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Abstract

In this work, we study an inverse problem of recovering a space-time dependent diffusion coefficient
in the subdiffusion model from the distributed observation, where the mathematical model involves a
Djrbashian-Caputo fractional derivative of order α ∈ (0, 1) in time. The main technical challenges of
both theoretical and numerical analysis lie in the limited smoothing properties due to the fractional
differential operator and high degree of nonlinearity of the forward map from the unknown diffusion
coefficient to the distributed observation. We establish two conditional stability results using a novel
test function, which leads to a stability bound in L2(0, T ;L2(Ω)) under a suitable positivity condition.
The positivity condition is verified for a large class of problem data. Numerically, we develop a rigorous
procedure for recovering the diffusion coefficient based on a regularized least-squares formulation, which
is then discretized by the standard Galerkin method with continuous piecewise linear elements in space
and backward Euler convolution quadrature in time. We provide a complete error analysis of the fully
discrete formulation, by combining several new error estimates for the direct problem (optimal in terms
of data regularity), a discrete version of fractional maximal Lp regularity, and a nonstandard energy
argument. Under the positivity condition, we obtain a standard `2(L2(Ω)) error estimate consistent with
the conditional stability. Further, we illustrate the analysis with some numerical examples.

Keywords: parameter identification, subdiffusion, space-time dependent diffusion coefficient, stability,
fully discrete scheme, error estimate

1 Introduction

This work is concerned with a parameter identification problem for the subdiffusion model with a space-
time-dependent diffusion coefficient and its rigorous numerical analysis. Let Ω ⊂ Rd (d = 1, 2, 3) be a convex
polyhedral domain with a boundary ∂Ω. Fix T > 0 the final time. Consider the following initial-boundary
value problem for the function u:

∂αt u−∇ · (q∇u) = f, in Ω× (0, T ],

u(·, 0) = u0, in Ω,

u = 0, on ∂Ω× (0, T ],

(1.1)

where the functions f and u0 are the given source and initial condition, respectively, and the diffusion
coefficient q is assumed to be space-time dependent. The notation ∂αt u denotes the Djrbashian-Caputo
fractional derivative in time t of order α ∈ (0, 1), defined by (see e.g., [33, p. 92] and [23, Section 2.3])

∂αt u(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αu′(s) ds,
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where Γ(z) =
∫∞

0
sz−1e−sds (for <(z) > 0) denotes Euler’s Gamma function. The fractional derivative

∂αt u recovers the usual first order derivative u′ as the order α → 1− for sufficiently smooth functions u.
Thus the model (1.1) is a fractional analogue of the classical diffusion model. Below we use the notation
u(q) to explicitly indicate the dependence of the solution u on q. The model (1.1) has received enormous
attention in recent years in physics, engineering, biology and finance, due to their excellent capability for
describing anomalously slow diffusion processes, also known as subdiffusion, which displays local motion
occasionally interrupted by long sojourns and trapping effects. These transport processes are characterized
by a sublinear growth of the mean squared displacement of the particle with the time, as opposed to linear
growth for Brownian motion. The model (1.1) has found many successful practical applications, e.g., diffusion
in fractal domains (see e.g., [44]), transport column experiments (see e.g., [19]), and subsurface flows (see
e.g., [1]); see [43, 42] for physical modeling and a long list of applications.

This work is concerned with recovering the space-time dependent diffusion coefficient q†(x, t) in the model
(1.1) from the (noisy) distributed observation

zδ(x, t) = u(q†)(x, t) + ξ(x, t), (x, t) ∈ Ω× [0, T ], (1.2)

where ξ(x, t) denotes the pointwise additive noise, with a noise level δ = ‖u(q†)−zδ‖L2(0,T ;L2(Ω)). The exact

diffusion coefficient q† is sought in the following admissible set

A = {q ∈ L∞((0, T )× Ω) : c0 ≤ q ≤ c1, a.e. in Ω× (0, T )}, (1.3)

with 0 < c0 < c1 < ∞. The inverse problem is a fractional analogue of the inverse conductivity problem
for standard parabolic problems, which has been extensively studied both numerically and theoretically (see
[21, 6, 9] and the references therein).

The inverse problem of recovering a space-time dependent diffusion coefficient q(x, t) is formally deter-
mined for uniqueness / identifiability. Despite its obvious practical relevance (see [14, 16]), to the best of our
knowledge, it has not been studied so far. In this work, we contribute to its mathematical and numerical
analysis. First, we establish two conditional stability results in Theorems 3.1 and 3.2. These estimates allow
deriving the standard L2(0, T ;L2(Ω)) stability under a suitable positivity condition that can be verified for
a class of problem data. These results are proved using a novel test function (inspired by [7]) together with
refined regularity results for the direct problem. Second, we develop a numerical procedure for recovering
a space-time dependent diffusion coefficient, using an output least-squares formulation with a space-time
H1-seminorm penalty at both continuous and discrete levels, and discuss their well-posedness. Third, we
derive a weighted L2(Ω) error estimate for discrete approximations under a mild regularity assumption on
the exact diffusion coefficient q†(x, t); see Theorem 5.1 for the precise statement. The analysis is inspired by
the conditional stability analysis, assisted with several new nonsmooth data error estimates in the appendix.
Further, we provide several numerical experiments to complement the theoretical analysis. Due to the non-
locality of the operator ∂αt , the solution operator has only limited smoothing properties (see [35, 23] for the
solution theory) and the forward map is highly nonlinear, which represent the main technical challenges in
the analysis. To overcome these challenges, we employ the following powerful analytical tools for evolution
problems, e.g., maximal Lp regularity, nonsmooth data estimates and novel test function ϕ.

Now we briefly review existing works. Inverse problems for anomalous diffusion has attracted much
interest, and there is a vast literature (see, e.g., the reviews [27] and [38]). A number of works studied
recovering a spatially dependent diffusion coefficient (see e.g., [10, 36, 37, 49, 32]). [10] proved the unique
recovery of both diffusion coefficient and fractional order α from the lateral Cauchy data for the model (1.1)
with a Dirac source in the one-dimensional case using Laplace transform and Sturm-Liouville theory. See
also [32] for recovering two coefficients from the Dirichlet-to-Neumann map. [49] proved the unique recovery
of q(t) from lateral Cauchy data; see also [39]. Nonetheless, there seems still no known stability result for the
inverse problem, and Theorems 3.1 and 3.2 are first known stability results for the concerned inverse problem.
We also refer readers to [30, 50] for the closely related inverse potential problem, and [31] for recovering a
nonlinear reaction term in a fractional reaction-diffusion equation. [36, 37] discussed the numerical recovery
of the diffusion coefficient q(x) and fractional order α, but the numerical discretization was not analyzed.
See also [48] for further numerical results on recovering the diffusion coefficient from boundary data in the
one-dimensional case, using a space-time variational formulation, which allows only a zero initial condition.
In summary, existing works have not studied discretization schemes in a proper functional analytic setting,
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and this represents one gap that this work aims to fill in. Previously [29] analyzed the inverse problem
of recovering a spatially-dependent diffusion coefficient q(x) from distributed observation, and provided a
convergence (rate) analysis of the discrete approximation; see also [47, 28] for the standard parabolic case.
This work substantially extends [29] in the following aspects: (1) we provide novel conditional stability
estimates; (2) the error analysis covers the one- to three-dimensional case, whereas that in [29] is restricted
to one- and two-dimensional cases, due to certain regularity lifting. This restriction is overcome by using
maximal Lp regularity for the direct problem and maximal `p regularity for the time-stepping scheme. (3)
the presence of time-dependence of the diffusion coefficient q poses significant challenge in the analysis and
numerics, for which we shall develop the requisite analytic tools below. Thus the extension requires new
technical developments that are still unavailable in the existing literature.

The rest of the paper is organized as follows. In Section 2, we give preliminary well-posedness results for
the direct problem, especially regularity. In Section 3 we present two conditional stability results. Then in
Section 4, we describe the regularized formulation, and its numerical discretization for the recovery of q(x, t).
Next, in Section 5, we present an error analysis of the fully discrete scheme. Finally, in Section 6, we present
illustrative numerical results to complement the analysis. Throughout, the notation c, with or without a
subscript, denotes a generic constant which may change at each occurrence, but it is always independent of
the following parameters: regularization parameter γ, mesh size h, time stepsize τ and noise level δ. For a
bivariate function f(x, t), we often write f(t) = f(·, t) as a vector valued function.

2 Well-posedness of the forward problem

First we describe some regularity results for the direct problem (1.1). Since it involves the time-dependent
coefficient q(x, t), its well-posedness analysis requires extra care [35, Chapter 4] [23, Section 6.3]. Below we
revisit the regularity results, which is needed for the analysis in Sections 3 and 4.

First we describe the functional analytic setting. For any r ≥ 1, we denote by r∗ ≥ 1 its conjugate
exponent, i.e., 1

r + 1
r∗ = 1. For any k ≥ 0 and p ≥ 1, the space W k,p(Ω) denotes the standard Sobolev space

of the kth order, and we write Hk(Ω), when p = 2. The dual spaces of W 1,p
0 (Ω) and H1

0 (Ω) are denoted
by (W 1,p

0 )′ = W−1,p∗(Ω) and (H1
0 (Ω))′ = H−1(Ω), respectively. The notation (·, ·) denotes the L2(Ω) inner

product and also the duality between W 1,p
0 (Ω) and W−1,p∗(Ω). For a UMD space X (see [20, Section 4.2.c]

for the definition and examples of UMD spaces, which include Sobolev spaces W s,p(Ω) with 1 < p < ∞
and s ≥ 0), we denote by W s,p(0, T ;X) the space of vector-valued functions v : (0, T )→ X, with the norm
‖ · ‖W s,p(0,T ;X) defined by complex interpolation:

‖v‖W s,p(0,T ;X) := inf
ṽ
‖ṽ‖W s,p(R;X) := inf

ṽ
‖F−1[(1 + |ξ|2)

s
2F [ṽ](ξ)]‖Lp(R;X),

where the infimum is taken over all possible functions ṽ that extend v from (0, T ) to R, and F denotes
the Fourier transform. For any r ∈ (1,∞), we define a time-dependent elliptic operator A(t) ≡ A(t; q) :

W 1,r
0 (Ω)→ (W 1,r∗

0 (Ω))′ = W−1,r(Ω) by

(A(t)u, φ) = (q(t)∇u,∇φ), ∀u ∈W 1,r
0 (Ω), φ ∈W 1,r∗

0 (Ω). (2.1)

The dependence of A(t) on q will be suppressed whenever there is no confusion. Also we denote by A = −∆,
the negative Dirichlet Laplacian, i.e., q(x, t) ≡ 1. Throughout, for the convex polygonal domain Ω ⊂ Rd,
we assume that there exists r > min(d, 2) such that the full second-order elliptic regularity pickup in Lp(Ω)
holds.

Now we can introduce the concept of a weak solution.

Definition 2.1. For r ≥ 2 and p > 2
α , a function u ∈ Lp(0, T ;W 1,r

0 (Ω)) ∩ C([0, T ];Lr(Ω)) is said to be a
weak solution to problem (1.1) if ∂αt u ∈ Lp(0, T ;W−1,r(Ω)) and it satisfies

(∂αt u(t), φ) + (q(t)∇u(t),∇φ) = (f(t), φ), ∀φ ∈W 1,r∗

0 (Ω), t ∈ (0, T ], (2.2)

with the initial condition u(0) = u0 in Lr(Ω).

To study the well-posedness of problem (1.1), we make the following assumption.
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Assumption 2.1. The diffusion coefficient q, initial data u0 and source f satisfy

(i) q ∈ A, q ∈ C1([0, T ];C(Ω)) ∩ C([0, T ];Cµ(Ω)), with some µ ∈ (0, 1);

(ii) u0 ∈W 1,r
0 (Ω) and f ∈ Lp(0, T ;W−1,r(Ω)) with some p ∈ ( 2

α ,∞) and r ∈ [2,∞).

Now we recall two preliminary results. The first is a perturbation estimate.

Lemma 2.1. If q ∈ A and |qt(x, t)| ≤M , then the operator A(t) ≡ A(t; q) satisfies

‖(A(t)−A(s))u‖W−1,r(Ω) ≤ c|t− s|‖∇u‖Lr(Ω).

Proof. It follows directly from the definition and the condition |∂tq| ≤M that

‖(A(t)−A(s))u‖W−1,r(Ω) = sup
v∈W 1,r∗

0 (Ω)

((A(t)−A(s))u, v)

‖∇v‖Lr∗ (Ω)

= sup
v∈W 1,r∗

0 (Ω)

((q(t)− q(s))∇u,∇v)

‖∇v‖Lr∗ (Ω)

≤ c|t− s|‖∇u‖Lr(Ω)

This shows the desired estimate.

The second is the maximal Lp regularity for the model (1.1) with a stationary diffusion coefficient.

Lemma 2.2. If q is independent of t and q ∈ Cµ(Ω) ∩ A with µ ∈ (0, 1), then for u0 = 0 and f ∈
Lp(0, T ;W−1,r(Ω)) with r ≥ 2 and p > 2

α , problem (1.1) admits a unique weak solution u and

‖∂αt u‖Lp(0,T ;W−1,r(Ω)) + ‖∇u‖Lp(0,T ;Lr(Ω)) ≤ c‖f‖Lp(0,T ;W−1,r(Ω)).

Proof. For r = 2 and p = 2, the estimate can be found in [23, Exercise 6.5], and the case p ∈ (1,∞)
follows similarly. Thus u ∈ Wα,p(0, T ;H−1(Ω)) ∩ Lp(0, T ;H1

0 (Ω)), and since p > 2
α , the interpolation

between Wα,p(0, T ;H−1(Ω)) and Lp(0, T ;H1
0 (Ω)) [5, Theorem 5.2] and Sobolev embedding theorem [2]

imply u ∈ C([0, T ];L2(Ω)). For r > 2, the condition q ∈ Cµ(Ω) implies that the operator A is R-sectorial
on W−1,r(Ω) with an angle π

2 [3, Lemma 8.5]. Then the maximal Lp regularity follows as [23, Theorem
6.11].

Now we can state the existence and uniqueness of a weak solution to problem (1.1) in the sense of
Definition 2.1. See the appendix for the proof.

Theorem 2.1. Let Assumption 2.1 be fulfilled. Then problem (1.1) admits a unique weak solution in the
sense of Definition 2.1. Further, if r > d and p > 2r

α(r−d) , then u ∈ L∞((0, T )× Ω).

Next, we derive several improved regularity estimates.

Assumption 2.2. The diffusion coefficient q, initial data u0 and source f satisfy the following assumptions.

(i) q† ∈ A and the following condition holds

|∂tq(x, t)|+ |∇xq(x, t)|+ |∇x∂tq(x, t)| ≤M, ∀(x, t) ∈ Ω× (0, T ]. (2.3)

(ii) u0 ∈W 2,r(Ω) ∩H1
0 (Ω), with some r > max(2, d), and f ∈ L∞((0, T )× Ω) ∩ C1([0, T ];L2(Ω)).

Under Assumption 2.2, the operator A(t) := A(t; q) satisfies that for β ∈ [0, 1] and t, s ∈ [0, T ] [23,
Lemma 6.5]

‖A(t)β(I −A(t)−1A(s))φ‖L2(Ω) ≤ c|t− s|‖Aβφ‖L2(Ω), ∀φ ∈ D(Aβ). (2.4)

The next result gives an improved regularity estimate.

Proposition 2.1. Under Assumption 2.2, problem (1.1) has a unique solution u ∈ Lp(0, T ;W 2,r(Ω)) ∩
Wα,p(0, T ;Lr(Ω)) for any p ∈ ( 2

α ,∞).
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Proof. By Theorem 2.1, it suffices to show the regularity. Let w = u− u0, which satisfies

∂αt w −A(t)w = f +A(t)u0, ∀t ∈ (0, T ], with w(0) = 0.

Since q ∈ A and satisfies condition (2.3), and u0 ∈W 2,r(Ω)∩H1
0 (Ω), f +A(t)u0 belongs to Lp(0, T ;Lr(Ω)).

The standard maximal Lp regularity and the argument in [23, Theorem 6.14] imply

w ∈ Lp(0, T ;W 2,r(Ω)) and ∂αt w ∈ Lp(0, T ;Lr(Ω)).

This and w(0) = 0 imply w ∈ Wα,p(0, T ;Lr(Ω)) [24, Lemma 2.4]. So u = w + u0 ∈ Lp(0, T ;W 2,r(Ω)) ∩
Wα,p(0, T ;Lr(Ω)).

By Proposition 2.1, interpolation theorem [5, Theorem 5.2] and Sobolev embedding theorem, we deduce
that for any θ < 1

2 −
d
2r and p > 1

αθ , there holds

u ∈Wαθ,p(0, T ;W 2(1−θ),r(Ω)) ↪→ C([0, T ];W 1,∞(Ω)). (2.5)

Further, by [23, Theorems 6.15 and 6.16] and the full elliptic regularity pickup, there holds

‖u(t)‖H2(Ω) + ‖∂αt u(t)‖L2(Ω) + t1−α‖∂tu(t)‖L2(Ω) + t‖∂tu(t)‖H2(Ω) ≤ c, ∀t ∈ (0, T ]. (2.6)

The next result gives a weighted bound on u′(t). This estimate will play a role in the conditional stability
analysis in Section 3 and the error analysis in Section 5.

Proposition 2.2. Let Assumption 2.1 with r = 2 and (2.3) hold. Then for f ∈ C([0, T ];H−1(Ω)) with∫ t
0
(t− s)α2−1‖f ′(s)‖H−1(Ω) ds < c, there holds for any small ε > 0∥∥∥∫ t

s

(ξ − s)−αu′(ξ) dξ
∥∥∥
L2(Ω)

≤ cεs−
α
2−ε.

Proof. Under the given data regularity assumption, we claim

‖u′(t)‖L2(Ω) ≤ ct
α
2−1, ∀t ∈ (0, T ]. (2.7)

Then for any ε > 0, the desired assertion follows directly as∥∥∥∫ t

s

(ξ − s)−αu′(ξ) dξ
∥∥∥
L2(Ω)

≤
∫ t

s

(ξ − s)−α‖u′(ξ)‖L2(Ω) dξ

≤ c
∫ t

s

(ξ − s)−αξ α2−1 dξ ≤ cs−α2−ε
∫ t

s

(ξ − s)−αξε+α−1 dξ

≤ cs−α2−ε
∫ t

s

(ξ − s)ε−1 dξ ≤ cε−1s−
α
2−ε.

It remains to prove the claim (2.7). We fix t∗ ∈ (0, T ], and represent the solution u by (with A∗ ≡ A(t∗))

u(t) = F∗(t)u0 +

∫ t

0

E∗(s)f(t− s)ds+

∫ t

0

E∗(t− s)(A(t∗)−A(s))u(s)ds, (2.8)

where F∗(t) = 1
2πi

∫
Γθ,δ

eztzα−1(A∗ + zα)−1dz and E∗(t) = 1
2πi

∫
Γθ,δ

ezt(A∗ + zα)−1dz denote the solution

operators for the initial data and source, respectively, with the contour Γθ,δ = {z = re±iθ, r ≥ δ} ∪ {z =
δeiϕ : |ϕ| ≤ θ}, with θ ∈ (π2 , π). The following smoothing properties hold [23, Theorem 6.4]:

‖F ′∗(t)v‖L2(Ω) ≤ ct
α
2−1‖∇v‖L2(Ω) and ‖E∗(t)v‖L2(Ω) ≤ ctβα−1‖Aβ−1v‖L2(Ω).
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Meanwhile, it follows from the representation (2.8) of u that

u′(t) = F ′∗(t)u0 + E∗(t)f(0) +

∫ t

0

E∗(s)
d

dt
f(t− s) ds+ E∗(t)(A∗ −A(0))u0

+

∫ t

0

E∗(s)((A∗ −A(t− s)) d

dt
u(t− s) + [

d

dt
A(t− s)]u(t− s)) ds.

Taking L2(Ω) norm on both sides, setting t to t∗ and the perturbation estimate (2.4) lead to

‖u′(t∗)‖L2(Ω) = ct
α
2−1
∗ (‖∇u0‖L2(Ω) + ‖f(0)‖H−1(Ω)) + c

∫ t∗

0

‖u′(s)‖L2(Ω) ds

+ c

∫ t∗

0

(t∗ − s)
α
2−1‖f ′(s)‖H−1(Ω) ds+ c

∫ t∗

0

(t∗ − s)
α
2−1‖∇u(s)‖L2(Ω) ds.

Given the regularity of u0 and f , we have u ∈ C([0, T ];L2(Ω)) ∩ Lp(0, T ;H1
0 (Ω)) for any p ∈ ( 2

α ,∞), cf.

Theorem 2.1, which implies
∫ t

0
(t− s)α2−1‖∇u(s)‖L2(Ω) ds < c, for t ∈ (0, T ]. Thus, we obtain

‖u′(t∗)‖L2(Ω) ≤ ct
α
2−1
∗ +

∫ t∗

0

‖u′(s)‖L2(Ω) ds, ∀t∗ ∈ (0, T ].

Then the standard Gronwall’s inequality implies the desired claim (2.7), completing the proof of the propo-
sition.

3 Conditional stability

In this section, we establish two novel conditional stability results for the concerned inverse problem, which
serve as a benchmark for the convergence rates of the numerical approximations. To the best of our knowl-
edge, they represent the first stability results for the concerned inverse problem, and are of independent
interest. We introduce a positivity condition, with dist(x, ∂Ω) = infx′∈∂Ω |x− x′|, which will be verified for
a class of problem data.

Definition 3.1. The solution u to problem (1.1) is said to satisfy the β-positivity condition with β ≥ 0, if
for any (x, t) ∈ Ω× (0, T )

q(x, t)|∇u(q)(x, t)|2 + (f(x, t)− ∂αt u(q)(x, t))u(q)(x, t) ≥ cdist(x, ∂Ω)β .

Now we state the first conditional stability estimate for the inverse problem.

Theorem 3.1. Let u0, f and qi, i = 1, 2, satisfy Assumption 2.1 with r > d and p > 2r
α(r−d) , and

‖∇qi‖L2(0,T ;L2(Ω)) ≤ c, i = 1, 2. Let ui ≡ u(qi) be the solution to problem (1.1). Then there holds∫ T

0

∫
Ω

(q1 − q2

q1

)2(
q1|∇u1|2 + (f − ∂αt u1)u1

)
dxdt

≤ c
(
‖∇(u1 − u2)‖L2(0,T ;L2(Ω)) + ‖∂αt (u1 − u2)‖L2(0,T ;H−1(Ω))

)
.

Further, if the solution u1 to problem (1.1) satisfies the β-positivity condition, then

‖q1 − q2‖L2(0,T ;L2(Ω)) ≤c
(
‖∇(u1 − u2)‖L2(0,T ;L2(Ω)) + ‖∂αt (u1 − u2)‖L2(0,T ;H−1(Ω))

) 1
2(1+β) .

Proof. Assumption 2.1 and Theorem 2.1 imply that problem (1.1) has a weak solution ui ∈ L∞(Ω× (0, T ))∩
L2(0, T ;H1

0 (Ω)). This and the assumption qi ∈ A ∩ L2(0, T ;H1
0 (Ω) imply ϕ = q1−q2

q1
u1 ∈ L2(0, T ;H1

0 (Ω)).

Indeed, the choice ϕ gives ∇ϕ = q1−q2
q1
∇u1 + q1∇(q1−q2)−(q1−q2)∇q1

q21
u1. Then by the triangle inequality,
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Assumption 2.1 and the condition ‖∇qi‖L2(0,T ;L2(Ω)) ≤ c, i = 1, 2, we have

‖∇ϕ‖2L2(0,T ;L2(Ω)) ≤ c
∫ T

0

‖q1 − q2

q1
(t)‖2L∞(Ω)‖∇u1(t)‖2L2(Ω)dt

+ c

∫ T

0

‖q1∇(q1 − q2)− (q1 − q2)∇q1

q2
1

(t)‖2L2(Ω)‖u1(t)‖2L∞(Ω) dt

≤ c
∫ T

0

‖∇u1(t)‖2L2(Ω) dt+ c‖u1‖2L∞((0,T )×Ω).

Then by the regularity u1 ∈ L2(0, T ;H1
0 (Ω))∩L∞((0, T )×Ω) from Theorem 2.1, we deduce ‖∇ϕ‖L2(0,T ;L2(Ω)) ≤

c. By taking ϕ(t) = ( q1−q2q1
u1)(t) and integration by parts,

2((q1 − q2)∇u1,∇ϕ)(t) = ( q1−q2q1
q1∇u1,∇ϕ)(t) + ((q1 − q2)∇u1,∇ϕ)(t)

= −(q1∇( q1−q2q1
) · ∇u1, ϕ)(t)− (( q1−q2q1

)∇ · (q1∇u1), ϕ)(t)

+ ((q1 − q2)∇u1,∇ϕ)(t).

Using the identity −∇ · (q1∇u1) = f − ∂αt u1 and inserting the choice ϕ = q1−q2
q1

u1 in the third term gives

2((q1 − q2)∇u1,∇ϕ)(t) = −(q1∇( q1−q2q1
) · ∇u1,

q1−q2
q1

u1)(t) + (( q1−q2q1
)2(f − ∂αt u1), u1)(t)

+ ((q1 − q2)∇u1,∇( q1−q2q1
)u1 + q1−q2

q1
∇u1)(t).

Collecting the terms gives the following crucial identity

((q1 − q2)∇u1,∇ϕ)(t) =
1

2

∫
Ω

(q1 − q2

q1
(t)
)2(

q1(t)|∇u1(t)|2 + (f(t)− ∂αt u1(t))u1(t)
)

dx. (3.1)

Meanwhile, the variational formulation (2.2) for ui implies that for any fixed t ∈ (0, T ),

((q1 − q2)∇u1,∇ϕ)(t) = (q1∇u1,∇ϕ)(t)− (q2∇u1,∇ϕ)(t)

= (f, ϕ)(t)− (∂αt u1, ϕ)(t)− (q2∇u1,∇ϕ)(t)

= (∂αt u2, ϕ)(t) + (q2∇u2,∇ϕ)(t)− (∂αt u1, ϕ)(t)− (q2∇u1,∇ϕ)(t)

= −(q2∇(u1 − u2),∇ϕ)(t)− (∂αt (u1 − u2), ϕ)(t). (3.2)

By the Cauchy–Schwarz inequality, we have

((q1 − q2)∇u1,∇ϕ)(t)

≤c
(
‖∇(u1 − u2)(t)‖L2(Ω)‖q2‖L∞(Ω)‖∇ϕ‖L2(Ω) + ‖∂αt (u1 − u2)(t)‖H−1(Ω)‖ϕ‖H1(Ω)

)
≤c
(
‖∇(u1 − u2)(t)‖L2(Ω) + ‖∂αt (u1 − u2)(t)‖H−1(Ω)

)
‖∇ϕ(t)‖L2(Ω).

Since ‖∇ϕ(t)‖L2(0,T ;L2(Ω)) ≤ c, we obtain∫ T

0

((q1 − q2)∇u1,∇ϕ)(t)dt ≤ c
(
‖∇(u1 − u2)‖L2(0,T ;L2(Ω)) + ‖∂αt (u1 − u2)‖L2(0,T ;H−1(Ω))

)
.

This and (3.1) give the first estimate. Next, we decompose the domain Ω into two disjoint sets Ω = Ωρ ∪Ωcρ.
with Ωρ = {x ∈ Ω : dist(x, ∂Ω) ≥ ρ} and Ωcρ = Ω \ Ωρ, with ρ > 0 to be chosen. On the subdomain Ωρ, the
β-positivity condition implies∫ T

0

∫
Ωρ

(q1 − q2)2dxdt = ρ−β
∫ T

0

∫
Ωρ

(q1 − q2)2ρβdxdt

≤ ρ−β
∫ T

0

∫
Ωρ

(q1 − q2)2dist(x, ∂Ω)βdxdt
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≤ cρ−β
∫ T

0

∫
Ωρ

(q1 − q2)2(q1(x, t)|∇u1|2 + (f − ∂αt u1)u1)dxdt

≤ cρ−βc
(
‖∇(u1 − u2)‖L2(0,T ;L2(Ω)) + ‖∂αt (u1 − u2)‖L2(0,T ;H−1(Ω))

)
.

By the box constraint of A, we have∫ T

0

∫
Ωcρ

(q1 − q2)2dxdt ≤ cT |Ωcρ| ≤ cρ.

Then the desired result follows by balancing the last two estimates with ρ.

Next we present an alternative conditional stability estimate without the term ∂αt (u1 − u2), thereby
relaxing the temporal regularity assumption on u(q†).

Theorem 3.2. Let u0, f , and qi, i = 1, 2, satisfy the conditions in Assumption 2.1 with r > d and p > 2r
α(r−d)

and condition (2.3), and ui ≡ u(qi) be the solution to problem (1.1). Then there holds∫ T

0

∫ t

0

∫
Ω

(q1 − q2

q1
(s)
)2(

q1(s)|∇u1(s)|2 + (f(s)− ∂αs u1(s))u1(s)
)

dxdsdt ≤ c‖∇(u1 − u2)‖L2(0,T ;L2(Ω)).

Further, if the solution u1 of problem (1.1) satisfies the β-positivity condition, then

‖q1 − q2‖L2(0,T ;L2(Ω)) ≤ c‖∇(u1 − u2)‖
1

2(1+β)

L2(0,T ;L2(Ω)).

Proof. By the argument for Theorem 3.1, it suffices to bound the term
∫ T

0

∫ t
0
(∂αs (u1−u2)(s), ϕ(s)) dsdt. By

applying integration by parts in time s, since u1(0)− u2(0) = 0, we obtain∫ t

0

(∂αs (u1 − u2)(s), ϕ(s)) ds =

∫ t

0

(
(u1 − u2)(s), s∂

α
t ϕ(s)

)
ds

+ cα

∫ t

0

(
(u1 − u2)(s), (t− s)−αϕ(t)

)
ds := I + II,

with cα = 1
Γ(1−α) and s∂

α
t ϕ(s) = −cα

∫ t
s
(ξ − s)−αϕ′(ξ)dξ denoting the right-sided Djrbashian-Caputo frac-

tional derivative. Upon inserting the test function ϕ(t) = q1−q2
q1

u1(t) into the preceding identity, since

u1 ∈ L∞((0, T )× Ω) (cf. Theorem 2.1), and ‖qi‖L∞(0,T ;L∞(Ω)) ≤ c1, by Proposition 2.2, we deduce

‖s∂αt ϕ(s)‖L2(Ω) ≤c
∫ t

s

(ξ − s)−α(‖u′1(ξ)‖L2(Ω) + ‖u1(ξ)‖L2(Ω)) dξ ≤ cεs−
α
2−ε + c(t− s),

for any small ε > 0. Thus, choosing ε ∈ (0, 1−α
2 ) leads to

|I| ≤
∫ T

0

∫ t

0

‖∇(u1 − u2)(s)‖L2(Ω)‖s∂αt ϕ(s)‖H−1(Ω) dsdt

≤ cε
∫ T

0

∫ t

0

‖∇(u1 − u2)(s)‖L2(Ω)(s
−α2−ε + (t− s)) dsdt

≤ c‖∇(u1 − u2)‖L2(0,T ;L2(Ω)).

Meanwhile, since qi ∈ A and u ∈ L∞(0, T ;L2(Ω)), cf. Theorem 2.1, the bound ‖ϕ‖L∞(0,T ;L2(Ω)) ≤ c holds.
Hence, by Poincaré’s inequality,

|II| ≤
∫ T

0

∫ t

0

‖(u1 − u2)(s)‖L2(Ω)(t− s)−α dsdt ≤ c‖∇(u1 − u2)‖L2(0,T ;L2(Ω)).

The second assertion follows directly exactly as in Theorem 3.1, and hence the proof is omitted.
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Remark 3.1. Under a slightly stronger assumption on problem data, i.e. Assumption 2.2, we can derive a
stability for u(qi) ∈ L2(0, T ;L2(Ω)) using the Gagliardo-Nirenberg interpolation inequality (e.g., [8])

‖u‖H1(Ω) ≤ c‖u‖
1
2

L2(Ω)‖u‖
1
2

H2(Ω).

Under Assumption 2.2, by Proposition 2.1, we have the a priori regularity u(qi) ∈ L2(0, T ;H2(Ω)). Then it
follows directly from Theorem 3.2 that∫ T

0

∫ t

0

∫
Ω

(q1 − q2

q1
(s)
)2(

q1(s)|∇u1(s)|2 + (f(s)− ∂αs u1(s))u1(s)
)

dxdsdt ≤ c‖u1 − u2‖
1
2

L2(0,T ;L2(Ω)).

Accordingly, if the β-positivity condition holds, then

‖q1 − q2‖L2(0,T ;L2(Ω)) ≤ c‖u1 − u2‖
1

4(1+β)

L2(0,T ;L2(Ω)).

The β-positivity condition plays a central role in deriving the standard L2(0, T ;L2(Ω)) estimate in The-
orems 3.1 and 3.2. Thus it is important to verify this condition. Below we give sufficient conditions for the
β-positivity condition, with β = 2 and β = 0, respectively, for a class of problem data. The main analytic
tool is the maximum principle (see e.g., [41] and [23, Section 6.5]). The next two results show the condition
for the case of a time-independent diffusion coefficient q.

Proposition 3.1. Let Ω be a bounded Lipschitz domain, q ∈ A be time-independent, u0 ∈ H2(Ω) ∩H1
0 (Ω),

and f ∈Wα,p(0, T ;L2(Ω)) with p > 1
α . Meanwhile, assume that f ≥ cf > 0 and ∂αt f ≤ 0 a.e. in Ω× [0, T ],

and u0 ≥ 0, f(0) + ∇ · (q∇u0) ≤ 0 a.e. in Ω. Then the β-positivity condition holds with β = 2, with the
constant c depending only on c0, c1, cf and Ω.

Proof. Since u0 ≥ 0 and f > cf , the maximum principle for subdiffusion (see [41]) implies u ≥ 0 in Ω× [0, T ].
Let w = ∂αt u. Then it satisfies

∂αt w −∇ · (q∇w) = ∂αt f, in Ω× (0, T ],

w = 0, on ∂Ω× (0, T ],

w(0) = f(0) +∇ · (q∇u0), in Ω.

(3.3)

Since f ∈ Wα,p(0, T ;L2(Ω)), we deduce ∂αt f ∈ Lp(0, T ;L2(Ω)). Thus, the system (3.3) admits a unique
solution w ∈ C([0, T ];L2(Ω)). By assumption, ∂αt f ≤ 0 in Ω× [0, T ] and w(0) ≤ 0 in Ω. Then the maximum
principle for subdiffusion (see [41]) implies ∂αt u = w ≤ 0 in Ω× [0, T ]. Therefore, there holds

q(x)|∇u(x, t)|2 + (f(x, t)− ∂αt u(x, t))u(x, t) ≥ min(c0, cf )(|∇u(x, t)|2 + u(x, t)). (3.4)

So it suffices to prove u(x, t) ≥ cdist(x, ∂Ω)2 for (x, t) ∈ Ω × (0, T ]. For any fixed t ∈ (0, T ], we have
f(x, t)− ∂αt u(x, t) ∈ L2(Ω). Now consider the following boundary value problem{

−∇ · (q∇u(t)) = f(t)− ∂αt u(t), in Ω,

u(t) = 0, on ∂Ω.
(3.5)

Let G(x, y) be Green’s function for the elliptic operator ∇ · (q∇·) with a zero Dirichlet boundary condition.
Then G(x, y) is nonnegative (by maximum principle) and satisfies ([18, Theorem 1.1] and [7, Lemma 3.7])
G(x, y) ≥ c|x− y|2−d for |x− y| ≤ ρ(x) := dist(x, ∂Ω). Thus, for any (x, t) ∈ Ω× (0, T ], there holds

u(x, t) =

∫
Ω

G(x, y)(f(y, t)− ∂αt u(y, t)) dy ≥
∫

Ω

G(x, y)f(y, t) dy ≥ cf
∫

Ω

G(x, y) dy

≥ cf
∫
|x−y|< ρ(x)

2

G(x, y) dy ≥ c
∫
|x−y|< ρ(x)

2

|x− y|2−d dy ≥ cρ(x)2.

This completes the proof of the proposition.
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The next result gives sufficient conditions for the β-positivity condition with β = 0, under stronger
regularity assumptions on the problem data.

Proposition 3.2. For some µ ∈ (0, 1), let Ω be a bounded C2,µdomain, f ∈ C1([0, T ];C(Ω))∩C([0, T ];Cµ(Ω))
with f ≥ cf > 0, ∂αt f ≤ 0 in Ω × [0, T ], and u0 ∈ C2,µ(Ω) ∩ H1

0 (Ω) with u0 ≥ 0 in Ω. Moreover, let
q ∈ A ∩ C1,µ(Ω) be time-independent with ‖q‖C1,µ(Ω) ≤ c2, and f(0) + ∇ · (q∇u0) ≤ 0 in Ω. Then the
β-positivity condition holds with β = 0, with the constant c only depending on c0, c1, c2, cf and Ω.

Proof. By the Hölder regularity estimate ([34, Theorem 2.1] and [23, Theorem 7.9]), we have u ∈ C([0, T ];C2,µ(Ω))
and ∂αt u ∈ C([0, T ];Cµ(Ω)). The argument of Proposition 3.1 implies ∂αt u ≤ 0 for all (x, t) ∈ Ω× [0, T ], and
the lower bound in (3.4) holds. Next we prove that for any t ∈ (0, T ]

|∇u(t)|2 + u(t) ≥ c > 0, a.e. in Ω. (3.6)

Note that for any t ∈ (0, T ], u(t) solves the boundary value problem (3.5) with a Cµ(Ω) source F (t) :=
f(t)−∂αt u(t) ≥ f(t) ≥ cf , and the given assumption ensures that equation (3.5) holds in a strong sense. Then
the proof of the assertion (3.6) follows from Schauder estimates, Hopf’s lemma, and a standard compactness
argument [7, Lemma 3.3]. Next we sketch the proof of the estimate (3.6) for completeness.

Assume the contrary of (3.6), i.e., for any fixed t ∈ (0, T ), there exists a sequence {qn}n≥0 ⊂ A with
‖qn‖C1,µ(Ω) ≤ c2, such that, for each n ≥ 0, there exists a point xn ∈ Ω with |∇u(qn)(xn, t)|2 +u(qn)(xn, t) ≤
n−1. The classical Schauder estimate [17, Theorem 6.6] implies ‖u(qn)(t)‖C2,µ(Ω) ≤ c, for some constant c

is independent of n. Then by compactness, up to a subsequence, we have: (i) qn converges in C1(Ω) to a
limit q∗; (ii) u(qn)(t) converges in C2(Ω) to a limit u∗ and (iii) xn converges to a limit x∗ ∈ Ω. Therefore,
upon passing to limit, −q∗∆u∗ −∇q∗ · ∇u∗ = F (t) holds on Ω, with u∗ = 0 on ∂Ω, and we have u∗(x∗) = 0
and ∇u∗(x∗) = 0. By the strong maximum principle [17, Theorem 3.5], x∗ lies on the boundary ∂Ω, and the
condition ∇u∗(x∗) = 0 contradicts Hopf’s lemma [17, Lemma 3.4].

For a space-time dependent coefficient q(x, t), the argument in Propositions 3.1 and 3.2 does not work any
more: applying the operator ∂αt to both sides of problem (1.1) does not lead to a tractable identity for ∂αt u,
due to the nonlocality of ∂αt u. Nonetheless, if q† is separable, i.e., q(x, t) = a(x)b(t), then the β-positivity
condition does hold with β = 2, under suitable conditions. Below the operator A : H2(Ω)∩H1

0 (Ω)→ L2(Ω)
is defined by Av = −∇ · (a∇v).

Proposition 3.3. Let Ω be a bounded Lipschitz domain, q ∈ A, condition (2.3) be fulfilled, and q(x, t) =
a(x)b(t) with smooth a and b such that b(t) ≥ b(0) > 0 for all t ∈ (0, T ]. Suppose that u0 ∈ D(A2) with
u0 ≥ 0 a.e. in Ω, and f ∈ Lp(0, T ;D(A)) with p > 1

α , with f ≥ cf > 0 and ∂αt f ≤ 0 a.e. in Ω × (0, T ).
Further, for F (t) := f(t)− b(t)Au0, there hold F ≤ 0 and AF ≥ 0 a.e. in Ω× (0, T ). Then the β-positivity
condition holds with β = 2, with the constant c depending only on c0, c1, cf and Ω.

Proof. Let w = u− u0. Then it satisfies

∂αt w(t) + b(t)Aw(t) = F (t), ∀t ∈ (0, T ], with w(0) = 0. (3.7)

Noting that F (t) ∈ Lp(0, T ;H2(Ω) ∩ H1
0 (Ω)) and applying the operator A to (3.7), we derive that for

v(t) = Aw(t),
∂αt v(t) + b(t)Av(t) = AF (t), ∀t ∈ (0, T ], with v(0) = 0.

Since AF ∈ Lp(0, T ;L2(Ω)) with p > 1
α , there exists a unique weak solution v ∈ Lp(0, T ;H2(Ω) ∩H1

0 (Ω))
[23, Theorem 6.14]. Moreover, the assumption AF ≥ 0 a.e. in Ω × [0, T ] and the maximum principle (cf.
[41]) imply Aw = v ≥ 0 a.e. in Ω× [0, T ]. This and the assumption F ≤ 0 in Ω× [0, T ] imply

∂αt u(t) = ∂αt w(t) = F (t)− b(t)Aw(t) ≤ 0 a.e. in Ω× (0, T ].

Next, let the auxiliary function u be defined by

∂αt u(t) + b(0)Au(t) = f(t), ∀t ∈ (0, T ], with u(0) = u0.
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Let φ = u− u. Then φ satisfied for all t ∈ (0, T ]

∂αt φ(t) + b(0)Aφ(t) = (b(t)− b(0))Au(t) = (b(t)− b(0))(Aw(t) +Au0).

with φ(0) = 0. Since b(t) ≤ b(0) and Au0, Aw ≥ 0, we apply the maximum principle (see [41]) again to
derive φ ≤ 0 in Ω× (0, T ), i.e. u ≤ u in Ω× (0, T ). Therefore, there holds

q(x)|∇u(x, t)|2 + (f(x, t)− ∂αt u(x, t))u(x, t) ≥ (c0, cf ) min(|∇u(x, t)|2, u(x, t)).

Finally, repeating the argument for Proposition 3.1 on the function u leads to the β-positivity condition with
β = 2.

4 Regularized problem and the numerical approximation

In this section, we propose the continuous formulation of the reconstruction approach based on the regularized
output least-squares method and develop a fully discrete scheme for practical implementation. The error
analysis of the discrete approximations is given in Section 5.

4.1 Output least-square formulation

To recover the diffusion coefficient q(x, t), we employ an output least-squares formulation with an H1(Ω ×
(0, T )) seminorm penalty (with the notation ∇x,t denoting the space and time gradient):

min
q∈A

Jγ(q; zδ) = 1
2‖u(q)− zδ‖2L2(0,T ;L2(Ω)) + γ

2 ‖∇x,tq‖
2
L2(0,T ;L2(Ω)), (4.1)

with u(q) satisfying u(q)(0) = u0

(∂αt u(q)(t), φ) + (q(t)∇u(q)(t),∇φ) = (f, φ), ∀φ ∈ H1
0 (Ω), t ∈ (0, T ]. (4.2)

The admissible set A for q(x, t) is given in (1.3). The scalar γ > 0 is the regularization parameter, controlling
the strength of the penalty [11, 22]. The H1(Ω × (0, T )) seminorm penalty is suitable for recovering a
spatially-temporally smooth diffusion coefficient, and it is essential for the error analysis in Section 5. With
this penalty term, the numerically recovered diffusion coefficient admits a uniformly bounded (space and
time) gradient in the L2(0, T ;L2(Ω)) norm, dependent of the regularization parameter γ (cf. Lemma 5.1),
which is needed in the proof of Theorem 5.1. The dependence of the functional Jγ on zδ will be suppressed
whenever there is no confusion. To ensure the well-posedness of problem (4.1)–(4.2), we make the following
assumption on the given problem data.

Assumption 4.1. u0 ∈ L2(Ω), and f ∈ L2(0, T ;H−1(Ω)).

Note that Assumption 4.1 and the condition q ∈ A in the regularized formulation are weaker than that
in Theorem 2.1. Nonetheless, problem (4.2) does has a unique weak solution u, which can be proved using

the standard Galerkin procedure, where 0I
β
t denotes the Riemann-Liouville fractional integral of order β.

For a detailed proof, see, e.g., [35, Chapter 4] and [23, Section 6.1].

Lemma 4.1. For any q ∈ A, under Assumption 4.1, problem (4.2) has a unique weak solution u(q) ∈
L2(0, T ;H1

0 (Ω)) with 0I
1−α
t (u− u0) ∈ 0H

1(0, T ;H−1(Ω)) and

‖u(q)‖L2(0,T ;H1
0 (Ω)) ≤ c(‖u0‖L2(Ω) + ‖f‖L2(0,T ;H−1(Ω))).

The following continuity result for the forward map u(q) is useful.

Lemma 4.2. Let Assumption 4.1 be fulfilled, and the sequence {qn} ⊂ A converge to q ∈ A in L1(Ω×(0, T ))
and a.e., and let u(qn) and u(q) solve problem (4.2) with the diffusion coefficients qn and q, respectively.
Then

lim
n→∞

‖u(q)− u(qn)‖L2(0,T ;H1(Ω)) = 0.
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Proof. Let vn = u(q)− u(qn). Then it satisfies vn(0) = 0 and

∂αt v
n −∇ · (qn∇vn) = ∇ · ((q − qn)∇u(q)), ∀t ∈ (0, T ].

Then by Lemma 4.1 and the definition of the H−1(Ω)-norm, we obtain

‖vn‖L2(0,T ;H1(Ω)) ≤ c‖∇ · ((q − qn)∇u(q))‖L2(0,T ;H−1(Ω)) ≤ c‖(q − qn)∇u(q)‖L2(0,T ;L2(Ω)).

Let φn = |q − qn|2|∇u(q)|2, then φn → 0 almost everywhere (a.e.), since qn → q a.e., and further, since
q, qn ∈ A, we have 0 ≤ φn ≤ 4c21|∇u(q)|2 ∈ L1(0, T ;L1(Ω)). Then, Lebesgue’s dominated convergence
theorem [13, Theorem 1.9] implies

lim
n→∞

‖(q − qn)∇u(q)‖2L2(0,T ;L2(Ω)) = lim
n→∞

∫ T

0

∫
Ω

φn(x, t) dxdt =

∫ T

0

∫
Ω

lim
n→∞

φn(x, t) dxdt = 0,

which shows the desired estimate.

Lemma 4.2 implies that the forward map q ∈ H1((0, T ) × Ω) → u(q) ∈ L2(0, T ;H1(Ω)) is weakly
sequential closed. Then a standard argument [45, Theorem 1] leads to the existence of a minimizer to
problem (4.1)–(4.2), given in the next theorem.

Theorem 4.1. Under Assumption 4.1, there exists at least one minimizer to problem (4.1)–(4.2).

Using Lemma 4.2, the following continuity results follow from a standard compactness argument [11, 22].

Theorem 4.2. Under Assumption 4.1, the following two statements hold.

(i) Let the sequence {zj}j≥1 be convergent to z∗ in L2(0, T ;L2(Ω)), and q∗j ∈ A the corresponding mini-
mizer to Jγ(·; zj). Then {q∗j }j≥1 contains a subsequence convergent to a minimizer of Jγ(·; z∗) over A
in H1(Ω× (0, T )).

(ii) Let {δj}j≥1 ⊂ R+ with δj → 0, {zδj}j≥1 ⊂ L2(0, T ;L2(Ω)) be a sequence satisfying ‖zδj−z∗‖L2(0,T ;L2(Ω)) =

δj for some exact data z∗, and q∗j be a minimizer to Jγj (·; zδj ) over A. If the sequence {γj}j≥1 ⊂ R+

satisfies limj→∞ γj = 0 and limj→∞
δ2j
γj

= 0, then the sequence {q∗j }j≥1 contains a convergent subse-

quence and the limit of every convergent subsequence is a minimum-H1(Ω× (0, T )) seminorm solution.

Remark 4.1. Under the β-positivity condition, the inverse problem has a unique solution, so the minimum-
seminorm solution is unique. Then the standard subsequence argument shows that in (ii), actually the whole
sequence converges.

4.2 Numerical approximation

Now we describe the discretization of problem (4.1)–(4.2), based on the Galerkin finite element method
(FEM) in space (cf. [46]) and backward Euler convolution quadrature (CQ) in time due to [40]. First we
recall the Galerkin FEM approximation. Let Th be a shape regular quasi-uniform triangulation of the domain
Ω into d-simplexes, denoted by K, with a mesh size h. Over Th, we define continuous piecewise linear finite
element spaces Xh and Vh, respectively, by

Xh =
{
vh ∈ H1

0 (Ω) : vh|K is a linear function ∀K ∈ Th
}
,

Vh =
{
vh ∈ H1(Ω) : vh|K is a linear function ∀K ∈ Th

}
.

The spaces Xh and Vh will be employed to approximate the state u and the diffusion coefficient q, respectively.
Now we introduce useful operators on the spaces Xh and Vh. We define the L2(Ω) projection Ph : L2(Ω)→
Xh by

(Phv, χ) = (v, χ), ∀v ∈ L2(Ω), χ ∈ Xh.

It satisfies the following error estimate [46, p. 32]: for any s ∈ [1, 2]

‖Phv − v‖L2(Ω) + h‖∇(Phv − v)‖L2(Ω) ≤ hs‖v‖Hs(Ω), ∀v ∈ Hs(Ω) ∩H1
0 (Ω). (4.3)
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Let Ih be the Lagrange interpolation operator associated with the finite element space Vh. It satisfies the
following error estimates for s = 1, 2 and 1 ≤ p ≤ ∞ (with sp > d) [12, Theorem 1.103]:

‖v − Ihv‖Lp(Ω) + h‖v − Ihv‖W 1,p(Ω) ≤ chs‖v‖W s,p(Ω), ∀v ∈W s,p(Ω).

Further, for any q ∈ A, we define a discrete operator Ah(q(t)) : Xh → Xh by

(Ah(q(t))vh, χ) = (q(t)∇vh,∇χ), ∀vh, χ ∈ Xh. (4.4)

Next we describe time discretization. We partition the interval [0, T ] uniformly, with grid points tn = nτ ,
n = 0, . . . , N , and a time step size τ = T/N . The fully discrete scheme for problem (1.1) reads: Given
U0
h = Phu0 ∈ Xh, find Unh ∈ Xh such that

(∂̄ατ (Unh − U0
h), χ) + (q(tn)∇Unh ,∇χ) = (fn, χ), ∀χ ∈ Xh, n = 1, 2, . . . , N, (4.5)

where fn = f(tn) and ∂̄ατ ϕ
n denotes the backward Euler CQ approximation (with ϕj = ϕ(tj)):

∂̄ατ ϕ
n = τ−α

n∑
j=0

b
(α)
j , with (1− ξ)α =

∞∑
j=0

b
(α)
j ξj . (4.6)

Note that the weights b
(α)
j are given explicitly by b

(α)
j = (−1)j Γ(α+1)

Γ(α−j+1)Γ(j+1) , and thus

b
(α)
j = (−1)j(j!)−1α(α− 1) · · · (α− j + 1), j = 1, 2, . . . ,

from which it can be verified directly that b
(α)
0 = 1 and b

(α)
j < 0 for j ≥ 1. Using the operator Ah(q(tn)),

the fully discrete scheme (4.5) can be rewritten as

∂̄ατ (Unh − U0
h)−Ah(q(tn))Unh = Phf

n, n = 1, 2, . . . , N.

We use extensively the norm ‖ · ‖`p(X), 1 ≤ p < ∞, for a finite sequence (un)Nn=1 ⊂ X (for a Banach
space X equipped with the norm ‖ · ‖X):

‖(un)Nn=1‖`p(X) =
(
τ‖un‖pX

) 1
p

.

Now we are ready to give the fully discrete scheme for problem (4.1)–(4.2). Let zδn = τ−1
∫ tn
tn−1

zδ(t)dt.

Then the fully discrete formulation for problem (4.1)–(4.2) is given by

min
qh,τ∈Ah,τ

Jγ,h,τ (qh,τ ) = 1
2‖(U

n
h (qh,τ )− zδn)Nn=1‖2`2(L2(Ω)) (4.7)

+ γ
2

(
‖(∇qnh)Nn=1‖2`2(L2(Ω)) + ‖(∂τqnh)Nn=1‖`2(L2(Ω))

)
,

subject to Unh ≡ Unh (qh,τ ) ∈ Xh satisfying U0
h = Phu0 and

∂̄ατ (Unh − U0
h) +Ah(qnh)Unh = Phf

n, n = 1, 2, . . . , N. (4.8)

The discrete admissible set Ah,τ is taken to be

Ah,τ = {qh,τ = (qnh)Nn=1 : qnh ∈ Vh, c0 ≤ qnh ≤ c1, 1 ≤ n ≤ N}.

Note that we approximate the conductivity q by a finite element function in space and piecewise constant
function in time, and in the discrete objective function Jγ,h,τ , we approximate the first-order time-derivative
in the penalty by backward difference. Problem (4.7)–(4.8) is a finite-dimensional nonlinear optimization
problem with PDE and box constraints, and can be solved efficiently, e.g., (projected) conjugate gradient
method. The existence of a discrete minimizer q∗h,τ = (qn∗h )Nn=1 ∈ Ah,τ is direct, in view of the norm
equivalence in finite-dimensional spaces.

Theorem 4.3. Under Assumption 4.1, there exists at least one minimizer q∗h,τ ∈ Ah,τ to problem (4.7)–(4.8).
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5 Error analysis

In this section, we derive an error bound for the approximations q∗h,τ ∈ Ah,τ in terms of the noise level δ,
the regularization parameter γ, and the discretization parameters h and τ . The delicate interplay between
different parameters and limited regularity of the solution and problem data represent the main challenges
in the analysis. The error estimate in Theorem 5.1 involves the weight involving q†(tn)|∇u(tn)|2 + (f(tn)−
∂αt u(tn))u(tn), which arises naturally in the stability analysis. The proof relies crucially on the choice of the

test function ϕn =
q†(tn)−qn∗h

q†
u, which is inspired by the conditional stability analysis in Section 3, cf. the

proofs of Theorems 3.1 and 3.2.

Assumption 5.1. q† ∈ C([0, T ];H2(Ω)).

Theorem 5.1. Let q† be the exact diffusion coefficient, u ≡ u(q†) the solution to problem (4.2), and q∗h,τ ∈
Ah,τ the solution to problem (4.7)–(4.8). Then under Assumptions 2.2 and 5.1, there holds

τ2
N∑
m=1

m∑
n=1

∫
Ω

(q†(tn)− qn∗h
q†(tn)

)2(
q†(tn)|∇u(tn)|2 + (f(tn)− ∂αt u(tn))u(tn)

)
dx

≤c(hγ−1η + hγ−
1
2 + h−1γ−

1
2 η + γ−

1
2 η)η,

with `N = ln(N + 1) and

η =

{
c(τmin(1, 12 +α) + h2 + δ + γ

1
2 ), α 6= 1/2;

c(τ`
1
2

N + h2 + δ2 + γ
1
2 ), α = 1/2.

The proof of Theorem 5.1 is technical and lengthy, and requires several technical estimates, especially non-
standard nonsmooth data estimates for the discrete scheme for problem (1.1). Due to the time-dependence
of the elliptic operator A(t), the requisite estimates are still unavailable, and we develop them in Section B
in the appendix.

5.1 Basic estimates

The analysis requires two basic estimates (which in turn depend on nonsmooth data estimates in Section
B). The first result gives an a priori bound on ∇q∗h,τ and ∂τq

∗
h,τ of the discrete minimizer q∗h,τ and an error

bound on the state approximation Unh (q∗h,τ ). This result will play a crucial role in the proof of Theorem 5.1.

Lemma 5.1. Let q† be the exact coefficient and u ≡ u(q†) the solution to problem (4.2). Let q∗h,τ ∈ Ah,τ
be the solution to problem (4.7)–(4.8), and {Unh (q∗h,τ )}Nn=1 the fully discrete solution to problem (4.8). Then
under Assumptions 2.2 and 5.1, with `N = ln(N + 1), there holds

‖(Unh (q∗h,τ )− u(tn))Nn=1‖2`2(L2(Ω)) + γ‖(∇qn∗h,τ )Nn=1‖2`2(L2(Ω)) + γ‖(∂τqn∗h,τ )Nn=1‖2`2(L2(Ω))

≤

{
c(τmin(2,1+2α) + h4 + δ2 + γ), α 6= 1/2;

c(τ2`N + h4 + δ2 + γ), α = 1/2.

Proof. First we bound ‖(u(tn)−zδn)Nn=1‖2`2(L2(Ω)). Under the given assumption, we have the a priori regularity

u ∈ C([0, T ];L2(Ω)), and thus u(tn) is well defined. Let un = τ−1
∫ tn
tn−1

u(t) dt. Then u(tn) − un =

τ−1
∫ tn
tn−1

∫ tn
t
u′(s)dsdt. For n ≥ 2, the regularity estimate (2.6) implies

‖u(tn)− un‖L2(Ω) ≤ τ−1

∫ tn

tn−1

∫ tn

t

‖u′(s)‖L2(Ω)dsdt ≤ τ−1

∫ tn

tn−1

∫ tn

t

sα−1dsdt ≤ cτtα−1
n−1.

Similarly, we have ‖u(τ)− u1‖L2(Ω) ≤ cτα. Consequently, we deduce

‖(u(tn)− un)Nn=1‖2`2(L2(Ω)) ≤ c
(
τ1+2α + τ

N∑
n=2

τ2t2α−2
n

)
≤

{
cτmin(2,1+2α), α 6= 1/2;

cτ2`N , α = 1/2.
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Meanwhile, by the Cauchy-Schwarz inequality, τ |un|2 ≤
∫ tn
tn−1

u(t)2dt. This, the definition of δ and the

stability estimate ‖(un − zδn)Nn=1‖`2(L2(Ω)) ≤ ‖u(t)− zδ(t)‖L2(0,T ;L2(Ω)) ≤ δ imply

‖(u(tn)− zδn)Nn=1‖2`2(L2(Ω)) ≤

{
cτmin(2,1+2α) + δ2, α 6= 1/2;

cτ2`N + δ2, α = 1/2.
(5.1)

Next by the minimizing property of q∗h,τ ∈ Ah,τ and q̂h,τ = (Ihq†(tn))Nn=1 ∈ Ah,τ , we deduce

Jγ,h,τ (q∗h,τ ) ≤ Jγ,h,τ (q̂h,τ ).

By the triangle inequality, we derive

‖(Unh (q∗h,τ )− u(tn))Nn=1‖2`2(L2(Ω)) ≤ c‖(U
n
h (q∗h,τ )− zδn)Nn=1‖2`2(L2(Ω)) + c‖(zδn − u(tn))Nn=1‖2`2(L2(Ω)).

The preceding two inequalities imply

‖(Unh (q∗h,τ )− u(tn))Nn=1‖2`2(L2(Ω)) + γ‖(∇qn∗h )Nn=1‖2`2(L2(Ω)) + γ‖(∂̄τqn∗h )Nn=1‖2`2(L2(Ω))

≤c‖(Unh (Ihq†)− zδn)Nn=1‖2`2(L2(Ω)) + cγ‖(∇Ihq†(tn))Nn=1‖2`2(L2(Ω))

+ cγ‖(∂̄τIhq†(tn))Nn=1‖2`2(L2(Ω)) + c‖(zδn − u(tn))Nn=1‖2`2(L2(Ω)).

Since |∇q†|+ |∂tq†| ≤ c by Assumption 2.2, the property of the interpolation operator Ih implies

‖(∇Ihq†(tn))Nn=1‖2`2(L2(Ω)) + ‖(∂̄τIhq†(tn))Nn=1‖2`2(L2(Ω)) ≤ c.

Meanwhile, by the triangle inequality and Lemma B.3, we deduce

‖Unh (Ihq†)− zδn‖2L2(Ω) ≤ 2‖Unh (Ihq†)− u(tn)‖2L2(Ω) + 2‖u(tn)− zδn‖2L2(Ω)

≤ c(τtα−1
n + h2)2 + c‖u(tn)− zδn‖2L2(Ω),

Consequently, combining the preceding estimates with (5.1) we derive

‖(Unh (Ihq†)− zδn)Nn=1‖2`2(L2(Ω)) ≤

{
c(τmin(2,1+2α) + h4 + δ2 + γ), α 6= 1/2;

c(τ2`N + h4 + δ2 + γ), α = 1/2.

This completes the proof of the lemma.

Next we give a bound on the backward Euler CQ approximation of the discrete test function ϕ.

Lemma 5.2. Let q† be the exact coefficient, and u ≡ u(q†) the solution to problem (1.1). Then for ϕm =
q†(tm)−qm∗h
q†(tm)

u(tm), there hold for 1 ≤ j ≤ N

τ

N∑
m=j

‖τ−α
m∑
n=j

b
(α)
n−jPh(ϕn − ϕm)‖2L2(Ω) ≤

{
cγ−1(τmin(2,1+2α) + h4 + δ2 + γ), α 6= 1/2;

cγ−1(τ2`N + h4 + δ2 + γ), α = 1/2.

Proof. By the associativity of backward Euler CQ, i.e., ∂̄ατ ϕ
n = ∂̄α−1

τ ∂̄τϕ
n, if ϕ0 = 0, then there holds

Im := τ−α
m∑
n=j

b
(α)
n−jPh(ϕn − ϕm) = τ1−α

m−1∑
n=j

b
(α−1)
n−j

Phϕ
n−Phϕn+1

τ .

Thus, the L2(Ω)-stability of Ph and the definition of ϕn imply

τ−1‖Ph(ϕn − ϕn+1)‖L2(Ω) ≤ τ−1‖ϕn − ϕn+1‖L2(Ω)

≤‖u(tn+1)∂̄τ
q†(tn+1)−qn+1∗

h

q†(tn+1)
‖L2(Ω) + ‖ q

†(tn)−qn∗h
q†(tn)

∂̄τu(tn+1)‖L2(Ω)
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≤‖u(tn+1)‖L∞(Ω)‖∂̄τ
q†(tn+1)−qn+1∗

h

q†(tn+1)
‖L2(Ω) + ‖ q

†(tn)−qn∗h
q†(tn)

‖L∞(Ω)‖∂̄τu(tn+1)‖L2(Ω).

Since Assumption 2.2 holds, we have ‖u(tn+1)‖L∞(Ω) ≤ c and it follows from q∗h,τ , q ∈ A that

‖Im‖L2(Ω) ≤ cτ1−α
m−1∑
n=j

|b(α−1)
n−j |

(
‖∂̄τqn+1∗

h ‖L2(Ω) + ‖∂̄τq†(tn+1)‖L2(Ω) + ‖∂̄τu(tn+1)‖L2(Ω)

)
≤ cτ

m−1∑
n=j

t−αn−j+1‖∂̄τq
n+1∗
h ‖L2(Ω) + cτ

m−1∑
n=j

t−αn−j+1 + τ

m−1∑
n=j

t−αn−j+1‖∂̄τu(tn+1)‖L2(Ω).

where the last step follows from |b(α−1)
j | ≤ c(j + 1)−α [23, Exercise 6.16]. Note that cτ

∑m−1
n=j t

−α
n−j+1 ≤

ct1−αn−m ≤ c. Then Young’s inequality implies

τ

N∑
m=j

(
τ

m−1∑
n=j

t−αn−j+1‖∂̄τq
∗n+1
h ‖L2(Ω)

)2

≤ c
(
τ

N∑
n=j

t−αn−j+1

)2(
τ

N∑
n=j

‖∂̄τq∗nh ‖2L2(Ω)

)

≤

{
cγ−1(τmin(2,1+2α) + h4 + δ2 + γ), α 6= 1/2;

cγ−1(τ2`N + h4 + δ2 + γ), α = 1/2.

Meanwhile, the regularity estimate ‖∂tu(t)‖L2(Ω) ≤ ctα−1 from (2.6) and the argument of [29, Lemma 4.6]

imply τ
∑m−1
n=j t

−α
n−j+1‖∂̄τu(tn+1)‖L2(Ω) ≤ cεt−εj , for any small ε ∈ (0,min( 1

2 , 1− α)). Consequently,

τ

N∑
m=j

(
τ

m−1∑
n=j

t−αn−j+1‖∂̄τu(tn+1)‖L2(Ω)

)2

≤ cτ
N∑
m=j

t−2ε
j ≤ c.

This completes the proof of the lemma.

5.2 The convergence rate

With the basic estimates in Lemmas 5.1 and 5.2, we can prove Theorem 5.1. The proof relies on a novel
choice of the test function ϕn, directly inspired by the conditional stability analysis in Section 3, and maximal
regularity estimates. Hence, it is still lengthy, and is divided into several steps.

Proof of Theorem 5.1. The proof employs the following identity, analogous to (3.1),

((q†(tn)− qn∗h )∇u(tn),∇ϕn) =
1

2

∫
Ω

(q†(tn)− qn∗h
q†(tn)

)2(
q†(tn)|∇u(tn)|2 + (f(tn)− ∂αt u(tn))u(tn)

)
dx,

with the test function ϕn =
q†(tn)−qn∗h
q†(tn)

u(tn) ∈ H1
0 (Ω). By the box constraint of A, the assumption |∇q†| ≤ c

and the regularity estimate ‖u(t)‖H2(Ω) ≤ c from (2.6), we have

‖∇ϕn‖L2(Ω) ≤ c(1 + ‖∇qn∗h ‖L2(Ω)), (5.2)

Meanwhile, by integration by parts, we have the splitting

((q†(tn)− qn∗h )∇u(tn),∇ϕn) = −(∇ · ((q†(tn)− qn∗h )∇u(tn)), ϕn − Phϕn)

+ (qn∗h ∇(Unh (q∗h,τ )− u(tn)),∇Phϕn)

+ (q†(tn)∇u(tn)− qn∗h ∇Unh (q∗h,τ ),∇Phϕn) =

3∑
i=1

Ini .

Below we bound the terms separately.
Step 1: bound the term In1 . Since q†, q∗hτ ∈ A, |∇q†| ≤ c, and ‖u(t)‖H2(Ω) ≤ c from (2.6) and
‖∇u(t)‖L∞(Ω) ≤ c from (2.5), we derive

‖∇ · ((q†(tn)− qn∗h )∇u(tn))‖L2(Ω) ≤‖∇q†(tn)‖L∞(Ω)‖∇u(tn)‖L2(Ω) + ‖q†(tn)− qn∗h ‖L∞(Ω)‖∆u(tn)‖L2(Ω)
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+ ‖∇qn∗h ‖L2(Ω)‖∇u(tn)‖L∞(Ω) ≤ c(1 + ‖∇qn∗h ‖L2(Ω)).

Then the Cauchy-Schwarz inequality and the approximation property of Ph in (4.3) imply

|In1 | ≤ c(1 + ‖∇qn∗h ‖L2(Ω))‖ϕn − Phϕn‖L2(Ω) ≤ ch(1 + ‖∇qn∗h ‖L2(Ω))‖∇ϕn‖L2(Ω).

Thus, we can bound the term In1 by

τ

N∑
n=1

|In1 | ≤ chτ
N∑
n=1

(1 + ‖∇qn∗h ‖L2(Ω))
2 ≤ch+ ch‖(∇qn∗h )Nn=1‖2`2(L2(Ω)) ≤ c(h+ hγ−1η2). (5.3)

Step 2: bound the term In2 . For the term In2 , by the triangle inequality, inverse inequality for functions
in Xh, the L2(Ω) stability of Ph in (4.3), we deduce

‖∇(u(tn)− Unh (q∗h,τ ))‖L2(Ω) ≤ ‖∇(u(tn)− Phu(tn))‖L2(Ω) + h−1‖Phu(tn)− Unh (q∗h,τ )‖L2(Ω)

≤ c(h+ h−1‖Phu(tn)− Unh (q∗h,τ )‖L2(Ω)).

Meanwhile, by the standard energy argument [29, Lemma 3.6], we deduce

‖(∇Unh (q∗h))Nn=1‖2`2(L2(Ω)) ≤ c(‖(f(tn))Nn=1‖2`2(H−1(Ω)) + ‖∇u0‖2L2(Ω)) ≤ c.

This and the regularity estimate (2.6) imply

‖(∇(u(tn)− Unh (q∗h,τ )))Nn=1‖2`2(L2(Ω)) ≤ c.

Thus, the Cauchy-Schwarz inequality, Lemma 5.1 and (5.2) imply

τ

N∑
n=1

|In2 | ≤ cτ
N∑
n=1

‖∇(u(tn)− Unh (q∗h,τ ))‖L2(Ω)‖∇ϕn‖L2(Ω)

≤ c‖(∇(u(tn)− Unh (q∗h,τ )))Nn=1‖`2(L2(Ω))‖(∇ϕn)Nn=1‖`2(L2(Ω))

≤ cmin
(
1, h+ h−1‖(u(tn)− Unh (q∗h,τ ))Nn=1‖`2(L2(Ω))

)
(1 + ‖(∇qn∗h )Nn=1‖`2(L2(Ω)))

≤ cmin(1, h+ h−1η)γ−
1
2 η.

Step 3: bound the term In3 . The estimate of the term In3 is more technical. It follows directly from the
weak formulations (4.2) and (4.8) that

In3 = (∂̄ατ [(Unh (q∗h,τ )− U0
h)− (u(tn)− u0)], Phϕ

n)

+ (∂̄ατ (u(tn)− u0)− ∂αt (u(tn)− u0), Phϕ
n) =: In3,1 + In3,2.

Next we bound the two terms In3,1 and In3,2 separately. By Lemma B.4, there holds

|In3,2| ≤ ‖∂̄ατ u(tn)− ∂αt u(tn)‖L2(Ω)‖Phϕn‖L2(Ω) ≤ cτ(t−1
n + `n), n = 1, 2, . . . , N.

Consequently,

|τ2
N∑
m=1

m∑
n=1

In3,2| ≤ cτ3
N∑
m=1

m∑
n=1

(t−1
n + `n)`n ≤ cτ`N .

Since U0
h(q∗h,τ ) = Phu0 and u(0) = u0, by summation by parts, we have

τ

m∑
n=1

In3,1 = τ

m∑
n=0

(∂̄ατ (Unh (q∗h,τ )− u(tn)), Phϕ
n) = τ

m∑
j=0

(U jh(q∗h,τ )− u(tj), τ
−α

m∑
n=j

b
(α)
n−jPhϕ

n).

Next we appeal to the splitting

τ−α
m∑
n=j

b
(α)
n−jPhϕ

n = τ−α
m∑
n=j

b
(α)
n−jPh(ϕn − ϕm) + τ−α

m∑
n=j

b
(α)
n−jPhϕ

m := II1
j,m + II2

j,m.
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For the weights b
(α)
n , we have

∑m
n=0 b

(α)
n = b

(α−1)
m and |τ−α

∑m
n=0 b

(α)
n | ≤ ct−αm+1 [23, Exercise 6.16]. In view

of this and the estimate ‖ϕm‖L2(Ω) ≤ c, the sum II2
j,m satisfies

‖II2
j,m‖L2(Ω) ≤ c‖ϕm‖L2(Ω)

(
τ−α

m−j∑
n=0

b(α)
n

)
≤ ct−αm−j+1‖ϕ

m‖L2(Ω) ≤ ct−αm−j+1.

Then Lemma 5.1, the Cauchy-Schwarz inequality and Young’s inequality for (discrete) convolution imply

τ2
N∑
m=1

m∑
j=1

‖U jh(q∗h,τ )− u(tj)‖L2(Ω)‖II2
j,m‖L2(Ω) ≤cτ2

N∑
j=1

N∑
m=j

‖U jh(q∗h,τ )− u(tj)‖L2(Ω)t
−α
m−j+1

≤c‖(U jh(q∗h,τ )− u(tj))
N
j=1‖`2(L2(Ω)) ≤ cη,

Similarly, by Lemma 5.2 and the Cauchy-Schwarz inequality, we have

τ2
N∑
m=1

m∑
j=1

‖U jh(q∗h,τ )− u(tj)‖L2(Ω)‖II1
j,m‖L2(Ω)

≤cτ
N∑
m=1

‖(U jh(q∗h,τ )− u(tj))
m
j=1‖`2(L2(Ω))‖(II1

j,m)mj=1‖`2(L2(Ω))

≤cγ− 1
2 η‖(U jh(q∗h,τ )− u(tj))

N
j=1‖`2(L2(Ω)) ≤ cγ−

1
2 η2.

These two estimates and the triangle inequality lead to

∣∣∣τ2
N∑
m=1

m∑
n=1

(∂̄ατ (Unh (q∗h,τ )− u(tn)), Phϕ
n)
∣∣∣ ≤ cη + cγ−

1
2 η2. (5.4)

The three estimates (5.2), (5.3), and (5.4) together imply

∣∣∣τ2
N∑
m=1

m∑
n=1

((q† − qn∗h )∇u(tn),∇ϕn)
∣∣∣ ≤ c(hγ−1η + γ−

1
2 η + h−1γ−

1
2 η + γ−

1
2 η)η.

Combining the preceding estimates gives the desired error estimate.

Remark 5.1. Under the β-positivity condition in Definition 3.1, for any δ > 0, with η = τ + h2 + δ + γ
1
2 ,

the argument of Theorem 3.1 gives

‖(q†(tn)− qn∗h )Nn=1‖`2(L2(Ω)) ≤ c((hγ−1η + γ−
1
2 min(1, h−1η))η)

1
2(1+β) .

Theorem 5.1 provides useful guidelines for choosing the regularization parameter γ and the discretization
parameters h and τ . Indeed, by suitably balancing the terms in the estimate, we should choose γ ∼ δ2,
h ∼
√
δ and τ ∼ δ in practical computation in order to effect optimal computational complexity. Under the

β-positivity condition, this choice of γ, h and τ gives

‖(q†(tn)− qn∗h )Nn=1‖`2(L2(Ω)) ≤ cδ
1

4(1+β) .

Note that this result is consistent with Theorem 3.2.

6 Numerical results and discussions

Now we present numerical experiments to illustrate the feasibility of recovering a space-time dependent
diffusion coefficient q†(x, t). Throughout, the corresponding discrete optimization problem is solved by the
conjugate gradient (CG) method (cf. [4]), with the gradient computed using the standard adjoint technique.
The lower and upper bounds in the admissible set A are taken to be c0 = 0.5 and c1 = 5, respectively, and
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are enforced by a projection step after each CG iteration. Generally, the algorithm converges within tens of
iterations, with the maximum number of iterations fixed at 100. The noisy data zδ is generated by

zδ(x, t) = u(q†)(x, t) + ε‖u(q†)‖L∞(0,T ;L∞(Ω))ξ(x, t), (x, t) ∈ Ω× (0, T ),

where ξ(x, t) follows the standard Gaussian distribution, and ε ≥ 0 denotes the (relative) noise level. The ref-
erence data u(q†) is computed with a finer mesh. The noisy data zδ is first generated on a fine spatial-temporal
mesh and then interpolated to a coarse spatial/ temporal mesh for the inversion step. The regularization
parameter γ in the functional Jγ is determined in a trial and error manner.

6.1 Numerical results in one spatial dimension

First we present numerical results for two examples on unit interval Ω = (0, 1). The first example has a
smooth exact coefficient q†, and the problem is homogeneous.

Example 6.1. u0 = x(1− x), f ≡ 0, q† = 2 + sin(πx)e−0.1t, T = 0.1.

The numerical results for Example 6.1 with different level ε of noises are shown in Table 1, where the
quantities eq and eu, respectively, defined by

eq = ‖(qn∗h − q†(tn))Nn=1‖`2(L2(Ω)) and eq = ‖(Unh (q∗h,τ )− u(q†)(tn))Nn=1‖`2(L2(Ω))

are used to measure the convergence of the discrete approximations. The results are computed with a fixed
small time step size τ = 1 × 10−4, and γ ∼ O(δ2) and h ∼ O(

√
δ), cf. Remark 5.1. It is observed that the

`2(L2(Ω)) error eq of the reconstruction q∗h,τ decreases steadily as the noise level ε tends to zero with a rate

roughly O(δ0.40). This convergence rate is consistently observed for all three fractional orders, and thus the
order α does not influence much the convergence rates, provided that the time step size τ is sufficiently small.
The empirical rate is faster than the theoretical one in Theorem 5.1. It remains an outstanding question to
obtain the optimal convergence of discrete approximations. Meanwhile, the quantity eu converges also to zero
as the noise level ε→ 0, at a rate nearly O(δ0.9), which agrees well with the theoretical prediction O(δ) from
Lemma 5.1. We refer to Fig. 1 for exemplary reconstructions: the recoveries are qualitatively comparable
with each other and all reasonably accurate for both ε = 1.00e-2 and ε = 5.00e-2, thereby concurring with
the errors in Table 1.

Table 1: The errors eq and eu for Example 6.1.

ε 5.00e-2 3.00e-2 1.00e-2 5.00e-3 3.00e-3 1.00e-3
α γ 5.00e-10 1.80e-10 2.00e-11 5.00e-12 1.80e-12 2.00e-13 rate

0.25 eq 1.26e-2 1.28e-2 5.57e-3 4.00e-3 3.27e-3 2.45e-3 0.467
eu 1.65e-5 1.14e-5 5.25e-6 3.31e-6 1.65e-6 4.84e-7 0.880

0.50 eq 1.07e-2 1.47e-2 6.86e-3 5.15e-3 4.04e-3 3.28e-3 0.375
eu 3.93e-5 2.83e-5 1.48e-5 6.80e-6 3.41e-6 1.22e-6 0.897

0.75 eq 1.01e-2 9.09e-3 7.06e-3 4.77e-3 3.93e-3 2.50e-3 0.363
eu 6.40e-5 2.71e-5 1.70e-5 5.69e-6 4.37e-6 1.57e-6 0.916

The second example has a nonsmooth coefficient q†.

Example 6.2. u0(x) = x(1− x), f ≡ 0, q† = 2 + min(x, 1− x)(1− t), T = 0.1.

The numerical results for Example 6.2 with different levels of noise are given in Table 2. Note that the
exact coefficient q† does not satisfy the regularity condition in Assumption 5.1, and thus one expects the
convergence rates of eq and eu suffer from a loss. Indeed, the error eq converges at a slower rate O(δ0.3),
which, however, is still higher than that predicted by Remark 5.1. Interestingly, the error eu converges
roughly at the rate O(δ), confirming the estimate in Lemma 5.1. This observation holds for all three
fractional orders. Exemplary reconstructions are shown in Fig. 2, which shows clearly the convergence of
the discrete approximations as the noise level ε decreases.
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q† ε = 1.00e-2 ε = 5.00e-2

Figure 1: Numerical reconstructions and the corresponding pointwise error e = q∗h,τ − q† for Example 6.1
with α = 0.5, at two noise levels ε = 1.00e-2 and 5.00e-2.

Table 2: The errors eq and eu for Example 6.2.

ε 5.00e-2 3.00e-2 1.00e-2 5.00e-3 3.00e-3 1.00e-3
α γ 1.00e-9 3.60e-10 4.00e-11 1.00e-11 3.60e-12 4.00e-13 rate

0.25 eq 9.58e-3 7.59e-3 5.77e-3 5.10e-3 4.55e-3 3.71e-3 0.234
eu 1.85e-5 1.15e-5 5.02e-6 3.14e-6 1.51e-6 4.82e-7 0.910

0.50 eq 1.28e-2 8.17e-3 6.39e-3 4.70e-3 4.11e-3 3.94e-3 0.297
eu 5.44e-5 2.88e-5 1.05e-5 7.79e-6 3.39e-6 1.02e-6 0.977

0.75 eq 1.17e-2 8.41e-3 6.02e-3 4.07e-3 4.05e-3 3.75e-3 0.301
eu 5.93e-5 3.32e-5 1.44e-5 7.31e-6 4.14e-6 1.33e-6 0.951

q† ε = 1.00e-2 ε = 5.00e-2

Figure 2: Numerical reconstructions and the corresponding pointwise error e = q∗h,τ − q† for Example 6.2
with α = 0.5, at two noise levels ε = 1.00e-2 and 5.00e-2.

6.2 Numerical results in two spatial dimension

Now we present numerical results for the following example on the unit square Ω = (0, 1)2. The domain Ω is
first uniformly divided into M2 small squares, each with side length 1/M , and then a uniform triangulation
is obtained by connecting the low-left and upper-right vertices of each small square. The reference data is
first computed on a finer mesh with M = 100 and a time step size τ = 1/2000. The inversion step is carried
out with a mesh M = 40 and τ = 1/500.

Example 6.3. u0(x1, x2) = x1(1−x1) sin(πx2), f = sin(πx1) sin(πx2)(1+t), q†(x1, x2) = 1+sin(πx1)x2(1−
x2), and T = 1.

The numerical results for the example with different noise levels are presented in Fig. 3. The empirical
observations are in excellent agreement with that for the one-dimensional problem in Example 6.1: we
observe a steady convergence as the noise level ε decreases to zero. The plots also indicate that for the
pointwise error e = q∗h− q†, the error in recovering the peak is dominating, however, the overall shape is well
resolved.
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q† ε = 1.00e-2 ε = 5.00e-2

Figure 3: Numerical reconstructions for Example 6.3 with ε =1e-2 and 5.00e-2 and the corresponding
pointwise error e = q∗h,τ − q†, plotted for T = 0.5, for α = 0.25 (top), α = 0.50 (middle) and α = 0.75
(bottom).
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A Proof of Theorem 2.1

We give the proof of Theorem 2.1. The argument follows largely that of [23, Theorem 6.14]. It is provided
only for completeness.

Proof. Let w = u− u0. Then it suffices to show that there exists a unique solution w ∈ Lp(0, T ;W 1,r
0 (Ω)) ∩

C([0, T ];Lr(Ω)) and ∂αt w ∈ Lp(0, T ;W−1,r(Ω)), where w satisfies in W−1,r(Ω)

∂αt w(t) +A(t)w(t) = f(t)−A(t)u0, t ∈ (0, T ], with w(0) = 0. (A.1)

For any θ ∈ [0, 1], consider the auxiliary problem

∂αt w(t) +A(θt)w(t) = f(t)−A(t)u0, t ∈ (0, T ], with w(0) = 0, (A.2)

and let D = {θ ∈ [0, 1] : (A.2) has a solution u ∈ Lp(0, T ;W 1,r
0 (Ω)) such that ∂αt w ∈ Lp(0, T ;W−1,r(Ω))}.

Next we prove that the set D is a closed subset of [0, 1]. Since u0 ∈ W 1,r
0 (Ω), we have f − A(t)u0 ∈

Lp(0, T ;W−1,r(Ω)), and by Lemma 2.2, we deduce 0 ∈ D and D 6= ∅. Then for any θ ∈ D and t0 ∈ (0, T ],
we rewrite (A.2) as

∂αt w(t) +A(θt0)w(t) = f(t)−A(t)u0 + (A(θt0)−A(θt))w(t), t ∈ (0, T ], with w(0) = 0.

By the maximal Lp regularity in Lemma 2.2 and the perturbation estimate in Lemma 2.1, we obtain

‖∂αt w‖Lp(0,t0;W−1,r(Ω)) + ‖∇w‖Lp(0,t0;Lr(Ω))

≤c‖f −A(t)u0‖Lp(0,t0;W−1,r(Ω)) + c‖(A(θt0)−A(θt))w(t)‖Lp(0,t0;W−1,r(Ω))

≤c‖f −A(t)u0‖Lp(0,t0;W−1,r(Ω)) + c‖(t0 − t)∇w‖Lp(0,t0;Lr(Ω)). (A.3)
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Let g(t) = ‖∇w‖pLp(0,t;Lr(Ω)). Since g′(t) = ‖∇w(t)‖pLr(Ω) and g(0) = 0, (A.3) and integration by parts gives

g(t0) ≤ c‖f −A(t)u0‖pLp(0,t0;W−1,r(Ω)) + c

∫ t0

0

(t0 − t)pg′(t)dt

= c‖f −A(t)u0‖pLp(0,t0;W−1,r(Ω)) + cp

∫ t0

0

(t0 − t)p−1g(t)dt.

Then the standard Gronwall’s inequality implies

‖∇w‖Lp(0,t0;Lr(Ω)) ≤ c‖f −A(t)u0‖Lp(0,t0;W−1,r(Ω)).

This inequality and (A.3) yield

‖∂αt w‖Lp(0,t0;W−1,r(Ω)) + ‖∇w‖Lp(0,t0;Lr(Ω)) ≤ c‖f −A(t)u0‖Lp(0,t0;W−1,r(Ω)). (A.4)

Since this estimate is independent of θ ∈ D, D is a closed subset of [0, 1]. Next we show that D is open with
respect to the subset topology of [0, 1]. In fact, for any θ0 ∈ D and θ ∈ [0, 1] close to θ0, we rewrite problem
(A.2) as

∂αt w(t) +A(θ0t)w(t) + (A(θt)−A(θ0t))w(t) = f(t)−A(t)u0, t ∈ (0, T ], with w(0) = 0,

which is equivalent to

[1 + (∂αt +A(θ0t))
−1(A(θt)−A(θ0t))]w(t) = (∂αt +A(θ0t))

−1(f(t)−A(t)u0).

The estimate (A.4) and Lemma 2.1 imply that for any v ∈W 1,r
0 (Ω)

‖(∂αt +A(θ0t))
−1(A(θt)−A(θ0t))v‖Lp(0,T ;W 1,r(Ω))

≤c‖(A(θt)−A(θ0t))v‖Lp(0,T ;W−1,r(Ω)) ≤ c|θ − θ0|‖∇v‖Lp(0,T ;Lr(Ω)).

Thus for θ sufficiently close to θ0, the operator 1 + (∂αt + A(θ0t))
−1(A(θt) − A(θ0t)) is invertible on

Lp(0, T ;W 1,r
0 (Ω)), which implies θ ∈ D. Thus D is open with respect to the subset topology of [0, 1].

Since D is both closed and open respect to the subset topology of [0, 1], we deduce D = [0, 1]. In sum, prob-
lem (A.1) has a solution w such that w ∈ Lp(0, T ;W 1,r

0 (Ω)) and ∂αt w ∈ Lp(0, T ;W−1,r(Ω)). Since W−1,r(Ω)
is UMD [20, Proposition 4.2.17], and w(0) = 0, we deduce w ∈ Wα,p(0, T ;W−1,r(Ω)). By interpolation be-
tween Wα,p(0, T ;W−1,r(Ω)) and Lp(0, T ;W 1,r

0 (Ω)) [5, Theorem 5.2], we derive u ∈W α
2 ,p(0, T ;Lr(Ω)). This,

Sobolev embedding theorem and the condition p > 2
α imply w ∈ C([0, T ];Lr(Ω)). Similarly, if r > d and

p > 2r
α(r−d) , interpolation [5, Theorem 5.2] and Sobolev embedding theorem imply that for 1

αp < θ < ( 1
2−

d
2r )

u ∈Wα,p(0, T ;W−1,r(Ω)) ∩ Lp(0, T ;W 1,r
0 (Ω))

↪→Wαθ,p(0, T ;W 1−2θ,r(Ω)) ↪→ L∞((0, T )× Ω).
(A.5)

This completes the proof of the theorem.

B Nonsmooth data estimates

In this appendix, we collect several nonsmooth data estimates for the numerical approximations of the direct
problem (1.1), which are central for deriving the basic estimates in Section 5.1. First, we provide two useful
results, i.e., error estimate and maximal `p regularity, for the following fully discrete scheme for problem
(1.1): find Unh (q†) ∈ Xh satisfying U0

h = Phu0 and

∂̄ατ U
n
h (q†) +Ah(q†(tn))Unh (q†) = Phf(tn) =: fn, n = 1, 2, . . . , N. (B.1)

Lemma B.1. Let q† be the exact coefficient and u ≡ u(q†) the solution to problem (4.2), and {Unh (q†)} the
solution to problem (B.1). Then under Assumption 2.2, the following error estimate holds

‖u(tn)− Unh (q†)‖L2(Ω) ≤ c(τtα−1
n + h2), n = 1, . . . , N.
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Proof. The error estimate improves upon a known result from [26], by removing the log factor `h = | lnh|,
under Assumption 2.2. It suffices to show that for u0 ≡ 0 and f ∈ C1([0, T ];L2(Ω))

‖(uh − u)(t)‖L2(Ω) ≤ ch2, ∀t ∈ [0, T ], (B.2)

where uh is the solution to the semidiscrete scheme:

∂αt uh(t) +Ah(q†(t))uh(t) = Phf(t), ∀t ∈ (0, T ], with uh(0) = 0. (B.3)

For any t∗ ∈ (0, T ], let Ah∗ = Ah(q†(t∗)) and Ah(t) = Ah(q†(t)), and further we define the solution operators
Fh∗ and Eh∗(t) by

Fh∗(t) =
1

2πi

∫
Γθ,δ

eztzα−1(zα +Ah∗)
−1 dz and Eh∗(t) :=

1

2πi

∫
Γθ,δ

ezt(zα +Ah∗)
−1 dz.

Then the solution uh is given by

uh(t) =

∫ t

0

Eh∗(t− s)
(
Phf(s) + (Ah∗ −Ah(s))uh(s)

)
ds,

Let eh = Phu− uh. Then by (2.8), eh is given by

eh(t) =

∫ t

0

(PhE∗(t− s)− Eh∗(t− s)Ph)f(s)ds

+

∫ t

0

(PhE∗(t− s)− Eh∗(t− s)Ph)(A∗ −A(s))u(s)ds

+

∫ t

0

Eh∗(t− s)
(
Ph(A∗ −A(s))u(s)− (Ah∗ −Ah(s))uh(s)

)
ds =:

3∑
i=1

Ii(t). (B.4)

The argument in [26, Theorem 3.3] gives

‖I2(t∗)‖L2(Ω) ≤ ch2‖f‖L∞(0,t∗;L2(Ω)), (B.5)

‖I3(t∗)‖L2(Ω) ≤ ch2‖f‖L∞(0,t∗;L2(Ω)) + c

∫ t∗

0

‖eh(s)‖L2(Ω)ds, (B.6)

Now we bound the term I1 in (B.4). The identities E∗(t) = −A−1
∗ F ′∗(t) and Eh∗(t) = −A−1

h∗ F
′
h∗(t) [23,

Lemma 6.1] and integration by parts imply

I1(t) = (PhF∗(t)A
−1
∗ − Fh∗(t)A−1

h∗ Ph)f(0)−
∫ t

0

(PhF∗(t− s)A−1
∗ − Fh∗(t− s)A−1

h∗ Ph)f ′(s) ds.

For any v ∈ L2(Ω), we derive

Fh∗(t)A
−1
h∗ Phv =

1

2πi

∫
Γθ,δ

eztzα−1(zα +Ah∗)
−1A−1

h∗ Phv dz =
1

2πi

∫
Γθ,δ

eztz−1
[
A−1
h∗ − (zα +Ah∗)

−1
]
Phv dz.

Similarly, F∗(t)A
−1
∗ v can be represented as

F∗(t)A
−1
∗ v =

1

2πi

∫
Γθ,δ

eztz−1
[
A−1
∗ − (zα +A∗)

−1
]
v dz.

Then the standard finite element approximation yields that for any z ∈ Γθ,δ [15, p. 819–820] ‖(A−1
h∗ Ph −

A−1
∗ )v‖L2(Ω) ≤ ch2‖v‖L2(Ω) and ‖((zα +Ah∗)

−1Ph − (zα +A∗)
−1)v‖L2(Ω) ≤ ch2‖v‖L2(Ω). Consequently, we

arrive at
‖(PhF∗(t)A−1

∗ − Fh∗(t)A−1
h∗ Ph)v‖L2(Ω) ≤ ch2‖v‖L2(Ω), ∀v ∈ L2(Ω).
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Therefore, we obtain

‖I1(t)‖L2(Ω) ≤ ch2‖f(0)‖L2(Ω) + ch2

∫ t

0

‖f ′(s)‖L2(Ω) ds,

which together with (B.5)–(B.6) implies

‖eh(t∗)‖L2(Ω) ≤ ch2 +

∫ t∗

0

‖eh(s)‖L2(Ω)ds.

The desired result follows from Gronwall’s inequality and the triangle inequality.

The next result gives the maximal `p regularity for the scheme (B.1), where Ah denotes the discrete
negative Dirichlet Laplacian.

Lemma B.2. Let {Unh }Nn=1 be the solution to the scheme (B.1) with u0 ≡ 0. Then for any p ∈ (1,∞),

‖(∂̄ατ Unh )Nn=1‖`p(L2(Ω)) + ‖(AhUnh )Nn=1‖`p(L2(Ω)) ≤ c‖(fn)Nn=1‖`p(L2(Ω)).

Proof. For any m = 1, 2, . . . , N , the scheme (B.1) can be recast into

∂̄ατ U
n
h +Ah(q†(tm))Unh = Phf

n + (Ah(q†(tm))−Ah(q†(tn)))Unh .

Since Ah(q†(tm)) is independent of n, there holds the discrete maximal `p regularity [25]

‖(∂̄ατ Unh )mn=1‖
p
`p(L2(Ω)) + ‖(AhUnh )mn=1‖

p
`p(L2(Ω))

≤ c
(
‖(fn)mn=1‖

p
`p(L2(Ω)) + ‖[(Ah(q†(tm))−Ah(q†(tn)))Unh ]mn=1‖

p
L2(Ω)

)
.

Note that under condition (2.3), there holds [26, Remark 3.1]

‖(Ah(t)−Ah(s))vh‖ ≤ c |t− s| ‖Ahvh‖, ∀vh ∈ Xh.

Consequently,

‖(∂̄ατ Unh )mn=1‖
p
`p(L2(Ω)) + ‖(AhUnh )mn=1‖

p
`p(L2(Ω))

≤ c‖(fn)mn=1‖
p
`p(L2(Ω)) + cτ

m∑
n=1

|tm − tn|p‖AhUnh ‖
p
L2(Ω).

Let gm = ‖(AhUnh )mn=1‖
p
`p(L2(Ω)). Then the above estimate implies

gm ≤ c‖(fn)mn=1‖
p
`p(L2(Ω)) + cτ

m∑
n=1

|tm − tn|p
gn − gn−1

τ

≤ c‖(fn)mn=1‖
p
`p(L2(Ω)) + cτ

m−1∑
n=1

(tm − tn)p − (tm − tn+1)p

τ
gn

≤ c‖(fn)mn=1‖
p
`p(L2(Ω)) + cτ

m−1∑
n=1

tp−1
m−ng

n.

Then the standard discrete Gronwall’s inequality leads to

‖(AhUnh )mn=1‖
p
`p(L2(Ω)) ≤ c‖(f

n)mn=1‖
p
`p(L2(Ω)).

and the desired result follows immediately by the triangle’s inequality.

The next lemma provides an error estimate of the scheme (B.1) with the (perturbed) coefficient Ihq†.
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Lemma B.3. Let q† be the exact diffusion coefficient, u ≡ u(q†) the solution to problem (4.2), and
{Unh (Ihq†)} ⊂ Xh the numerical solutions to the scheme (B.1) with Ihq† in place of q†. Then under As-
sumptions 2.2 and 5.1,

‖(u(tn)− Unh (Ihq†))Nn=1‖2`2(L2(Ω)) ≤

{
c(τmin(2,1+2α) + h4), α 6= 1/2;

c(τ2`N + h4), α = 1/2.

Proof. Note that Unh (q†) and Unh (Ihq†) satisfy U0
h(q†) = U0

h(Ihq†) = Phu0 and

∂̄ατ U
n
h (q†) +Ah(q†(tn))Unh (q†) = Phf(tn), n = 1, 2 . . . , N,

∂̄ατ U
n
h (Ihq†) +Ah(Ihq†(tn))Unh (Ihq†) = Phf(tn), n = 1, 2, . . . , N.

By subtracting the two identities, we deduce that ρnh := Unh (q†)− Unh (Ihq†) satisfies ρ0
h = 0 and

∂̄ατ ρ
n
h +Ah(q†(tn))ρnh =

(
Ah(Ihq†(tn))−Ah(q†(tn))

)
Unh (Ihq†), n = 1, . . . , N. (B.7)

The the maximal `p regularity in Lemma B.2 implies

‖(ρnh)Nn=1‖2`2(L2(Ω)) ≤ c‖(Ah(q†(tn))−1
(
Ah(Ihq†(tn))−Ah(q†(tn))

)
Unh (Ihq†))Nn=1‖2`2(L2(Ω))

≤ c‖(
(
Ah(Ihq†(tn))−1 −Ah(q†(tn))−1

)
Ah(Ihq†(tn))Unh (Ihq†))Nn=1‖2`2(L2(Ω)).

By [28, Lemma A.1], we have for any ε > 0 and p ≥ max(d+ ε, 2),

‖Ah(Ihq†)−1 −Ah(q†)−1‖Lp(Ω)→L2(Ω) ≤ ch2.

Consequently,
‖(ρnh)Nn=1‖2`2(L2(Ω)) ≤ ch

4‖(Ah(Ihq†(tn))Unh (Ihq†))Nn=1‖2`2(Lp(Ω)).

Then the maximal `p regularity for the backward Euler CQ in Lemma B.2 implies

‖(Ah(Ihq†(tn))Unh (Ihq†))Nn=1‖2`2(Lp(Ω)) ≤ c(‖(f(tn))Nn=1‖2`2(Lp(Ω)) + ‖∇u0‖2Lp(Ω)).

Finally, the desired estimate follows from Lemma B.1 and the triangle inequality.

Last, we give an estimate on the backward Euler CQ approximation of ∂αt u(tn).

Lemma B.4. Let q† be the exact diffusion coefficient and u ≡ u(q†) be the solution to problem (4.2). Then
under Assumption 2.2, with `n = ln(1 + tn

τ ) = ln(n+ 1), there holds

‖∂̄ατ u(tn)− ∂αt u(tn)‖L2(Ω) ≤ cτ(t−1
n + `n).

Proof. The proof employs a (different) perturbation argument. Let A0 = A(0). Let F (t) = (A0−A(t))u(t)+
f(t) and y(t) = u(t)− u0. Then y(t) satisfies

∂αt y(t) +A0y(t) = F (t)−A0u0, ∀t ∈ (0, T ], with y(0) = 0.

Using the identity F (t) = F (0) +
∫ t

0
F ′(s) ds, then Laplace transform gives

zαŷ(z) +A0ŷ(z) = z−1(F (0)−A0u0) + z−1F̂ ′(z),

i.e.,
ŷ(z) = (zα +A0)−1(z−1(F (0)−A0u0) + z−1F̂ ′(z)).

Similarly, one can derive a representation for the discrete approximation. By inverse Laplace transform,
wn = ∂αt y(tn)− ∂̄ατ y(tn) is given by

wn =
1

2πi

∫
Γτθ,δ

eztnK(z)(z−1(F (0)−A0u0) + z−1F̂ ′(z)) dz
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+
1

2πi

∫
Γθ,δ\Γτθ,δ

eztnK(z)(z−1(F (0)−A0u0) + z−1F̂ ′(z)) dz.

with Γτθ,δ = {z ∈ Γθ,δ, |Im(z)| ≤ π
τ } and

K(z) = (zα − δτ (e−zτ )α)(zα +A0)−1,

with δτ (ξ) = τ−1(1− ξ) being characteristic polynomial of the backward Euler method. Simple computation
shows that the following estimates hold

c1|z| ≤ |δτ (e−zτ )| ≤ c2|z|, |δτ (e−zτ )α − zα| ≤ cτz1+α, ∀z ∈ Γτθ,δ, (B.8)

|δτ (e−zτ )| ≤ |z|
∞∑
k=1

|zτ |k−1

k!
≤ |z|e|z|τ , ∀z ∈ Σθ = {z ∈ C : z 6= 0, | arg(z)| ≤ θ}, (B.9)

and the resolvent estimate
‖(z +A0)−1‖ ≤ c|z|−1, ∀z ∈ Σθ. (B.10)

We first treat the error involving (A0u0 − F (0)), and let

I1 =
1

2πi

∫
Γτθ,δ

eztnK(z)z−1(A0u0 − F (0))dz and I2 =
1

2πi

∫
Γθ,δ\Γτθ,δ

eztnK(z)z−1(F (0)−A0u0)dz.

By choosing δ = c/tn in Γθ,δ and applying (B.10), the term I1 is bounded by

‖I1‖L2(Ω) ≤ cτ‖F (0)−A0u0‖L2(Ω)

(∫ π sin θ
τ

c
tn

e−cρtn dρ+

∫ θ

−θ
ct−1
n dθ

)
≤ cτt−1

n ‖F (0)−A0u0‖L2(Ω).

Further, by (B.9), for any z = ρe±iθ ∈ Γθ,δ \ Γτθ,δ and choosing θ ∈ (π/2, π) close to π,

|eztn(δτ (e−zτ )α − zα)z−1| ≤ etnρ cos θ(c|z|αeαρτ + |z|α)|z|−1 ≤ c|z|α−1e−cρtn .

Then the term I2 is bounded by

‖I2‖L2(Ω) ≤ c‖F (0)−A0u0‖L2(Ω)

∫ ∞
π sin θ
τ

e−cρtnρ−1 dρ ≤ cτt−1
n ‖F (0)−A0u0‖L2(Ω).

This argument also bounds for the term involving F̂ ′(z). Finally, we obtain

‖wn‖L2(Ω) ≤ cτt−1
n ‖F (0)−A0u0‖L2(Ω) +

∫ tn

τ

(tn − s+ τ)−1‖F ′(s)‖L2(Ω) ds.

Then the solution regularity (2.6) and the perturbation estimate (2.4) immediately imply

‖F ′(s)‖L2(Ω) ≤ ‖f ′(s)‖L2(Ω) + ‖A′(s)u(s)‖L2(Ω) + ‖(A0 −A(s))u′(s)‖L2(Ω)

≤ c(‖f ′(s)‖L2(Ω) + ‖u(s)‖H2(Ω) + s‖u′(s)‖H2(Ω)) ≤ c.

This bound and the estimate ‖f(0)−A0u0‖L2(Ω) ≤ c imply

‖wn‖L2(Ω) ≤ cτt−1
n + c

∫ tn

τ

(tn+1 − s)−1 ds ≤ cτ(t−1
n + `n).

This completes the proof of the lemma.
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