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One of the key performance metrics for optical networks is the maximum achievable throughput for a given network.
Determining it however, is an NP-hard optimisation problem, often solved via computationally expensive integer linear
programming (ILP) formulations, infeasible to implement as objectives, even on very small node scales of a few tens
of nodes. Alternatively heuristics are used, although these too require considerable computation time for large numbers
of networks. There is, thus, a need for ultra-fast and accurate performance evaluation of optical networks. For the first
time, we propose the use of a geometric deep learning model, message passing neural networks (MPNN), to learn the
relationship between, node and edge features, the structure and the maximum achievable throughput of networks. We
demonstrate that MPNNs can accurately predict the maximum achievable throughput while reducing the computational
time by up to 5-orders of magnitude compared to the ILP for small networks (10-15 nodes) and compared to the heuristic
for large networks (25-100 nodes) - proving their suitability for the design and optimisation of optical networks on
different time- and distance- scales.

I. INTRODUCTION

Multiwavelength optical networks underpin the global data
communication network infrastructure and use the wavelength
domain both for routing and to increase point-to-point data
transmission. Increasingly, optical networks are being used
for intra- and inter-data centre communications and in high
performance computing1. To enhance the throughput of these
networks, data is using many wavelength channels on a single
fibre, using wavelength division multiplexing (WDM). This
has greatly improved the capacity of optical networks, but re-
quires the solution of the routing and wavelength assignment
(RWA), shown to be NP-hard and, therefore, computationally
difficult to solve optimally2–4.

The overarching goal of physical network design is to max-
imise the performance, measured by throughput, latency and
resilience, whilst minimising the cost and/or resource use,
making them intelligent and adaptive5,6. This is an evolution
from the previous goals of minimising the number of wave-
lengths needed to optically route data within the network7,
which quantified the relationship between wavelength require-
ments and the physical topology8,9. However, due to growing
number of wavelengths in fibres and the growing understand-
ing of the linear and nonlinear physical layer impairments,
have highlighted the importance of including the optical fi-
bre physical properties in network analysis and design, since
these play a significant role in determining both routing and
throughput, and must be taken into account6.

The maximum achievable throughput is defined here as
the throughput when the resources (wavelengths) are fully
exploited, at zero blocking for a given demand distribution
(measured in bits per second). To quantify the maximum
achievable throughput in a network, requires an optimal so-
lution to the RWA problem. Integer linear programming
(ILP) formulations have been shown to solve the RWA prob-
lem optimally10–12, however are infeasible for networks larger
than ∼ 30 nodes. Problem-agnostic optimisation frameworks,

that aim at efficiently exploring the solution space, i.e. meta-
heuristics, have been shown to give good solutions in this area,
however have no guarantee of achieving a global optimum,
whilst often still taking a long time to solve13–16. Heuris-
tics are handcrafted algorithms for specific purposes, based
on automated rules-of-thumb, which are highly-scalable, but
have shown limited success in terms of reaching optimum val-
ues, compared to ILP solutions4. In addition, graph cuts have
been analysed to estimate the maximum achievable through-
put, however also succumb to computational complexity for
larger graphs and have been shown to be non-exact for non-
uniform traffic distributions7,17. The efficient and accurate
measurement of the maximum achievable throughput of op-
tical networks remains a considerable challenge.

To make this task more computationally efficient, machine
learning has been introduced to learn the relationship between
the topology and performance parameters, based on previ-
ously labelled datasets.

More specifically, supervised deep learning has been used,
where large labelled datasets are used to train learnable func-
tions. There are two broad approaches to deep learning: (i) ar-

FIG. 1: An example of message passing on a 6 node topology
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tificial neural networks (ANN) based on euclidian data, or (ii)
geometric deep learning using graph neural networks (GNN),
based on graph structured data to perform classification or re-
gression tasks. In18 an ANN was used to estimate the block-
ing probability of a network and in19, it was used to estimate
the fast optical packet loss rate for bufferless optical packet-
switched networks. The problem however with ANNs, is
that they operate on grid-style data, i.e. vector/matrix inputs.
Therefore,they are not able to use relational data, i.e. the rela-
tion of one node to other nodes, nor fully represent the struc-
tural features of the graphs, such as node degree variance or
algebraic connectivity9. This makes it difficult to learn a gen-
eral relationship between these features and the performance
parameters as the structure and physical properties of graphs
have a significant impact on overall network performance.
More recently there have been many works that look at ap-
plying reinforcement learning to solve the RWA problem20–24.
These works are promising works in applying novel combina-
torial optimisation techniques to the RWA problem, however
still do not achieve performance comparable to ILP solutions.

Geometric deep learning applies deep learning to graph
structured data incorporating the graph structure within the
learning process. By including node features, edge features,
and learnable functions that operate in a graph-structured
manner, geometric deep learning learns relationships on
graphs better than traditional deep learning. Graph neural net-
works (GNN) are a collection of supervised learning frame-
works for geometric deep learning, able to aggregate infor-
mation in graphs. Message passing neural networks (MPNN)
are a specific formulation of GNN, shown to perform well for
regression tasks, one of the fundamental goals of our work25.
The benefit of this type of model, is that it has been shown to
generalise well to graphs of different sizes and structures, as
well as being computationally efficient. The downside, how-
ever, is that it requires large datasets to learn and predict graph
properties. More often than not these are far and few between,
making it difficult to apply these frameworks. Previously, this
approach has been successfully applied in quantum chemistry
and non-optical communication networks25–27. However, in
optical communications, estimating the maximum achievable
throughput of a network is an infamously NP-hard problem,
so that this regression problem remains unsolved.

In this paper we apply a MPNN architecture to model the
performance of optical networks, by learning the relationship
between the topology and the maximum achievable through-
put. We generated three large datasets (∼ 80000 graphs per
dataset), with the number of nodes in the range 10-100, ex-
panding previous work28. The datasets were used to train
an accurate MPNN model to learn the relationship between
the topology and the performance of optical networks. We
demonstrate the significant computational time reduction with
this model to estimate graph performance. This in turn re-
duces the complexity of topology design problems for optical
networks, by replacing computationally complex objectives
with surrogate models, such as the one demonstrated here.
Thus, enabling future topology optimisation to maximise the
achievable throughput, making topology design more intelli-
gent and computationally efficient.

The rest of the paper is structured as follows. Section II, de-
scribes the MPNN model and its operation. Section III details
the methodology used to generate the three graph datasets.
Section IV explains the training procedure and the different
parameter settings for the MPNN model. Finally, using the
generated datasets, Section V, analyses the model’s capability
to predict maximum achievable throughput, in terms of accu-
racy, computation time and generalisation capability.

II. MESSAGE PASSING NEURAL NETWORKS (MPNN)

Optical networks are a set of nodes (for example major
cities or data centre or servers within data centres) inter-
connected, with arbitrary connectivity, by optical fibres. Opti-
cal fibres carry multiple discrete wavelength channels, each
carrying individually modulated data. To transfer data be-
tween source and destination nodes, for each source – destina-
tion demand, a lightpath is setup, consisting of a route (a series
of edges) and a wavelength designated for transmission. The
process of selection of wavelength (colour) and route is deter-
mined via the RWA algorithm. Optical networks are usually
modelled as graphs and so ideally lend themselves as inputs to
graph neural networks. Recently there have been works that
apply graph neural networks in the context of reinforcement
learning (RL) to the RWA problem in optical networks23,24.
These works however are only compared to heuristics, where
sometimes they perform better and sometimes worse. We ap-
ply MPNNs to learn from the solutions directly from inte-
ger linear programming formulations and heuristics to con-
sistently predict performance properties of optical networks
such as the maximum achievable throughput.

We start with a digraph denoted as G(N,E), where N and
E are its set of nodes and edges respectively. All nodes and
edges have a pre-determined set of node and edge features, xn
and enu, respectively, where n∈N and (n,u)∈E. In this work,
the degree (δn) and the total traffic originating from a node is
used to describe node features, and the worst case noise-to-
signal (NSR) of a fully populated link is used to describe the
corresponding edge feature. These node and edge features, are
vectors with information related to either nodes: degree and
traffic, or for the edges: distance and signal-to-noise (SNR)
ratio. MPNNs use abstract vectors, referred to as a node or
edge hidden state. In this work, for simplicity, we confine the
hidden states to nodes, represented as ht

n, where t represents
the message passing iteration. These hidden states, are vec-
tors that hold embeddings for nodes, i.e. for a specific node,
they capture structural information from the rest of the graph.
We define the set of node features/edge features as XN /XE re-
spectively, and the set of hidden node states as HN . GNNs can
be used for either regression or classification tasks, and in this
work we focus on the regression of graph properties.

The MPNN framework centres around three func-
tions: message function Mt(ht

n,h
t
u,enu), update function

Ut(ht
n,m

t+1
n ) and readout function R(HN ,XN), where n is a

node in the node set N, t is the message passing iteration
out of T iterations and u is a node in the neighbourhood of
n (u ∈N (n)). T generally is chosen to be in the order of ei-
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ther the average shortest path length or diameter of the graph.
There have been several different formulations of these func-
tions in the past29–36, however, they all follow the same gen-
eral algorithm.

Algorithm 1: Message Passing Neural Network
Algorithm26

Input: G, XN , XE
Output: y

1begin
2 for n to N do
3 h1

n← [xn,0,0, ...,0];
4 end
5 for t = 1 to T do
6 for n ∈ N do
7 mt+1

n ← ∑u∈N (n) Mt(ht
n,h

t
u,enu);

8 ht+1
n ←Ut(ht

n,m
t+1
n );

9 end
10 end
11 y← R(HN ,XN);
12end

The MPNN - outlined in algorithm 1 - is made up of three
stages: (i) message passing (line 7) (ii) update (line 8) (iii)
readout (line 11). In (i) each node in the graph, requests in-
formation (messages) from its neighbourhood (N (n)). This
information (messages) is given by feeding in node and edge
information into the message function (Mt(ht

n,h
t
u,enu)). To

form the nodal message (mt+1
n ) of node n, we have to aggre-

gate the information (messages) given by the neighbourhood
of n. This can be done via different operations, i.e. averag-
ing, sampling or summing. We obtain the message (mt+1

n ) of
node n, by summing the messages from the neighbourhood of
n. This is then fed through an update function (line 8) defined
as Ut(ht

n,m
t+1
n ), which updates the state (ht+1

n ) of each node.
These two steps are illustrated in the inner block of the dia-
gram shown in figure 2, where one can see that the process
is repeated for each node n ∈ N. This procedure iteratively
distributes the information of the graph to every node by col-
lecting local messages and using these to update the new hid-
den vectors. Figure 1 demonstrates this process of message
passing for the computation of the node state of node 1, on
an example 6-node topology. Here the process is shown for
two message passing iterations, t=1, 2. Working backwards
from t=2 and node 1, we can see that we use the neighbours
of node 1, which feed their messages into the aggregation that
then are updated. Before this, their neighbours do the same for
their states. This demonstrates how the information about the
graph is distributed across the graph during message passing.

After T message passing rounds and update layers, shown
by the outer blocks in figure 2, the hidden states are ag-
gregated and used to create a graph level prediction y, seen
in line 11 of algorithm 1. This process of aggregation and
graph-level readout is summarised by the readout function
R(HN ,XN), where HN denotes the set of hidden states and XN
the set of node features. The readout function outputs a scalar
value used for prediction. This architecture has been shown to
provide good learning capability for general graph structured

FIG. 2: Process of message passing and readout. TA -
Maximum achievable throughput

data26, where one can incorporate individual node and edge
features. Another advantage of such a model is that the archi-
tecture is size agnostic, meaning that the model can generalise
to graphs of different sizes.

A. Message Function

The message function is used to extract information from
both hidden states of neighbouring nodes and adjacent edge
features, thus producing messages (line 7). The functions
that are used to formulate these messages are generally learn-
able functions. Within optical networking, the fibre lengths of
edges significantly impact the transmission performance over
these edges, therefore it is essential to include this information
in the formulation of messages.

Mt(ht
n,h

t
u,enu) = A(enu)×ht

u +b(enu) (1)

As shown in Eq.(1), we use a matrix ANN (A) and vector
valued ANN (b) to extract features from the edge feature vec-
tors enu in the constructed messages. These messages are then
aggregated via a sum operation, as seen in line 7 of algorithm
1 and the inner block of figure 2, to give the future message
of node n, mt+1

n . The sum operator is chosen due to it being
permutation agnostic and for its simplicity.

B. Update Function

The update function is used to take the information (mes-
sages) aggregated from the neighbourhood of node n and learn
a new hidden state vector ht+1

n to incorporate this new infor-
mation in the state (line 8). As this is a sequential process, we
use a recurrent neural network (RNN) architecture, which can
take previous states into account and learn how much of the
previous states to use in the next state, whilst producing new
abstract representations of the data. RNNs have been shown
to struggle with vanishing gradients during training, therefore
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we chose to use a gated recurrent unit (GRU). GRUs use reset
and update gates to learn how much of the state and input to
use or forget depending on the target. They exhibit improved
performance over standard RNNs, however have been shown
to have reasonable computational complexity37.

Ut(ht
n,m

t+1
n ) = GRU(ht

n,m
t+1
n ) (2)

As shown in Eq.(2), the update function consists solely of a
GRU function. The current state, ht

n, and the aggregated mes-
sages, mt+1

n , are fed in, to produce an updated representation,
ht+1

n .

C. Readout Function

The final graph-level aggregation of the states and features
is carried out via the readout function (line 11). The aim is
to aggregate all the relevant inter-dependencies between the
nodes, via the hidden states, hT

n , and represent it as a sin-
gle vector, on which one can regress to the target outputs
(throughput, in our case). The readout function is shown in
Eq.(3).

R(HN ,XN) = b(∑
n

σ [i(hT
n ,xn)]⊙ j(hT

n )) (3)

To learn which parts of the hidden vector, hT
n , are important

for the prediction of the target, an attention mechanism was
used. The attention mechanism learns weights in the range of
[0,1], that are used to weight a vector, with the goal of learning
which parts of the vector are important for the learning task.
This is achieved, by feeding the concatenated hidden vector,
hT

n , and node features, xn, through an ANN and passing the
output through a sigmoid function σ , which normalises the
output between [0,1]. Using an element-wise multiplication
(Hadarmard product), this vector acts as attention scores to
the original hidden vector, hT

n which is fed through another
ANN j26. Summing these operations over all nodes gives us
the final vector used for the regression layer. The regression
layer, b consists of a single ANN layer, which reduces the
output to a scalar value.

Having defined the MPNN model architecture, it now needs
to be trained on graph labels, i.e. maximum achievable
throughput, to predict this on all unseen graphs. The next sec-
tion details the methodology for generating the training and
testing datasets.

III. DATASET GENERATION

To train the MPNN, three large sets of graphs, with different
numbers of nodes, were generated. To calculate the maximum
achievable throughput for nodes sizes below 25, an ILP was
used to find optimal RWAs, although for the two larger sets of
graphs (N = 25−100), a heuristic algorithm was used. Using
these RWAs, the throughput was calculated and then stored as
a graph label to be used for training and testing. The follow-
ing section details the methodology used for generating the

topologies, the ILP formulation, the heuristic algorithms, the
physical layer impairements (PLI) model and the final calcu-
lation of the maximum achievable throughput.

A. Topology Generation

A single generative graph model was chosen to create the
graph structures for training and testing. These were created
via the SNR-BA model, which has been shown to reflect op-
tical core network structures and physical properties6. In this
generative graph model, distances between nodes are incorpo-
rated in the process of edge selection, creating localised hubs
within graphs. Nodes are chosen uniformly over a grid, rep-
resenting the size of the north-American continent, resulting
in unique node locations for each graph and therefore giving a
greater range of graph structures and physical properties than
in6, where the same real network node locations were used in
all generated graphs. The SNR-BA generative graph model
then uses these unique node locations to generate the graphs.
Inter-node distances were constrained to be at least 100km.

D f ibre =


1.5 ·Dhav if Dhav < 1000 km
1500 km if 1000 km≤ Dhav ≤ 1200 km
1.25 ·Dhav if Dhav > 1200 km

(4)
To model distance, Dhav, in the generated graphs, their

geographical coordinates were used in conjunction with the
harvesine formula38. The haversine formula takes into ac-
count the curvature of the earth and calculates distances over
a sphere rather than a plain. We also account for realistic fibre
distances as shown in Eq.(4). The fibre distances are estimated
according to the European Telecommunications Standards In-
stitute (ETSI) guidelines for estimating distance overheads in
communication networks39.

To demonstrate the model operation on different size
topologies, three separate datasets were generated: (i) al-
pha set with 10 ≤ |N| ≤ 15 (∼ 75000 graphs), beta set with
25 ≤ |N| ≤ 45 (∼ 95000 graphs) and gamma set with 55 ≤
|N| ≤ 100 (∼ 75000 graphs). The nodes increased by 1 and
5 for the alpha and beta, gamma datasets respectively, giv-
ing 6, 5 and 10 node scales for the alpha, beta and gamma
datasets respectively. To make sure that the model learns per-
formance trends over a variety of edge numbers, edge num-
bers were chosen by adding an empirically determined per-
centage of the nodes for a given graph, multiple times, as seen
in Eq.(5). Here dn was chosen to be 0.2, typical of the rela-
tively sparse core networks and i varied between 1 and 10 -
so that the graph, empirically, has approximately 20% more
edges than nodes, as the sparsest core networks have about
20% more edges than nodes, we have used this as the mini-
mum value3.

|E|= |N|+dn · |N| · i (5)

To generate the labels for the maximum achievable through-
put values, an optimum RWA that maximises the number of
allocated lightpaths (simply referred to as the optimum RWA)
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FIG. 3: Data generation process for the maximum achievable throughput labels. SL- sequential loading TA - Maximum
achievable throughput

is required for each network considered. To find these opti-
mum RWAs, an ILP formulation was used for |N| < 25, and
for |N| = 25− 100, a heuristic, as described in the next two
sections.

B. Integer Linear Program

To maximise the maximum achievable throughput of the
network, an ILP is developed that maximises the number of
lightpaths allocated, maximised using the objective function
(6). The ILP considered here does not directly optimise the
maximum achievable throughput, however assumes that max-
imising the number of lightpaths allocated is highly correlated
to maximising throughput within the network. Maximising
the number of lightpaths allows the problem to be specified in
terms of an integer objective making the problem less compu-
tationally complex. Maximising throughput directly by solv-
ing the routing and wavelength allocation problem, a more
complex problem to be solved, because of nonlinear interac-
tions between lightpaths. A decision variable δw,k,z, is used to
define a lightpath, where w ∈W , k ∈ K and z ∈ Z, are the set
of wavelengths, k-shortest paths and node-pairs, respectively.
It is defined as in Eq.(7), and is constrained to assigning a
lightpath, subject to the normalised traffic matrix (T c

z ) and the
objective M, defined in Eq.(8). For this work all the train-
ing data was generated with uniform traffic, meaning that uni-
form bandwidth was assumed to be routed between all node-
pairs. Here the objective is to maximise M, as summarised
in Eq.(6). The wavelength continuity and edge-disjoint con-
straints of paths are defined in Eq.(9), where I( j ∈ k) refers to
whether edge ( j) occurs on path (k).

max(M) (6)

δw,k,z =


1 if (k, w) is the lightpath assignment

for node pair z
0 otherwise

(7)

∑
w∈W

∑
k∈K

δw,k,z = ⌈M ·T c
z ⌉ ∀z ∈ Z (8)

∑
z∈Z

∑
k∈K

δw,k,zI( j ∈ k)≤ 1 ∀ j ∈ E ∀w ∈W (9)

Using this ILP formulation, optimum RWAs were found for
each graph in the alpha dataset, using 156 wavelengths and
20 k-shortest paths. ILP formulations, however, do not scale
for larger graphs, and heuristics in conjunction with sequen-
tial loading were used for the beta and gamma datasets, as
described in the following section.

C. Heuristics

Previously, it has been argued, that heuristics, and specif-
ically, first-fit k-shortest-paths (FF-kSP), can achieve simi-
lar performance for estimating capacity in optical networks4.
These heuristics are used in combination with sequential
loading, to load the network until the maximum achievable
throughput can be found and FF-kSP heuristic has been shown
to give very good performance for this type of task, with low
computational complexity4. The heuristics here are used for
two purposes: (i) to benchmark the performance of the MPNN
(N ≤ 25)(ii) to generate training labels for larger graphs (N ≥
25), for which the ILP is infeasible.

Algorithm 2: Sequential loading algorithm
Input: Tc, G

Output: RWAt

1begin
2 i = 0;
3 M = 0;
4 ms = 100;
5 for i≤ ms do
6 while RWAt ̸= blocked do
7 M←M+ms;
8 Tr← ⌈M ·Tc⌉;
9 RWAt ← FR(G,Tr,RWAt−1);

10 end
11 M←M−ms;
12 ms← ⌈ms/2⌉;
13 end
14end

The sequential loading applied is described by algorithm 2.
Here the same objective (M) is maximised as in the ILP, where
Tr and Tc are N×N matrices representing the connections to
be routed and the normalised traffic matrix respectively. FR is
the routing function, which takes three inputs: a graph (G), a
connections matrix (Tr) and the previous RWA. Once blocking
is achieved, the iteration (ms) is halved and the network is
loaded until blocking is achieved. This iterates mi times, after
which the final RWA is returned, where mi was chosen to be 6,
as more would be adding negligible amounts to the objective.
For this work kSP-FF and FF-kSP4 were used, both of which
are common heuristics for solving the RWA problem. FF-kSP
was used to generate optimum RWA configurations for the
graphs in the beta and gamma datasets, due to its high linear
correlation to the ILP-determined performance data, as seen
later in Section V A.
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Having optimised the RWA of a given network, we need
to use these optimum RWA values to calculate the maximum
achievable throughput. For this, the physical layer impair-
ments (PLI) over the fibre in which the data is routed need
to be taken into account to calculate the SNR values of the
individual lightpaths.

D. Physical Layer Impairments Model

To calculate the resultant throughput for a given RWA, we
calculated the accumulated SNR for each lightpath assign-
ment. A lightpath i = {pi,λi} ∈ R has a path pi and a wave-
length λi associated with it and is part of the set of lightpaths
for a routing R. To calculate the capacity for this lightpath,
one first needs to take into account the edges along which the
lightpath travels and their corresponding transmission SNR
values. Using Eq.(10) and the state of the edge (which wave-
lengths are occupied), one can calculate the SNR(i,e) value on
each of the links e ∈ pi. Here Pi is the launch power, ηn
is the nonlinear coefficient, which can be calculated by Eq.
(5) in40 and PASE is the power of the amplified spontaneous
emission. In this work, just by way of an example, we as-
sumed multiples of 80km standard single mode fibre spans,
with α = 0.2 dB

km , D = 18 ps
nm·km and γ = 1.2 1

W ·km , amplified
with erbium doped fibre amplifiers (EDFA) with a noise figure
of 4dB. Nyquist spaced 32Gbd channels were interfaced with
colourless, directionless, and contentionless, reconfigurable
optical add–drop multiplexers (CDC-ROADMs), over a con-
strained C-band (1530–1570 nm) optical bandwidth. The total
SNR of that path is then calculated by taking the inverse sum
of the noise-to-signal ratio (NSR) values of each link traversed
by the path pi, shown in Eq.(11)

SNR(i,e)≈ Pi

PASE +ηnP3
i

(10)

SNRi =

(
∑

e∈pi

1
SNR(i,e)

)−1

(11)

This SNR is used to calculate the maximum achievable data
rate over this lightpath using Eq.(12)41. It can be seen that the
capacity of a lightpath mainly depends on the SNR of that
path, which, in turn, depends on the length and congestion
along the path. BCH represents the channel bandwidth used,
which was kept constant at 32 GHz for all channels.

Ti = 2BCH log2(1+SNRi) (12)

TA = ∑
i∈R

Ti (13)

The throughputs for all the lightpaths, were calculated and
summed, as in Eq.(13) to give the total achievable through-
put for a particular RWA and network. For the routing of
larger networks, multiple fibres needed to be incorporated to
allow for all-to-all connectivity, where 4 fibres per edge for
25≤ |N| ≤ 45 and 16 fibres per edge for 55≤ |N| ≤ 100 were

used. Multiple fibres generally increase the throughput of a
network by at least ξ times, where ξ is the number of fibres
per edge42. The hierarchy of graphs however does not change
when adding more fibres, i.e. which network is better does not
change, therefore not changing the overall distribution of the
generated graphs.

Using this methodology, the three datasets, alpha, beta and
gamma, were generated via the SNR-BA model, their RWAs
optimised either via ILP or FF-kSP (depending on their node
scale) and finally their maximum achievable throughputs (TA)
calculated. The whole process is illustrated in figure 3. Using
TA as a training label (target), the MPNN model, defined in
Section II, was trained in a supervised manner, described in
the following section.

IV. TRAINING

Using the datasets created as described in Section III, the
three MPNN models were trained to predict the maximum
achievable throughput, TA. The node features (xn), chosen to
be the degree of each node (δn) and its normalised traffic:

xn =

[
δn, ∑

u∈N
T c
(n,u)

]

were used to initialise the node hidden vectors (h1
n). As

throughput depends on the physical properties of the fibre
links, the overall transmission quality metric is a critical fea-
ture. The number of lightpaths carried over an edge or set
of edges, as well as the length of paths taken, influences the
overall system performance via the achievable signal-to-noise
ratio in the nonlinear optical regime. Throughout testing it
was seen that the inverse of the SNR (NSR) was a better fea-
ture to use, as it is an additive quantity over a set of edges. In
an ideal case, optimal launch powers would be found for each
wavelength in the network, however due to the computational
complexity associated with carrying this out for many net-
works (240000 topologies), the assumption of uniform launch
powers, i.e. equal input power/lightpath for all lightpaths, was
used, similarly to other work4.

A hidden vector size of 16, with 8 message passing rounds
was used for all model training. Larger hidden vector sizes
did not seem to provide more accuracy, however added higher
computational complexity. The message passing rounds were
chosen to work well over the whole spectrum of node scales,
where T = 8 gave good performance for all. As overfitting
was initially a problem, a dropout rate of 0.65 with L2 regular-
isation at a rate of 0.03 was used, where higher values started
reducing the accuracy of the model. The learning rate was ini-
tialised with a value of 0.001 and decayed exponentially using
10000 steps at a rate of 0.95. The Adam optimisation algo-
rithm was used to train all models, with the graphs in batches
of 50 and a single fully-connected regression layer consisting
of 256 neurons was used for the final regression output, where
larger values did not provide further accuracy without overfit-
ting. To monitor whether the model was tending to overfit, a
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validation set of 500 graphs was used to evaluate the perfor-
mance at each epoch. The training was conducted on a Nvidia
V100 16GB GPU, with training generally taking around 72
hours, covering 2000 epochs.

Having trained the three separate models on the different
datasets, we used three separate test sets to gauge the perfor-
mance of the trained inference models. These were generated
identically to the methodology laid out in Section III, however
were unseen (not used for training) by the model. The follow-
ing section analyses the accuracy, computation time and gen-
eralisation capabilities of the MPNN model using these test
sets.

V. RESULTS

To understand how well the MPNN model performs in
comparison to other methodologies for estimating the maxi-
mum achievable throughput of an optical network, there are
three aspects we evaluate: (i) model accuracy (ii) time com-
plexity (iii) generalisation capability to unseen graphs.

To evaluate the accuracy of the MPNN, the three test sets
of 6000, 5000 and 10000 graphs, were used to test the alpha,
beta and gamma models, respectively. Here 1000 graphs for
each node scale were generated. Labels for the graphs in the
alpha test set were generated via the ILP formulation, whilst
for the beta and gamma test sets, FF-kSP was used. Again,
uniform traffic was generated and used for all these results. To
measure the accuracy of model predictions, the coefficient of
determination R2 was used, which measures how much of the
variance in the data is explained by the model, by comparing
the prediction variance to that of the original data43. Here we
define R2 as in Eq.(14).

R2 = 1− ∑n(yn− pn)
2

∑n(yn− ȳ)2 (14)

Where yn refers to the true label and pn the predicted label
and ȳ the mean.

The Pearson’s correlation coefficient ρ was used as an al-
ternative metric and determines how linearly the labels and
predictions are related, with a value of 1 signifying a perfect
linear correlation. This coefficient is important in the context
of surrogate models or cost functions, as a model might be
inaccurate (low R2), however have a high linear correlation
(high ρ), which means that although inaccurate it can predict
the relative performance of a network well - vital for optimisa-
tion. The predictive accuracy for all three models is analysed
and discussed in the following section.

A. Maximum Achievable Throughput

The label that was evaluated is that of maximum achievable
throughput (TA). For each of the 6000 graphs in the alpha test
set, the performance was evaluated via ILP (used for the la-
bels), FF-kSP, kSP-FF and MPNN and plotted in figure 4(a).
It can be seen that the kSP-FF and FF-kSP heuristics under-
perform compared to the ILP, giving lower R2 values in both,

Node Scale Method R2 ρ

10≤ |N| ≤ 15 MPNN 0.951 0.975
10≤ |N| ≤ 15 FF-kSP 0.740 0.969
10≤ |N| ≤ 15 kSP-FF 0.102 0.901
10≤ |N| ≤ 15 ElasticNet 0.763 0.873
10≤ |N| ≤ 15 ANN 0.768 0.908
25≤ |N| ≤ 45 MPNN 0.973 0.986
55≤ |N| ≤ 100 MPNN 0.948 0.974

TABLE I: Accuracy of the MPNN model and other capacity
estimation methods, measured by the coefficient of

determination (R2) and the Pearson’s correlation coefficient
(ρ).

although kSP-FF is worse as it has even lower values for R2

and ρ , as seen in table I. This signifies poor predictive accu-
racy of the actual labels (TA). The performance of kSP-FF is
worse than that of FF-kSP, as it priotises shorter paths over op-
timising wavelength selection, this is an expected result seen
in4. FF-kSP generally spreads the usage more evenly across
all network links compared to kSP-FF. This spreading of re-
sources uses slightly more spectrum, however achieves much
less network congestion. However, the MPNN has learnt on
a variety of graphs of these sizes and can accurately predict
the throughput trend here, as indicated by its high R2 value of
0.951. Furthermore, one can see the difference in throughput
distributions, where the CDF of the different methodologies
are plotted in figure 4(b). Here it is clear that the kSP-FF
and FF-kSP heuristics give different distributions compared
to the ILP. The MPNN however, is able to replicate the orig-
inal distribution of the ILP well, and therefore it can pre-
dict the throughput of the networks better. In addition to the
MPNN, a linear and nonlinear ML regression method were
evaluated to compare other ML frameworks. Here the degree
variance, connectivity, algebraic connectivity, communicabil-
ity distance and communicability traffic index were used as
input features for the graph. ElasticNet and the artificial neu-
ral network (ANN) were trained and tested with the same data,
both scoring lower with R2 values of 0.763 and 0.768, respec-
tively.

Another metric evaluated was the Pearson’s correlation co-
efficient (ρ). As for the optimisation, there is significant lin-
ear correlation between the real performance and the predicted
performance properties. It can be seen that the heuristics gen-
erally perform well, and the FF-kSP has a high linear correla-
tion (ρ = 0.969) between the estimated throughput values and
those calculated via the ILP, as seen in table I. The MPNN, has
a similar correlation, with ρ = 0.975, meaning it predicts the
relative throughput performance of networks well. ElasticNet
and the ANN both score ρ values lower than the MPNN and
FF-kSP. The high linear correlation of FF-kSP compared to
the ILP, makes it a good candidate to evaluate the maximum
achievable throughput for the larger graphs, even though the
real maximum achievable throughput might be larger.

To further evaluate the performance of the model, the model
was applied to the beta and gamma testing datasets that in-
cluded larger graphs. Here the labels were generated via
the FF-kSP heuristic, as the ILP is not able to scale to these
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FIG. 5: (a) Throughput prediction of the MPNN versus the FF-kSP prediction for 25≤ |N| ≤ 45. (b) Throughput prediction
using MPNN versus the FF-kSP prediction for 55≤ |N| ≤ 100.

larger topologies. The MPNN was used to infer the maximum
achievable throughput of the graphs in the respective test sets
and plotted in figures 5(a) and (b). It is clear that for the beta
model, the MPNN performs better than the alpha and gamma
models, with a R2 value of 0.973. This is because the beta
training set had the most training graphs per node scale. This
was possible for the beta model, as the heuristic runs faster
on the smaller beta graphs than the larger gamma set graphs,
and also faster than the ILP. This can be seen in figures 6 (a)
and (b). Although the gamma model still achieves a high R2 of
0.948, one can see that the larger throughput values have more
variance in them. To remedy this, more samples are needed
in the training set for larger node scales. Both the beta and

gamma models achieved high linear correlation values (ρ) of
0.986 and 0.974 respectively.

One can conclude that heuristics consistently underperform
in estimating the throughput in optical networks compared to
the ILP solutions. However, FF-kSP is able to predict the
trend (linear correlation - ρ) well, making it suitable for op-
timisation tasks and training data generation. The MPNN on
the other hand is able to accurately predict throughput values
of unseen data, based on similar structure and sizes seen dur-
ing training. It also has a high linear correlation between the
labels and its own predictions, making it an excellent candi-
date for modelling the throughput of these optical networks.
Therefore, the MPNN is able to predict maximum achievable
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throughput accurately, although it does not provide a solution,
for example for the RWA, of how to reach it. The model could
potentially be adjusted to learn the RWA, this is outside the
scope of the current work and is left for future research. How-
ever, given the extensive training and data needs of this model,
what is the real benefit of using it in place of heuristics? This
question is addressed in the following section.

B. Computational Time Comparison

The key advantage of using machine learning to model re-
lationships in data, is very low inference times compared to
ILP and, even, heuristic methods.

The ILP has a worst-case computational complexity as de-
scribed in Eq.(15), where D is the number of demands or con-
nection requests (D = ∑z∈Z⌈TC

z ·M⌉), E the number of edges
and W the number of wavelengths used44.

O(2D·E·W ) (15)

For the heuristic algorithms used, the complexity generally
scales as in Eq.(16)45, but must be modified to include the
term R - number of sequential loading iterations as the heuris-
tic needs to run many times before finding the optimum RWA:

O(RkN3(E +Nlog(N))) (16)

The advantage of the MPNN, thus, is that it can directly
evaluate the network properties, learnt from previous data.
For the inference of the MPNN, the complexity is defined in
Eq.(17)46, where T denotes the number of message passing
rounds, defined previously and d is the length of hidden di-
mensional vector used, 16 in our case.

O(T ·N2d2) (17)

Comparing the equations Eq.(15), Eq.(16) and Eq.(17), it
can be seen that the MPNN scales the best, computationally,
with number of nodes. To quantify the computational bene-
fits of using MPNNs to model optical networks, graphs with
nodes varying from 10 to 20, were used to evaluate the ILP,
FF-kSP, kSP-FF and MPNN time performance. Here the node
size has been expanded to 20 nodes for the test set to see the
computational time scaling better with smaller graphs. This,
however, was not possible in the case of the training set, since
the ILP computation is too complex. For each graph, the re-
spective methodologies were used to calculate the maximum
achievable throughput and their computation times measured
and plotted in figure 6(a). The reduction in computation time
through using MPNN model can be clearly seen, where it
takes approximately 10s of ms, compared to 10s, 100s and
1000s of seconds for kSP-FF, FF-kSP and ILP respectively.
The same trend, between FF-kSP and the MPNN, was anal-
ysed for the larger networks using the beta and gamma test
sets, with the results shown in figure 6(b). The MPNN again
shows minimum computation time increase for these node
ranges, compared to the heuristic method.

Therefore, the MPNN model can be seen as an accurate
and fast method for evaluating performance metrics of graphs,

Graph Type γ R2 ρ D FWSD
ER 0.0 0.776 0.928 0.096 0.000286
BA 0.0 0.830 0.938 0.125 0.000201
SNR-BA 0.0 0.973 0.986 0.000 0.000000
SNR-BA 0.2 0.901 0.983 0.079 2.13·10−6
SNR-BA 0.4 0.907 0.983 0.075 2.13·10−6
SNR-BA 0.6 0.906 0.983 0.060 2.13·10−6
SNR-BA 0.8 0.911 0.984 0.058 2.13·10−6
SNR-BA 1.0 0.907 0.982 0.062 2.13·10−6

TABLE II: Accuracy for generalisation capability, measured
by the coefficient of determination R2 and ρ . The variable γ

determines how locally skewed the traffic is and D is the
absolute distance between the test throughput and the

original training throughput (ks-2s test).

which are generally computationally difficult to evaluate. This
would allow for the fast evaluation of a large number of graphs
within any topology design process. However, how well does
this model generalise when varying the input structure and
traffic distributions that affect the throughput of the network?
This is the question explored in the next section.

C. Generalisation Capability

The generalisation capability of an ML model refers to the
ability of the model to operate over distributions not seen dur-
ing the training process. In the context of this work, this could
encompass different graph structures, different traffic distri-
butions or distance scales. Here we choose to evaluate the
model against two different graph structures and a change in
input traffic distribution.

To test different graph structures, two common generative
models were used to vary the structures tested, the Erdos-
Renyi (ER) and Barabasi-Albert (BA) models47,48. Using
these models 5000 graphs with 25 ≤ |N| ≤ 45 were gener-
ated per generative model. After calculating the throughputs
of these graphs using the FF-kSP heuristic and the Gaussian
Noise (GN) model, we feed the graphs through the MPNN
model to predict the throughput values.

When comparing the accuracy of the model over these var-
ied graph structures, one can see that the accuracy, in terms of
coefficient of determination (R2), drops significantly, as seen
in table II.

This means that the predictions vary largely from the ac-
tual labels of the graphs. However, this is to be expected, as
the graph structures resulting from the ER and BA models are
largely different to those from SNR-BA graphs6. This dif-
ference in graph structure can be quantified by the weighted
spectral density distance (WSD)49, which measures the dif-
ference in structure between two sets of graphs. When the
WSD (FWSD) is smaller, the graph structures are more simi-
lar. The weighted spectral density distance is calculated be-
tween the original SNR-BA test graphs and the various test
sets and are shown in table II. Here one can see that the WSD
is close to zero for the SNR-BA graphs, as they are gener-
ated from the same distribution as the originally tested SNR-
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BA graphs. We can see that the ER and BA graph’s WSD
is larger, where the ER structures are the most different from
the original test graphs. In addition, due to the difference in
graph structures, there are large differences in the throughput
distributions. This is measured by the Kolmogorov-Smirnov
two sample test, which returns a distance D, which signifies
the largest absolute difference between the CDF of two dis-
tributions. In table II, the large D values for ER and BA test
sets, signify the difference in throughput distributions to those
seen during training. These D values are larger than those
of the SNR-BA test distributions, meaning their throughput
distributions are further from those arising from SNR-BA dis-
tributions. The Pearson’s correlation coefficient (ρ) however
remains high, which shows it still indicates the throughput
trends of the networks well. This is important for optimisa-
tion, as the cost function might not need to accurately describe
throughput exactly, however it needs to describe one graph be-
ing better than another.

To investigate how a change in the traffic demand matrix
affects the accuracy of the model, we generated localised
skewed traffic matrices for 5000 graphs. By defining the traf-
fic as in Eq.(18), we generated 5 different traffic skews shown
in table II.

T c
i, j =

1(
D(i, j)

∑k∈N D(i,k)

)γ (18)

For each of these skewed traffic matrices, we tested the
MPNN accuracy in terms of R2 and ρ . The R2 values drop by
about 7%, and remain constant for the different skew values
(γ > 0). The Pearson’s correlation coefficient (ρ) value remain
high at around 0.98, unchanged from the uniform traffic dis-
tribution results, meaning that it still predicts the throughput
trend well.

The large variation in performance, in terms of R2 for ER
and BA graphs, indicates that the trained MPNN model does

not generalise well to largely different graph structures. This
highlights the importance of using a variety of different struc-
tures within the training dataset and that an expansion of the
training data is necessary here to represent different graph
structures. Once the training set is more representative, by
generating a variety of graph structures, it accurately evaluate
the vast solution space of the topology design problem.

VI. CONCLUSION

In this paper the well-known NP-hard problem of estimat-
ing optimal performance of an optical network, was inves-
tigated, focusing, in particular, on the maximum achievable
throughput. Understanding and being able to predict it, is vital
for optimising optical networks for the future, as to maximise
the longevity of investments made in infrastructure for com-
munications or for improving existing topologies. We have
proposed the use of geometric deep learning framework to
learn this network property from a previously generated train-
ing dataset of graphs.

By applying this methodology, we showed that the model
can accurately model the maximum achievable throughput of
previously unseen graphs, proven by high coefficient of de-
termination accuracy (R2) and Pearson’s correlation coeffi-
cient (ρ) values. This accuracy was achieved with significant
time savings of multiple orders of magnitude, enabling rapid
prediction (∼ 30ms for 100 node graphs) of maximal perfor-
mance of a large number of graphs.

Furthermore, both the importance and weaknesses of the
training datasets were highlighted by applying the model to
other graph structures, such as ER and BA graphs, where the
model struggled to give accurate predictions, showing that the
training set of graphs needed to be expanded. The generalisa-
tion of different traffic input distributions generally performed
well and showed suitability for future optimisation purposes.
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This type of modelling is invaluable to further optimise the
physical topologies of optical networks, by using this as a sur-
rogate model in future optimisation. It directly enables using
the maximum achievable throughput of a topology in the cost
function of any number of optimisation algorithms, as well
as giving huge time savings and therefore enhancing the op-
timisation. In addition, networks are ever-evolving and are
not necessarily purely fixed grid. They might have a flexible
grid, regeneration devices or intermediate grooming at routers
or switches. These changes in network configuration could
be included in future training sets by using them as node or
edge features and generating more training data using a range
of these configurations. Further investigations will include
work on analysing the resilience of networks, accurate traffic
modelling and generalisation to multiple fibre systems using
MPNNs.
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