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Abstract
This paper introduces a new modeling and inference
framework for multivariate and anisotropic point pro-
cesses. Building on recent innovations in multivariate
spatial statistics, we propose a new family of multivari-
ate anisotropic random fields, and from them a family
of anisotropic point processes. We give conditions that
make the proposed models valid. We also propose a Palm
likelihood-based inference method for this type of point
process, circumventing issues of likelihood tractability.
Finally we illustrate the utility of the proposed modeling
framework by analyzing spatial ecological observations
of plants and trees in the Barro Colorado Island data.
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1 INTRODUCTION

In this paper, we introduce a new class of multivariate and heterogeneous point process models. In
doing so, we address two fundamental problems in modern spatial statistics: we design valid and
nontrivial models for multivariate point processes, an important outstanding problem; and we
contribute tools for performing inference with respect to anisotropic point processes. We produce
multivariate spatial models that can flexibly accommodate anisotropy in both the marginal and
joint dependence structures.

We choose to build our models using a foundation of log-Gaussian Cox processes (Diggle &
Milne, 1983; Møller et al., 1998). In this framework, the observed point pattern is modeled in terms
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of a latent random intensity, generated by a random field. We build on progress made in the area of
multivariate random fields, see for example, Gneiting et al. (2010), Apanasovich et al. (2012), and
Genton and Kleiber (2015), by allowing for anisotropy in the second-order dependence structure
of the underlying random field model.

Datasets that require anisotropic models have been common in the point process litera-
ture for many years, for example, chapels in Welsh valleys (Mugglestone & Renshaw, 1996;
Rajala et al., 2016; Rajala, Redenbach, et al., 2018), the epicentral locations of earthquakes
in California over a 20-year period (Veen & Schoenberg, 2006) and clustered locations of
shrubs in dryland ecosystems (Haase, 2001). The Welsh chapels and Californian earthquakes
both form elliptical clusters, whereas the dryland shrub data displays a directional prefer-
ence in the interaction of points of different type: Haase (2001) found one species to grow
more often to the east of a second species. Both phenomena could be modeled using an
anisotropic model for the second-order dependence structure. In the point process litera-
ture, it is common to accommodate heterogeneities in the observed point pattern by using a
spatially homogeneous random field model to specify an intensity process conditional upon
some known covariates (see, e.g., Diggle et al., 2013; Waagepetersen, 2008; Waagepetersen &
Guan, 2009). This approach is limited in its applicability, however, when faced with heteroge-
neous point pattern data with no given covariate measurements.

The need to develop anisotropic methodology is further highlighted by the real data depicted
in Figure 1c,e. These plots show the estimated intensity of two species of tree within the Barro Col-
orado Island (BCI) tropical rainforest stand (Condit, 1998; Hubbell et al., 1999, 2010). The strongly
anisotropic features of these species are clearly demonstrated in the elliptical regions of high esti-
mated intensity. Inspired by this example, our chosen approach to summarizing anisotropy is
based on the concept of geometric anisotropy from random field analysis (Goff & Jordan, 1988).
Isotropic processes have spatial covariance functions with circular contours of equivariance,
whereas those that drive geometric anisotropic processes have elliptical contours of equivariance.
Geometric anisotropy in single-point processes was studied by Møller and Toftaker (2014), Rajala
et al. (2016), Rajala, Murrell, and Olhede (2018), and Sormani et al. (2020). The aforementioned
authors use integral transformations and the formalism of Fry points to characterise geometric
anisotropy. An advantage of using geometric anisotropy to model anisotropy is that it can be used
in conjunction with well-known covariance functions. There are few alternatives to geometric
anisotropy: separable variation, which places a considerable emphasis on the axes of observation,
and general anisotropy that is hard to both model, and to infer. We therefore restrict our attention
to geometric anisotropy, and we briefly demonstrate the potential utility of geometric anisotropic
point processes by plotting two simulated (independent) point patterns in Figure 1b; the simu-
lated intensities for each of these point patterns are shown in Figure 1d,f, where we can clearly
see elliptical regions of high intensity, partly replicating the behavior of the real data alongside.

We explore the restrictions that are naturally placed on all cross-pair correlation functions
from the proposed form of geometric anisotropy, where we use recent results for isotropic mul-
tivariate random fields due to Apanasovich et al. (2012) and Gneiting et al. (2010) to understand
the newly introduced anisotropic processes. By representing our multivariate process in both
the spatial and spectral domains, we will also demonstrate that allowing for distinct geomet-
ric anisotropies in each marginal process may place further restrictions on valid forms of the
cross-dependence structures, adding to existing isotropic understanding. This is an important
result that yields unique insights into the possible variation of joint co-dependence in multivari-
ate geometric anisotropic random fields, and by extension insights into the intrinsic properties of
Cox processes.
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MARTIN et al. 3

F I G U R E 1 Point pattern data showing two species of tree from the Barro Colorado Island tropical
rainforest (a; Guatteria dumetorum, blue circles; Miconia hondurensis, red crosses), along with their estimated
intensity fields (c,e), and simulated point pattern data (b) from two independent univariate geometric anisotropic
log-Gaussian Cox processes, with their corresponding simulated intensity fields (d,f)

Once we have understood the constraints on possible model forms, we turn to inference. Our
problem is challenged by the presence of an intractable likelihood, an important topic of cur-
rent interest (Bortot et al., 2009; Li & Fearnhead, 2018; Price et al., 2018; Sisson et al., 2007). We
detail a two-stage estimation procedure in which we first estimate the anisotropy parameters, and
then use these estimates to transform the data to be isotropic. The “isotropised” point pattern is
then used to estimate the covariance parameters for the underlying random field model. For this
second stage, Møller and Toftaker (2014) advocated the use of minimum contrast. We instead
appeal to Cox’s likelihood principle (Cox, 1958), and develop a maximum Palm likelihood-based
approach to inference that builds on the work of Tanaka et al. (2008).

Traditional maximum likelihood estimates of the model parameters are not available, as
the point process likelihood is intractable. Tanaka et al. (2008) showed that this intractabil-
ity can be circumvented by considering the so-called Fry process (Fry, 1979). This is a
secondary point pattern formed by the difference vectors of all point pairs in the orig-
inal point pattern, and it can be treated as an inhomogeneous Poisson point process,
with an associated (and tractable) likelihood. Tanaka et al. (2008) showed that the Fry
process likelihood can be used to perform inference for univariate, isotropic point pro-
cess models. In a novel extension of this work, we overcome the challenge of anisotropy
and use the Fry process likelihood to perform inference for anisotropic, multivariate point
processes.

Finally, we apply our newly developed methodology to real data from the BCI rainforest
dataset, introduced above. Recent work by Waagepetersen et al. (2016) and Rajala, Murrell,
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4 MARTIN et al.

and Olhede (2018) has highlighted the importance of developing realistic multivariate
point process models to aid the understanding of complex species interactions within this
rainforest.

Thus, this paper gives a number of novel important insights for multivariate spatial pro-
cesses. In particular, the paper describes the complex relationship between distinct geometric
anisotropies in each univariate component, and the full multivariate model. Our understand-
ing gives sufficient, but not necessary, conditions to yield valid multivariate random field models
and, by extension, valid multivariate Cox processes. This addresses an important outstanding
problem in spatial analysis. Additionally by extending intractable likelihood methods to this set-
ting, we provide insights into the outstanding problem of inferring dependent point patterns, part
of understanding spatial processes.

2 NOTATION AND SETTING

2.1 Log-Gaussian Cox processes

To establish notation, let X = {Xp; p = 1,…,P} denote a multivariate point process, where the
index p is used to signal a univariate component of the multivariate process X . We consider each
univariate process Xp to be a locally finite random subset of Rd; that is, for the random variable
Np(B) = |Xp ∩ B| representing the number of points in Xp that lie in the region B ⊂ Rd, Np(B) <∞
whenever B is bounded. We will be predominantly interested in planar point processes, where d =
2, though the work contained here can be extended to d > 2. For a bounded observation window
W ⊂ R2, the observed point pattern corresponds to a realization x of X ∩W , where x = {xp,i ∈
W ; i = 1,…,np, p = 1,…,P} and where np ∈ N is the realized value of Np(W). Henceforth, we will
also use xp to denote an arbitrary observed point pattern of type p.

We will primarily use the pair correlation function to describe the second-order properties
of our multivariate point process X . For distinct locations u, v ∈ R2, the (cross-)pair correla-
tion function gpq(u, v) of Xp with Xq is defined as gpq(u, v) = 𝜌(2)pq (u, v)∕𝜌p(u)𝜌q(v) if 𝜌p(u)𝜌q(v) > 0
and gpq(u, v) = 0 otherwise, where 𝜌(2)pq (u, v) is the second-order cross-intensity function between
components p and q, and 𝜌p(u), 𝜌q(v) are the corresponding univariate (first order) inten-
sity functions. For distinct locations u, v ∈ R2, we can interpret the pair correlation function
as the probability of observing one point from process p in the infinitesimal region contain-
ing u, and one point from process q in the infinitesimal region containing v, divided by
the corresponding probability under the assumption that Xp and Xq are independent Poisson
processes.

Following Møller et al. (1998) we define X to be a multivariate log-Gaussian Cox process
(LGCP), driven by a multivariate intensity processΛ = {Λp; p = 1,…,P}; each subprocess Xp, con-
ditional on Λp(u) is a Poisson process with intensity at location u ∈ R2 given by a realization of
the random variable

Λp(u) = exp{Sp(u)}, u ∈ R
2
, (1)

where S(u) = {Sp(u), p = 1,…,P} is a multivariate Gaussian random field (GRF). We will assume
Sp, and therefore Xp, to be stationary for all p = 1,…,P, with constant mean 𝜇p and variance
𝜎pp. The intensity process Λp(u) will therefore also have a constant mean, which we denote
𝜆p = E

{
Λp

}
= exp

{
𝜇p + 𝜎pp∕2

}
.
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MARTIN et al. 5

For a stationary multivariate point process, we can define the pair correlation function using
a single argument, representing the vector distance between the two observation locations. We
write gpq(h) for h = v − u ∈ R2, and for a stationary log-Gaussian Cox process we have that
gpq(h) = exp{Cpq(h)}, where

Cpq(h) = cov
{

Sp(v), Sq(u)
}
, p, q = 1,…,P, u, v, h ∈ R

2
,

are the covariance functions for the multivariate GRF S. From this relationship, it is clear to see
that gpq(h) = 1 (no aggregation or segregation) is equivalent to Cpq(h) = 0 (no correlation), which
indicates independence between processes p and q at any scale h ∈ R2. Thus, for a bivariate Pois-
son process {Xp,Xq}, that is, under an assumption of complete spatial randomness, we would
expect gpq(h) = 1, whereas significant departures from this would indicate either aggregation
(gpq(h) > 1) or segregation (gpq(h) < 1) of points from processes p and q at separation h ∈ R2.

The second-order behavior of the multivariate GRF S can be equivalently described in both the
spatial and spectral domains. We will make use of the (cross-)spectral density function fpq(𝜔) of Sp
with Sq, at frequency 𝜔 ∈ R2, which forms a Fourier transform pair with the (cross-)covariance
function Cpq(h), h ∈ R2; see, for example, Sherman (2011). To describe between-component
dependency we will also consider the complex coherence, 𝛾pq(𝜔): 𝛾pq(𝜔) = fpq(𝜔)∕

{
fpp(𝜔)fqq(𝜔)

} 1
2
.

It is worth noting that the methodology presented in this paper does not require consideration of
the point spectrum of Bartlett (1964), that is the spectral density of the point process X ; all of our
frequency-domain analysis concerns the underlying random field S.

We will also make use of the Palm intensity for the multivariate point process. For a given
location v ∈ R2, the so-called reduced Palm distribution of a univariate point process Xp is the
conditional distribution of the process Xp ⧵ {v}, given the observation of a point at v. Without loss
of generality, we can set v to be the spatial origin o, and heuristically define the corresponding
Palm intensity, 𝜆o,p, as follows. For u ∈ R2 at a nonzero distance from the spatial origin o, the
conditional probability of observing a point in the infinitesimal region containing u, given the
observation of a point at the origin, is specified by 𝜆o,p(u)du,where du is the Lebesgue measure for
the infinitesimal region containing u. A full, measure-theoretic treatment of Palm distributions
for spatial point processes is given by Coeurjolly et al. (2017).

2.2 Geometric anisotropic LGCPs

We construct a geometric anisotropic LGCP through the covariance structure of the underly-
ing GRF. Given an isotropic covariance function C0(||h||), h ∈ R2, define a geometric anisotropic
version as (Møller & Toftaker, 2014):

C(h) = C0

(√
hTΣ−1h

)

, h ∈ R
2
, (2)

where Σ = R
𝜃
diag(1, 𝜁2)RT

𝜃

, for 𝜃 ∈ [0, 𝜋) and 𝜁 ∈ (0, 1], and where R
𝜃

is the rotation
matrix, with the restricted ranges in place to ensure identifiability. Geometric anisotropy in
higher-dimensional Euclidean spaces can be defined through a similar construction, using a rota-
tion matrix and diagonal scaling matrix of corresponding dimensions; see, for example, Rajala
et al. (2016). For Σ defined as above, we also consider the following “square root” matrices:
Σ1∕2 = diag(1, 𝜁)RT

𝜃

, and Σ−1∕2 = diag(1, 1∕𝜁)RT
𝜃

, such that Σ =
(
Σ1∕2)TΣ1∕2, Σ−1 =

(
Σ−1∕2)TΣ−1∕2

and
(
Σ1∕2)−1 =

(
Σ−1∕2)T .
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6 MARTIN et al.

Under this parameterization,Σ is defined such that the ellipse E = {h ∈ R2 ∶ hTΣ−1h = 1}has
a semi-major axis of unit length at angle 𝜃, relative to the abscissa axis of the original coordinate
system, and a semi-minor axis of length 𝜁 at angle 𝜃 + 𝜋∕2. Accordingly, we can describe the
covariance function defined in (2) as “elliptic,” and the resulting LGCP will also display elliptic
second-order behavior.

The corresponding pair correlation function and spectral density function will take the
following forms:

g(h) = g0

(√
hTΣ−1h

)

= exp
{

C0

(√
hTΣ−1h

)}

f (𝜔) = |Σ|1∕2f0

(√
𝜔

TΣ𝜔
)

,

for h, 𝜔 ∈ R2, where f0(||𝜔||) is the isotropic spectral density that forms a Fourier transform pair
with C0(||h||), and g0(||h||) is the corresponding isotropic pair correlation function.

Our specification of geometric anisotropy differs slightly from that of Møller and Tof-
taker (2014), who include an additional scale parameter in their definition of the deformation
matrix Σ; this is used to scale the axes in the resulting elliptical covariance structure. In practice,
however, the majority of parametric covariance functions of interest incorporate a scale param-
eter that directly controls the correlation length, and so including a separate scale parameter in
the definition of Σ creates nonidentifiability issues when performing parameter inference. We
assume all scale information to be controlled by the parametric form of C0(||h||).

Since we are considering processes that display anisotropy, it will be useful for their analysis
to be able to express their second-order properties in polar coordinates. We therefore define the
anisotropic pair correlation function, replacing the vector h ∈ R2 with its length r and angle 𝜙:

ga(r, 𝜙) = g([r cos𝜙, r sin𝜙]) = g0

(
r
𝜁

√
1 − (1 − 𝜁2)cos2(𝜙 − 𝜃)

)

. (3)

3 DEFINING THE MODEL

3.1 Modeling multivariate geometric anisotropy

For a population of P LGCPs, we specify the multivariate dependence through the covariance
structure of the P-variate GRF that drives the P conditionally independent intensity processes.
We define the following family of geometric anisotropic auto- and cross-covariance functions:

Cpq(h) = C0,pq

(√

hTΣ−1
pq h

)

= C0,pq

(
‖
‖
‖
Σ−1∕2

pq h‖‖
‖

)

, p, q = 1,…,P, h ∈ R
2
,

for some choice of isotropic covariance functions {C0,pq; p, q = 1,…,P}, and for a collection of
deformation matrices {Σpq; p, q = 1,…,P}, where Σpq is defined in terms of the parameter pair
(𝜃pq, 𝜁pq) according to the specification of Σ that follows (2).

This framework will allow for the possibility of distinct geometric anisotropies in each of
the marginal processes. This may be a valid modeling requirement; for ecological datasets for
instance, there can be multiple anisotropic effects influencing the data. In this framework, we
can reproduce bivariate point patterns in which each component displays elliptical clustering at
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MARTIN et al. 7

different orientations, or with differing degrees of ellipticity. Just as in the isotropic case, however,
care must be taken in specifying the parameters for the cross-covariance functions Cpq, in order
to ensure a valid multivariate model.

The matrix of covariance functions (Cpq(h))Pp,q=1 must be nonnegative definite for all h ∈
R2. The equivalent requirement in the spectral domain is that the matrix of spectral densities
(fpq(𝜔))Pp,q=1 is nonnegative definite for all𝜔 ∈ R2. For the bivariate dependence structure between
two processes Xp and Xq, this is equivalent to the magnitude squared coherence |𝛾pq(𝜔)|2 being
bounded above by 1; this corresponds to

0 ≤ |fpq(𝜔)| ≤
{

fpp(𝜔)fqq(𝜔)
} 1

2
, 𝜔 ∈ R

2
. (4)

This upper bound is displayed in Figure 2 for a bivariate process with distinct marginal geometric
anisotropies. By considering the behavior of (4) over the two-dimensional Fourier domain, we
can now make some general comments about the level of dependence between components
in a bivariate geometric anisotropic LGCP. This discussion will be under the assumption that
each autospectrum and cross-spectrum in the bivariate process is decreasing for increasing
frequencies 𝜔.

The inequality in (4) implies that, for any two processes, between-process dependence
can only be nonnegligible at those frequencies that contribute significantly to the marginal
dependence in both processes. For two processes with distinct marginal geometric anisotropies,
this restriction impacts the high-frequency behavior of the bivariate process more than
the low-frequency behaviour. Recall Figure 2: when constructing the upper bound for the
cross-spectrum according to (4), the high-frequency contributions of each of the autospectra are
killed by the negligible power at the same frequency in the other autospectrum; the contrast-
ing behavior of the marginal processes at high frequencies kills any high-frequency dependence
between the processes. As a result, for any two processes that display distinct anisotropic behavior,
significant between-process dependence will be more evident at low frequencies, or large spatial
scales.

Due to our modeling assumption of geometric anisotropy in the cross-dependence structure,
the cross-spectrum will have elliptical contours of equal power density. Figure 2 illustrates that
the elliptical geometries of the autospectra can dictate a nontrivial geometric structure for the
upper bound of the cross spectrum. For any given pair of marginal spectra, and thus a given
upper bound to the corresponding cross-spectrum, the ellipticity of the true cross-spectrum will
impact its permissible coverage of the frequency space, as its elliptical structure must fit within

F I G U R E 2 Geometric anisotropic autospectra (left and center) for a bivariate Gaussian random field,
along with the upper bound on the corresponding cross-spectrum (right), as given in Equation (4)

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12640 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [30/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8 MARTIN et al.

the upper bound’s nontrivial geometry. Indeed, as illustrated by Figure 2, in order for our ellip-
tical cross-spectrum to extend further into the higher-frequency regions of the Fourier space,
the ellipticity of the cross-spectrum must be more pronounced. Since the overall power in the
cross-process dependence is obtained by integrating the cross-spectrum over the entire Fourier
domain, this gives us a link between the power and the degree of anisotropy in the cross-process
dependence.

3.2 Multivariate Matérn correlation structure

The Matérn family of correlation functions (Guttorp & Gneiting, 2006; Stein, 1999) is a
popular spatial modeling choice. For univariate random fields, one can use a single
three-parameter covariance function to replicate dependence structures that act over any
positive scale, whilst additionally controlling the smoothness of any realisations. The flexibility
of this model has made it the preferred modeling choice for univariate processes in the spatial
statistics literature. Gneiting et al. (2010), Apanasovich et al. (2012), and Kleiber and
Nychka (2012) have recently extended this model to the multivariate case, proposing the
use of a Matérn function to describe all auto- and cross-covariances for a multivari-
ate isotropic stationary random field. We will incorporate elements from these approaches
in our modeling framework, though we retain an assumption of stationarity unlike
Kleiber and Nychka (2012).

We develop the stationary Matérn covariance structure for the multivariate GRF S(u),
ensuring that all auto- and cross-covariances are Matérn. The multivariate Matérn model was
introduced by Gneiting et al. (2010) and extended by Apanasovich et al. (2012). The former
established necessary and sufficient conditions for the validity of the bivariate model, and
sufficient conditions for the validity of a restricted subclass of the multivariate (P ≥ 3) model. We
build on this, incorporating anisotropy when observing P ≥ 1 processes. The results presented in
this section are valid for all d-dimensional Matérn Gaussian processes, with d ≥ 2, unless stated
otherwise.

Following Gneiting et al. (2010), the isotropic multivariate Matérn covariance function is
defined as:

C0,pq(||h||; 𝛼pq, 𝜈pq, 𝜎pq) =
𝜎pq

2𝜈pq−1Γ
(
𝜈pq

)

(
2
√
𝜈pq

𝛼pq
||h||

)
𝜈pq


𝜈pq

(
2
√
𝜈pq

𝛼pq
||h||

)

, h ∈ R
d
, (5)

where 
𝜈
(⋅) is the modified Bessel function of the second kind (Abramowitz & Stegun, 1965,

pp. 374–379). Here, 𝜎pq ∈ R (𝜎pp > 0) is the zero-lag covariance between field components Sp
and Sq, and 𝛼pq > 0 and 𝜈pq > 0 are scale and smoothness parameters. The latter two param-
eters control the rate of decay of covariance between Sp and Sq with respect to distance.
The form of the Matérn parameterization used in (5) differs from that used by Gneiting
et al. (2010) and Apanasovich et al. (2012). We choose to use the Matérn parameterization
introduced by Handcock and Wallis (1994), as it allows maximal separation of the roles of 𝛼pq
and 𝜈pq in determining the second-order behavior of S(u) and, ultimately, the resulting point
process X .

Having established the Matérn form of the auto- and cross-covariances for a multivariate
isotropic GRF, we now generalize to allow for anisotropic multivariate covariance structures.
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MARTIN et al. 9

Recall from Section 3.1 that we obtain our geometric anisotropic (cross-)covariance function by
applying the deformation matrix Σpq. We therefore define, for any h ∈ Rd, d ≥ 2,

Cpq(h; 𝛼pq, 𝜈pq, 𝜎pq,Σpq) =
𝜎pq

2𝜈pq−1Γ
(
𝜈pq

)

(
2
√
𝜈pq

𝛼pq

‖
‖
‖
Σ−1∕2

pq h‖‖
‖

)
𝜈pq


𝜈pq

(
2
√
𝜈pq

𝛼pq

‖
‖
‖
Σ−1∕2

pq h‖‖
‖

)

. (6)

Recall that we require the matrix
(

Cpq(h; 𝛼pq, 𝜈pq, 𝜎pq,Σpq)
)P

p,q=1 to be nonnegative definite for all
h ∈ Rd, for validity of (6). Satisfaction of this requirement can be guaranteed by placing the fol-
lowing conditions on the cross-covariance parameters {𝛼pq, 𝜈pq, 𝜎pq, 𝜃pq, 𝜁pq, p ≠ q}, where we say
that the real matrix M ∈ RP×P is conditionally nonnegative definite if and only if yTMy ≥ 0 for
all y ∈ RP such that

∑P
p=1yp = 0. Note that this is a weaker assumption than that of nonnegative

definiteness, and it may be satisfied by a matrix containing only negative elements.

Condition 1. There exists a nonnegative constant Δ
𝜈

such that 𝜈pq − (𝜈pp + 𝜈qq)∕2 =
Δ
𝜈
(1 − A

𝜈,pq), p, q = 1,…,P, where A
𝜈

is a valid P × P correlation matrix, with entries
0 ≤ A

𝜈,pq ≤ 1.

Condition 2. The matrix with elements −4𝜈pq∕𝛼2
pq, p, q = 1,…,P, is conditionally

nonnegative definite.

Condition 3. The matrix with elements

|Σpq|
1∕2
𝜎pqΓ(𝜈pq + d∕2)

𝜋
d∕2Γ

(
𝜈pp+𝜈qq

2
+ d

2

)

Γ(𝜈pq)

(
4𝜈pq

𝛼

2
pq

)Δ
𝜈

+
𝜈pp+𝜈qq

2

, p, q = 1,…,P,

is nonnegative definite.

Condition 4. The matrix with elements −||Σ1∕2
pq 𝜔||

2, p, q = 1,…,P, is conditionally
nonnegative definite for any 𝜔 ∈ Rd.

Proposition 1. For p, q = 1,…,P, let 𝛼pq > 0, 𝜈pq > 0, 𝜎pq ∈ R, 𝜃 ∈ [0, 𝜋) and 𝜁 ∈
(0, 1]. Then the multivariate geometric anisotropic Matérn function (6) specifies a valid
multivariate covariance model if Conditions 1–4 are met.

The proof of Proposition 1 is given in the Appendix, and follows a similar argument to the
proof of Theorem 1 of Apanasovich et al. (2012).

Remark 1. If Condition 4 holds, then for d = 2, the P × P matrix with (p, q)-element
|
|Σpq||

−1∕2 = 𝜁−1
pq , will be nonnegative definite; in particular, 𝜁2

pq ≥ 𝜁pp𝜁qq, for all p, q =
1,…,P.

Conditions 1–4 are similar in spirit to those placed by Apanasovich et al. (2012) on the Matérn
parameters. In the simpler isotropic framework, the three conditions specified by Apanasovich
et al. (2012) are sufficient to guarantee nonnegative definiteness of the resulting spectral den-
sity, and also to guarantee that all absolute zero-lag cross-correlations are bounded above by one.
In the more general anisotropic setting, we (unsurprisingly) require a more extensive specifica-
tion. Conditions 1–4, above, are sufficient to guarantee nonnegative definiteness of the geometric
anisotropic spectral density, and are also sufficient for the absolute colocated cross-correlations to
be bounded above by 1. These conditions constitute a set of implicit relationships that, between
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10 MARTIN et al.

them, specify a valid multivariate geometric anisotropic LGCP. We shall adopt a sequential
approach to model construction, that will also reflect our model fitting procedures in Section 4.

Trivial rearrangement of Condition 1 yields an explicit expression for 𝜈pq in terms of the cor-
responding marginal values. In Remarks 2–5, below, we provide similar constructions for the
cross-covariance parameters 𝛼pq, 𝜎pq, 𝜃pq, and 𝜁pq, such that Conditions 1–4 may be satisfied. The
proofs for Remarks 2–4 are given in the Appendix.

Remark 2. Condition 2 is satisfied by the parameters {𝜈pq, 𝛼pq; p, q = 1,…,P} if

4𝜈pq

𝛼

2
pq
= 1

2

(
4𝜈pp

𝛼

2
pp
+

4𝜈qq

𝛼

2
qq

)

+ Δ
𝛼

(
1 − A

𝛼,pq
)
,

for some constant Δ
𝛼
≥ 0 and for some 0 ≤ A

𝛼,pq ≤ 1 that form a valid correlation
matrix. This remark is also made by Apanasovich et al. (2012) in their chosen Matérn
parameterization.

Remark 3. Condition 3 is satisfied by the parameters {𝜈pq, 𝛼pq, 𝜁pq, 𝜎pq; p, q = 1,…,P}
if

𝜎pq =
𝜋

d∕2VpVqA
𝜎,pq

𝜁pq

(
4𝜈pq

𝛼

2
pq

)−Δ
𝜈

−
𝜈pp+𝜈qq

2 Γ
(
𝜈pp+𝜈qq

2
+ d

2

)

Γ(𝜈pq)

Γ
(

𝜈pq + d
2

) p, q = 1,…,P,

for constants Vp,Vq ≥ 0 and for some A
𝜎,pq ∈ [−1, 1] that form a valid correlation

matrix.

Remark 4. For d = 2, Condition 4 is satisfied by the deformation matrices {Σpq; p, q =
1,…,P} if their diagonal elements

[
Σpq

]

ii, can be written as
[
Σpq

]

ii =
[
Σpp + Σqq

]

ii ∕2 +
Δ(i)Σ

(

1 − A(i)
Σ,pq

)

for i = 1, 2.

Remark 5. For d = 2, and for small P, we can follow Apanasovich et al. (2012) and
use equicorrelated matrices A(i)

Σ , i = 1, 2, setting A(i)
Σ,pq = 𝜌

(i)
Σ , p ≠ q; in this scenario, for

the sake of identifiability, we redefine Δ(i)Σ ∶= Δ(i)Σ (1 − 𝜌
(i)
Σ ), i = 1, 2.

Conditions 1–4, along with Remarks 2–4, indicate a sequential approach to specifying
a valid multivariate geometric anisotropic Matérn covariance structure in two-dimensional
Euclidean space. Condition 1 and Remarks 2–4 suggest that one must specify the parameters
for the marginal covariance function before conditionally specifying the parameters for each
cross-covariance function. These statements also indicate that, within each individual component
of the joint model, that is, for fixed p, q, there is a particular order in which the five parameters
(𝜃pq, 𝜁pq, 𝛼pq, 𝜈pq, 𝜎pq) should be specified.

From Remark 3, we can see that, for each (p, q) pairing, the specification of the Matérn power
parameter 𝜎pq is dependent upon the corresponding ratio of anisotropy 𝜁pq, as well as the other
Matérn parameters, 𝛼pq and 𝜈pq. Remark 4 indicates that the anisotropy parameters (𝜃pq, 𝜁pq)
should be jointly specified. In addition, Condition 1 and Remark 2 indicate that the smooth-
ness parameter 𝜈pq should be specified before the scale parameter 𝛼pq. We conclude that, for
each marginal or bivariate component of the joint covariance model, the anisotropy parameters
should be specified before the Matérn parameters, with the Matérn smoothness, scale and power
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MARTIN et al. 11

parameters being specified third, fourth and fifth, respectively. To be specific, we suggest the
following sequential approach to specifying a multivariate geometric anisotropic Matérn covari-
ance structure:

1. For each marginal process, we may specify the anisotropy parameters 𝜃pp, 𝜁pp and the Matérn
covariance parameters 𝛼pp, 𝜈pp, and 𝜎pp independently of one another. For p = 1, ...,P, choose
𝜃pp ∈ [0, 𝜋), 𝜁pp ∈ (0, 1], 𝛼pp, 𝜈pp, 𝜎pp > 0.

2. For the joint dependence structure, first specify the anisotropy parameters 𝜃pq ∈ [0, 𝜋), 𝜁pq ∈
(0, 1] for p, q = 1,…,P, p ≠ q; these should be jointly specified such that Remark 4 is satisfied.

3. Next, specify the smoothness parameter for the joint dependence structure, 𝜈pq > 0. This
should be specified conditional on 𝜈pp and 𝜈qq, such that Condition 1 is satisfied.

4. Given the chosen smoothness parameters 𝜈pp, 𝜈qq, 𝜈pq, as well as the marginal scale parameters
𝛼pp, 𝛼qq, choose a scale parameter for the Matérn cross-covariance, 𝛼pq, such that Remark 2 is
satisfied.

5. Finally, we are free to specify the power parameter for the Matérn cross-covariance, 𝜎pq, con-
ditional on the corresponding ratio of anisotropy 𝜁pq and the Matérn parameters 𝛼pq and 𝜈pq,
such that Remark 3 is satisfied.

We conclude this section by considering the limitations placed on the zero-lag
cross-correlation coefficients 𝜌pq ∶= 𝜎pq∕

√
𝜎pp𝜎qq. By rearranging Condition 3, we can write:

𝜌

2
pq =

𝜎

2
pq

𝜎pp𝜎qq
≤

4∏

i=1
𝜏

(i)
pq ≤ 1, (7)

with

𝜏

(1)
pq =

2
(

𝜈pq,
d
2

)

2
(
𝜈pp+𝜈qq

2
,

d
2

) , 𝜏

(2)
pq =

⎡
⎢
⎢
⎢
⎢
⎣

4𝜈pp

𝛼
2
pp

4𝜈qq

𝛼
2
qq

(
4𝜈pq

𝛼
2
pq

)2

⎤
⎥
⎥
⎥
⎥
⎦

Δ
𝜈

,

𝜏

(3)
pq =

Γ2
(
𝜈pp+𝜈qq

2

)(
𝛼

2
pq

4𝜈pq

)
𝜈pp+𝜈qq

Γ(𝜈pp)
(
𝛼

2
pp

4𝜈pp

)
𝜈pp
Γ(𝜈qq)

(
𝛼

2
qq

4𝜈qq

)
𝜈qq
, 𝜏

(4)
pq =

|Σpp|
1∕2|Σqq|

1∕2

|Σpq|
=
𝜁pp𝜁qq

𝜁

2
pq

,

where (⋅, ⋅) is the Beta function (Abramowitz & Stegun, 1965). The first inequality in (7) is
directly implied by Condition 3. The second inequality in (7) can be shown componentwise: By
Remark 1, Condition 4 ensures that 𝜏 (4)pq ≤ 1, and as noted by Apanasovich et al. (2012) in the
isotropic framework, Conditions 1 and 2 are sufficient to guarantee that 𝜏 (i)pq ≤ 1, i = 1, 2, 3.

In the isotropic framework, 𝜏 (4)pq = 1, and we are left with the limitations noted by Apanasovich
et al. (2012): the zero-lag cross-correlation will be bounded above by 1 when the corresponding
univariate isotropic processes share identical Matérn parameters. When the marginal parameter
specifications differ, this upper bound will decrease as the smoothness and inverse correlation
length of the cross-covariance structure depart from the arithmetic mean of the corresponding
marginal quantities.

In our more general anisotropic framework, we can see from 𝜏

(4)
pq in (7) that the upper

bound on the colocated cross-correlations will also be affected by the relationship between the
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12 MARTIN et al.

cross-covariance ratio of anisotropy 𝜁pq and the ratios of anisotropy in the corresponding marginal
covariance structures. If we assume Condition 4 to hold, then by Remark 1, 𝜁pq will be restricted
to the closed interval [𝜁1∕2

pp 𝜁
1∕2
qq , 1]. If 𝜁pq = 𝜁1∕2

pp 𝜁
1∕2
qq , then 𝜏

(4)
pq will reduce to 1, and the upper

bound of the colocated cross-correlation 𝜌pq will behave as in the isotropic framework, that is, as
described above. Increasing 𝜁pq away from this geometric mean, however, will decrease 𝜏 (4)pq , which
will in turn shrink the upper bound on 𝜌2

pq, given in (7). In other words, as the ellipticity of the
cross-covariance function becomes less pronounced, the maximum possible degree of zero-lag
correlation between the two components of the field will decrease. This formalizes the relation-
ship between the power and the anisotropy of the cross-process dependence, discussed at the end
of Section 3.1.

4 FITTING THE MODEL

4.1 Parameter estimation procedure

In order to fit our parametric model to an observed multivariate point pattern, we must estimate
both the marginal and joint anisotropy parameters {𝜃pq, 𝜁pq; p, q = 1,…,P}, as well as the
parameters that specify the mean and Matérn covariance structure of the underlying GRF,
{𝜇p, 𝛼pq, 𝜈pq, 𝜎pq; p, q = 1,…,P}. At a high level, we follow the approach of Møller and Toftaker
(2014), who fit a univariate version of our model by first estimating the angle and ratio of
anisotropy in the observed data, before using these estimates to back-transform the data into
an isotropic framework. The resulting “isotropised” point pattern is then used to estimate
the mean parameters and the Matérn parameters. Our approach to each component
of this two-stage model fitting procedure will differ from the methods of Møller and Toftaker
(2014). We use an approach to estimating anisotropy that is less sensitive to user-specified
tuning parameters, which we adapt from the work of Rajala et al. (2016). We develop
new methods from the work of Tanaka et al. (2008) to estimate the mean and Matérn
parameters.

In developing new methodology, we are faced with the question of whether to put mea-
sures into place to guarantee that the fitted model satisfies Conditions 1–4, to ensure validity.
This is the approach taken by Apanasovich et al. (2012) for fitting multivariate isotropic Matérn
GRFs. Since Conditions 1–4 are sufficient, and not necessary conditions, the resulting restric-
tion on the joint dependence structure could be overly conservative. Under the assumption that
the smoothness is known, however, the power and scale parameters for a univariate Matérn
covariance function cannot be consistently estimated under infill asymptotics (Zhang, 2004); con-
sistency can only be achieved by increasing the observation window W . As noted by Apanasovich
et al. (2012), constraining 𝜎2

pq and 𝛼2
pq (p ≠ q) conditional on their corresponding marginal values

therefore provides no additional penalty in terms of estimator consistency when assuming a fixed
observation window.

4.2 Estimating the anisotropy parameters

We focus first on quantifying the anisotropy present in both the marginal and joint depen-
dence structures in a multivariate point pattern. Møller and Toftaker (2014) estimate the angle
of anisotropy in a univariate geometric anisotropic point pattern by finding the angle 𝜙 at which
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MARTIN et al. 13

the r-integrated difference between the anisotropic pair correlation function ga(r, 𝜙) and its
phase-shifted self ga(r, 𝜙 + 𝜋∕2), is maximized. This is achieved by estimating ga(r, 𝜙) over a dis-
crete lattice of polar coordinates (r, 𝜙), and numerically approximating the required integral in r.
Accuracy of the resulting estimator is therefore sensitive to the resolution of the polar lattice, as
well as the choice of two bandwidth parameters used in estimating the anisotropic pair correlation
function; for details of these bandwidth parameters, see Møller and Toftaker (2014). Finally, use
of this estimation method is also dependent on the assumption that the isotropic pair correlation
function is strictly decreasing. Whilst this assumption holds true for our assumed Matérn model,
it can be violated by non-parametric estimators of the pair correlation function, when evaluated
on real data. The approach we detail below is more widely applicable, as it does not depend on
such an assumption, and it is also less sensitive to subjective choices of bandwidth parameters
(Rajala et al., 2016).

We adopt and adapt the method introduced by Rajala et al. (2016) for estimating the angle
of anisotropy. For the sake of generality, we describe the procedure for estimating 𝜃pq, p ≠ q. We
start by constructing the point pattern formed by the union of the difference vectors {xp,i − xq,j; i =
1,…,np, j = 1,…,nq} and their reflections {xq,i − xp,j; i = 1,…,np, j = 1,…,nq}; this is the (bivari-
ate) Fry process (Fry, 1979), and it will be rotationally symmetric of order 2, about the origin.
The Fry process is useful here as its first-order properties will reflect the second-order prop-
erties of the original point pattern. We can therefore estimate any second-order anisotropy in
the original bivariate point pattern by estimating the anisotropy in the intensity of the bivariate
Fry process.

Dividing the polar plane into a selected number, nF , of distinct sectors, and for 𝓁 ∈ L ⊂ N, we
collect the 𝓁th nearest Fry point in each sector into a set, G𝓁 , of nF points. Each G𝓁 sketches out
a noisy contour around the origin, such that the intensity of the Fry process is reflected in the
proximity of the G𝓁s to one another. For point patterns that display segregation, the anisotropy in
the joint second-order dependence structure will be shared by the contours of the intensity field
for the Fry process; for aggregated point patterns, the angle of anisotropy will be phase-shifted
by 𝜋∕2 in the Fry process. In order to quantify the anisotropy in the original point pattern then,
we can treat the G𝓁s as sampled versions of the Fry intensity’s contours, and assuming Gaussian
measurement error we can infer the corresponding true contours using adjusted ordinary least
squares (Kukush et al., 2004), and subsequently derive the angle of anisotropy in the original
point pattern. In using adjusted least squares, we obtain unbiased estimates of the “true” ellip-
tical contours. We also choose not to smooth the Fry contours before fitting these ellipses; this
avoids a bias toward circularity of the fitted ellipse, though it has the effect of increasing the esti-
mator variance. For full details of this approach to estimating the angle of anisotropy, see Rajala
et al. (2016).

For each marginal process (Møller & Toftaker, 2014), we can transform the observed point
pattern xp and the corresponding observation window W by assuming fixed values for 𝜃 ∈ [0, 𝜋)
and 𝜁 ∈ (0, 1] and setting:

xp,𝜃,𝜁 = Σ−1∕2xp, W
𝜃,𝜁
= Σ−1∕2W .

If the chosen values of 𝜃 and 𝜁 are equal to the values that describe the anisotropy of
Xp, then the transformed point process Xp,𝜃,𝜁 will be isotropic. Then the corresponding
anisotropic pair correlation function ga

pp,𝜃,𝜁 (r, 𝜙) will be constant with respect to its sec-
ond argument; this motivates the following approach to estimating the marginal anisotropy
ratios 𝜁pp.
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14 MARTIN et al.

Following Rajala et al. (2016), we define the following directional discrepancy statistic:

Vpp,𝜃(𝜁) =
∫

b2

b1

[

Ka
pp,𝜃,𝜁 (r, 0) − Ka

pp,𝜃,𝜁 (r, 𝜋∕2)
]

dr, (8)

where

Ka
pp,𝜃,𝜁 (r, 𝜙) = ∫

r

0
ga

pp,𝜃,𝜁 (s, 𝜙)ds, (9)

is the sector-K-function, an anisotropic variant of Ripley’s K-function, evaluated on the
isotropized point pattern xp,𝜃,𝜁 . To estimate the marginal ratio of anisotropy 𝜁pp, we back-transform
our observed point pattern using the estimated angle of anisotropy ̂𝜃pp and a sequence of candidate
ratios {𝜁pp,k ∶= k𝜁max∕(1 + n

𝜁
), k = 1,…,n

𝜁
}, for some user-defined upper bound 𝜁max. We then

choose ̂
𝜁pp = 𝜁pp,k ∈ (0, 𝜁max) to be the candidate value that minimizes the estimate ̂V pp, ̂𝜃pp

(𝜁pp,k).
Note that, although we defined 𝜁pp ∈ (0, 1] in Section 2.2, the sampling variance of the estimated
sector-K-function can in some cases result in an estimate ̂𝜁pp > 1.

Møller and Toftaker (2014) use a similar approach, in effect minimising the directional
discrepancy statistic (8), but using the anisotropic pair correlation function in place of the
sector-K-function. Indeed, any directional second-order statistic can be used in the inte-
grand of (8). We choose to use Ka

pp,𝜃,𝜁 for two reasons. Firstly, the analysis of Redenbach
et al. (2009) suggests that the sector-K-function is better-suited to characterising anisotropy than
nearest-neighbor statistics; the authors conclude that, for detecting anisotropy in point patterns,
statistical tests based on the sector-K-function have greater power, in general, than those based on
nearest-neighbor orientation statistics. Secondly, estimation of the sector-K-function requires the
choice of only one tuning parameter, an angular bandwidth, whereas the use of the anisotropic
pair correlation function would require the specification of both angular and radial bandwidths.

Our chosen approach to estimating 𝜁pp can be extended to the multivariate scenario. We
are interested in the geometric anisotropic cross-dependence exhibited by a given pair of Cox
processes Xp and Xq. For each pair of processes, we once again define a discrete set of candi-
date multivariate anisotropy ratios {𝜁pq,k ∈ (0, 𝜁max), k = 1,…,n

𝜁
}, and we choose ̂

𝜁pq = 𝜁pq,k for
which the estimated value of Vpq, ̂𝜃pq

(𝜁pq,k) is minimized, where Vpq, ̂𝜃pq
(𝜁pq,k) is defined through

transforming both xp and xq, along with their common observation window W .
The above approach to estimating the anisotropy parameters requires the selection of a

number of control parameters. For estimating the angles of anisotropy, we must choose the num-
ber of sectors, nF , into which we partition the Fry process, as well as the set L of contour levels,
for determining the noisy contours of Fry points. As a rule of thumb, and for reasons outlined
below, Rajala et al. (2016) suggest choosing nF ≈ 𝜆|W |∕6, where 𝜆|W | is the expected number
of points in the original point process. We adopt this guideline for choosing nF when estimating
the anisotropy in the marginal processes. We derive a similar rule of thumb for nF when estimat-
ing the between-process anisotropy, by following the same arguments as Rajala et al. (2016). For
the bivariate Poisson process with intensity vector (𝜆p, 𝜆q) in a circular spatial window W , the
expected number of bivariate Fry points per sector is approximately 𝜆p𝜆q|W |2∕3nF . Each point
in the bivariate process can be expected to contribute if there are at least (𝜆p + 𝜆q)|W | points per
sector, and so we have a bivariate direction count rule of nF ≈ 𝜆p𝜆q|W |∕3(𝜆p + 𝜆q).

In specifying L, we choose to follow a data-driven approach, which is based on the work of
Rajala et al. (2016), and which works well in practice. Suppose we have a set of Fry points, allo-
cated to nF sectors, and define 𝓁max to be the smallest number of Fry points that lie in a single
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MARTIN et al. 15

sector. 𝓁max is therefore the largest value of 𝓁 for which we are able to construct a complete “noisy
contour” G𝓁 . As discussed by Rajala et al., the contours G𝓁 that result from clustered processes
are expected to be roughly isotropic for small values of 𝓁. We proceed by calculating, for a selec-
tion of evenly-spread values 𝓁 ∈ [1,𝓁max], 95% Monte Carlo (MC) confidence intervals for the
difference between the lengths of the semi-axes in the elliptical contour, of which G𝓁 is a noisy
realization—see Rajala et al. (2016) for further details on these MC confidence intervals. For the
smallest values of𝓁 (i.e., for approximately isotropic contours), we expect the corresponding inter-
vals to envelope zero; we therefore seek the first subsequent confidence interval that does not
include zero, corresponding to 𝓁 = 𝓁0, say, and we set L = {𝓁0,…,𝓁max}.

For estimating the ratios of anisotropy, we must choose the number n
𝜁

of candidate ratios, as
well as their upper bound 𝜁max, and the limits of integration, b1 and b2 in (8); we use these values
to calculate ̂V pq, ̂𝜃pq

(𝜁pq,k) when estimating 𝜁pq. Selection of both n
𝜁

and 𝜁max is straightforward:
𝜁max should be chosen such that (0, 𝜁max) covers the majority of the sampling distribution of 𝜁pq,
and selection of n

𝜁
involves a trade-off between accuracy in the resulting estimates and computa-

tional expense of the estimation procedure. In Section 5, where we implement our model fitting
procedure for both simulated data and tropical rainforest data, we use 𝜁max = 2 and n

𝜁
= 199 for

estimating all marginal and joint ratios of anisotropy. Choice of the limits of integration, b1 and
b2 in (8), is a more subjective task, and should be determined by the range of scales over which
dependence (either within, or between processes) is sought to be characterized. In Section 5, we
detail our choices of these limits of integration.

4.3 Estimating the Matérn parameters

Once we have estimated our anisotropy parameters, we can isotropize the point pattern and its
observation window. In order to ensure that the Matérn parameters satisfy Conditions 1–3, we
define 𝜈pq, 𝛼pq, and 𝜎pq according to the specifications in Condition 1, Remark 2, and Remark 3,
respectively. Techniques for modeling the correlation matrices A

𝜈
, A

𝛼
, and A

𝜎
are discussed by

Apanasovich and Genton (2010). When P is small, however, we can simplify our task by assuming
the off-diagonal elements of A

𝛼
,A

𝜈
,A

𝜎
to be constant (Apanasovich et al., 2012).

In order to estimate both the mean and Matérn parameters, we maximize the Palm
log-likelihood, first proposed by Tanaka et al. (2008). We use the Palm likelihood of Dvořák and
Prokešová (2012), where the inner region correction is proposed to deal with edge effects:

𝓁(𝜆p, 𝛼pp, 𝜈pp, 𝜎pp) ≈
≠∑

xp,i∈xp,𝜃,𝜁∩W
𝜃,𝜁

⧵R
xp,j∈xp,𝜃,𝜁∩W

𝜃,𝜁

rij<R

log
{
𝜆pg0,pp(rij; 𝛼pp, 𝜈pp, 𝜎pp)

}

= −𝜆p|xp ∩W ⧵ R|Kp(R; 𝛼pp, 𝜈pp, 𝜎pp),

(10)

where rij = ||xp,i − xp,j||, Kp(r; 𝛼pp, 𝜈pp, 𝜎pp) is Ripley’s univariate K-function, and |xp,𝜃,𝜁 ∩W ⧵ R|

denotes the number of points in the isotropized pattern xp,𝜃,𝜁 that lie further than a distance R from
the boundary of W

𝜃,𝜁
. We approximate Kp(r; 𝛼pp, 𝜈pp, 𝜎pp) by numerically integrating the corre-

sponding isotropic pair correlation function g0,pp(r; 𝛼pp, 𝜈pp, 𝜎pp) over r ∈ [0,R]. R is a user-defined
tuning parameter that can be objectively set based on the data; this is discussed further in
Section 5. As is common in the point pattern literature, we use ≠ in the summation notation to
indicate summation over pairs of distinct points.
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16 MARTIN et al.

The Palm log-likelihood (10) can be analytically maximized with respect to 𝜆p, yielding the
maximum Palm likelihood estimate (MPLE) ̂𝜆p, and we obtain MPLEs for the remaining marginal
Matérn parameters by numerically maximizing 𝓁( ̂𝜆p, 𝛼pp, 𝜈pp, 𝜎pp). The MPLE for 𝜇p can be subse-
quently calculated as �̂�p = log( ̂𝜆p) − �̂�pp∕2. For univariate point processes, Prokešová and Vedel
Jensen (2013) show that the MPLE estimators considered here are unbiased, strongly consistent
and asymptotically normal. Their proof of strong consistency holds under the assumption that the
point process is ergodic, that its log-Palm intensity is bounded and continuous with respect to both
the spatial argument and any covariance parameters, and that the integrated Palm log-intensity
(over B(o,R)) is also bounded and continous with respect to the spatial argument. The proof of
asymptotic normality depends on the assumption that the point process is strongly mixing. As
is also discussed by Prokešová and Vedel Jensen (2013), these conditions are all satisfied by the
LGCP with Matérn covariance function.

We further develop the Palm log-likelihood approach, in order to estimate the parameters for
the cross-covariance structure. First, we obtain the symmetric bivariate Fry process for compo-
nents Xp and Xq, using the inner region correction to deal with edge effects. We then treat this
Fry process as an inhomogeneous Poisson process, with intensity equal to a bivariate version of
the Palm intensity (Daley & Vere-Jones, 2008; Prokešová & Vedel Jensen, 2013), which we define
heuristically as follows: for u at distance r > 0 from the origin o, the occurrence rate of process q
at u, assuming there to be a point of process p at the origin, is

𝜆o,pq(u)du = P

(

|Xq ∩ du| = 1||
|
|Xp ∩ {o}| = 1

)

,

where du is the Lebesgue measure for the infinitesimal region containing u.
Following this definition, we can relate the bivariate Palm intensity to the (isotropic) cross-pair

correlation function for the original process: 𝜆o,pq(u) = 𝜆qg0,pq(||u||). This allows us to define
the following bivariate extension to the Palm log-likelihood, which can be maximized to obtain
estimates for 𝛼pq, 𝜈pq, 𝜎pq, p ≠ q:

𝓁(𝜆p, 𝜆q, 𝛼pq, 𝜈pq, 𝜎pq) ≈
≠∑

xp,i∈xp∩W
𝜃,𝜁

xq,j∈xq∩W
𝜃,𝜁

rij<R

log
{
(𝜆p + 𝜆q)g0,pq(rij; 𝛼pq, 𝜈pq, 𝜎pq)

}
.

−
(
|xq ∩W ⧵ R|𝜆p + |xp ∩W ⧵ R|𝜆q

)
Kpq(R; 𝛼pq, 𝜈pq, 𝜎pq).

(11)

As usual rij = ||xp,i − xq,j||, Kpq(r; 𝛼pq, 𝜈pq, 𝜎pq) is Ripley’s bivariate K-function, and |xp ∩W ⧵ R|

denotes the number of observed points in process p that lie further than a distance R from the
boundary of the window R. By substituting our previous estimates of 𝜆p and 𝜆q into (11), we
obtain an expression in terms of the Matérn cross-covariance parameters only. We numerically
maximize this expression in (𝛼pq, 𝜈pq, 𝜎pq) over the constrained parameter space described by
Condition 1, Remark 2 and Remark 3, and dependent on the corresponding estimated marginal
Matérn parameters.

We would expect the maximum Palm likelihood estimators for the cross-covariance param-
eters to be both consistent and asymptotically normal, following similar arguments to those of
Prokešová and Vedel Jensen (2013). As described in Section 4.1, the use of constrained optimi-
sation should not affect the consistency of the cross-covariance parameter estimators, however,
they may display some bias due to the truncation of their supports.
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MARTIN et al. 17

5 IMPLEMENTATION

5.1 Proof of concept simulations

We demonstrate the performance of the model fitting procedure described in Section 4, through
simulation studies. Using the restrictions in Section 3, we define eight distinct bivariate geomet-
ric anisotropic LGCPs with valid Matérn covariance structures. In this section, we report on the
simulation studies corresponding to the first four models; those corresponding to the second four
models are detailed in the Appendix. The parameter values for each model are given in the cor-
responding results table. For all eight models, the parameters are chosen such that the expected
log-intensity for each process component, log(𝜆p) = 6.75 (p = 1, 2), specifying point patterns with
a similar intensity to the ecological data to be considered in Section 5.2. For each of the eight fully
specified models, we simulate 500 distinct point patterns on the unit square, W = [0, 1]2. One
realisation from each of the first four models is shown in Figure 3.

For each model, and for p, q = 1, 2, we executed our parameter estimation procedure as
described in Section 4.1, and a detailed algorithmic outline of this bivariate implementation is
also provided in the Appendix. For both the marginal and cross-dependence relationships, we
estimate 𝜃pq using Fry processes consisting of only those point pairs separated by r ∈ (0, 0.25).
Similarly, when estimating 𝜁pq, we numerically approximate the integral Vpq, ̂𝜃pq

(𝜁) as defined in
(8), using the limits of integration b1 = 0, b2 = 0.25. Approximation of Vpq, ̂𝜃pq

(𝜁) involves esti-
mating the sector-K-function over a discrete, high-resolution set of distances r, using an angular
bandwidth parameter which we choose to be h

𝜙
= 𝜋∕16; details of the chosen sector-K-function

estimator are given in the Appendix.
When estimating the Matérn parameters, despite using a favorable form of the Matérn param-

eterization as discussed in Section 3.2, there proved to be insufficient separation of the effects of
𝜈pq and 𝛼pq in practice for both parameters to be allowed to vary freely during estimation. This
lack of identifiability is often found in the Matérn parameterization (see, e.g., Handcock & Wal-
lis, 1994). In order to avoid this issue, a common strategy (e.g., Diggle et al., 2013) is to restrict �̂�pq
to a number of discrete candidate values. These values should represent sufficiently distinct levels
of smoothness in the resulting random fields, so that they can be distinguished: we chose to seek
�̂�pq ∈ {0.05, 0.5, 5.0}, p, q = 1, 2. For the case p ≠ q, this candidate vector was further restricted, to
ensure that �̂�12 satisfied Condition 1. The remaining Matérn parameters were allowed to vary on
continuous bounded intervals: �̂�pq ∈ (0, 𝛼UB

pq ) and �̂�pq ∈ (0, 𝜎UB
pq ). In the marginal cases, 𝛼UB

pp = 10
and 𝜎UB

pp = 50, p = 1, 2, were chosen such that these constituted generous intervals around the cor-
responding true values. For estimating the cross-covariance parameters, 𝛼UB

12 and 𝜎UB
12 were chosen

to ensure compliance with Conditions 2 and 3.
We used an interior-point algorithm (Byrd et al., 1999) to carry out constrained maximization

of the Palm-log likelihood with respect to (𝛼pq, 𝜎pq), for each candidate value of 𝜈pq. We initialised
the parameters using a computationally inexpensive version of the widely used minimum contrast
method, minimizing the difference between the estimated (isotropic) pair correlation function
and its closed-form expression across a coarse grid of parameter pairs (𝛼pq, 𝜎pq).

As discussed by Dvořák and Prokešová (2012), the accuracy of the MPLE estimates are sensi-
tive to the choice of tuning parameter R. We therefore repeat our parameter estimation exercise for
multiple values of R. We followed the guidance of Prokešová and Vedel Jensen (2013) in consid-
ering a suitable model-based value of R, in addition to considering R ∈ {0.1, 0.2, 0.3}. Prokešová
and Vedel Jensen (2013) suggest setting R equal to the estimated “range of interaction” in the
data. This is a well-defined concept for data from cluster models and Gibbs models, but is less
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18 MARTIN et al.

F I G U R E 3 A two-type point pattern, simulated from each of Models 1–4 (left to right, top to bottom),
which are specified in Tables 1 and 2. In each realisation, points of type 1 are shown as red crosses and points of
type 2 are shown as blue circles.

well-defined for Cox processes, which do not directly model the pairwise interaction between
points. We therefore choose to set Rmodel approximately equal to the “practical range” of depen-
dence, which is defined in the geostatistics literature to be the distance at which the spatial auto-
or cross-correlation decays to 0.05. We allow for distinct scales in the multivariate dependence
structure by calculating Rmodel separately for each marginal and joint component of the covariance
model.

In a small proportion of runs, the MPLE procedure returned seemingly degenerate estimates
of either �̂�pp or �̂�pp, p = 1, 2, with one or the other being returned equal to their upper bound.
In this scenario, the number of points contributing to the Palm log-likelihood (10) is reduced,
leading to a loss of accuracy in the MPLE procedure. We therefore counter this phenomenon by
decreasing R when necessary. When the initial attempt returns estimates of any of the marginal
Matérn scale or power parameters greater than 95% of their corresponding upper bound, we
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MARTIN et al. 19

iteratively repeat the MPLE procedure, reducing R by 0.01 each time, until all marginal scale and
power estimates are below this 95% threshold. We found this iterative procedure to be an ade-
quate, if somewhat ad-hoc remedy to the problem. After applying our iterative solution, for each
of the four models considered, fewer than one in fifty MC runs returned any marginal Matérn
scale or power estimates greater than 50% of their corresponding upper bound.

In Tables 1 and 2, we summarize the MC sampling distributions of the parameters in Mod-
els 1–4. For the smoothness parameters, we report the modal estimate from our MC simulations,
as we consider only three potential values for these parameters. For the estimated scales of
anisotropy, we provide the median of the MC samples, since their sampling distributions display
evidence of skewness, along with the root-mean-square error (RMSE). For the estimated angles
of anisotropy, as well as the Matérn scale and power parameters, we provide the MC sample mean
and the corresponding RMSE.

For all models, the estimated anisotropy parameters are in reasonable agreement with their
corresponding true values. The accuracy of these estimates can be improved by reducing the
range of distances r, over which we seek to characterize anisotropy; their broad accuracy, how-
ever, suggests that our bivariate generalization of Rajala et al.’s method of estimating anisotropy
is competitive.

Broadly speaking, we found the accuracy of the Matérn parameter estimates to improve as
R decreases, and this was particularly evident when the true Matérn scale parameter was larger.
Using a fixed value of R ∈ {0.1, 0.2, 0.3} for estimating both the marginal and joint Matérn param-
eters was not found to offer a consistent improvement in estimator accuracy. In the remaining
analysis, we therefore focus on the simulations that used R = Rmodel. The sampling distribu-
tions of the parameter estimates for Model 1, using R = Rmodel, are depicted in Figure 4, and the
corresponding figures for Models 2–4 are provided in the Appendix.

For these four models, the scale parameters, 𝛼pq, have been satisfactorily estimated, and we
have also recovered the correct values of the smoothness parameters 𝜈pq. For all four models,
the power parameter estimates 𝜎pq, p, q = 1, 2 show reasonable accuracy, though there is often

T A B L E 1 Monte Carlo (MC) estimates and root-mean-square errors (RMSEs) for the anisotropy
parameters in four distinct models (Models 1–4).

𝜽11 𝜽22 𝜽12 𝜻11 𝜻22 𝜻12

Model 1 36◦ 72◦ 54◦ 0.20 0.20 0.35

MC estimate 40.02◦ 74.99◦ 63.10◦ 0.25 0.24 0.40

RMSE 21.86◦ 18.85◦ 35.01◦ 0.35 0.34 0.52

Model 2 36◦ 72◦ 54◦ 0.40 0.40 0.60

MC estimate 43.17◦ 75.56◦ 74.83◦ 0.41 0.41 0.59

RMSE 29.74◦ 21.52◦ 48.84◦ 0.33 0.31 0.45

Model 3 36◦ 72◦ 54◦ 0.20 0.20 0.35

MC estimate 37.15◦ 71.61◦ 57.55◦ 0.24 0.22 0.37

RMSE 11.97◦ 8.85◦ 24.74◦ 0.19 0.10 0.32

Model 4 36◦ 72◦ 54◦ 0.40 0.40 0.60

MC estimate 38.93◦ 72.73◦ 62.19◦ 0.40 0.40 0.53

RMSE 19.41◦ 12.22◦ 35.33◦ 0.21 0.14 0.27
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20 MARTIN et al.

T A B L E 2 Monte Carlo (MC) estimates and root-mean-square errors (RMSEs) for the mean and Matérn
parameters in four distinct models (Models 1–4).

R 𝜶11 𝜶22 𝜶12 𝝂11 𝝂22 𝝂12 𝝈11 𝝈22 𝝈12 𝝁1 𝝁2

Model 1 0.045 0.065 0.050 0.5 0.5 0.5 4.00 4.50 1.97 4.75 4.50

MC estimate R = Rmodel 0.040 0.103 0.050 0.5 0.5 0.5 5.26 5.52 1.43 2.78 2.50

R = 0.1 0.043 0.068 0.046 0.5 0.5 0.5 4.56 4.35 1.29 3.13 2.95

R = 0.2 0.052 0.103 0.052 0.5 0.5 0.5 6.23 5.54 1.55 2.30 2.47

R = 0.3 0.083 0.065 0.054 0.5 0.5 0.5 7.37 6.21 1.69 1.67 2.10

RMSE R = Rmodel 0.020 0.572 0.021 NaN NaN NaN 4.15 4.29 3.54 2.74 2.92

R = 0.1 0.032 0.083 0.024 NaN NaN NaN 2.05 1.66 1.16 2.35 3.79

R = 0.2 0.239 0.525 0.026 NaN NaN NaN 4.91 4.66 4.10 3.30 3.01

R = 0.3 0.612 0.100 0.032 NaN NaN NaN 6.63 5.08 4.02 4.08 3.38

Model 2 0.045 0.065 0.050 0.5 0.5 0.5 4.00 4.50 2.30 4.75 4.50

MC estimate R = Rmodel 0.068 0.082 0.056 0.5 0.5 0.5 4.86 5.20 1.29 3.41 2.98

R = 0.1 0.051 0.080 0.051 0.5 0.5 0.5 4.21 4.22 1.40 3.74 3.38

R = 0.2 0.066 0.097 0.057 0.5 0.5 0.5 5.89 5.22 1.52 2.88 2.93

R = 0.3 0.086 0.074 0.057 0.5 0.5 0.5 6.27 5.73 1.57 2.70 2.72

RMSE R = Rmodel 0.410 0.127 0.028 NaN NaN NaN 2.90 2.48 1.56 2.40 2.92

R = 0.1 0.071 0.111 0.029 NaN NaN NaN 2.25 2.07 1.27 1.99 3.85

R = 0.2 0.345 0.354 0.037 NaN NaN NaN 4.86 3.31 2.92 2.92 3.22

R = 0.3 0.572 0.133 0.036 NaN NaN NaN 5.98 4.23 3.72 3.25 3.27

Model 3 0.090 0.120 0.100 0.5 0.5 0.5 2.00 2.25 0.98 5.75 5.62

MC estimate R = Rmodel 0.129 0.177 0.107 0.5 0.5 0.5 3.01 2.87 0.59 3.64 3.64

R = 0.1 0.113 0.221 0.084 0.5 0.5 0.5 2.35 2.72 0.62 3.87 3.33

R = 0.2 0.100 0.181 0.103 0.5 0.5 0.5 2.69 2.62 0.68 3.85 3.73

R = 0.3 0.156 0.163 0.105 0.5 0.5 5.0 3.00 2.77 0.68 3.68 3.70

RMSE R = Rmodel 0.465 0.697 0.049 NaN NaN NaN 2.32 2.22 0.80 2.95 2.43

R = 0.1 0.272 0.719 0.045 NaN NaN NaN 1.50 1.08 0.72 3.80 5.18

R = 0.2 0.146 0.588 0.048 NaN NaN NaN 2.29 1.62 0.94 2.45 2.66

R = 0.3 0.699 0.561 0.054 NaN NaN NaN 2.68 2.62 1.89 2.47 2.42

Model 4 0.090 0.120 0.100 0.5 0.5 0.5 2.00 2.25 1.15 5.75 5.62

MC estimate R = Rmodel 0.143 0.261 0.121 0.5 0.5 5.0 2.74 2.64 0.68 4.34 4.12

R = 0.1 0.115 0.194 0.087 0.5 0.5 0.5 2.08 2.47 0.68 4.68 4.18

R = 0.2 0.122 0.164 0.111 0.5 0.5 0.5 2.62 2.55 0.70 4.38 4.23

R = 0.3 0.159 0.201 0.115 0.5 0.5 5.0 2.85 2.63 0.66 4.28 4.22

RMSE R = Rmodel 0.464 0.928 0.146 NaN NaN NaN 1.93 1.94 1.40 1.90 3.08

R = 0.1 0.341 0.600 0.067 NaN NaN NaN 1.32 2.99 0.81 2.13 3.93

R = 0.2 0.201 0.322 0.069 NaN NaN NaN 3.43 1.31 1.06 2.54 2.69

R = 0.3 0.596 0.620 0.081 NaN NaN NaN 2.01 1.85 1.18 1.96 2.14
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MARTIN et al. 21

F I G U R E 4 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 1. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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22 MARTIN et al.

underestimation of the joint dependence power parameter. In the final panel of Figures 4 and
A2–A8, we have overlaid the empirical parameter distribution for �̂�12, restricted to those MC
simulations where �̂�12 was not equal to the upper bound dictated by �̂�11 and �̂�22. This suggests that
our use of constrained optimization limits the accuracy of the estimated power parameter; this is
the cost of ensuring that each fitted parameter vector specifies a valid multivariate dependence
structure.

We also corroborate the observation of Dvořák and Prokešová (2012): that the MPLE esti-
mates of 𝜇1, 𝜇2 are particularly poor, and that ultimately, a more reliable estimator for 𝜇p can
be obtained by using the classical intensity estimator, ̂𝜆p = np∕|W |, and combining this with
�̂�pp. When performing inference with respect to the Matérn parameters, however, we jointly
maximize the (bivariate) Palm likelihood with respect to both the mean and covariance parame-
ters, so substitution of the classical intensity estimator is only performed after this optimization
exercise.

We make two final notes regarding the accuracy of the Palm likelihood estimation procedure.
When the value of R is smaller than the true scale parameter 𝛼pq, then estimation of �̂�pq was
found to be poor. This is to be expected, as R is equal to the maximum distance between point
pairs that contribute to the Palm likelihood. Finally, and despite the measures taken to ame-
liorate the lack of identifiability in our Matérn parameterization, our procedure was observed
to misspecify some of the models in a relatively small number of iterations. For Model 6, we
found that the iterations for which 𝜎11 was overestimated, corresponded to an underestimation
of the corresponding smoothness parameter, 𝜈11; this can be seen in the bottom two panels of
the left-hand column in Figure A6. Similarly, in Model 5, we verified that the overestimation of
𝜈11 corresponded to iterations where 𝜎11 was underestimated (see Figure A5). Overall, however,
these results indicate reasonable success for our model fitting procedure, and motivates its usage
in practice.

5.2 Application to ecological data

We fit our multivariate Matérn geometric anisotropic LGCP to a bivariate point pattern from a
50ha plot in the BCI forest stand in Panama. We study two tree species, Cecropia obtusifolia and
Spondias radlkoferi. To ease comparison with the studies in the previous section, we rescale the
coordinates to the half-unit window [0, 1] × [0, 0.5]; this rescaled bivariate point pattern is dis-
played in Figure 5. C. obtusifolia and S. radlkoferi were chosen as a preliminary study of the data
revealed empirical evidence of between-process anisotropy at a range of 50 m. This is demon-
strated in Figure 6, which we describe below. The anistropic interaction between these two species
is likely explained by the shared preference for moist soils, and in the BCI site these can be found
on the steepest slopes that run in the middle (near to a swamp) and towards the eastern edge of
the 50 ha plot (Kupers et al., 2019).

As above, we estimate 𝜃pq using Fry processes consisting of only those point pairs separated
by r ∈ (0, 0.25), and we estimate 𝜁pq using b1 = 0 and b2 = 0.25 as the limits of integration in
̂V pq, ̂𝜃pq

(𝜁). In Section 5.1, we used the known specifications of the Matérn covariance model to
determine a suitable model-based choice of R. Here, we replicate this approach by using the data
to estimate a suitable data-based choice of R. We do so by consulting the estimated marginal and
cross-pair correlation functions for the isotropized data, once the marginal and between-process
anisotropy parameters have been estimated, setting R equal to the smallest distance at which
the corresponding estimated pair correlation function is less than 1.05. This resulted in the use
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MARTIN et al. 23

F I G U R E 5 Rescaled point pattern data from the 50 ha tropical rainforest census plot on Barro Colorado
Island. Two species are shown: Cecropia obtusifolia (red crosses) and Spondias radlkoferi (blue circles).

F I G U R E 6 Estimates of the sector-K-function, at a fixed range of 50 m, for the observed bivariate Barro
Colorado Island point pattern (black line), along with the corresponding 90% directional-quantile maximum
absolute difference envelopes obtained from a fitted multivariate geometric anisotropic log-Gaussian Cox process
(LGCP; bottom row) and from a fitted multivariate isotropic LGCP (top row). Departure of the data from the
adopted model is highlighted with red circles

of R = 0.113 for estimating the marginal Matérn parameters for C. obtusifolia, R = 0.214 for the
corresponding marginal parameters for S. radlkoferi, and R = 0.092 for their interspecific depen-
dence. We also implement the model fitting procedure using fixed R ∈ {0.1, 0.15, 0.2}. When
reporting our fitted models, we use the classical intensity estimate ̂

𝜆p = np∕|W |, p = 1, 2, in
place of the corresponding Palm likelihood estimate, following the discussion in the previous
section.
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24 MARTIN et al.

For the proof-of-concept studies in Section 5.1, we were able to avoid constraining the
anisotropy parameters during the estimation procedure, and we picked values satisfying the
validity conditions of Section 3.2. When fitting the model to observed data, however, we
have no assurance that the true values satisfy these validity conditions. Instead of introduc-
ing any new constraints on the anisotropy parameters here, we acknowledge this uncertainty
by checking each fitted model against Conditions 1–4; all of the fitted models we present
here were found to satisfy the required validity conditions. In Section 5.1, we also found that
estimating the Matérn parameters via constrained optimisation can result in underestima-
tion of the overall power in the between-process covariance. This occurs when the estimated
value of 𝜎12 is equal to the upper bound specified by the marginal dependence structures.
By calculating this upper bound explicitly, and comparing with �̂�12, we can therefore ascer-
tain whether each fitted model accurately represents the between-species dependence struc-
ture; this is important, as it describes the interspecific interaction between individual trees in
our dataset.

To begin with, we applied our model fitting procedure as in Section 5.1, with one change: we
choose not to implement the ad-hoc sequential reduction of R, as a guard against degeneracy in
the marginal scale and power parameters. Since this approach involves adjusting the estimation
algorithm, based on the values of the observed data, this is likely to introduce a bias into the
resulting estimates. In Section 5.1, this is implemented for only a small proportion of runs and so
the effect of this bias is not evident in the results. The magnitude of this bias remains unquantified,
however, and so it would be inappropriate to use this approach when performing inference based
on a single realization.

The first four rows of Table 3 give the resulting parameter estimates, with each row specifying
a multivariate geometric anisotropic Matérn model. When using R = 0.15 and R = Rdata, we see
that the method returned values of �̂�11 equal to 𝛼UB

11 = 10, suggesting degeneracy in these fitted
models. Furthermore, we see that for R = 0.1 and R = 0.2, the estimated value of �̂�12 is equal to
the upper bound specified by the marginal parameter estimates, suggesting that the optimization
has been over-constrained here. In all four cases, we conclude that the resulting fitted model does
not accurately represent the interspecific interaction in our dataset. Motivated by the observation
that distinct values of the marginal smoothness parameters lead to prohibitively small values of
𝜎

UB
12 , we next proceeded to fix the smoothness parameters, 𝜈11 = 𝜈22 = 𝜈12 = 0.5, resulting in a geo-

metric anisotropic bivariate exponential covariance model. Crucially, all of the discussion from
Sections 3 and 4 is valid for fixed values of 𝜈pq, p, q = 1, 2. The resulting parameter estimates for
this model are given in rows 4–6 of Table 3. In order to demonstrate the utility of our multivari-
ate anisotropic framework, we also fit an isotropic version of the multivariate exponential LGCP
to the same data, for the purpose of comparison. In practice, we achieve this by fixing 𝜁pq = 1
and 𝜃pq = 0 for p, q = 1, 2, and implementing the MPLE portion of the model fitting procedure
as described above, using R = 0.1, 0.15, 0.2 and R = Rdata; under an assumption of isotropy, the
appropriate values of Rdata were found to be R = 0.138 for C. obtusifolia, R = 0.085 for S. radlkoferi,
and R = 0.07 for their interspecific dependence. The resulting four sets of estimated scale and
power parameters for this model are given in the bottom rows of Table 3. As is shown in this table,
the interspecific interaction is well-represented in only one of the anisotropic models, and in two
of the isotropic exponential models. In order to compare the fit of two models obtained with sim-
ilar estimation methods, we now restrict our attention to the two models that used constant R
across the marginal and bivariate Palm likelihoods.

In order to assess the ability of our fitted models to replicate the bivariate anisotropy present
in the data, we use global envelope tests (GETs; Myllymäki et al., 2017), in which we compare
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MARTIN et al. 25

estimates of the multivariate sector K-function for the observed data with those for M bivariate
point patterns, each independently simulated from the fitted model. We estimate the multivariate
sector-K-function Ka

pq(r, 𝜙) at r = 0.05,𝜙 = k𝜋∕60, k = 0,…, 60, for p, q ∈ {1, 2}. We choose to use
the sector-K-function as our test statistic, as it has been shown to result in tests with higher statis-
tical power than those based on comparable directional test statistics, when testing for anisotropy
in point patterns (Redenbach et al., 2009).

The envelopes provided by the GETs describe a proper statistical test: if the observed test statis-
tic lies outside the simulated envelope at any instance, then the null hypothesis that the observed
data belong to the fitted model may be rejected. We construct the envelopes by using the scaled
directional quantile maximum absolute difference (MAD) to define the critical bounds; full details
of this approach are provided by Myllymäki et al. (2017). We configure our tests such that they
have a global type I error probability of 0.1, using M = 499.

The estimated sector-K-functions for the observed BCI data are presented in Figure 6,
along with their corresponding directional quantile MAD envelopes. This figure demonstrates
that the two chosen species in the BCI forest stand exhibit evidence of anisotropic interspe-
cific interaction at a range of 50 m: for several values of 𝜙 ∈ [7𝜋∕60, 19𝜋∕60], the estimated
sector-K-function ̂Ka

12(0.05, 𝜙) lies outside of the envelope generated by a multivariate isotropic
LGCP. The p-value for the global envelope test that was carried out for this statistic was 0.058,
indicating departure from the isotropic model when using a global type I error probability of
0.1. From the bottom row of panels, we can see that our multivariate geometric anisotropic
LGCP can comfortably replicate this observed heterogeneity. Finally, in Figure 7 we provide

T A B L E 3 Parameter estimates for three bivariate log-Gaussian Cox processes (LGCPs), fitted to the tropical
rainforest data described in the text.

�̂�11 �̂�22 �̂�12 𝜻11 𝜻22 𝜻12 �̂�1 �̂�2

158.90◦ 87.64◦ 127.39◦ 0.51 0.39 0.53 824 878

Covariance model R �̂�11 �̂�22 �̂�12 𝝂11 𝝂22 𝝂12 �̂�11 �̂�22 �̂�12

Anisotropic Matérn 0.1 0.03 0.71 0.15 0.05 0.5 0.5 11.54 13.65 1.16∗

Anisotropic Matérn 0.15 10.00∗ 0.08 0.11 0.05 5.0 5.0 19.05 3.09 1.01e-07∗

Anisotropic Matérn 0.2 0.07 0.10 0.14 0.05 5.0 5.0 12.50 2.00 0.03∗

Anisotropic Matérn Rdata 10.00∗ 0.08 0.12 0.05 0.05 0.05 17.95 9.16 8.80∗

Anisotropic exponential 0.1 0.03 0.71 0.04 — — — 3.09 13.65 1.61∗

Anisotropic exponential 0.15 0.10 0.18 0.12 — — — 3.47 5.22 2.45

Anisotropic exponential 0.2 0.07 0.17 0.08 — — — 3.30 3.03 1.96∗

Anisotropic exponential Rdata 0.05 0.08 0.05 — — — 3.03 2.41 1.89∗

Isotropic exponential 0.1 0.03 0.66 0.04 — — — 3.32 7.42 1.45∗

Isotropic exponential 0.15 0.08 0.13 0.07 — — — 3.34 2.79 2.14∗

Isotropic exponential 0.2 0.12 0.09 0.10 — — — 4.28 3.40 2.62

Isotropic exponential Rdata 0.06 0.23 0.07 — — — 3.24 5.01 2.34

Notes: The anisotropy parameters in the top table apply to both anisotropic models described in the bottom table. Those values
of �̂�11 and �̂�12 marked with an asterisk (∗) are equal to the corresponding upper bounds, 𝛼UB

11 and 𝜎UB
12 , respectively. The two

models that we choose to assess using global envelope tests, are highlighted in bold.
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26 MARTIN et al.

F I G U R E 7 Single realizations from each of the fitted isotropic (top) and anisotropic (bottom) log-Gaussian
Cox processes (LGCPs), for which the global envelope tests are implemented. The marginal processes
represented here correspond to the two BCI species we consider: Cecropia obtusifolia (red crosses) and Spondias
radlkoferi (blue circles).

one realization from each of the fitted isotropic and anisotropic models for which we carry out
the GETs.

6 DISCUSSION

We have shown that by incorporating geometric anisotropy into the between-process dependence,
as well as the marginal dependence, we can construct a log-Gaussian Cox process (LGCP) that
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MARTIN et al. 27

more accurately replicates any rotationally heterogeneous interaction between points in a mul-
tivariate point pattern. We have focused on a covariate-free approach, motivated in part by the
desire to allow the description of anisotropic between-process dependence in data for which there
are no explanatory spatial variables. Nevertheless, the models presented are flexible enough to
use (potentially incomplete) covariate information where it is available. Indeed, an interesting
first extension of this work would be to incorporate covariates into the first-order description of
the GRF underlying our LGCPs. For instance, the expected value of the GRF could be specified
through a linear regression model, and inference with respect to the regression parameters may
be achievable through the use of estimating functions (e.g. Waagepetersen, 2008; Waagepetersen
& Guan, 2009). Such an approach would allow the user to exploit any knowledge of spatial covari-
ates while being confident that any residual heterogeneity in the data would be accounted for
by the increased flexibility of the multivariate geometric anisotropic second-order dependence
structure.
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APPENDIX

A.1 Proof of Proposition 1
In Proposition 1, we state that Conditions 1–4 are sufficient for the geometric anisotropic
Matérn function in (6) to specify a valid multivariate covariance model, and we sketch the
proof here. This proof is similar to that of Theorem 1 of Apanasovich et al. (2012), with addi-
tional consideration required to account for geometric anisotropy. As such, our proof depends
on the following lemmas, due to Apanasovich et al. (2012), proofs for which can be found in
that paper.
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Lemma 1. (Apanasovich et al., 2012). Let 0 < bp <∞, p = 1,…,P, 𝛿 ≥ 0, and Bpq > 0,
p, q = 1,…,P, be such that the matrix (−Bpq)Pp,q=1 is conditionally nonnegative definite.
Then the P × P matrix with entries

Γ(bp + bq + 𝛿)

Bbp+bq+𝛿
pq

p, q = 1,…P,

is nonnegative definite.

Lemma 2. (Apanasovich et al., 2012). Let 𝛿 ≥ 0 and Bpq, p, q = 1,…,P be as in Lemma
1. Then the P × P matrix with (p, q)th entry (Bpq + 𝛿)−r is nonnegative definite, for any
0 < r < ∞.

Proof of Proposition 1. We operate in the spectral domain: by Cramér’s
generalization of Bochner’s Theorem (Cramér, 1945), the covariance matrix
(

Cpq(h)
)P

p,q=1 is nonnegative definite if and only if the corresponding matrix of spec-

tral densities
(

fpq(𝜔)
)P

p,q=1 is also nonnegative definite. We therefore consider the
form of the multivariate spectral density function, corresponding to (6):

fpq(𝜔) = |
|Σpq||

1∕2f0,pq

(

Σ1∕2
pq 𝜔

)

=
|Σpq|

1∕2
𝜎pqΓ(𝜈pq + d∕2)
𝜋

d∕2Γ(𝜈pq)

(
4𝜈pq

𝛼

2
pq

)
𝜈pq

(
4𝜈pq

𝛼

2
pq
+ ||Σ1∕2

pq 𝜔||
2

)−𝜈pq−d∕2

,

where each anisotropic deformation matrix Σpq is defined in terms of 𝜃pq and 𝜁pq. We
can decompose this spectrum as follows, in the process defining four terms numbered
I to IV:

fpq(𝜔) =

Term I
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Γ
(
𝜈pp+𝜈qq

2
+ d

2

)

(
4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2
) 𝜈pp+𝜈qq

2
+ d

2

×

Term II
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎛
⎜
⎜
⎜
⎝

4𝜈pq

𝛼
2
pq

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2

⎞
⎟
⎟
⎟
⎠

−Δ
𝜈

A
𝜈,pq

× 1
(

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2
)Δ

𝜈

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term III

×
|Σpq|

1∕2
𝜎pqΓ(𝜈pq + d∕2)

𝜋
d∕2Γ

(
𝜈pp+𝜈qq

2
+ d

2

)

Γ(𝜈pq)

(
4𝜈pq

𝛼

2
pq

)Δ
𝜈

+
𝜈pp+𝜈qq

2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Term IV

, (A1)

where A
𝜈,pq = 1 −

{
𝜈pq −

(
𝜈pp + 𝜈qq

)
∕2

}
∕Δ

𝜈
is the (p, q)-element of a valid non-

negative correlation matrix; nonnegative definiteness of the spectral matrix fol-
lows from nonnegative definiteness of the matrices formed from these constituent
terms.

As noted by Apanasovich et al. (2012), a Hermitian matrix A ∈ CP×P is con-
ditionally nonnegative definite if and only if the matrix

(
exp

{
rCpq

})P
p,q=1 is

nonnegative definite for all r ≥ 0. Therefore, using the Schur product theorem,
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MARTIN et al. 31

we can combine the matrices in Conditions 2 and 4, to state that the matrix
(

exp
{

−r
(

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2
)})P

p,q=1
is nonnegative definite for all r ≥ 0, and thus

the matrix
(

− 4𝜈pq

𝛼
2
pq
− ||Σ1∕2

pq 𝜔||
2
)P

p,q=1
is conditionally nonnegative definite. This

allows us to use Lemma 1, with bp = 𝜈pp∕2, bq = 𝜈qq∕2 and 𝛿 = d∕2 to guaran-
tee nonnegative definiteness of the matrix with elements given by the first term
in (A1).

Conditions 1,2, and 4 are sufficient to guarantee nonnegative definiteness of the
matrix with elements given by the second term of (A1). To see this, we first rewrite
the second term in (A1) as

⎛
⎜
⎜
⎜
⎝

4𝜈pq

𝛼
2
pq

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2

⎞
⎟
⎟
⎟
⎠

−Δ
𝜈

A
𝜈,pq

= exp
⎧
⎪
⎨
⎪
⎩

Δ
𝜈
A
𝜈,pq

⎡
⎢
⎢
⎢
⎣

− log
⎛
⎜
⎜
⎜
⎝

1 −
||Σ1∕2

pq 𝜔||
2

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

⎫
⎪
⎬
⎪
⎭

=
∞∏

k=1
exp

⎧
⎪
⎨
⎪
⎩

Δ
𝜈
A
𝜈,pq

k

⎡
⎢
⎢
⎢
⎣

||Σ1∕2
pq 𝜔||

2

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2

⎤
⎥
⎥
⎥
⎦

k
⎫
⎪
⎬
⎪
⎭

,

where we note that the infinite expansion of the logarithm is valid when

||Σ1∕2
pq 𝜔||

2

4𝜈pq

𝛼
2
pq
+ ||Σ1∕2

pq 𝜔||
2
< 1,

and this is satisfied at all times, since 4𝜈pq∕𝛼2
pq > 0.

Now, consider the matrices B and C with elements Bpq > 0, Cpq > 0, p, q = 1,…,P
and suppose that both−B and−C are conditionally nonnegative definite. By applying
Lemma 2 (with 𝛿 = 0, r = 1), we have that the matrix with elements 1∕Bpq is nonneg-
ative definite, and therefore by the Schur product theorem, we have that the matrix
with elements −Cpq∕Bpq is conditionally nonnegative definite. Now, using the matri-
ces in Conditions 2 and 4 in place of the matrices −C and −B, respectively, we can
state that the matrix with elements

−
4𝜈pq∕𝛼2

pq

||Σ1∕2
pq 𝜔||

2
,

is conditionally nonnegative definite for all 𝜔 ∈ Rd ⧵ {0}, and we note that for 𝜔 = 0,
the second term collapses to 1. By applying Lemma 2 once more (this time with 𝛿 = 1),
we therefore have that the matrix with elements

(
4𝜈pq∕𝛼2

pq

||Σ1∕2
pq 𝜔||

2
+ 1

)−r

,
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32 MARTIN et al.

is nonnegative definite for all r > 0. It is now clear that, since A
𝜈

is nonnegative defi-
nite andΔ

𝜈
≥ 0 (both by Condition 1), each exponential argument within the product

above specifies a nonnegative definite matrix. Repeated further use of the Schur prod-
uct theorem therefore allows us to conclude that the matrix with elements given by
the second term in (A1) is indeed nonnegative definite.

Recall from our examination of the first term that the matrix with (p, q)-element
− 4𝜈pq

𝛼
2
pq
− ||Σ1∕2

𝜔||2 is conditionally nonnegative definite. For Δ
𝜈
> 0, we can therefore

use Lemma 2 to guarantee the nonnegative definiteness of the third term, and we note
that for Δ

𝜈
= 0, the third term trivially collapses to 1. Finally, Condition 3 states the

nonnegative definiteness of the matrix with entries specified by the fourth term of
(A1), and so we may conclude the stated result. ▪

A.2 Proofs of Remarks 2–4
In Remarks 2–4, we provide definitions of the correlation length, smoothness parameter and
spatial deformation matrix for the geometric anisotropic Matérn cross-covariance function
Cpq

(
h |
|𝛼pq, 𝜈pq, 𝜎pq,Σpq

)
, in terms of the corresponding marginal quantities. In this subsection,

we prove that these definitions satisfy Conditions 2–4, respectively. Recall that a matrix A ∈ CP×P

is conditionally nonnegative definite if, for all x ∈ CP such that
∑P

p=1xp = 0,
∑P

p,q=1xpApqx∗q ≥ 0,
where x∗p is the complex conjugate of xp.

Proof of Remark 2. This proof is given in the appendix of Apanasovich et al. (2012)
for a different Matérn parameterization; we translate it to the current Matérn
parameterization here. Suppose that

4𝜈pq

𝛼

2
pq
= 1

2

(
4𝜈pp

𝛼

2
pp
+

4𝜈qq

𝛼

2
qq

)

+ Δ
𝛼

(
1 − A

𝛼,pq
)
, p, q = 1,…,P, (A2)

with Δ
𝛼
≥ 0 and 0 ≤ A

𝛼,pq ≤ 1 that form a valid correlation matrix. Consider x ∈ CP

such that
∑P

p=1xp = 0. Using (A2),

∑

p,q
xp

4𝜈pq

𝛼

2
pq

x∗q =
1
2

{(
∑

p
xp

4𝜈pp

𝛼

2
pp

)(
∑

q
x∗q

)

+

(
∑

p
xp

)(
∑

q

4𝜈qq

𝛼

2
qq

x∗q

)}

+ Δ
𝛼

∑

p
xp
∑

q
x∗q − Δ𝛼

∑

pq
xpA

𝛼,pqx∗q

= −Δ
𝛼

∑

pq
xpA

𝛼,pqx∗q ≤ 0, as A
𝛼,pq is nonnegative definite.

Hence, the matrix with (p, q)-element −4𝜈pq∕𝛼2
pq is conditionally nonnegative

definite. ▪

Proof of Remark 3. Through straightforward manipulation of the expression in
Remark 3, we see that the matrix in Condition 3 is equal to the matrix with
(p, q)-element given by VpVqA

𝜎,pq, where Vp, Vq, and A
𝜎

are defined in Remark 3.
Since A

𝜎
is a (nonnegative definite) correlation matrix, and since Vp,Vq ≥ 0, this is

also nonnegative definite. ▪
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MARTIN et al. 33

Proof of Remark 4. We also give motivation for the chosen construction of Σpq. We
wish to have Σpq such that the P × P matrix with (p, q)-element −𝜔TΣpq𝜔 is condi-
tionally nonnegative definite. Now, for a P × P matrix with (p, q)-element −Cpq to
be nonnegative definite, a necessary condition is for Cpq ≥

(
Cpp + Cqq

)
∕2, for p, q =

1,…,P. It therefore follows that for Condition 4 to hold, we need

𝜔

TΣpq𝜔 ≥
1
2
(
𝜔

TΣpp𝜔 + 𝜔TΣqq𝜔
)
, ∀𝜔 ∈ R

2
.

Since this must hold for all 𝜔 ∈ R2, we can consider the particular case for
{
𝜔 ∈ R2 ∶ 𝜔2 = 0

}
, from which we can deduce

[
Σpq

]

11 ≥
([
Σpp

]

11 +
[
Σqq

]

11

)
∕2. Sim-

ilarly, we can deduce
[
Σpq

]

22 ≥
([
Σpp

]

22 +
[
Σqq

]

22

)
∕2.This motivates the construction

of the diagonal elements of Σpq in Remark 4:

[
Σpq

]

ii =
1
2
[
Σpp + Σqq

]

ii + Δ
(i)
Σ

(

1 − A(i)
Σ,pq

)

, i = 1, 2,

where each A(i)
Σ is a P × P correlation matrix and each Δ(i)Σ is a nonnegative constant.

Now, consider x ∈ CP such that
∑P

p=1xp = 0. We wish to show that

∑

p,q
xp

(
𝜔

TΣpq𝜔
)

x∗q = 𝜔T

(
∑

p,q
xpΣpqx∗q

)

𝜔 ≤ 0 ∀𝜔 ∈ R
2
.

By expanding the above quadratic in𝜔, and then substituting our chosen construction
for the diagonal elements, we can simplify to obtain

𝜔

T

(
∑

p,q
xpΣpqx∗q

)

𝜔 = −Δ(1)Σ B(1)Σ 𝜔
2
1 − Δ

(2)
Σ B(2)Σ 𝜔

2
2 + 2𝜔1𝜔2

(
∑

p,q
xp

[
Σpq

]

12 x∗q

)

,

where, for i = 1, 2, B(i)Σ =
(∑

pq xpA(i)
Σ,pqx∗q

)

is nonnegative, as A(i)
Σ is a correlation

matrix. In order for this quadratic term to maintain the same sign for all 𝜔 ∈ R2, we
must be able to factorise it further, that is, we must be able to write

𝜔

T

(
∑

p,q
xpΣpqx∗q

)

𝜔 = k1(𝜔1 ± k2𝜔2)2.

for some k1, k2 ∈ R. By expanding and equating terms, it is straightforward to show
that this form can be obtained: we can write

𝜔

T

(
∑

p,q
xpΣpqx∗q

)

𝜔 = −Δ(1)Σ B(1)Σ
⎛
⎜
⎜
⎝

𝜔1 ± 𝜔2

√
√
√
√Δ(2)Σ B(2)Σ
Δ(1)Σ B(1)Σ

⎞
⎟
⎟
⎠

2

,

if and only if the off-diagonal elements of Σpq satisfy the relationship

( P∑

p,q=1
xp

[
Σpq

]

12 x∗q

)2

= Δ(1)Σ B(1)Σ Δ
(2)
Σ B(2)Σ . (A3)
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34 MARTIN et al.

Note that this specifies a relationship between the diagonal and off-diagonal elements
of the set of matrices {Σpq, p, q = 1,…,P}, which must be satisfied in order for the
P × P matrix with (p, q)-element −𝜔TΣpq𝜔 to be conditionally nonnegative definite.

Note that, since each Σpq is a deformation matrix Σ, its diagonal and off-diagonal
elements must be consistent with the same choice of (𝜃pq, 𝜁pq). This places a fun-
damental restriction on the form of each Σpq. We can circumvent this apparent
incompatibility of restrictions on the set of deformation matrices {Σpq, p, q = 1,…,P}
by writing the off-diagonal elements in the form

[
Σpq

]

12 =
[
Σpq

]

21 = bp + cq + A(3)
Σ,pq, (A4)

where b, c ∈ RP are constant P-length vectors, Δ(3)Σ is a nonnegative constant, and
A(3)
Σ ∈ RP×P is a P × P real matrix that satisfies

( P∑

p,q=1
xpA(3)

Σ,pqx∗q

)2

= Δ(1)Σ B(1)Σ Δ
(2)
Σ B(2)Σ .

By specifying the off-diagonal elements of Σpq in this way, we have that our condi-
tional nonnegative definiteness restriction (A3) reduces to a restriction on A(3)

Σ , which
is unaffected by the need for Σpq to maintain the form of a valid deformation matrix,
specified by Σ; since there are no further restrictions on the form of A(3)

Σ , such a matrix
will certainly exist.

Therefore, if the diagonal elements of the deformation matrix Σpq are specified as
in Remark 4, the resulting off-diagonal elements will always satisfy a valid decom-
position (A4), guaranteeing satisfaction of the relationship (A3). This allows us to
conclude that, if the diagonal elements of the deformation matrix Σpq are specified
as in Remark 4, the P × P matrix with (p, q)-element −𝜔TΣpq𝜔 will be conditionally
nonnegative definite. ▪

A.3 An estimation algorithm
In Section 4 we detail a two-stage procedure for estimating the anisotropy parameters and Matérn
parameters in a multivariate geometric anisotropic LGCP. In Algorithm 1, we provide a detailed
outline of this model fitting procedure, as applied to a bivariate geometric anisotropic LGCP. This
description includes details of the bounds that are required in order to guarantee model validity
when estimating the cross-dependence parameters, as well as a list of the tuning parameters that
should be established prior to execution.

A.4 Estimators of second-order summary statistics
We present details of two estimators of second-order summary statistics that are used in our
parameter estimation procedure. The first estimator we consider is for the isotropic cross-pair
correlation function g0,pq(r), used in initializing the Matérn power and scale parameters:

ĝ0,pq(r) =
≠∑

xp∈Xp∩W
xq∈Xq∩W

𝜅hr (||xp − xq|| − r)

2𝜋r ̂𝜆p ̂𝜆q|W ∩Wxp−xq |
, (A5)
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MARTIN et al. 35

Algorithm 1. An end-to-end procedure for estimating the parameters in a bivariate
geometric anisotropic LGCP

Tuning Parameters: A maximum distance over which to characterise dependence, rmax; an edge-correction
parameter R; a set of contour levels L; the number of candidate anisotropy ratios n

𝜁
; and their

maximum value 𝜁max
Data: A bivariate point pattern (x1, x2), and an observation window W .
Output: Estimates of the following anisotropy and Matérn parameters, which describe the covariance structure of the

multivariate GRF underlying the LGCP. For the pth marginal process (p = 1, 2),

• 𝜃pp, 𝜁pp describe the angle and ratio of anisotropy, respectively;
• 𝛼pp, 𝜈pp are the Matérn scale and smoothness parameters, resp., which jointly control the range of autocorrelation;
• 𝜎pp is the Matérn power parameter, that is, the variance of the pth marginal process; and
• 𝜇pp is the first moment of the corresponding marginal GRF.

In addition, we obtain the corresponding cross-covariance parameters:

• 𝜃12, 𝜁12 describe the angle and ratio of anisotropy, resp., for the cross-covariance;
• 𝛼12, 𝜈12 are the Matérn scale and smoothness parameters, resp., which jointly control the cross-correlation range;
• 𝜎12 is the Matérn power parameter, that is, the colocated cross-covariance in the bivariate process.

1 for p ∈ {1, 2} do
2 for q ∈ {p, 2} do
3 Use the two-type point pattern {xp, xq} to construct the symmetric Fry pattern

{xp,i − xq,j ; i = 1,… ,np, j = 1,… ,nq} ∪ {xq,i − xp,j ; i = 1,… ,np, j = 1,… ,nq};
4 Dividing the polar plane into nF sectors, use this Fry pattern to construct the 𝓁-contours

{G𝓁 ; 𝓁 = 1,… ,𝓁max}, each of which contains the 𝓁th-nearest point to the origin, from each polar sector;
5 Using adjusted ordinary least squares, estimate the ellipse A𝓁 that fits each of the 𝓁-contours G𝓁 ;
6 Establish a subset of contour levels L ⊆ {1,… ,𝓁max} such that the fitted ellipses { ̂A𝓁 ,𝓁 ∈ L} can be

trusted to accurately describe the anisotropy in the original point pattern; see Rajala et al. (2018b) for an
approach based on constructing MC confidence intervals.

7 Sample 5000 points from the surfaces of the fitted ellipses { ̂A𝓁 ,𝓁 ∈ L}; fit an ellipse to these points, and use
the semi-axes of this final fitted ellipse to calculate ̂𝜃pq.

8 for k ∈ {1,… ,n
𝜁
} do

9 Using ̂
𝜃pq and the candidate value 𝜁k,pq ∶= k𝜁max∕(1 + 𝜁max), isotropize xp, xq and the observation

window W .
10 Using the isotropized point pattern(s) and observation window, estimate the directional discrepancy

statistic Vpq, ̂𝜃pq
(𝜁k,pq), given in (8), using the tuning parameters b1, b2.

11 Set ̂𝜁pq = arg min
k∈1,…,n

𝜁

̂Vpq, ̂𝜃pq
(𝜁k,pq)

12 for p ∈ {1, 2} do
13 Using ̂

𝜃pp and ̂
𝜁pp, isotropize xp and the observation window W .

14 Estimate 𝜆pp as a function of xp, 𝛼pp, 𝜈pp, 𝜎pp (and the tuning parameter R), by analytically maximising the
Palm-log-likelihood in (10).

15 Substitute ̂
𝜆pp(xp, 𝛼pp, 𝜈pp, 𝜎pp) into the Palm-log-likelihood in (10), and numerically maximise the resulting

expression to estimate 𝛼pp, 𝜈pp and 𝜎pp. To avoid identifiability issues, we advise restricting
�̂�pp ∈ ∶= {0.05, 0.5, 5.0}. 𝛼pp and 𝜎pq can be optimized over bounded intervals: �̂�pp ∈ (0, 𝛼UB

pp ),
�̂�pq ∈ (0, 𝜎UB

pp ). The numerical optimisation procedure can be initialized using moment-based method, for
example, minimum contrast.

16 Evaluate ̂
𝜆pp(xp, �̂�pp, �̂�pp, �̂�pp), and hence estimate �̂�pp = log

(
̂
𝜆pp

)
− �̂�pp∕2.

17 for p = 1, q = 2 do
18 Use Condition 1 to calculate a lower bound for �̂�pq: �̂�pq ≥ 𝜈

LB
pq = (�̂�pp + �̂�qq)∕2.

19 for each candidate value 𝜈∗pq ∈ , if 𝜈∗pq ≥ 𝜈
LB
pq do

20 Use Remark 2 to establish an upper bound for 𝛼pq in terms of 𝜈∗pq, �̂�pp, �̂�qq, �̂�pp and �̂�qq; denote this 𝛼UB
pq .

21 Writing Δ
𝜈
∶= 𝜈∗pq − 𝜈LB

pq , use Remark 3 to evaluate ̂Vp in terms of 𝜈∗pq, �̂�pp, ̂𝜁pp, �̂�pp; similarly, evaluate ̂Vq.
22 Use Remark 3 once more to establish an upper bound for 𝜎pq in terms of 𝜈∗pq, ̂Vp, ̂Vq, ̂𝜁pq and �̂�pq.
23 By substituting ̂

𝜆pp, ̂𝜆qq, and the candidate 𝜈∗pq, numerically maximise the bivariate Palm-log-likelihood in
(11) over the constrained space (0, 𝛼UB

pq ) × (0, 𝜎UB
pq ).

24 Set �̂�pq, �̂�pq, �̂�pq equal to the values that maximise the bivariate Palm-log-likelihood.
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36 MARTIN et al.

where 𝜅hr is a radial kernel function with bandwidth hr, ̂𝜆p is an estimator for the constant
expected intensity of component Xp, 𝜆p, and |W ∩Wu| is an edge correction factor, defined as the
area of overlap between the observation window W and its translation by u ∈ R2; without such a
correction, due to the finite observation region, the estimator would underestimate the number
of point pairs that lie within distance r of each other. In (A5), and in the remainder of the paper,
the notation Σ≠ indicates summation over all point pairs formed of distinct points; for bivariate
definitions such as (A5), this is clearly only relevant for the case where p = q. For component p
of our multivariate LGCP, we choose to estimate the expected intensity parameter ̂𝜆p using the
classical global intensity estimator, ̂𝜆p = np∕|W |. The choice of kernel function 𝜅hr is discussed
by Illian et al. (2008) and common choices include the Epanechnikov kernel and the box kernel;
we make use of the latter as it can be shown to minimize the variance of (A5):

𝜅hr (s) =

{
1∕2hr − hr ≤ s ≤ hr

0 otherwise.

In practice, we are faced with the choice of a suitable value for the bandwidth hr, in order to
evaluate (A5). Briefly, the bandwidth parameter controls the degree of smoothing in the corre-
sponding kernel function; increasing the bandwidth will therefore reduce its variability, though
at the cost of inducing a bias in the resulting estimator. Bandwidth selection for such estima-
tors is an important topic, and is covered in depth by Illian et al. (2008). Indeed, methods for
automatically selecting the bandwidth parameter are an area of active research, with recent
contributions including the work of Guan (2007), Binder and Simpson (2015), and Jalilian and
Waagepetersen (2018). In this work, we have chosen not to optimize the value of hr, using a
reasonably small value of hr = 0.01. We have made this choice for the sake of simplicity; the result-
ing estimate of the isotropic pair correlation function is used only in initialising the search for
the Matérn power and scale parameters, and we have found this choice of bandwidth to work
sufficiently well in practice.

The second estimator that we detail here corresponds to the anisotropic sector-K-function
Ka

pq(r, 𝜙):

̂Ka
pq(r, 𝜙) = ̂Ka

pq(r, 𝜙 + 𝜋) =
≠∑

xp∈Xp∩W
xq∈Xq∩W

H(xp − xq, (r, 𝜙))
̂
𝜆p ̂𝜆q|W ∩Wxp−xq |

, (A6)

where

H(x1 − x2, (r, 𝜙)) = I(||x1 − x2|| ≤ r)𝜅h
𝜙

(𝜓(x1, x2) − 𝜙),

with I(⋅) the indicator function, 𝜅h
𝜙

an angular kernel function with bandwidth h
𝜙

, and 𝜓(x1, x2)
the angle between the directed line from x1 to x2 and the abscissa-axis. In our implementation,
we will use a box kernel for 𝜅h

𝜙

, defined analogously to the radial kernel function 𝜅hr above. As
discussed in Section 5 of the manuscript, we choose to use a angular bandwidth of h

𝜙
= 𝜋∕16;

we found that this choice of bandwidth worked well in practice, balancing the aforementioned
tradeoff between estimator bias and variance.

A.5 Additional simulation studies
In Section 5 of the article, we provide proof-of-concept results for our model fitting proce-
dure. There, we have given numerical summaries of the estimated parameter distributions
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MARTIN et al. 37

for four distinct model specifications, along with an illustration, in Figure 4, corresponding
to one of these models. Here, we provide details of simulation studies corresponding to four
further model specifications. We provide numerical summaries of the estimated parameter
distributions for Models 5–8, in Tables A1 and A2, and one realization from each of these
four further models is shown in Figure A1. Finally, we provide illustration of the estimated
parameter distributions for each of Models 2–8. Figures A2–A8 correspond to Models 2–8,
respectively.

The first marginal process for each of Models 5 and 7 corresponds to the two distinct uni-
variate geometric anisotropic LGCPs considered by Møller and Toftaker (2014); this is with the
exception of the Matérn scale parameter 𝛼11 in Model 7, which had to be decreased for computa-
tional reasons. For each of these models, the second marginal process was obtained by retaining
the anisotropy and smoothness of the first marginal process, and significantly reducing (resp.
increasing) the Matérn scale (resp. power) parameter. This has the effect of replicating bivariate
point patterns in which one point type has relatively large, disperse clusters, and the second has
small, concentrated clusters. The specification of the cross-covariance parameters was arrived at
through the sequential procedure detailed in Section 3.2.

Models 5 and 7 demonstrate consistent anisotropic behavior across both marginals, while
differing in their Matérn specification. Models 6 and 8 were constructed to demonstrate the
opposite scenario. The Matérn parameters for both marginal processes in Model 6 (resp.
Model 8) are the same as those used for the second marginal process in Model 5 (resp. Model 7),
displaying relatively small, concentrated clusters. For both Model 6 and Model 8, the anisotropy
specifications are such that one pattern contains strongly anisotropic features in the direction
parallel to the y-axis, and the other contains weakly anisotropic features at an angle of 𝜋∕10
from the x-axis. It is perhaps less realistic to consider two marginal processes with such con-
trasting anisotropies, however these examples serve to illustrate the flexibility of the modeling
framework.

T A B L E A1 Monte Carlo estimates and root-mean-square errors for the anisotropy parameters in four
distinct models (Models 5-8).

𝜽11 𝜽22 𝜽12 𝜻11 𝜻22 𝜻12

Model 5 45◦ 45◦ 45◦ 0.20 0.20 0.35

MC estimate 45.19◦ 48.86◦ 69.18◦ 0.22 0.32 0.41

RMSE 8.21◦ 23.99◦ 49.44◦ 0.10 0.42 0.59

Model 6 18◦ 90◦ 45◦ 0.60 0.20 0.70

MC estimate 53.69◦ 89.83◦ 66.66◦ 0.59 0.30 0.60

RMSE 65.35◦ 22.64◦ 49.04◦ 0.32 0.49 0.37

Model 7 45◦ 45◦ 45◦ 0.60 0.60 0.60

MC estimate 50.41◦ 51.92◦ 83.33◦ 0.54 0.57 0.34

RMSE 30.46◦ 27.35◦ 62.06◦ 0.17 0.19 0.55

Model 8 18◦ 90◦ 45◦ 0.60 0.20 0.70

MC estimate 43.44◦ 90.25◦ 67.70◦ 0.56 0.24 0.61

RMSE 57.37◦ 17.57◦ 50.70◦ 0.20 0.31 0.24
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38 MARTIN et al.

T A B L E A2 Monte Carlo estimates and root-mean-square errors for the mean and Matérn parameters in
four distinct models (Models 5-8).

R 𝜶11 𝜶22 𝜶12 𝝂11 𝝂22 𝝂12 𝝈11 𝝈22 𝝈12 𝝁1 𝝁2

Model 5 0.200 0.050 0.065 0.5 0.5 0.5 1.99 2.62 0.80 5.76 5.44

MC estimate R = Rmodel 0.552 0.064 0.094 5.0 0.5 5.0 2.24 3.50 0.35 3.72 3.90

R=0.1 0.294 0.049 0.067 0.5 0.5 5.0 2.34 3.55 0.34 3.44 3.86

R=0.2 0.314 0.060 0.072 0.5 0.5 0.5 2.32 4.53 0.40 3.50 3.42

R=0.3 0.309 0.080 0.080 0.5 0.0 5.0 2.20 5.17 0.35 3.74 3.07

RMSE R = Rmodel 1.620 0.411 0.268 NaN NaN NaN 2.22 2.93 1.67 3.12 2.13

R=0.1 0.766 0.102 0.057 NaN NaN NaN 2.76 2.74 0.68 6.26 2.28

R=0.2 0.773 0.423 0.050 NaN NaN NaN 1.29 4.30 1.02 4.75 2.63

R=0.3 0.835 0.550 0.056 NaN NaN NaN 1.53 5.24 1.40 3.94 3.18

Model 6 0.050 0.050 0.050 0.5 0.5 0.5 2.62 2.62 1.25 5.44 5.44

MC estimate R = Rmodel 0.076 0.037 0.042 0.5 0.5 0.5 3.05 3.13 0.85 4.61 4.15

R=0.1 0.076 0.037 0.041 0.5 0.5 0.5 2.99 3.11 0.82 4.65 4.17

R=0.2 0.054 0.092 0.046 0.5 0.5 0.5 3.96 4.81 1.25 4.19 3.28

R=0.3 0.115 0.091 0.049 0.5 0.5 0.5 4.19 5.55 1.31 4.06 2.81

RMSE R = Rmodel 0.408 0.021 0.021 NaN NaN NaN 2.62 2.39 1.04 2.33 1.66

R=0.1 0.408 0.021 0.020 NaN NaN NaN 2.60 2.27 1.02 2.31 1.64

R=0.2 0.052 0.704 0.024 NaN NaN NaN 3.15 5.24 3.09 2.01 2.77

R=0.3 0.720 0.622 0.027 NaN NaN NaN 4.49 6.17 3.21 2.24 3.36

Model 7 0.250 0.100 0.130 5.0 5.0 5.0 1.06 2.00 0.15 6.22 5.75

MC estimate R = Rmodel 1.252 0.140 0.132 5.0 5.0 5.0 1.75 1.93 0.06 3.92 4.81

R=0.1 1.695 0.151 0.090 5.0 5.0 5.0 2.74 2.35 0.04 2.83 4.22

R=0.2 0.732 0.144 0.122 5.0 5.0 5.0 2.08 1.92 0.07 3.60 4.80

R=0.3 0.847 0.174 0.120 5.0 5.0 5.0 1.37 1.85 0.06 4.63 4.86

RMSE R = Rmodel 2.628 0.189 0.240 NaN NaN NaN 1.76 0.97 0.31 5.88 1.95

R=0.1 3.072 0.238 0.111 NaN NaN NaN 2.19 3.50 0.16 12.94 4.60

R=0.2 1.704 0.240 0.164 NaN NaN NaN 1.40 0.81 0.15 8.50 2.08

R=0.3 1.969 0.699 0.135 NaN NaN NaN 2.10 1.70 0.24 4.57 2.72

Model 8 0.100 0.100 0.100 5.0 5.0 5.0 2.00 2.00 0.97 5.75 5.75

MC estimate R = Rmodel 0.165 0.116 0.105 5.0 5.0 5.0 2.02 2.08 0.58 4.66 4.10

R=0.1 0.177 0.167 0.108 5.0 5.0 5.0 2.34 2.45 0.60 4.23 3.47

R=0.2 0.161 0.117 0.107 5.0 5.0 5.0 2.02 2.06 0.57 4.64 4.09

R=0.3 0.233 0.103 0.109 5.0 5.0 5.0 2.00 1.94 0.47 4.66 4.26

RMSE R = Rmodel 0.427 0.140 0.038 NaN NaN NaN 0.58 1.35 0.69 3.71 2.70

R=0.1 0.414 0.449 0.063 NaN NaN NaN 1.66 0.93 0.90 4.95 4.52

R=0.2 0.442 0.145 0.042 NaN NaN NaN 0.63 1.18 0.70 4.10 2.84

R=0.3 0.847 0.054 0.061 NaN NaN NaN 0.99 0.55 0.74 3.47 1.65
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MARTIN et al. 39

F I G U R E A1 A two-type point pattern, simulated from each of Models 5–8 (left to right, top to bottom),
which are specified in Tables A1 and A2. In each realization, points of type 1 are shown as red crosses and points
of type 2 are shown as blue circles.
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40 MARTIN et al.

F I G U R E A2 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 2. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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MARTIN et al. 41

F I G U R E A3 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 3. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.

 14679469, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12640 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [30/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



42 MARTIN et al.

F I G U R E A4 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 4. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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MARTIN et al. 43

F I G U R E A5 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 5. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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44 MARTIN et al.

F I G U R E A6 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 6. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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MARTIN et al. 45

F I G U R E A7 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 7. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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46 MARTIN et al.

F I G U R E A8 Histograms of the parameter distributions for the synthetic bivariate geometric anisotropic
log-Gaussian Cox process with Matérn covariance structure specified by Model 8. The parameter values used to
generate each dataset are marked by vertical dashed lines. The grey histogram in the final panel shows the
empirical distribution for �̂�12, restricted to simulations where �̂�12 was not equal to the upper bound dictated by
�̂�11 and �̂�22.
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