consists in a natural extension of the
method proposed in [13] to handle diffeomorphisms para-
meterized by SVFs. The same registration and composition
algorithms were used, with the same parameters, for both
methods.

We have performed, and report in the following three
separate experiments to evaluate the behavior of the two
methods. The first two experiments start from an atlas built
with 50 images using direct atlasing. We then added one by
one the 50 other images using our online atlasing. We then
compared the results with direct atlases computed with 60, 70,
80, 90 and 100 images. This comparison includes geometric
divergence, iconic and overlap measures between the atlases
at cortical, sub-cortical and white matter level. We then further
evaluated the computational cost of the two methods for two
scenarios of atlas creation. Finally, we compared the influence
of the ordering in which the images are added for both
methods.

4Anima-Scripts: Open source scripts using Anima software for medical
image processing from the Empenn team.
https://anima.irisa.fr - RRID:SCR_017072

Fig. 4. Atlases of 100 subjects created using the direct atlasing
method (top) and the iterative centroid one (bottom).

Both methods output linear transformations L and
non-linear transformations � mapping each image onto the
atlas. We denote by Ak = 1

k

∑k
i=1 I j ◦ L j ◦ � j,k the atlas

made of k images using the iterative centroid method and by
Ãk = 1

k

∑k
i=1 I j ◦ L̃ j ◦�̃ j,k its counterpart from direct atlasing.

Each HCP subject has been segmented using
Freesurfer (wmparc) as part of its preprocessing. We grouped
the labels by tissue type into 3 sets: sub-cortical, cortical and
white matter. They are used as such for the overlap measure.
For the geometric divergence and sharpness measures,
we fused the labels in each set, and tissue specific results
are obtained by weighting metric values by the probability of
belonging to this set.

Prior to quantitative assessment, it should be noted that the
atlases looks extremely similar. As shown in Fig. 4, even for
the atlases with 100 images that are supposed to be the ones
accumulating the most divergence, there is barely no difference
at all to the naked eye.

1) Geometric Divergence of the Atlases: We first propose to
evaluate the divergence between the two atlases A and Ã by an
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Fig. 5. Spatio-temporal atlas for 8 timepoints between birth and early adulthood showing brain development.

Fig. 6. From left to right atlases with 60, 70, 80, 90 and 100 images.
Top: boxplots and violin plots of divergence measure δ (in mm). Bottom:
atlases from iterative centroid method overlaid with divergence measure
δ (in mm).

image δ defined from the transformations such that at voxel x :

δ
(

Ak, Ãk

)
(x) = 1

k

k∑
j=1

∥∥∥L j ◦ � j,k(x) − L̃ j ◦ �̃ j,k(x)
∥∥∥

2

(5)

This geometrical measurement has the advantage, contrary
to most of the iconic ones, of being insensitive to edge issues
in image comparison.

In Fig. 6, the evolution of the divergence between the
atlases from the two methods with respect to the number of
subjects is presented. On the bottom line, quantitative plots
suggests that the divergence tends to grow (from a median of
0.74 mm for 60 images, to 1.20 mm for 100) but at a slow and
decreasing pace (+0.21 mm between 60 and 70 images but
only +0.04 mm between 90 and 100). Despite those numbers
that may appear large, there is no noticeable differences
between the images to the naked eye (seen Fig. 4. This implies
that those differences are most likely related to the vagaries of
matching in neighbouring areas of similar contrast. On the top
line, the divergence images are superimposed to the atlases
from the iterative centroid approach. It reveals that most of
the differences are located in outer areas of the brain whereas
more central structures are spared.

2) Region Overlap Between the Atlases: We propose to
assess the ability of each atlas creation method to properly
align the subjects onto a common space by an overlap measure

Fig. 7. Dice scores associated to sub-cortical (square, left), cortical
(disk, center) and white matter (triangle, right) for atlases with 60, 70, 80,
90 and 100 images. Blue: iterative centroid. Red: direct atlasing.

that takes the form of a global Dice score across different
labels but also across subjects. This kind of metric has been
shown in [24] to be relevant for the validation of registration
algorithms and is often used for their evaluation as in [15].

Let �k be the set of all pairs of indices corresponding to the
input images for an atlas of k images: �k = {{i, j} ∈ N

2 | i ≤
kand j < i}. We define the global Dice score associated to the
atlas Ak as follows:

D(Ak)=2

∑
{i, j }∈�k

p∑
l=1

|Si,l ◦ Li ◦ �i,k ∩ Sj,l ◦ L j ◦ � j,k|
∑

{i, j }∈�k

p∑
l=1

(|Si,l ◦ Li ◦ �i,k | + |Sj,l ◦ L j ◦ � j,k|
)

(6)

where |.| is the cardinal computed as the number of non-zero
voxels, and Si,l corresponds to the label l of the segmentation
associated to subject i . Only regions larger than 1000 voxels
(∼343 mm3) were kept. We used this to compute 3 Dice scores
associated to the 3 sets of labels (sub-cortical, cortical and
white matter) for each atlas.

Dice scores by regions are shown in Fig. 7. Those are almost
identical whether using the direct atlasing or the iterative
centroid method. Also it is extremely stable with the number
of images. In all cases, it reaches a score around 0.85 for sub-
cortical areas, 0.57 for cortex and 0.58 for white matter. The
relatively low cortical and white matter scores reflect the diffi-
culties of the registration algorithms to exactly perform gyrus-
to-gyrus correspondence whereas the good sub-cortical score
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Fig. 8. Boxplots and violin plots of sharpness s for atlases (restrained
to the union of the masks) with 60, 70, 80, 90 and 100 images. Blue:
iterative centroid. Red: direct atlasing.

can be explained by the rather clear boundaries, in anatomical
images, of the regions within this set.

3) Sharpness Comparison Between the Atlases: We now
present an iconic evaluation to assess the quality of the atlases
based on image intensities. Resamplings and registration inac-
curacies inherent to the atlas creation process introduce blur.
We thus propose in addition a measure of sharpness that
quantifies the level of detail of an image. Given N(x), a patch
around a voxel x of an image A, we define a local measure
of the sharpness s at voxel x as the standard deviation of the
patch normalized by its average (the higher the sharpness the
better):

s(Ak)(x) = sd(Ak ◦ N(x))

mean(Ak ◦ N(x))
(7)

For this experiment, we chose a patch with a diameter of
5 voxels.

In Fig. 8, quantitative plots of sharpness measurements with
respect to the number of images in the atlas are presented. The
results shown only account for voxels inside the union of the
masks. It appears that the two methods output atlases that are
very similar in terms of image quality. The sharpness is almost
identical for both and is stable with respect to the number of
images. Once again the evolution and values are virtually equal
for both atlas construction methods.

Image quality is often a trade-off between sharpness and
noise as noisy images can lead to high sharpness measure
whereas blurry images may lead to high SNR. However,
in the specific context of atlas construction that implies many
image averaging and resamplings (voxel averaging) that tend
to smooth the result, the impact of noise is rather limited,
especially when using a decent number of subjects.

4) Computational Cost: In both compared methods, there
are two main sources of time consumption which are the
non-linear registrations and the transformation compositions
through BCH. As an indication, using a computer with 2 ×
20 cores Intel Xeon Processor E5-2660 v3 2.60GHz, for
images of dimension 160×256×190 (1×1×1 mm), it takes
about 213 seconds to compute a non-linear registration and
16 seconds to perform a transformation composition through
2nd order BCH.

TABLE I
NUMBER NON-LINEAR REGISTRATIONS, NUMBER OF BCH

COMPUTATIONS AND INDICATIVE PROCESSING TIME TO

CREATE AN ATLAS OF 300 IMAGES FROM SCRATCH

USING ITERATIVE CENTROID AND A DIRECT

ATLASING WITH 4 AND 8 MAIN

LOOP ITERATIONS

Let us consider we already have a pre-existing atlas made
of k images. We are looking for a measure of the cost of
completing this atlas with new images so that it contains a
total of n > k images. We have compared the two options
evaluated earlier to perform this task:

• Direct method: Whatever the previous atlas, the new one
has to be built from scratch. Let p be the number of
iterations of the main loop. The method requires pn non-
linear registrations and pn transformation compositions.
The latter compositions are done through BCH and corre-
spond to the composition of the affine and the non-linear
transformations from the registrations (only for an atlas
up to a rigid transformation).

• Iterative centroid method: Using the pre-existing atlas,
the method requires n − k non-linear registrations and
(n −k)+∑n

i=k+1 i = 1
2 (n −k)(n +k +3) transformations

compositions through BCH. The first part corresponds
to the composition of the affine and the non-linear
transformations from the registrations. The second part
corresponds to the update of the � transformations (only
for an atlas up to a rigid transformation).

Now we showcase two scenarios that give an idea of
the strengths and weaknesses of both methods in terms of
computational cost.

a) Atlasing from 300 images: We already have in our pos-
session 300 images and we want to build an atlas from it. The
amount of non-linear registrations and BCH computations and
an indicative processing time for both methods necessary to
build this atlas are presented in Table I.

In this configuration, where a single atlas is built from
scratch, direct atlasing is the best suited method with direct
atlasing requiring 153 hours and online atlasing 220 hours.

b) Atlasing by adding images: We now have a pre-existing
atlas made of 200 images and, acquisitions being gathered
gradually, we want to update this atlas every 10 new images
until we have a final amount of 300. The amount of non-linear
registrations and BCH computations as well as an indicative
processing time for both methods necessary to update the
previous atlas is presented in Fig. 9.

In this configuration, where an atlas in updated gradually
as new images arrive, iterative centroid is the best suited
method. Indeed, updates take only from 9.77 hours at first
step to 13.77 at the last (+0.44 hours at each step) for iterative
centroid. In comparison, even for only 4 main loop iterations
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Fig. 9. Number of non-linear registrations, number of BCH computations
and indicative processing time to update the atlas at each step (every
10 new images from 200 to 300) using iterative centroid and a direct
atlasing. Abscissa represents the number of images of the atlas at each
step.

(which is not much), it takes from 53.37 hours for the first
step to 76.27 hours for the last (+2.54 hours at each step) for
the direct atlasing method.

To sum up, in terms of computational cost, direct atlasing
shows better results when it comes to build a single atlas
from scratch. On the other hand, the iterative centroid method
performs better in case of an atlas being updated gradually.
The more images there are in total and the shorter the steps
are, the better iterative centroid behaves compared to its direct
counterpart.

5) Influence of the Ordering: This experiment is designed to
evaluate the influence on the result of the order in which the
images are introduced, in particular to apprehend a potential
bias towards the first image.

To evaluate the influence of the image ordering for both atlas
creation methods, we have chosen a given ordering as refer-
ence and compared the results to the ones obtained with other
orderings. The comparison was made using the same diver-
gence measure as in Section III-D.1, and the iterative centroid
version follows Algorithm 1. For this experiment, we have
built atlases made of ten images, the reference ordering is
thereupon characterized by the list (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
The set of shuffled orderings for this experiment includes:

• 2 favorable cases:
– Same ordering except for a permutation of the 5th

and 6th (dark green).
– Same ordering for the first five then random ordering

of the rest (light green).

• The least favorable case: reverse ordering (red).
• 10 entirely random combinations (gray).

Fig. 10. Divergence δ (in mm) of atlases with shuffled orderings
compared to the one with the reference ordering for both template-based
and iterative centroid methods. Boxplots only account for the ten totally
random combinations (gray).

Results are shown in Fig. 10. For the template-based
method, only the first image, which is the initial reference,
has an influence on the divergence. Given that, if the first
element of the ordering is the same as the reference ordering,
the divergence is zero. If not, both template-based and iterative
centroid approaches show comparable results. For the latter,
having a favorable ordering (same beginning as the reference)
leads to a much smaller divergence.

This experiment indicates that, using the iterative centroid
method, the order in which the images are introduced has a
slight influence on the result. However, this tendency remains
in similar proportions to the direct atlasing method.

IV. DISCUSSION

In our implementation, diffeomorphisms are parametrized
by SVFs, which do not allow the coverage of the whole set
of diffeomorphisms. Although this approach is widely used
thanks to the convenience of its infinite-dimensional Lie group
structure, one might consider a more exhaustive LDDMM
parametrization based on time varying velocity fields.

We have used transformation compositions through BCH
formula to ensure that only one resampling by subject is
necessary, thus providing a sharper result. However, geometric
inaccuracies linked to composition approximation through
BCH and discretization are likely to accumulate. The BCH
approximation was used to bypass the heavy computation of
diffeomorphism logarithms when composing transformations.
One can imagine a more accurate yet way slower version
of the same iterative centroid approach without this shortcut,
using logarithm computations instead (although their compu-
tation through scaling and squaring are also approximations).
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It is likely that part of the observed divergence is linked
to BCH approximations. Those are widely used in compu-
tational anatomy whenever the SVF framework is involved.
A technical note detailing its convergence and the way errors
can accumulate with respect to the voxel size, number of
composition and approximation order would be of best interest
to the community.

We have presented a rather generic recipe which can easily
be adapted. The present implementation does not specifically
follow the generative model from [1]. However, the general
method is not incompatible with it since the iterative centroid
approach perfectly accommodates the assumption that images
are generated from the latent atlas. Bayesian iterative cen-
troid implementations are possible, analogous to the Bayesian
groupwise ones like [34].

When reconstructing an image I 
 from an image I after a
deformation T , to account for signal accumulation in contrac-
tions and signal dilution in expansion, an intensity modulation
like using the Jacobian determinant of the transformation JT

should be performed: I 
(x) = JT (x) · I ◦ T (x). This Jacobian
weight terms naturally pops in when deriving the equations in
the Bayesian formulation in [20]. This has not been explicitly
displayed in the equations but should be considered if needed.

In this paper we used the local squared correlation coeffi-
cient as similarity metric because of its versatility. It allows
the matching of images of different contrast which is crucial
when dealing with still developing brains for example. For a
contrast-homogeneous population, one might prefer the sum
of squared differences over the whole images. In that case,
the above mentioned intensity modulation has importance.

We have proposed the sharpness as a measure of image
quality of the resulting atlases. However, image quality is
often a trade-off between sharpness and noise, as noisy images
can lead to high sharpness whereas blurry images lead to
lower noise. Yet, in the specific context of atlases, we believe
that the danger comes mainly from the sharpness. Indeed, the
construction of an atlas involves a lot of image averaging and
resampling (voxel averaging) which tends to smooth the result
rather than to induce noise. With a decent number of subjects,
the impact of noise quickly fades.

V. CONCLUSION

We have proposed a novel online atlas construction method
based on an iterative centroid process. It allows the gradual
incorporation of new images into a pre-existing atlas at a
low computational cost: the image is added to the atlas
without having to restart the whole atlas construction process.
This approach thus only necessitates one registration per new
image. It has been used to produce an atlas of 100 images.
We derived from it a construction method producing an atlas
unbiased up to either an affine or a rigid transformation. The
methods proposed in the paper are made available open source
in Anima scripts.5 We have also introduced a second algorithm
that extends this online method to spatio-temporal atlasing

5Anima-Scripts: Open source scripts using Anima software for medical
image processing from the Empenn team.
https://anima.irisa.fr - RRID:SCR_017072

using a predefined weight kernel. Finally a third algorithm,
generalization of the first, was presented for merging two
atlases, unlocking more parallel architectures.

We produced two types of atlases: single timepoint ones
base on Algorithm 1 using HCP young adult high quality data,
and a spatio-temporal one based on Algorithm 2 using routine
clinic C-MIND pediatric data to highlight brain development.

We have performed numerous experiments in order to
compare the iterative centroid approach to a direct atlasing
one using the same registration and composition tools. It led
to the conclusion that:

• There is barely no differences at all to the naked eye
between the results of the two approaches.

• The divergence between both methods is small, localized
in cortical areas and tends to grow but at a slow and
decreasing pace with the addition of images.

• Both methods show the same ability to overlap regions
across subjects composing the atlas.

• The obtained atlases from both approaches have shown
no differences in terms of image sharpness.

• In terms of computational cost, direct atlasing is more
advantageous to build a large atlas from scratch, whereas
the iterative centroid method prevails for gradual updates
of an existing one.

• The influence of the ordering of the subjects is similar
for both methods.

The trend being at large, growing databases, the proposed
online atlasing method offers an interesting tool to update an
atlas at reasonable computational cost as new images arrive.
Future work will further study how to incorporate images
that have a longitudinal component, i.e., images of the same
subject over time to build a longitudinal atlas, as opposed to
the cross-sectional atlasing method proposed in this paper.
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