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One of the key performance metrics for optical networks is the maximum achievable throughput for a given network.
Determining it however, is an NP-hard optimisation problem, often solved via computationally expensive integer linear
programming (ILP) formulations, infeasible to implement as objectives, even on very small node scales of a few tens
of nodes. Alternatively heuristics are used, although these too require considerable computation time for large numbers
of networks. There is, thus, a need for ultra-fast and accurate performance evaluation of optical networks. For the first
time, we propose the use of a geometric deep learning model, message passing neural networks (MPNN), to learn the
relationship between, node and edge features, the structure and the maximum achievable throughput of networks. We
demonstrate that MPNNs can accurately predict the maximum achievable throughput while reducing the computational
time by up to 5-orders of magnitude compared to the ILP for small networks (10-15 nodes) and compared to the heuristic
for large networks (25-100 nodes) - proving their suitability for the design and optimisation of optical networks on
different time- and distance- scales.

I. INTRODUCTION

Multiwavelength optical networks underpin the global data
communication network infrastructure and use the wavelength
domain both for routing and to increase point-to-point data
transmission. Increasingly, optical networks are being used
for intra- and inter-data centre communications and in high
performance computing1. To enhance the throughput of these
networks, data is using many wavelength channels on a single
fibre, using wavelength division multiplexing (WDM). This
has greatly improved the capacity of optical networks, but re-
quires the solution of the routing and wavelength assignment
(RWA), shown to be NP-hard and, therefore, computationally
difficult to solve optimally2–4.

The overarching goal of physical network design is to max-
imise the performance, measured by throughput, latency and
resilience, whilst minimising the cost and/or resource use,
making them intelligent and adaptive5,6. This is an evolution
from the previous goals of minimising the number of wave-
lengths needed to optically route data within the network7,
which quantified the relationship between wavelength require-
ments and the physical topology8,9. However, due to growing
number of wavelengths in fibres and the growing understand-
ing of the linear and nonlinear physical layer impairments,
have highlighted the importance of including the optical fi-
bre physical properties in network analysis and design, since
these play a significant role in determining both routing and
throughput, and must be taken into account6.

The maximum achievable throughput is defined here as
the throughput when the resources (wavelengths) are fully
exploited, at zero blocking for a given demand distribution
(measured in bits per second). To quantify the maximum
achievable throughput in a network, requires an optimal so-
lution to the RWA problem. Integer linear programming
(ILP) formulations have been shown to solve the RWA prob-
lem optimally10–12, however are infeasible for networks larger
than ∼ 30 nodes. Problem-agnostic optimisation frameworks,

that aim at efficiently exploring the solution space, i.e. meta-
heuristics, have been shown to give good solutions in this area,
however have no guarantee of achieving a global optimum,
whilst often still taking a long time to solve13–16. Heuris-
tics are handcrafted algorithms for specific purposes, based
on automated rules-of-thumb, which are highly-scalable, but
have shown limited success in terms of reaching optimum val-
ues, compared to ILP solutions4. In addition, graph cuts have
been analysed to estimate the maximum achievable through-
put, however also succumb to computational complexity for
larger graphs and have been shown to be non-exact for non-
uniform traffic distributions7,17. The efficient and accurate
measurement of the maximum achievable throughput of op-
tical networks remains a considerable challenge.

To make this task more computationally efficient, machine
learning has been introduced to learn the relationship between
the topology and performance parameters, based on previ-
ously labelled datasets.

More specifically, supervised deep learning has been used,
where large labelled datasets are used to train learnable func-
tions. There are two broad approaches to deep learning: (i) ar-

FIG. 1: An example of message passing on a 6 node topology
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tificial neural networks (ANN) based on euclidian data, or (ii)
geometric deep learning using graph neural networks (GNN),
based on graph structured data to perform classification or re-
gression tasks. In18 an ANN was used to estimate the block-
ing probability of a network and in19, it was used to estimate
the fast optical packet loss rate for bufferless optical packet-
switched networks. The problem however with ANNs, is
that they operate on grid-style data, i.e. vector/matrix inputs.
Therefore,they are not able to use relational data, i.e. the rela-
tion of one node to other nodes, nor fully represent the struc-
tural features of the graphs, such as node degree variance or
algebraic connectivity9. This makes it difficult to learn a gen-
eral relationship between these features and the performance
parameters as the structure and physical properties of graphs
have a significant impact on overall network performance.
More recently there have been many works that look at ap-
plying reinforcement learning to solve the RWA problem20–24.
These works are promising works in applying novel combina-
torial optimisation techniques to the RWA problem, however
still do not achieve performance comparable to ILP solutions.

Geometric deep learning applies deep learning to graph
structured data incorporating the graph structure within the
learning process. By including node features, edge features,
and learnable functions that operate in a graph-structured
manner, geometric deep learning learns relationships on
graphs better than traditional deep learning. Graph neural net-
works (GNN) are a collection of supervised learning frame-
works for geometric deep learning, able to aggregate infor-
mation in graphs. Message passing neural networks (MPNN)
are a specific formulation of GNN, shown to perform well for
regression tasks, one of the fundamental goals of our work25.
The benefit of this type of model, is that it has been shown to
generalise well to graphs of different sizes and structures, as
well as being computationally efficient. The downside, how-
ever, is that it requires large datasets to learn and predict graph
properties. More often than not these are far and few between,
making it difficult to apply these frameworks. Previously, this
approach has been successfully applied in quantum chemistry
and non-optical communication networks25–27. However, in
optical communications, estimating the maximum achievable
throughput of a network is an infamously NP-hard problem,
so that this regression problem remains unsolved.

In this paper we apply a MPNN architecture to model the
performance of optical networks, by learning the relationship
between the topology and the maximum achievable through-
put. We generated three large datasets (∼ 80000 graphs per
dataset), with the number of nodes in the range 10-100, ex-
panding previous work28. The datasets were used to train
an accurate MPNN model to learn the relationship between
the topology and the performance of optical networks. We
demonstrate the significant computational time reduction with
this model to estimate graph performance. This in turn re-
duces the complexity of topology design problems for optical
networks, by replacing computationally complex objectives
with surrogate models, such as the one demonstrated here.
Thus, enabling future topology optimisation to maximise the
achievable throughput, making topology design more intelli-
gent and computationally efficient.

The rest of the paper is structured as follows. Section II, de-
scribes the MPNN model and its operation. Section III details
the methodology used to generate the three graph datasets.
Section IV explains the training procedure and the different
parameter settings for the MPNN model. Finally, using the
generated datasets, Section V, analyses the model’s capability
to predict maximum achievable throughput, in terms of accu-
racy, computation time and generalisation capability.

II. MESSAGE PASSING NEURAL NETWORKS (MPNN)

Optical networks are a set of nodes (for example major
cities or data centre or servers within data centres) inter-
connected, with arbitrary connectivity, by optical fibres. Opti-
cal fibres carry multiple discrete wavelength channels, each
carrying individually modulated data. To transfer data be-
tween source and destination nodes, for each source – destina-
tion demand, a lightpath is setup, consisting of a route (a series
of edges) and a wavelength designated for transmission. The
process of selection of wavelength (colour) and route is deter-
mined via the RWA algorithm. Optical networks are usually
modelled as graphs and so ideally lend themselves as inputs to
graph neural networks. Recently there have been works that
apply graph neural networks in the context of reinforcement
learning (RL) to the RWA problem in optical networks23,24.
These works however are only compared to heuristics, where
sometimes they perform better and sometimes worse. We ap-
ply MPNNs to learn from the solutions directly from inte-
ger linear programming formulations and heuristics to con-
sistently predict performance properties of optical networks
such as the maximum achievable throughput.

We start with a digraph denoted as G(N;E), where N and
E are its set of nodes and edges respectively. All nodes and
edges have a pre-determined set of node and edge features, xn
and enu, respectively, where n∈N and (n;u)∈E. In this work,
the degree (dn) and the total traffic originating from a node is
used to describe node features, and the worst case noise-to-
signal (NSR) of a fully populated link is used to describe the
corresponding edge feature. These node and edge features, are
vectors with information related to either nodes: degree and
traffic, or for the edges: distance and signal-to-noise (SNR)
ratio. MPNNs use abstract vectors, referred to as a node or
edge hidden state. In this work, for simplicity, we confine the
hidden states to nodes, represented as ht

n, where t represents
the message passing iteration. These hidden states, are vec-
tors that hold embeddings for nodes, i.e. for a specific node,
they capture structural information from the rest of the graph.
We define the set of node features/edge features as XN /XE re-
spectively, and the set of hidden node states as HN . GNNs can
be used for either regression or classification tasks, and in this
work we focus on the regression of graph properties.

The MPNN framework centres around three func-
tions: message function Mt(ht

n;ht
u;enu), update function

Ut(ht
n;mt+1

n ) and readout function R(HN ;XN), where n is a
node in the node set N, t is the message passing iteration
out of T iterations and u is a node in the neighbourhood of
n (u ∈N (n)). T generally is chosen to be in the order of ei-
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ther the average shortest path length or diameter of the graph.
There have been several different formulations of these func-
tions in the past29–36, however, they all follow the same gen-
eral algorithm.

Algorithm 1: Message Passing Neural Network
Algorithm26

Input : G, XN, XE
Output : y

1begin
2 for n to N do
3 h1

n  [xn;0;0; :::;0];
4 end
5 for t = 1 to T do
6 for n 2 N do
7 mt+ 1

n  å u2N (n) Mt (ht
n;ht

u;enu);
8 ht+ 1

n  Ut (ht
n;mt+ 1

n );
9 end

10 end
11 y  R(HN;XN);
12end

The MPNN - outlined in algorithm 1 - is made up of three
stages: (i) message passing (line 7) (ii) update (line 8) (iii)
readout (line 11). In (i) each node in the graph, requests in-
formation (messages) from its neighbourhood (N (n)). This
information (messages) is given by feeding in node and edge
information into the message function (Mt (ht

n;ht
u;enu)). To

form the nodal message (mt+ 1
n ) of noden, we have to aggre-

gate the information (messages) given by the neighbourhood
of n. This can be done via different operations, i.e. averag-
ing, sampling or summing. We obtain the message (mt+ 1

n ) of
noden, by summing the messages from the neighbourhood of
n. This is then fed through an update function (line 8) de�ned
asUt (ht

n;mt+ 1
n ), which updates the state (ht+ 1

n ) of each node.
These two steps are illustrated in the inner block of the dia-
gram shown in �gure 2, where one can see that the process
is repeated for each noden 2 N. This procedure iteratively
distributes the information of the graph to every node by col-
lecting local messages and using these to update the new hid-
den vectors. Figure 1 demonstrates this process of message
passing for the computation of the node state of node 1, on
an example 6-node topology. Here the process is shown for
two message passing iterations, t=1, 2. Working backwards
from t=2 and node 1, we can see that we use the neighbours
of node 1, which feed their messages into the aggregation that
then are updated. Before this, their neighbours do the same for
their states. This demonstrates how the information about the
graph is distributed across the graph during message passing.

After T message passing rounds and update layers, shown
by the outer blocks in �gure 2, the hidden states are ag-
gregated and used to create a graph level predictiony, seen
in line 11 of algorithm 1. This process of aggregation and
graph-level readout is summarised by the readout function
R(HN;XN), whereHN denotes the set of hidden states andXN
the set of node features. The readout function outputs a scalar
value used for prediction. This architecture has been shown to
provide good learning capability for general graph structured

FIG. 2: Process of message passing and readout.TA -
Maximum achievable throughput

data26, where one can incorporate individual node and edge
features. Another advantage of such a model is that the archi-
tecture is size agnostic, meaning that the model can generalise
to graphs of different sizes.

A. Message Function

The message function is used to extract information from
both hidden states of neighbouring nodes and adjacent edge
features, thus producingmessages(line 7). The functions
that are used to formulate thesemessagesare generally learn-
able functions. Within optical networking, the �bre lengths of
edges signi�cantly impact the transmission performance over
these edges, therefore it is essential to include this information
in the formulation of messages.

Mt (ht
n;ht

u;enu) = A(enu) � ht
u + b(enu) (1)

As shown in Eq.(1), we use a matrix ANN (A) and vector
valued ANN (b) to extract features from the edge feature vec-
torsenu in the constructed messages. These messages are then
aggregated via a sum operation, as seen in line 7 of algorithm
1 and the inner block of �gure 2, to give the future message
of noden, mt+ 1

n . The sum operator is chosen due to it being
permutation agnostic and for its simplicity.

B. Update Function

The update function is used to take the information (mes-
sages) aggregated from the neighbourhood of noden and learn
a new hidden state vectorht+ 1

n to incorporate this new infor-
mation in the state (line 8). As this is a sequential process, we
use a recurrent neural network (RNN) architecture, which can
take previous states into account and learn how much of the
previous states to use in the next state, whilst producing new
abstract representations of the data. RNNs have been shown
to struggle with vanishing gradients during training, therefore
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we chose to use a gated recurrent unit (GRU). GRUs use reset
and update gates to learn how much of the state and input to
use or forget depending on the target. They exhibit improved
performance over standard RNNs, however have been shown
to have reasonable computational complexity37.

Ut (ht
n;mt+ 1

n ) = GRU(ht
n;mt+ 1

n ) (2)

As shown in Eq.(2), the update function consists solely of a
GRU function. The current state,ht

n, and the aggregated mes-
sages,mt+ 1

n , are fed in, to produce an updated representation,
ht+ 1

n .

C. Readout Function

The �nal graph-level aggregation of the states and features
is carried out via the readout function (line 11). The aim is
to aggregate all the relevant inter-dependencies between the
nodes, via the hidden states,hT

n , and represent it as a sin-
gle vector, on which one can regress to the target outputs
(throughput, in our case). The readout function is shown in
Eq.(3).

R(HN;XN) = b(å
n

s [i(hT
n ;xn)] � j(hT

n )) (3)

To learn which parts of the hidden vector,hT
n , are important

for the prediction of the target, an attention mechanism was
used. The attention mechanism learns weights in the range of
[0;1], that are used to weight a vector, with the goal of learning
which parts of the vector are important for the learning task.
This is achieved, by feeding the concatenated hidden vector,
hT

n , and node features,xn, through an ANN and passing the
output through a sigmoid functions , which normalises the
output between[0;1]. Using an element-wise multiplication
(Hadarmard product), this vector acts as attention scores to
the original hidden vector,hT

n which is fed through another
ANN j26. Summing these operations over all nodes gives us
the �nal vector used for the regression layer. The regression
layer, b consists of a single ANN layer, which reduces the
output to a scalar value.

Having de�ned the MPNN model architecture, it now needs
to be trained on graph labels, i.e. maximum achievable
throughput, to predict this on all unseen graphs. The next sec-
tion details the methodology for generating the training and
testing datasets.

III. DATASET GENERATION

To train the MPNN, three large sets of graphs, with different
numbers of nodes, were generated. To calculate the maximum
achievable throughput for nodes sizes below 25, an ILP was
used to �nd optimal RWAs, although for the two larger sets of
graphs (N = 25� 100), a heuristic algorithm was used. Using
these RWAs, the throughput was calculated and then stored as
a graph label to be used for training and testing. The follow-
ing section details the methodology used for generating the

topologies, the ILP formulation, the heuristic algorithms, the
physical layer impairements (PLI) model and the �nal calcu-
lation of the maximum achievable throughput.

A. Topology Generation

A single generative graph model was chosen to create the
graph structures for training and testing. These were created
via the SNR-BA model, which has been shown to re�ect op-
tical core network structures and physical properties6. In this
generative graph model, distances between nodes are incorpo-
rated in the process of edge selection, creating localised hubs
within graphs. Nodes are chosen uniformly over a grid, rep-
resenting the size of the north-American continent, resulting
in unique node locations for each graph and therefore giving a
greater range of graph structures and physical properties than
in6, where the same real network node locations were used in
all generated graphs. The SNR-BA generative graph model
then uses these unique node locations to generate the graphs.
Inter-node distances were constrained to be at least 100km.

D f ibre =

8
><

>:

1:5� Dhav if Dhav < 1000km
1500km if 1000km� Dhav � 1200km
1:25� Dhav if Dhav > 1200km

(4)
To model distance,Dhav, in the generated graphs, their

geographical coordinates were used in conjunction with the
harvesine formula38. The haversine formula takes into ac-
count the curvature of the earth and calculates distances over
a sphere rather than a plain. We also account for realistic �bre
distances as shown in Eq.(4). The �bre distances are estimated
according to the European Telecommunications Standards In-
stitute (ETSI) guidelines for estimating distance overheads in
communication networks39.

To demonstrate the model operation on different size
topologies, three separate datasets were generated: (i) al-
pha set with 10� j Nj � 15 (� 75000 graphs), beta set with
25 � j Nj � 45 (� 95000 graphs) and gamma set with 55�
jNj � 100 (� 75000 graphs). The nodes increased by 1 and
5 for the alpha and beta, gamma datasets respectively, giv-
ing 6, 5 and 10 node scales for the alpha, beta and gamma
datasets respectively. To make sure that the model learns per-
formance trends over a variety of edge numbers, edge num-
bers were chosen by adding an empirically determined per-
centage of the nodes for a given graph, multiple times, as seen
in Eq.(5). Heredn was chosen to be 0.2, typical of the rela-
tively sparse core networks andi varied between 1 and 10 -
so that the graph, empirically, has approximately 20% more
edges than nodes, as the sparsest core networks have about
20% more edges than nodes, we have used this as the mini-
mum value3.

jEj = jNj + dn � jNj � i (5)

To generate the labels for the maximum achievable through-
put values, an optimum RWA that maximises the number of
allocated lightpaths (simply referred to as the optimum RWA)
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FIG. 3: Data generation process for the maximum achievable throughput labels. SL- sequential loadingTA - Maximum
achievable throughput

is required for each network considered. To �nd these opti-
mum RWAs, an ILP formulation was used forjNj < 25, and
for jNj = 25� 100, a heuristic, as described in the next two
sections.

B. Integer Linear Program

To maximise the maximum achievable throughput of the
network, an ILP is developed that maximises the number of
lightpaths allocated, maximised using the objective function
(6). The ILP considered here does not directly optimise the
maximum achievable throughput, however assumes that max-
imising the number of lightpaths allocated is highly correlated
to maximising throughput within the network. Maximising
the number of lightpaths allows the problem to be speci�ed in
terms of an integer objective making the problem less compu-
tationally complex. Maximising throughput directly by solv-
ing the routing and wavelength allocation problem, a more
complex problem to be solved, because of nonlinear interac-
tions between lightpaths. A decision variabledw;k;z, is used to
de�ne a lightpath, wherew 2 W, k 2 K andz2 Z, are the set
of wavelengths, k-shortest paths and node-pairs, respectively.
It is de�ned as in Eq.(7), and is constrained to assigning a
lightpath, subject to the normalised traf�c matrix (Tc

z ) and the
objectiveM, de�ned in Eq.(8). For this work all the train-
ing data was generated with uniform traf�c, meaning that uni-
form bandwidth was assumed to be routed between all node-
pairs. Here the objective is to maximiseM, as summarised
in Eq.(6). The wavelength continuity and edge-disjoint con-
straints of paths are de�ned in Eq.(9), whereI( j 2 k) refers to
whether edge (j) occurs on path (k).

max(M) (6)

dw;k;z =

8
><

>:

1 if (k, w) is the lightpath assignment
for node pairz

0 otherwise
(7)

å
w2W

å
k2K

dw;k;z = dM � Tc
z e 8z2 Z (8)

å
z2Z

å
k2K

dw;k;zI ( j 2 k) � 1 8 j 2 E 8w 2 W (9)

Using this ILP formulation, optimum RWAs were found for
each graph in the alpha dataset, using 156 wavelengths and
20 k-shortest paths. ILP formulations, however, do not scale
for larger graphs, and heuristics in conjunction with sequen-
tial loading were used for the beta and gamma datasets, as
described in the following section.

C. Heuristics

Previously, it has been argued, that heuristics, and specif-
ically, �rst-�t k-shortest-paths (FF-kSP), can achieve simi-
lar performance for estimating capacity in optical networks4.
These heuristics are used in combination with sequential
loading, to load the network until the maximum achievable
throughput can be found and FF-kSP heuristic has been shown
to give very good performance for this type of task, with low
computational complexity4. The heuristics here are used for
two purposes: (i) to benchmark the performance of the MPNN
(N � 25)(ii) to generate training labels for larger graphs (N �
25), for which the ILP is infeasible.

Algorithm 2: Sequential loading algorithm
Input : Tc, G

Output : RWAt

1begin
2 i = 0;
3 M = 0;
4 ms = 100;
5 for i � ms do
6 while RWAt 6= blockeddo
7 M  M + ms;
8 Tr  d M � Tce;
9 RWAt  FR(G;Tr ;RWAt� 1);

10 end
11 M  M � ms;
12 ms  d ms=2e;
13 end
14end

The sequential loading applied is described by algorithm 2.
Here the same objective (M) is maximised as in the ILP, where
Tr andTc areN � N matrices representing the connections to
be routed and the normalised traf�c matrix respectively.FR is
the routing function, which takes three inputs: a graph (G), a
connections matrix (Tr ) and the previous RWA. Once blocking
is achieved, the iteration (ms) is halved and the network is
loaded until blocking is achieved. This iteratesmi times, after
which the �nal RWA is returned, wheremi was chosen to be 6,
as more would be adding negligible amounts to the objective.
For this work kSP-FF and FF-kSP4 were used, both of which
are common heuristics for solving the RWA problem. FF-kSP
was used to generate optimum RWA con�gurations for the
graphs in the beta and gamma datasets, due to its high linear
correlation to the ILP-determined performance data, as seen
later in Section V A.
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Having optimised the RWA of a given network, we need
to use these optimum RWA values to calculate the maximum
achievable throughput. For this, the physical layer impair-
ments (PLI) over the �bre in which the data is routed need
to be taken into account to calculate the SNR values of the
individual lightpaths.

D. Physical Layer Impairments Model

To calculate the resultant throughput for a given RWA, we
calculated the accumulated SNR for each lightpath assign-
ment. A lightpathi = f pi ; l ig 2 R has a pathpi and a wave-
lengthl i associated with it and is part of the set of lightpaths
for a routingR. To calculate the capacity for this lightpath,
one �rst needs to take into account the edges along which the
lightpath travels and their corresponding transmission SNR
values. Using Eq.(10) and the state of the edge (which wave-
lengths are occupied), one can calculate theSNR(i;e) value on
each of the linkse 2 pi . Here Pi is the launch power,hn
is the nonlinear coef�cient, which can be calculated by Eq.
(5) in40 andPASE is the power of the ampli�ed spontaneous
emission. In this work, just by way of an example, we as-
sumed multiples of 80km standard single mode �bre spans,
with a = 0:2dB

km, D = 18 ps
nm�km and g = 1:2 1

W�km, ampli�ed
with erbium doped �bre ampli�ers (EDFA) with a noise �gure
of 4dB. Nyquist spaced 32Gbd channels were interfaced with
colourless, directionless, and contentionless, recon�gurable
optical add–drop multiplexers (CDC-ROADMs), over a con-
strained C-band (1530–1570 nm) optical bandwidth. The total
SNR of that path is then calculated by taking the inverse sum
of the noise-to-signal ratio (NSR) values of each link traversed
by the pathpi , shown in Eq.(11)

SNR(i;e) �
Pi

PASE+ hnP3
i

(10)

SNRi =
�

å
e2 pi

1
SNR(i;e)

� � 1

(11)

This SNR is used to calculate the maximum achievable data
rate over this lightpath using Eq.(12)41. It can be seen that the
capacity of a lightpath mainly depends on the SNR of that
path, which, in turn, depends on the length and congestion
along the path.BCH represents the channel bandwidth used,
which was kept constant at 32 GHz for all channels.

Ti = 2BCHlog2(1+ SNRi) (12)

TA = å
i2R

Ti (13)

The throughputs for all the lightpaths, were calculated and
summed, as in Eq.(13) to give the total achievable through-
put for a particular RWA and network. For the routing of
larger networks, multiple �bres needed to be incorporated to
allow for all-to-all connectivity, where 4 �bres per edge for
25� j Nj � 45 and 16 �bres per edge for 55� j Nj � 100 were

used. Multiple �bres generally increase the throughput of a
network by at leastx times, wherex is the number of �bres
per edge42. The hierarchy of graphs however does not change
when adding more �bres, i.e. which network is better does not
change, therefore not changing the overall distribution of the
generated graphs.

Using this methodology, the three datasets, alpha, beta and
gamma, were generated via the SNR-BA model, their RWAs
optimised either via ILP or FF-kSP (depending on their node
scale) and �nally their maximum achievable throughputs (TA)
calculated. The whole process is illustrated in �gure 3. Using
TA as a training label (target), the MPNN model, de�ned in
Section II, was trained in a supervised manner, described in
the following section.

IV. TRAINING

Using the datasets created as described in Section III, the
three MPNN models were trained to predict the maximum
achievable throughput,TA. The node features (xn), chosen to
be the degree of each node (dn) and its normalised traf�c:

xn =

"

dn; å
u2N

Tc
(n;u)

#

were used to initialise the node hidden vectors (h1
n). As

throughput depends on the physical properties of the �bre
links, the overall transmission quality metric is a critical fea-
ture. The number of lightpaths carried over an edge or set
of edges, as well as the length of paths taken, in�uences the
overall system performance via the achievable signal-to-noise
ratio in the nonlinear optical regime. Throughout testing it
was seen that the inverse of the SNR (NSR) was a better fea-
ture to use, as it is an additive quantity over a set of edges. In
an ideal case, optimal launch powers would be found for each
wavelength in the network, however due to the computational
complexity associated with carrying this out for many net-
works (240000 topologies), the assumption of uniform launch
powers, i.e. equal input power/lightpath for all lightpaths, was
used, similarly to other work4.

A hidden vector size of 16, with 8 message passing rounds
was used for all model training. Larger hidden vector sizes
did not seem to provide more accuracy, however added higher
computational complexity. The message passing rounds were
chosen to work well over the whole spectrum of node scales,
whereT = 8 gave good performance for all. As over�tting
was initially a problem, a dropout rate of 0.65 with L2 regular-
isation at a rate of 0.03 was used, where higher values started
reducing the accuracy of the model. The learning rate was ini-
tialised with a value of 0.001 and decayed exponentially using
10000 steps at a rate of 0.95. The Adam optimisation algo-
rithm was used to train all models, with the graphs in batches
of 50 and a single fully-connected regression layer consisting
of 256 neurons was used for the �nal regression output, where
larger values did not provide further accuracy without over�t-
ting. To monitor whether the model was tending to over�t, a
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validation set of 500 graphs was used to evaluate the perfor-
mance at each epoch. The training was conducted on a Nvidia
V100 16GB GPU, with training generally taking around 72
hours, covering 2000 epochs.

Having trained the three separate models on the different
datasets, we used three separate test sets to gauge the perfor-
mance of the trained inference models. These were generated
identically to the methodology laid out in Section III, however
were unseen (not used for training) by the model. The follow-
ing section analyses the accuracy, computation time and gen-
eralisation capabilities of the MPNN model using these test
sets.

V. RESULTS

To understand how well the MPNN model performs in
comparison to other methodologies for estimating the maxi-
mum achievable throughput of an optical network, there are
three aspects we evaluate: (i) model accuracy (ii) time com-
plexity (iii) generalisation capability to unseen graphs.

To evaluate the accuracy of the MPNN, the three test sets
of 6000, 5000 and 10000 graphs, were used to test the alpha,
beta and gamma models, respectively. Here 1000 graphs for
each node scale were generated. Labels for the graphs in the
alpha test set were generated via the ILP formulation, whilst
for the beta and gamma test sets, FF-kSP was used. Again,
uniform traf�c was generated and used for all these results. To
measure the accuracy of model predictions, the coef�cient of
determinationR2 was used, which measures how much of the
variance in the data is explained by the model, by comparing
the prediction variance to that of the original data43. Here we
de�ne R2 as in Eq.(14).

R2 = 1�
å n(yn � pn)2

å n(yn � ȳ)2 (14)

Whereyn refers to the true label andpn the predicted label
andȳ the mean.

The Pearson's correlation coef�cientr was used as an al-
ternative metric and determines how linearly the labels and
predictions are related, with a value of 1 signifying a perfect
linear correlation. This coef�cient is important in the context
of surrogate models or cost functions, as a model might be
inaccurate (lowR2), however have a high linear correlation
(high r ), which means that although inaccurate it can predict
the relative performance of a network well - vital for optimisa-
tion. The predictive accuracy for all three models is analysed
and discussed in the following section.

A. Maximum Achievable Throughput

The label that was evaluated is that of maximum achievable
throughput (TA). For each of the 6000 graphs in the alpha test
set, the performance was evaluated via ILP (used for the la-
bels), FF-kSP, kSP-FF and MPNN and plotted in �gure 4(a).
It can be seen that the kSP-FF and FF-kSP heuristics under-
perform compared to the ILP, giving lowerR2 values in both,

Node Scale Method R2 r
10� j Nj � 15 MPNN 0.951 0.975
10� j Nj � 15 FF-kSP 0.740 0.969
10� j Nj � 15 kSP-FF 0.102 0.901
10� j Nj � 15 ElasticNet 0.763 0.873
10� j Nj � 15 ANN 0.768 0.908
25� j Nj � 45 MPNN 0.973 0.986
55� j Nj � 100 MPNN 0.948 0.974

TABLE I: Accuracy of the MPNN model and other capacity
estimation methods, measured by the coef�cient of

determination (R2) and the Pearson's correlation coef�cient
(r ).

although kSP-FF is worse as it has even lower values forR2

andr , as seen in table I. This signi�es poor predictive accu-
racy of the actual labels (TA). The performance of kSP-FF is
worse than that of FF-kSP, as it priotises shorter paths over op-
timising wavelength selection, this is an expected result seen
in4. FF-kSP generally spreads the usage more evenly across
all network links compared to kSP-FF. This spreading of re-
sources uses slightly more spectrum, however achieves much
less network congestion. However, the MPNN has learnt on
a variety of graphs of these sizes and can accurately predict
the throughput trend here, as indicated by its highR2 value of
0.951. Furthermore, one can see the difference in throughput
distributions, where the CDF of the different methodologies
are plotted in �gure 4(b). Here it is clear that the kSP-FF
and FF-kSP heuristics give different distributions compared
to the ILP. The MPNN however, is able to replicate the orig-
inal distribution of the ILP well, and therefore it can pre-
dict the throughput of the networks better. In addition to the
MPNN, a linear and nonlinear ML regression method were
evaluated to compare other ML frameworks. Here the degree
variance, connectivity, algebraic connectivity, communicabil-
ity distance and communicability traf�c index were used as
input features for the graph. ElasticNet and the arti�cial neu-
ral network (ANN) were trained and tested with the same data,
both scoring lower withR2 values of 0.763 and 0.768, respec-
tively.

Another metric evaluated was the Pearson's correlation co-
ef�cient (r ). As for the optimisation, there is signi�cant lin-
ear correlation between the real performance and the predicted
performance properties. It can be seen that the heuristics gen-
erally perform well, and the FF-kSP has a high linear correla-
tion (r = 0:969) between the estimated throughput values and
those calculated via the ILP, as seen in table I. The MPNN, has
a similar correlation, withr = 0:975, meaning it predicts the
relative throughput performance of networks well. ElasticNet
and the ANN both scorer values lower than the MPNN and
FF-kSP. The high linear correlation of FF-kSP compared to
the ILP, makes it a good candidate to evaluate the maximum
achievable throughput for the larger graphs, even though the
real maximum achievable throughput might be larger.

To further evaluate the performance of the model, the model
was applied to the beta and gamma testing datasets that in-
cluded larger graphs. Here the labels were generated via
the FF-kSP heuristic, as the ILP is not able to scale to these
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