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This paper proposes an active information-directed reinforcement learning (AID-RL) framework for
autonomous source seeking and estimation problem. Source seeking requires the search agent to move
towards the true source, and source estimation demands the agent to maintain and update its knowledge
regarding the source properties such as release rate and source position. These two objectives give rise to
the newly developed framework, namely, dual control for exploration and exploitation. In this paper, the
greedy RL forms an exploitation search strategy that navigates the agent to the source position, while the
information-directed search commands the agent to explore most informative positions to reduce belief
uncertainty. Extensive results are presented using a high-fidelity dataset for autonomous search, which
validates the effectiveness of the proposed AID-RL and highlights the importance of active exploration in
improving sampling efficiency and search performance.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Autonomous search is to use mobile platforms equipped with
physical sensors to localise and estimate a possible release of
chemical, biological or radioactive substance. The mission of
autonomous search for an airborne release comprises dual objec-
tives: moving the search agent towards the source location (source
seeking) and estimating the source properties (source term estima-
tion). The importance of autonomous search has been manifested
in its wide applications, including search and rescue, safety moni-
toring and emergency responses [1]. To realise fully autonomous
operation, extensive path planning and estimation approaches
have been established in recent years, which can be roughly classi-
fied into three categories: informative path planning (IPP) [2–4],
bio-inspired mechanisms [5,6] and dual control methods [7,8].
The aforementioned approaches are non-episodic, i.e., the search
process is not repetitive.
Benefiting from extensive interactions with the unknown envi-
ronment, reinforcement learning has achieved remarkable success
in playing complex games [9] and virtual robotic systems [10].
However, its applicability in real world applications remains quite
limited, mainly owing to its poor sampling efficiency. Recently,
reinforcement learning based approaches have been introduced
to deal with source search and estimation [11,12]. A deep Q net-
work with particle filter assisted source term estimation approach
is developed in [12]. Deep deterministic policy gradient (DDPG) is
used to train the optimal policy together with particle filter and
Gaussian mixture model for source term approximation in [11].
Extensive simulation results have been reported in comparison
with several benchmark algorithms including Entrotaxis [13] and
Infotaxis [3]. In both studies, random exploration mechanisms
are employed for probing the spaces regardless of the search and
estimation performance, where standard �-greedy algorithm is uti-
lised in [12] and random noise perturbation is added to the policy
output in [11]. Despite their exploratory efforts – inefficient ran-
dom exploration, it should be noted that the source term estima-
tion is passively updated in the sense that the estimation
performance is not integrated in the decision-making processes
of the RL algorithms.

Balancing between exploitation and exploration has been a
long-standing issue in RL [14,15], particularly when observations
obtained from the environment are uncertain and noisy. This is
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Fig. 1. Dual objectives in autonomous search and estimation.
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the classic dilemma of RL algorithms: should the search agent
maximise its reward based on its current knowledge or explore
poorly understood states and actions to potentially improve future
performance [16]. In autonomous search problem, the search agent
inherently suffers heavily from both sensor noises and local turbu-
lence disturbances such that concentration information collected is
often sparse and noisy. In this challenging scenario, effective explo-
ration mechanism is of vital importance to ensure mission success
[15]. The agent using greedy RL algorithms is in fact driven to move
towards the source location, which only accounts for one of the
dual objectives in an autonomous search mission [7,17,18]. In
order to improve the sampling efficiency and enhance the estima-
tion performance, more delicate exploratory approaches are
required.

In the last few years, active reinforcement learning, also termed
as Bayesian reinforcement learning, has emerged as one of the hot-
test research areas in machine learning community driven by its
prominent capability in improving data efficiency and enhancing
learning performance [14,19–21]. To incentivise directed explo-
ration over poorly understood states and actions, it is important
to quantify the uncertainty of the agent’s belief about its opera-
tional environment. Houthooft et al. [22] suggest Bayesian neural
networks for uncertainty measure and develop a variational infor-
mation maximising exploration strategy. Shyam et al. [23] advo-
cate an ensemble-based approach where uncertainty is measured
by the amount of conflict among the predictions of the constituent
models, which is proved to be more efficient and has been widely
used in recent studies [8,20]. In the control system community,
Chen [24] establishes a similar paradigm from control-theoretic
perspective, namely Dual Control for Exploitation and Exploration
(DCEE), which holds high learning efficiency for autonomous con-
trol in an uncertain and unknown environment. Both approaches
are targeted to provide a solution framework to deal with autono-
mous decision-making problems in an uncertain environment, and
rather coincidentally they both emphasise the importance of active
exploration for constructing knowledge regarding the operational
environment.

Motivated by the above observations, this paper develops an
active information-directed reinforcement learning (AID-RL) to
solve the autonomous search problem. To our knowledge, this is
the first attempt to deploy reinforcement learning with active
exploration for autonomous search and estimation problem.
While there has been a significant amount of research on active
RL algorithms, such as [23,22,20,15], they are not directly applica-
ble to autonomous seeking and estimation. Most of them utilise
neural networks or ensembles of randomly generated dynamic
models to acquire information about the environment, which
makes it challenging to extract physically meaningful parameters
for source term estimation. The exploration mechanism in this
2

paper is originated from classic information-theoretic path plan-
ning methods where Infotaxis [3,25] and Entrotaxis [13] are
regarded as two benchmark representatives. Essentially, the con-
ventional approach of exploitative RL drives the search agent
towards the source location by rewarding it for collecting high
concentration values (reward-driven exploitation), while the
information-directed exploration aims to lead the search agent
to positions that can reduce its belief uncertainty regarding the
environment by maximising the information gain. The dual objec-
tives of autonomous search are depicted in Fig. 1, where their
connections with exploration and exploitation are also outlined.
This information-directed exploratory RL method is partially
inspired by the dual control algorithm [7,26]. Compared with
the benchmark �-greedy RL algorithm, we demonstrate that the
proposed AID-RL not only produces better search and estimation
performance but also maintains high sampling efficiency using
less training episodes.

The key contributions of this paper are summarised as follows.

1. This paper provides a unified formulation for autonomous
search problem using information-directed RL. The proposed
framework, AID-RL, unifies greedy reward-driven exploitation
and information-directed exploration in autonomous search.

2. An active reinforcement learning algorithm is developed, which
combines a reformulated greedy Q learning algorithm and an
Entrotaxis based exploration strategy. Such a new exploration
mechanism, originated from traditional IPP, can significantly
improve the sampling efficiency and search performance. Dif-
ferent from existing studies in active RL [22,23,20] where Baye-
sian neural networks or ensembles of dynamic models are
employed to formulate information gain, the proposed AID-RL
captures belief uncertainty using particle filter, from which
meaningful source parameters can be extracted.

3. The proposed algorithm is implemented on a real dataset, con-
sisting of sparse and uncertain measurements. Currently, the
existing algorithms using RL only validated their effectiveness
through numerical simulations, which did not take measure-
ment uncertainty and reward sparseness into consideration.
In our high-fidelity studies, efficacy of RL for autonomous
search is manifested and the advantages of the proposed AID-
RL are demonstrated by comparing with classic �-greedy RL
algorithms [12].

The rest of this paper is organised as follows. Section 2 presents
the formulation of autonomous search and estimation. In Section 3,
an active reinforcement learning algorithm is developed combin-
ing reward-driven exploitation and information-directed explo-
ration. Section 4 presents the experimental results using high-
fidelity dataset, and provides detailed discussions and comparisons
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with random-exploration RL algorithm. Conclusions are drawn in
Section 5.

2. Problem formulation

In this section, we elaborate the key functionalities in a source
search and estimation problem including the search agent and dis-
persion modelling, reward function formulation and Bayesian
inference for source term estimation. In particular, an estimation
algorithm using particle filter will be implemented to achieve
source estimation, based on which information-directed reinforce-
ment learning will be designed later in Section 3.

2.1. Agent and dispersion modelling

Autonomous search algorithm is to direct a robotic searcher,
equipped with onboard sensors, to locate and estimate an airborne
source from a point release. The source release is usually charac-
terised by Hs ¼ ½qs; ps�T, where qs > 0 denotes a positive release
rate and ps ¼ ½xs; ys�T represents the source position in a search
domain X � R2. A search agent, located at pk ¼ ½xk; yk�T, navigates
its search path by choosing actions from an admissible set
A ¼ f!; ; "; #g according to pre-loaded search algorithm with
information collected from chemical/biological sensors. Autono-
mous search is mainly concerned with the high-level decision-
making for path planning. It is assumed that the search agent has
been programmed with low-level controller that can achieve the
given actions in A.

Dispersion models are used to describe the airborne transport
and diffusion of released materials. In this paper, the convection–
diffusion plume is adopted to reconstruct the source dispersion,
which has been widely utilised in related studies [3,13,11,12,7].
The expected concentration at agent position pk is given by

zk pkjHsð Þ ¼ qs

4pD pk � psj j exp
�DpkV
2D

� �
exp

� pk � psj j
l

� �
ð1Þ

where Dpk ¼ � xk � xsð Þ sinðwÞ þ yk � ysð Þ cosðwÞ;l ¼
ffiffiffiffiffiffiffiffiffi
Ds

1þV2s
4D

q
;V is the

wind speed and w is the wind direction, D represents the isotropic
diffusivity and s denotes the particle lifetime.

It is crystal clear that the collected concentration information is
highly uncertain due to local turbulence and sensor noises, and
consequently there is usually high discrepancy between the sensor
readings and the modelled output from zk pkjHsð Þ. Nevertheless, it
has been proven that such a dispersion model is of great impor-
tance to achieve fast localisation and efficient source term acquisi-
tion [8,7,13]. The dispersion model used in this paper has
physically meaningful parameters that can be interpreted in a
practical way. Learning these parameters is one of the key objec-
tives in autonomous search. Existing active RL algorithms
[22,23,20] using probabilistic predictive models or dynamic
ensemble models cannot be utilised for source term estimation
because they lack physical meanings.

2.2. Reward function

From the dispersion model, the expected sensor reading will be
higher when the search agent moves closer to the source location.
Therefore, the concentration value from sensor can naturally be
used to formulate the reward function, which serves as the incen-
tives to promote the search agent moving towards the source. It
should be noted that the expected concentration value is exponen-
3

tially decaying with respect to the distance between the search
agent and the source location. In this paper, we take the logarith-
mic value of the concentration value as the reward function, i.e.,

Rðpk; akÞ ¼ logðzkþ1ðpkþ1Þ þ eÞ ð2Þ
where zkþ1ðpkþ1Þ denotes the sensor reading at future agent position
pkþ1, and e > 0 is a small positive number to avoid ill-conditioned
logarithms. Future reward is determined by the current location
pk and current action ak 2A. Because sensor reading is usually
sparse, i.e., no meaningful detection, e is included in (2) to deal with
zero concentration measurements. As having been widely discussed
in related works [27,7,13], non-detection events occur quite often
due to several reasons, for example, local turbulence, sensor sensi-
tivity and failure. This type of information sparseness is reflected by
a lower reward in reinforcement learning. Note that other reward
designs, such as the stage-wise function used in [11], exist as well.

The objective of the search agent is to maximise its cumulative
reward function over an infinite horizon, denoted by

J1 ¼
X1
i¼1

kiR pi; aið Þ ð3Þ

where 0 < k 6 1 is the discount factor.

2.3. Source Term Estimation

Given a set of historical sensor readings
Zk�1 :¼ fz1ðp1Þ; z2ðp2Þ; . . . ; zk�1ðpk�1Þg, the posterior probability of
the environment parameter Hk can be approximated by recursive
Bayesian estimation

P HkjZkð Þ ¼ P zkjHkð ÞP HkjZk�1ð Þ
P zkjZk�1ð Þ ð4Þ

where

P zkjZk�1ð Þ ¼
Z

P zkjHkð ÞP HkjZk�1ð ÞdHk ð5Þ

and initial condition is specified as PðH0jZ0Þ ¼ PðH0Þ. In the Baye-
sian estimation process, P HkjZk�1ð Þrepresents the prior distribution
and the likelihood function P zkjHkð Þ is determined by the dispersion
model (1).

A variety of source term estimation techniques have been
developed in the literature, including gradient based methods
[8], Gaussian mixture model [11] and particle filters [13]. A com-
prehensive review on source term estimation algorithms can be
found in [28]. Among them, particle filters have been increasingly
popular due to its flexibility and effectiveness in handling high
uncertain and nonlinear estimation problems as in the case of
autonomous search. As a result, they are widely employed to con-
struct the nonlinear inference engine [7,13,2,27]. The posterior dis-
tribution of the environment parameter can be approximated by a

set of N weighted samples fHðiÞk ;xðiÞk g
N

i¼1 such that

P HkjZkð Þ �
XN
i¼1

xðiÞk d Hk �HðiÞk
� �

ð6Þ

where dð�Þ denotes Dirac delta function,HðiÞk is a potential realisation

of environment parameter at the kth step, and xðiÞk represents the
corresponding normalised weight of the particles withPN

i¼1x
ðiÞ
k ¼ 1. The implementation structure of particle filter for

environment estimation is summarised in Algorithm1, and more
detailed elaborations can be found in [27,7].
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Algorithm1: Particle filter for environment parameter
estimation.

Require: prior samples fHðiÞk�1;x
ðiÞ
k�1g

N

i¼1
1. for i ¼ 1;2; . . . ;N, do
2. draw sample HðiÞk � qðHðiÞk�1Þ
3. assign weight �xðiÞk ¼ xðiÞk�1 �

P zk jHðiÞkð ÞP HðiÞ
k
jHðiÞ

k�1ð Þ
q HðiÞ

k
jHðiÞ

k�1 ;Zkð Þ
4. end for
5. normalise sample weights xðiÞk ¼

�xðiÞ
kPN

i¼1
�xðiÞ
k6. calculate effective sample size Neff ¼ 1=RN

i¼1 wðiÞk
� �2

7. if Neff is less than a threshold NT then
8. resample fHðiÞk ;xðiÞk g

N

i¼1
9. apply a Markov chain Monte Carlo move

10. end if

Ensure: posterior samples fHðiÞk ;xðiÞk g
N

i¼1

3. Active reinforcement learning

In Section 2.2, the reward function is formulated according to
the sensor reading collected from the environment. Targeting to
collect high reward, the search agent will be directed towards
the source position where higher concentration is expected. This
corresponds to one of the dual objectives, i.e., source seeking. On
the other hand, active exploration can be integrated into this pro-
cess to improve the source estimation performance, which is
another critical objective in autonomous search and estimation.
The dual objectives will then motivate our proposed framework
of AID-RL in Section 3.3.

3.1. Reward-driven exploitation

In this paper, we implement the state-action iteration based Q-
learning algorithm to solve the autonomous search problem. The Q
value function is denoted by

Qðpk; akÞ ¼ Rðpk; akÞ þ max
akþ12A

kJ1ðpkþ1; akþ1Þ ð7Þ

and the Bellman optimality condition is given by

Q �ðpk; akÞ ¼ Rðpk; akÞ þ max
akþ12A

kQ pkþ1; akþ1
� �

: ð8Þ

The value iteration algorithm can be designed as

Q 0ðpk; akÞ ¼ Qðpk; akÞ

þ a Rðpk; akÞ þ k max
akþ12A

Qðpkþ1; akþ1Þ � Qðpk; akÞ
	 


ð9Þ

where 0 < a 6 1 is the learning rate. In viewing of the above value
iteration algorithm, the control action ak is chosen to maximise the
cumulative reward function J1. If we have an ideal Q table, pure
exploitative actions will generate maximal cumulative reward.
However, in real situation, the Q values are usually randomly ini-
tialised and the collected rewards during the search process are
highly uncertain due to local turbulence and noises. As a result,
exploiting untrustworthy Q table will deteriorate the overall search
performance. Therefore, exploration efforts should be included
while choosing the control action, and one of the most
commonly-used mechanisms is so-called �-greedy algorithm
[11,12] that randomly chooses an action from the admissible set
with probability 1� �. This type of random perturbation based RL
algorithm is termed as undirected exploration.

The essence of the iteration algorithm is to update the Q table
using information collected from interactions between the agent
and its operational environment. The reward-driven exploitation
is a model-free algorithm as in (9). Despite its wide success in
4

robotic control without models, it is prohibitively expensive in
sampling complexity.

3.2. Information-directed exploration

Reinforcement learning has been widely criticised in control
and robotic society due to its poor sampling efficiency. It is unde-
niably true that real robotic systems cannot be implemented for
hundreds and thousands trial-and-error attempts due to physical
constraints, time and energy consumption and other safety issues.
In recent years, significant research effort has been dedicated to
improving data efficiency of RL using active learning and model
based approaches [20,14]. Instead of random exploration, it has
been demonstrated in recent works such as [20,14] that active
exploration based RL yields outstanding performance compared
with passive learning in the machine learning community. Simi-
larly, active learning based control approaches have also emerged
as a promising paradigm in control community [24,29].

In autonomous search, it is required that the search agent
reconstructs source parameters. From the perspective of dual con-
trol [7], the exploration strategy is to reduce knowledge uncer-
tainty by directing the search agent to probe the most
informative positions. Informative path planning (including Info-
taxis [3] and Entrotaxis [13]) is one of the mainstreams, which
has proven to be very robust and effective in localising source posi-
tion and reconstructing source parameters. In this paper, we
deploy Entrotaxis as the exploration algorithm, which will guide
the searcher to where there is the most uncertainty in the next
measurement.

The information measure is defined according to Shannon
entropy

I akð Þ ¼ �
Z

P bzkþ1 bpkþ1
� �jZk

� �
log P bzkþ1 bpkþ1

� �jZk

� �
dbzkþ1 ð10Þ

where ẑkþ1 p̂kþ1ð Þ represents the predicted measurement at future
agent position p̂kþ1 if action ak is taken. Given the current estima-
tion of the source parameters, the probability density function of
the future measurement can be obtained by

P ẑkþ1 p̂kþ1ð ÞjZkð Þ ¼
Z

P ẑkþ1 p̂kþ1ð ÞjHkð ÞP HkjZkð ÞdHk: ð11Þ

The approximation strategy using particle filter in Algorithm1 has
been well-documented in [13,30]. The exploration strategy is to
maximise the information gain by choosing a control action from
ak 2A, i.e.,

a�k ¼ argmax
ak2A

I akð Þf g: ð12Þ

The information gain is approximated by

I akð Þ �
X̂zmax

ẑ kþ1¼0
P ẑkþ1 p̂kþ1ð ÞjZkð Þ log P ẑkþ1 p̂kþ1ð ÞjZkð Þ ð13Þ

where ẑkþ1 ¼ 0;1;2; . . . ; ẑmaxf g denotes the potential future mea-
surements. Note that the expected information gain IðakÞ is calcu-
lated for all possible actions in the action set A. Then, (12) is
solved by selecting a control action that yields the maximum infor-
mation gain.

There are a variety of informative measures to quantify knowl-
edge uncertainties, for example, variance, mutual information and
Kullback–Leibler divergence [31]. By integrating knowledge uncer-
tainty into the decision process, an information-directed mecha-
nism for active exploration is achieved such that the probing
actions are inserted to explore the most promising and informative
direction instead of random search. Evidently, the inference engine
using Bayesian approximation requires a dispersion model as in (1)
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and (4). Hence, the formulation of information-directed explo-
ration is a model-based estimation approach. It is argued that
encapsulating model-based knowledge in RL can greatly accelerate
the learning speed and achieve high sample efficiency [32].

3.3. AID-RL: Active information-directed reinforcement learning

From the perspective of dual control [17], the formulation of
exploitative RL is in fact a control-driven algorithm, which aims
to navigate the search agent to the believed source location that
yields higher reward. The current belief of the possible source loca-
tion is encapsulated implicitly in the state-action Q values. The
success of RL algorithm heavily relies on the exploration mecha-
nism, and all current studies in autonomous search deploy random
exploration strategy, i.e., �-greedy RL algorithm [11,12]. Consider-
ing that the efficiency of random exploration is usually quite poor
in many real applications, we introduce the classic informative
path planning methods to improve sampling efficiency. This new
algorithm, namely active information-directed reinforcement
learning, AID-RL, is partially motivated by the paradigm of recently
developed DCEE in autonomous search [24].

The overall implementation structure of AID-RL is summarised
in Algorithm2. It is composed of an initialisation procedure and an
episodic learning process. Each learning episode should be viewed
as a trial of search mission, and thus the search agent is required to
make sequential decisions from a randomly-initialised start posi-
tions. During each trial, the decision-making process balances
between exploration and exploitation by using either
information-directed search or reward-driven control. In existing
benchmark algorithms, e.g., IPP [13,3] and DCEE [7], the search
space is represented by grid map, which is also well-fitted to the
classic Q learning. To achieve fair comparison, we will keep this
classic setting for autonomous search. It is worth mentioning that
the proposed AID-RL is ready to be tailored to deal with large-scale
search problem by using neural network approximation [12,11].

Algorithm2: AID-RL: Active information-directed
reinforcement learning for autonomous search.

1. Q values of state-action Qðp0; a0Þ
2. prior knowledge of source fHðiÞ0 ;xðiÞ0 g

N

i¼1
3. initialise learning hyper-parameters
Episodic learning:
4. For episode = 1 : M do
5. randomly initialise agent location p0
6. For k ¼ 1 : MaxIt do
7. If random value < �, then

choose a control action by information-directed
exploration: a�k ¼ argmaxak2A I akð Þf g

8. Else
choose a control action by reward-driven

exploitation: a�k ¼ argmaxak2A Qðpk; akÞf g
9. End if
10. execute action a�k
11. collect reward Rkðpk; akÞ at pkþ1
12. update the particle filter using Algorithm1
13. update Q table by value iteration:
Q 0ðpk; akÞ ¼ Qðpk; akÞ þ a Rðpk; akÞþ½
k max

akþ12A
Qðpkþ1; akþ1Þ � Qðpk; akÞ�

14. If terminal condition is satisfied, break
15. End for
16. End for
5

Compared with the classic �-greedy RL algorithm, the proposed
AID-RL is of similar learning structure, except that AID-RL replaces
the random exploration mechanism with an active information-
directed search algorithm. It is noticed that the random explo-
ration mechanism usually leads to low sampling efficiency and
thus consumes a large amount of training episodes. Recently, sig-
nificant research efforts have been dedicated to developing effi-
cient exploration strategy, yet there is currently no consensus in
the design of exploration techniques [15,20,22,23]. In this paper,
the exploration search strategy is based on maximum entropy
sampling principle by selecting the manoeuvre actions that navi-
gate the agent to the most uncertain positions to reduce its knowl-
edge uncertainty aggregated by particle filters. None of the
aforementioned works in active RL have implemented such parti-
cle filter assisted exploration. It is necessary to use dispersion mod-
els that have physical meanings in order to meet the practical
requirements of autonomous search, i.e., source term estimation.

In Algorithm2, the hyper-parameter � 2 ð0;1Þ plays a central
role in balancing between exploration and exploitation. In essence,
by varying the value of �, the search agent will alter between
information-directed exploration and reward-driven exploitation
with a probability determined by �. A large value of � means the
search agent spends more efforts in probing the search space in
order to reduce its belief uncertainty regarding the environment,
while a small value of � emphasises on the exploitation of its cur-
rent Q table to move closer to its believed source position. It is
worth mentioning that the tuning principle in �-greedy RL can be
applied to our proposed AID-RL. For example, the value of � can
be set as a large value initially to enable the search agent have
more opportunity to probe the environment since the Q table is
not trustworthy at the early stage of training. Then, after the initial
training period, the value of � can be decreased to let the agent
make use of its belief.

AID-RL is a hybrid approach that combines model-free greedy
RL and model-based source term estimation. Model-free RL pro-
vides an effective way to capture to the features of autonomous
search by using state-action Q table. On the other hand, the
model-based estimation technique enables fast adaptation of the
source knowledge and provides an uncertainty measure to develop
our information-aware RL algorithm. Recently, remarkable empir-
ical results have been reported in many studies to demonstrate the
combined strength of model-based and model-free (MB-MF) algo-
rithms, for example, [10,14,20].

Table 1 summarises key features and differences of AID-RL com-
pared with existing autonomous search algorithms. RL-based algo-
rithms rely on episodic path sampling from randomly-initialised
start points, and thereby are fundamentally different from those
classicmethods, such as bio-inspired search, IPP and DCEE. The con-
cept of DCEE provides a newperspective to elucidate the dual objec-
tives in source trackingandestimation: one is related to exploitation
and another is linked with exploration [7,17]. Information-directed
exploration dictates the search agent to probe most uncertain loca-
tions, and consequently improves the estimation performance due
to accelerated information acquisition. Incorporating this
information-aware exploration mechanism into the greedy RL
(essentially, greedy RL aims to seek the source position where there
ismaximum reward), a balanced trade-off between exploration and
exploitation is achieved.Additionally, it is important tomention that
if the RL component is removed, the proposed AID-RL approach
reverts back to Entrotaxis, which is a well-known IPP method.

4. Experimental results and discussions

In this section, we validate the effectiveness of the proposed
AID-RL using a challenging experimental dataset, which was col-



Fig. 2. Representative search paths using AID-RL at the beginning and end of the
training process, respectively. Red line represents the search trajectory; green dots
denote the estimated source location in the particle filter; blue dot denotes the
agent start point (randomly initialised at each episode); blue star marks the end
point of the search agent and back dot indicates the location of the true source; the
greyscale shading delineates the instantaneous dispersion field at the current step.

Table 2
Key parameters for AID-RL.

Parameter Value Description

Episodes 5;000 M, number of total trials
Maximum path 1;000 MaxIt, maximum path length
Discount 0:9 k, discount for future reward
Learning rate 0:01 a, learning step per iteration
Exploration 0:2 �, rate of exploration
Particle filter 1;000 N, number of particles

Table 1
Characteristic comparison of different autonomous search algorithms.

Algorithm Reference Objective Exploration mechanism Sampling mechanism

Bio-inspired methods [6,5] tracking none non-episodic
IPP [25,13,3] estimation information-directed exploration non-episodic
DCEE [7,8] tracking and estimation information-directed exploration non-episodic
�-greedy RL [11,12] tracking and estimation random exploration episodic
AID-RL this paper tracking and estimation information-directed exploration episodic
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lected by COANDA Research and Development Corporation, and
supplied by the DST group [25]. To demonstrate the advantages
of AID-RL, we compare the proposed algorithm with the random
exploration RL algorithm, i.e., �-greedy learning.

The dataset contains a total number of 340 sequential frames,
and each of them is composed of 49	 98 point-wise measure-
ments over the entire search space. Therefore, the search space is
represented by a map of 49 rows and 98 columns, and each cell
corresponds to the square area of 2:935	 2:935 mm2. Although
the frames are sampled sequentially with a sampling time
t ¼ 0:435s, the dispersion filed changes significantly from one sam-
ple to another. In real airborne source search, it is exactly the case
that the dispersion and measurements change rapidly due to local
turbulence and sensor noises. Key parameters of the proposed AID-
RL are summarised in Table 2.

To show the search behaviour of the agent, we present two rep-
resentative patterns at the beginning and at the end of training
process, as shown in Fig. 2. The example path shown in Fig. 2a is
sampled at the first episode. This search trial is classified as a fail-
ure search because the search agent fails to locate the true source
after reaching the maximum path length of 1;000. Although this
search path is taken at the earliest stage of training, it is clear that
the search agent gradually approaches to the source location due to
the deployment of information-directed exploration. The second
path in Fig. 2b is sampled at the last episode, which successfully
leads the agent to the true source position with a reasonably short
path. The green dots represent the agent’s belief of source location,
assembled from particle filters. It is observed that the proposed
AID-RL algorithm achieves efficient source localisation and simul-
taneously acquires meaningful source parameters.

RL algorithms are distinct from other classic path planning
methods. They aim to approximate the optimal solution over the
entire search space, while traditional path planning methods, like
Entrotaxis and DCEE, solve the optimisation problem from the cur-
rent state. This fundamental difference gives rise to the nature of
RL, i.e., episodic training over all possible actions and initial states.
Random exploration based RL [12], �-greedy, achieves this by add-
ing random perturbation to its greedy actions.

While keeping all parameters of �-greedy RL the same as AID-
RL, we depict the moving average of the path length in Fig. 3. It
is clear that the influence of information-directed exploration is
more significant at the early stage of training, during which AID-
RL demonstrates fast adaptation because of the deployment of
6

active exploration. From extensive simulation and experimental
results of the classic IPP methods (see e.g., [25,13,33]), the search
agent will gradually approach to the source while seeking to
explore the most uncertain positions in the domain. This reveals
the fundamental reason for the success of IPP as most informative
locations are usually adjacent to the source position. Comparing
the average path length in Fig. 3, AID-RL outperforms random
exploration based RL at all stages of training, even though the per-
formance margin of AID-RL is narrowed after a significant amount
of episodic training. Encompassing information-directed explo-
ration into RL algorithm greatly accelerates the process of finding
source location.



Fig. 3. Moving average of the path length under information-directed and random
exploration RL, respectively.
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Fig. 4 shows two representative trajectories of the search agent
at the beginning and the end of the training process using �-greedy
RL. It is obvious that the search agent tends to move close to the
source by using the information-directed exploration mechanism
(Fig. 2a), while the search pattern using �-greedy RL algorithm is
more random without any clear direction (Fig. 4a). This clearly
manifests that information/uncertainty awareness plays a central
role in directing the agent to conduct more effective and efficient
exploration. At the end of training process, both algorithms can
Fig. 4. Representative search paths using �-greedy RL at the beginning and end of
the training process, respectively.

7

successfully lead the search agent to the source location but AID-
RL requires less steps in average to approach the source as shown
in Fig. 3.

5. Conclusions

In this paper, an active exploration autonomous search frame-
work has been established based on greedy reinforcement learn-
ing. Inspired by the pioneering work in dual control [24], we
propose an information-directed reinforcement learning to enable
a balanced trade-off between exploration and exploitation. The
greedy RL essentially implements an exploitation strategy that
navigates the search agent to collect maximum reward (concentra-
tion), and the Entrotaxis search enables the agent to explore the
most uncertain areas to improve the level of belief confidence.
Such a model-based and model-free (MB-MF) paradigm shares
the strengths from both sides. From the experiment results using
high-fidelity dataset, the proposed AID-RL greatly improves the
search and estimation performance and consumes less training
episodes compared with traditional �-greedy algorithms.

Recently, multi-agent systems have shown great potential in
solving complex problems using collaborative swarm robots
[34,35]. One of the key advantages of using multi-agent systems
in autonomous search problems is that it enables collective intelli-
gence, where the collaboration of multiple agents can lead to
improved performance and faster problem-solving. Therefore, our
future research efforts will focus on developing a distributed
framework for AID-RL. This framework will incorporate multiple
agents working together to achieve the source search goal, and
our aim is to further enhance the search performance and learning
speed by allowing the agents to collaborate and share information.
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