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Abstract: Localized damage may occur due to the fact that laminated bamboo lumber (LBL) has a lower 

compressive strength perpendicular to the grain direction than it does parallel to the grain. In this study, the 

transverse compressive performance of LBL under entire-surface compression and local-surface compression 

is investigated. Load-displacement curves, stress-strain relationship, detailed failure modes and basic 

mechanical properties are obtained. The results show that despite the compressive strength and elastic modulus 

are nearly same in the two transverse orientations, the failure patterns are distinct due to the layer structure. 

Ramberg-Osgood relation is utilized to fit the stress-strain curves. Proportional limit strength are determined 

indicating that specimens compressed locally have a greater load bearing capability. Based on finite element 

analysis and theoretical study, the mechanism of the enhancement in proportional limit strength is revealed. 

Equations for determining the bearing load of a specimen under local compression in the elastic stage are 
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derived from the simulation data and logit model, considering the contact length and geometric size of the 

specimen. Additionally, parametric tests are conducted to determine the effect of bearing shape, bearing area, 

and loading mode on the stress distribution and bearing capacity. 

Keywords: Laminated bamboo lumber; transverse compression; local compression; finite element analysis 

1. Introduction 

The use of bamboo for manufacturing engineering structures (Ghavami 2005; Li et al. 2019b; Liu et al. 

2022; Lv et al. 2019; Méndez Quintero et al. 2022; Mimendi et al. 2022) and composite materials (Dixon et 

al. 2016, 2017; Qiu and Fan 2020) has attracted extensive attention from researchers, as the concepts of 

sustainable development and carbon neutrality continue to gain favor. From macro to micro scale, the light 

weight and good mechanical properties of raw bamboo materials and bamboo fiber reinforced composite 

materials have been successfully demonstrated (Dixon 2017; Dixon et al. 2015; Sharma et al. 2015; Song et 

al. 2017). Dixon et al. (Dixon 2017) placed bamboo in the broader context of cellular solids, investigated the 

structures and mechanical properties of dry bamboo tissue, and found the relations between density and 

mechanical properties. Although they found that natural bamboo at the same density of densified bamboo has 

higher properties, raw bamboo materials sometimes cannot fully meet the requirements for building materials 

due to their discontinuous mechanical properties and weak connections (Hong et al. 2019, 2020). Laminated 

bamboo lumber (LBL) is a common engineered bamboo material made by gluing together thin and flat 

bamboo laminates with a specified width and thickness (Li et al. 2013). It is lightweight, has significantly 

more stable physical and mechanical qualities, and has a uniform cross section (Dauletbek et al. 2021). 

Numerous experimental studies on LBL in parallel to the grain direction have been undertaken in recent years, 

including compressive and tensile strength (Wang et al. 2021b; Zhang et al. 2021), bending properties (Li et 

al. 2019a; Sinha et al. 2014), constitutive model (Chen et al. 2020; Wei et al. 2020), and axial and eccentric 

compression behavior of LBL columns (Hong et al. 2021b; a; Wang et al. 2021a). However, because the 



material is anisotropic, the compressive strength is significantly lower in off-axis orientations, particularly 

perpendicular to the grain direction (Yang et al. 2020).  

Similar to timber structures (Li et al. 2021; Sun et al. 2021; Wang et al. 2019), nearly all engineered 

bamboo constructions exist the condition of transverse compression during service. The simplest engineering 

example may be the overlapping area of main and secondary beams; traditional timber connections such as 

mortise-tenon joints can also occur transverse compression (Zhou et al. 2021). Madsen et al. (Madsen et al. 

1982) considered the effect of specific geometry, and proposed a design method for wood subjected to stresses 

perpendicular to the grain. Based on the equilibrium method of plasticity, Van der Put (Van der Put 2008) 

studied the theoretical explanation of the bearing strength of locally loaded timber blocks. Leijten et al. 

(Leijten 2016; Leijten et al. 2012) investigated the evaluation of the strength predictive ability of three bearing 

models having an empirical, semiempirical or physical background. Numerous studies have been conducted 

on this topic in relation to timber constructions. Nevertheless, discussions on the models for the local bearing 

capacity perpendicular to the grain, and the necessity for designing compression stresses perpendicular to the 

grain against ultimate limit state (ULS) rather than against serviceability limit state (SLS) are still continuing 

(Brandner 2018), much less to LBL with no test standard or design code. Until yet, only a few investigations 

have been conducted on the transverse compression properties of laminated bamboo lumber. Yang et al. (Yang 

et al. 2020) investigated the off-axis compressive properties of LBL and discovered that the compressive 

strength is lowest perpendicular to the grain direction, while transverse compression failure mechanisms are 

absent. Tinkler-Davies et al. (Tinkler-Davies and Shah 2021) used digital image correlation (DIC) to explore 

the failure mechanism of LBL under transverse compression. However, the specimen's dimensions are 10 

mm×21 mm×19 mm, which does not reflect the specimen's true compressive strength. The specimens studied 

in the preceding two studies are in the radial direction, omitting the specimen in the tangential direction. 

Besides, there is no research on the local compression behavior of LBL. 



Although there are many laminated bamboo lumber constructions (Su et al. 2021), there is still a dearth 

of research on the mechanical behavior of LBL in transverse directions, particularly under local compression 

situations. Because laminated bamboo lumber (LBL) has a substantially lower compressive strength in 

perpendicular to the grain direction than it does in parallel to the grain direction, perpendicular-to-grain should 

be avoided in the design of bamboo construction. However, due to usage and aesthetic needs, the utilization 

of perpendicular-to-grain may be unavoidable and result in localized damage. Therefore, it is necessary to 

study this topic for promoting application of engineered bamboo. The compressive behavior of LBL in the 

two transverse directions is investigated in this paper using both experimental and numerical methods. The 

main objectives of this work are to evaluate the basic mechanical properties, identify failure patterns, and 

uncover failure processes. Finite element analysis is performed to help understand the reason for proportional 

limit strength increasing and stress distribution under local surface compression. On the basis of simulation 

results, equations for calculating the bearing load of specimen under local compression are established. In 

addition, the investigations are extended using the finite element method to explore the effect of bearing shape, 

bearing area, and loading mode on the stress distribution and bearing capacity of specimens subjected to local 

compression. The findings of this study can be used to develop realistic guidelines for designing LBL 

structures. 

2. Methodology 

2.1 Materials 

All specimens used in current study were manufactured by Ganzhou Sentai Bamboo Company LTD., 

Ganzhou, China. They used Moso bamboo (from Yongan, Fujian, China) as raw material and resorcinol as 

adhesive to produce Laminated bamboo lumber (LBL); the production procedures started from the 

arrangement of bamboo laminates as shown in Figure 1 followed by the hot pressure technique implementing 

the pressure of 9 MPa for upper and lower surfaces and 6.5 MPa for left and right surfaces in 157 ℃ condition 



for about 15 minutes to form components. It is worth noting that, to meet the requirements of specimen length, 

basic bamboo laminates were mechanical connected along the parallel-to-grain direction prior to pressure. 

 

Figure 1 Arrangement of bamboo laminates and mechanical connection 

2.2 Design of specimens 

A total of 4 specimen groups including entire-surface compression specimens and local-surface 

compression specimens were prepared to investigate the transverse compressive behavior of laminated 

bamboo, as shown in Table 1 and Figure 2. CHH and CHV represent specimen under entire-surface 

compression in the radial direction and tangential direction respectively. PH and PV represent specimen under 

local-surface compression in the radial and tangential direction. Dimensions for specimens subjected to entire-

surface compression were designed as 50 mm×50 mm×100mm, while that for partial compressive specimens 

were 50mm×50mm×150mm. The wide surface of bamboo strip was marked as ‘A’ followed by ‘B’, ‘C’ and 

‘D’ marked successively along the counter clockwise direction in all specimens. ‘’ was then used to mark 

top surfaces, whilst left bottom surfaces blank. 

Table 1 Details of test specimens 

Group Dimension Number Compression direction 

CHH 

50mm×50mm×100mm 

36 Radial direction 

CHV 36 Tangential direction 

Arrangement of bamboo laminates

Mechanical connections

Laminated bamboo products



PH 

50mm×50mm×150mm 

36 Radial direction 

PV 36 Tangential direction 

 

Figure 2 Transverse compression specimens 

2.3 Testing procedures 

Schematic diagrams for considered tests are shown in Figure 3. They were conducted using a 200-ton 

microcomputer controlled electro-hydraulic servo universal testing machine. Axial displacements were 

measured by displacement meters with data collection through TDS-530 data acquisition instrument. For 

specimens subjected to entire-surface compression, compressive strain values were captured by four pairs of 

strain gauges pasted on four side surfaces (8 strain gauges in total, as shown in Figure 3a). Partial compressive 

loading was applied using a steel block (50mm×75mm×25mm), and contact area between steel block and 

specimen was 50 mm×50 mm. Moisture content and density of tested LBL specimens were 7.0% and 

736kg/m3, respectively. 

Since there is lack of testing standard for engineered bamboo products, current loading systems were 

designed according to GBT50329-2012 for timbers. The displacement-controlled load at the speed of 2 

mm/min was adopted. All tests were conducted in the structural laboratory of Nanjing Forestry University at 

ambient temperature of 24℃ and humidity of 60%. 

Tangential

RadialRadialTangential 



 

(a) Entire-surface compression (b) Local-surface compression 

Figure 3 Test setup 

2.4 Determination of proportional limit point 

GBT 50329-2012 Chinese standard for test methods of timber structures specifies the method for 

determining proportional limit point for specimen under transverse compression: the tangent value of the angle 

between the tangent of the proportional limit point and the load axis shall be 1.5 times of the tangent value of 

the angle between the straight line and the load axis in the linear elastic stage, as shown in Figure 4. 

 

Figure 4 Schematic diagram of proportional limit point 

The proportional limit strength can be calculated according to Equation (1): 

 e
e

F
f

bl
=  (1) 

where ef  is the proportional limit strength, eF  is the proportional limit load, b  is the width of specimen, 

l  is the contact length. 



2.5 Finite element method 

2.5.1 Failure criterion and constitutive model 

Although laminated bamboo lumber is a typical anisotropic bio-based material, it could be simplified as 

an orthotropic material to reduce the complexity in current study. Finite element analyses are conducted using 

ABAQUS/Standard following Hill failure criterion and ideal elastoplastic constitutive model, which have been 

successfully implemented in authors’ previous work (Hong et al. 2021b; a) and proven to be valid for LBL. 

Equation (2) can be used to express Hill failure criterion. 
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where F, G, H, L, M, N are constants determined by the strength of material, which can be calculated by 

Equations (3)~(8): 
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where ii  are material strength in the three directions, 
ij  are shear strength, 

0  is reference yielding 

stress, 0 0 / 3 = . 
ijR  can be calculated by Equations (9): 
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Adopted ideal elastoplastic constitutive model is shown in Figure 5a, where tX  and cX  are the tensile 



strength and compressive strength of LBL in grain direction (L); tY   and cY   are the tensile strength and 

compressive strength in radial direction (R); tZ  and cZ  are the tensile strength and compressive strength in 

tangential direction (T), respectively. The definition of directions L (1), T (2) and R (3) is shown in Fig. 5b. 

Table 2 summarizes all relevant constitutive model parameters from literature (Hong et al. 2021b; a; Tang et 

al. 2019; Wang et al. 2021b). It should be noted that the tensile properties are not used to calculate parameters 

in Hill failure criterion (Jasieńko et al. 2010), and the transverse mechanical properties are obtained from the 

current experimental works. 

       

Figure 5 (a) Ideal elastoplastic constitutive model (b) L, T and R direction 

Table 2 Constitutive model parameters 

Elastic modulus（MPa） Poisson’s ratio Strength（MPa） 

E1 6323.7 μ12 0.25 XT 98 SXY 18.13 

E2 1440 μ21 0.053 Xc 59.63 SYZ 22.59 

E3 1149 μ13 0.2 YT 8.26 SZX 6.58 

G12 1365.08 μ31 0.04 YC 21.63 0  19.62 (for radial direction) 

G23 461.81 μ23 0.42 ZT 8.26 0  21.63 (for tangential direction) 

G13 1260.09 μ32 0.42 ZC 19.62   

2.5.2 Modeling details 

As shown in Fig. 6, the models of laminated bamboo specimens, steel block and bottom plate are created. 
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The surface-to-surface contact is used to simulate the interface between specimen, steel block and bottom 

plate. The normal direction of the interface is defined as hard contact, which allows the interface to separate 

during stretching and not penetrate during compression. The tangential behavior of the interface along the 

normal direction is simulated by the coulomb friction model. After conducting tests of friction coefficient 

influence on simulation results (0.1, 0.3 and 0.5), it is found that friction coefficient of 0.3 matches the 

experimental results best. Therefore, the friction coefficient is set as 0.3.  

Reference points (RP) are created for the model to apply load and constrains. For entire-surface 

compression specimens, the coupled constrains are set to apply the displacement-controlled loads. U1, U2, 

and U3 are restrained on the bottom ends, while the top end is fixed. For local-surface compression specimens, 

it should be noted that since the load-displacement curves were obtained using machine data directly, the initial 

stiffness is lower than the real condition because of additional displacement from gaps in machine. Thus, the 

elastic boundary conditions are applied to the finite element model to make the simulated stiffness consistent 

with the test stiffness. According to the debugging results, the elastic modulus and Poisson’s ratio of the steel 

block are set as 666 MPa and 0.3, respectively. The coupled constrains are set on the steel block to apply the 

displacement-controlled loads, while the rigid constrains are set to bottom steel plate and ignore its influence. 

Both ends are fixed according to the condition of experiment. The type of solid elements is Standard/C3D8. 

The meshing density for specimens and steel members is 2 mm. The calculation step is set to 1s, and the 

displacement-controlled loads of 20 mm are loaded through the smooth analysis step. 



 

(a) Entire-surface compression specimen (b) Local-surface compression specimen 

Figure 6 Meshing of model 

In the following section, the failure phenomena of the specimens under entire-surface compression and 

local-surface compression are described and analyzed firstly. Meanwhile, results obtained from finite element 

method are presented along with test results to validate the FEA model. The data obtained from the tests are 

analyzed and discussed. Then, the vertical stress (stress throughout thickness) caused by local compression is 

calculated and compared with FEA results to explain the mechanism of enhancement in proportional limit 

strength. Next, the correlation between the bearing capacity and the displacement of the specimens under local 

compression in the elastic deformation stage is derived. At last, parameter studies are carried out using finite 

element method. 

3. Experimental and finite element analysis 

3.1 Load-displacement curves and failure patterns 

3.1.1 Entire-surface compression specimens 

Load-displacement curves and typical failure patterns for entire-surface compression specimens are 

shown in Figure 7 and 8, respectively. Obtained curves can be divided into three segments i.e., bi-linear stages 

and descending stage. 

At the beginning of loading, the specimen is in the initial elastic stage with limited deformation; no 



obvious phenomenon can be observed on the surface. As the load continues increasing, the specimen enters 

the second linear stage and begins to yield. Several micro cracks initially appear at the splice interfaces and 

the horizontal splice lines are no longer straight. Obvious deformation can be observed at this phase. These 

cracks then extend from the central part of the specimen to the side surfaces along inclined 40-70 degrees 

direction (Figure 8a~d) before reaching the corner of the specimen which results in the final failure. Similar 

observation was also reported by Tinkler-Davies et al. (Tinkler-Davies and Shah 2021) i.e. a 40-60 degrees 

shear face was occurred from the upper-right corner leading towards to the bottom left during loading (Figure 

8e, Strain of 10% from DIC). 

  

(a) CHH (b) CHV 

Figure 7 Load-displacement curves 

 

(a) CHV-4           (b) CHV-27                       (c) CHH-23 
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(d) CHH-16          (e) Compressive strain of 10% from DIC 

Figure 8 Observed failure modes for CHV and CHH groups 

The propagation of cracks along the inclined 40-70 degrees could be explained by Poisson’s ratio in Plane 

TR (23) and RT (32). 𝑢23 and 𝑢23 are 0.42. Therefore, the tangential value of the angle between the sum of 

lateral and vertical strain vectors and the horizontal line is tan (1/0.42), which corresponds to approximate 

67.22°. During the failure process, it is found that the cracks always occurred firstly in Plane TR and RT. This 

phenomenon could also be attributed to Poisson’s ratio. It is shown in Table 2 that 𝑢23 and 𝑢23 is much 

higher than 𝑢21 and 𝑢31, which means lateral deformation of specimens parallel to axis 2 and 3 is much 

larger (about 10 times) than that parallel to axis 1, so the cracks always occurred firstly in Plane TR and RT. 

Obvious local buckling occurred along the glue lines in almost every specimen in CHH group, but rarely 

occurred in specimens within CHV group. The arrangement of bamboo laminates could be closely related to 

this phenomenon, as can be seen in Figure 9; the thickness of bamboo strips at the edge layer of CHV is close 

to that at the middle layer, whereas at the edge layer of CHH, the thickness of bamboo laminates is far from 

that at the middle layer. The edge layer of CHH specimen is relatively weak, compared with CHV specimen, 

the load cannot be distributed uniformly so the specimen is easy to crack during load transmission and has a 

high probability to occur local buckling. However, Figure 6 shows that obviously higher ductility is observed 

for CHH when compared with CHV, which could also be attributed to the arrangement of bamboo laminates. 

Local buckling



 

Figure 9 Different arrangement of bamboo laminates between CHV and CHH 

3.1.2 Local-surface compression specimens 

Load-displacement curves and typical failure modes for local compression specimens are shown in 

Figure 10 and 11, respectively. Curves show a bi-linear characteristic. Exposed to local compression 

perpendicular to the grain, laminated bamboo lumber behaves high ductility and extensive deformation 

capability. 

In the initial stage, no significant change could be found on the surface with increasing in load. However, 

when PV specimen enters the second linear stage, several horizontal cracks near the splice lines appear firstly, 

with the two ends of the specimen tilte upward. Meanwhile, plastic deformations could be observed on the 

specimen near the sharp edge of steel block. As the axial displacement increases, the loading area under the 

steel block is gradually compacted following by considerable vertical cracks on the two end surfaces. Finally, 

the test is stopped manually, as the load can continue to grow without limit. It can be found that the side 

surfaces (A, C) nearly fall off from the main body, which is also clearly showed in the FEA results.  

The test phenomenon of PH specimen is similar to that of PV. After the plastic deformation occurs at the 

contact edge between the steel block and the specimen, horizontal cracks firstly appear at both ends. With the 

increase of load, the cracks gradually develop to the inside, and the width of cracks also become larger. 

Compared with PV specimen, most of PH specimens maintain a better integrity, and there is no obvious falling 

off trend of side surfaces. As illustrated in Figure 10, the linear stage's range is just approximately 1 mm, 

CHV CHH



which is negligible in the real item. Therefore, the deformation or stiffness of LBL components should be 

carefully regulated throughout design. 

Curves from developed FE technique for PH and PV specimens are shown in Figure 10 as well. This 

model provides a reasonable prediction, especially for PH group. However, FEA results overestimates test 

results for PV group. The discrepancy may be explained by the reason that smaller effective bearing area in 

PV group due to the side surfaces separation of the specimen during loading. These changes in invalid parts 

are not considered in finite element model. 

  

(a) PV                                      (b) PH 

Figure 10 Load-displacement curves 
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(b) PH-12 

Figure 11 Observed failure modes for PV and PH groups 

3.2 Analysis of test results 

3.2.1 Basic mechanical properties 

A summary of main test results is presented in Table 3. maxP  is the ultimate bearing capacity of specimen 

recorded by the data acquisition. cf  is the compressive strength calculated by max /P A , where A  is the 

cross-sectional area. cE  is the elastic modulus and c  is the Poison’s ratio, and they were calculated in the 

linear elastic region. 

Test data in Table 3 show relevant coefficient of variation (COV) is basically less than 20% confirming 

reliable results obtained from current setup. Different Poison’s ratios in different plane are observed 

confirming laminated bamboo lumber as an anisotropy material, however, these properties are basically same 

between two transverse directions. In terms of compressive strength and elastic modulus, tangential direction 

shows slightly higher values than radial direction. Their relation can be roughly considered as: 

 T R1.1E E=  (10) 

 T R1.1f f=  (11) 

where T and R means tangential direction and radial direction, respectively. 

Dixon (2017) studied the effect of density on the compressive strength of moso bamboo in tangential and 

radial direction. It is found that the compressive strength in the tangential direction is similar to that in the 
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radial direction, which is roughly constant at about 20 MPa and independent of density. The strength value is 

consistent with results in current study. However, in our study, average value and characteristic value both 

show that the strength and elastic modulus are higher in tangential direction. This may attribute to the 

densification (hot/cold pressing) in the process of laminated bamboo lumber. As illustrated in Section 2.1, the 

hot pressure technique implemented the pressure of 9 MPa for upper and lower surfaces and 6.5 MPa for left 

and right surfaces, which indicates that the structure of bamboo may be denser in the tangential direction. 

These speculations need further confirmation in the future. Nevertheless, due to the fact that densification is 

an important phenomenon in the processing of some structural bamboo products, determining optimal 

densification methods and levels would be beneficial (Dixon 2017). 

In practical application, the transverse direction setup should be used with caution. As already discussed, 

failure phenomena are different between specimen groups although their mechanical behavior seems to be 

similar. Considering the better ductility and sample integrity during failure process, the author recommends 

to choose radial direction for local compression in the construction. 

Table 3 Main test results 

Group maxP /kN 
cf /MPa 

cE /MPa 
c (A/C) 

c (B/D) 

CHH 

Mean value 55.68 21.74 1550 0.529 0.06 

Coefficient of variation 6% 5% 14% 10.9% 21% 

Standard deviation 3.60 1.15 217 0.058 0.01 

Characteristic value 49.03 19.62 1149 0.42 0.04 

CHV 

Mean value 60.65 24.09 1700 0.073 0.53 

Coefficient of variation 6% 6% 8% 15.5% 11% 

Standard deviation 3.43 1.33 141 0.011 0.06 

Characteristic value 54.32 21.63 1440 0.053 0.42 



Note: The characteristic values are calculated as the 5-percentile value under 75% confidence level, referring to ASTM 

D2915_17. Characteristic value = Mean value − 1.846 ∗ Standard deviation. 

3.2.1 Stress-strain behavior 

Figure 12 shows the stress-strain behavior of CHH and CHV specimens. There is no descending stage 

since the strain gauges were broken due to the damage or deformation of specimens. It can be seen that the 

curves can be divided into two segments, which are elastic stage and plastic stage. The Ramberg-Osgood 

relation is commonly used to describe the stress-strain behavior without distinct yield point. Its expression is: 
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where   is strain;   is stress;  and n  are fitted parameters; 0  and 0  are test data at any point in 

the elastic region. Thus, the stress-strain behavior of CHH and CHV can be obtained: 
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(a) CHH (b) CHV 

Figure 12 Stress-strain curves 

3.2.2 Proportional limit point  
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proportional limit strength of PH and PV are 1.63 times and 1.67 times higher than that of CHH and CHV, 

respectively. Also, the strength in the tangential direction is higher than that in the radial direction, which is 

consistent with the findings in basic mechanical properties. 

 

Figure 13 Proportional limit strength 

Table 4 Parameters for proportional limit point 

Group tan(90 )−  tan  tan(90 )−  tan  Proportional limit point (u, P) ef /MPa SI 

CHH 30.4387 0.0329 20.2429 0.0494 (1.20, 28.54) 11.42 - 

CHV 34.3279 0.0291 22.8833 0.0437 (1.11, 30.84) 12.34 - 

PH 59.3035 0.0169 39.3700 0.0254 (0.83, 46.68) 18.67 1.63 

PV 52.5170 0.0190 35.0877 0.0285 (1.02, 51.48) 20.59 1.67 

Note: SI is strength index, which means the promotion ratio of proportional limit strength. It is calculated by dividing the 

proportional limit strength of local-surface compression specimen by that of entire-surface compression specimen. 

3.3 Calculation of vertical stress under local compression 
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Figure 14 Calculation diagram 

Uneven vertical stress (stress throughout thickness) caused by local compression on the specimen is 

necessary to study. Referring to Elasticity (Barber 2002), when a half-plane body is subjected to a normal 

concentrated force on the boundary, the vertical stress in the rectangular coordinate are: 

 

( )

3

2
2 2

2
x

F x

x y



= −

+
 (15) 

In these tests, the specimens were subjected to distributed force. The vertical stress can then be obtained 

by superposition. As shown in Figure 14, to obtain the stress values at point M (x, y), we can take the length 

d𝜉 and consider the force d𝐹 = 𝑞d𝜉 applied to it as a small concentrated force. The vertical and horizontal 

distances of M from the concentrated force d𝐹  are 𝑥  and 𝑦 − 𝜉 , respectively. Therefore, the stress 

components induced by d𝐹 at point M are: 
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To obtain the stress components caused by all distributed forces, it is necessary to superimpose the stress 

caused by all small concentrated forces. We can get: 
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Figure 15 and 16 illustrate the comparison of FEA findings (PH group) with computed results. The stress 

distribution along the height direction is depicted in Figure 15. At 47.26 kN, the results are extracted and 

computed. As can be observed, the farther the specimen is from the location where the load is applied, the less 



stress is applied to the specimen. However, when the position is close to the steel block and bottom plate, the 

FEA stress values are increased, owing to the friction effect between the specimen and the steel parts. This 

effect is reduced when the position is removed from the steel block (Figure 15b), at which point the estimated 

values correspond well with the FEA results. At the position of the center nodes, the computed compressive 

stress values are greater than the FEA values, indicating that the load is scattered outside in the vertical 

direction, thus reducing the stress. 

 

(a) Middle position (b) 33mm from center nodes  

Figure 15 Results along the height direction at 47.26 kN 

The stress distribution along the length direction is depicted in Figure 16. At 11.39 kN, the results are 

extracted and computed. As illustrated in Figure 16a, the sharp edges of the steel block at -25 mm and 25 mm 

create stress concentrations, commensurate with the reported failure pattern. Both the FEA and computed 

results reveal that the locally applied load has an effect greater than 50 mm. The FEA results are greater than 

the calculated values, indicating that Equation 16 is unsuitable for use near the edge. However, it may provide 

a useful general change pattern that aids in understanding the stress distribution. At a distance of 25 mm from 

the uppermost surface nodes, the stress concentration effect of the steel block's sharp edge and the friction 

effect dissipate. Calculated and FEA stress values become much more consistent. However, the computed 

values are still greater than the FEA results within the range of -25 mm to 0 mm, demonstrating once again 

that the load is scattered outside in the vertical direction. 
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(a) 2mm from topmost surface (b) 25mm from topmost surface 

Figure 16 Results along the length direction at 11.39 kN 

The reason for proportional limit increased of local surface compression specimen could be drawn. In 

the vertical direction (within the range of -25 mm to 25 mm), the external load is dispersed significantly thus 

effectively reduce the vertical stress, as shown in Figure 15b and Figure 16b. Therefore, under the same load 

level, the deformation of local compression specimen is smaller than that of entire compression specimen, 

which means the yield stress of LBL can only be achieved under greater external load. As a result, the 

proportional limit point derived from load-displacement curves of local-surface compression specimens is 

enhanced. 

3.4 Prediction of bearing capacity in elastic stage 

It is foreseeable that once the dimension of steel block or specimen changes, the relationship between 

bearing capacity and vertical displacement will change significantly. Therefore, it is inappropriate to directly 

fit the relationship based on test data (Zhou et al. 2021), as the results can only be applied for the same 

dimension. To obtain a more reasonable calculation formula, the relationship between displacement and load 

is derived, taking into account the contact length l  between steel block and specimen, as well as the height 

H  , the length L  and width b  of specimen (Figure 17a).  
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Figure 17 (a) Calculation diagram (b) Coordinate translation 

In the linear elastic stage, the strain at the center of the specimen under the steel block is: 

 max
max

u

E H


 = = −  (18) 

where， max  is the maximum vertical strain， max  is the corresponding maximum vertical stress, u  is the 

vertical displacement， H  is the height of the specimen, E  is the transverse elastic modulus. 

According to the FEA results, it is clear that the shape of vertical stress distribution basically follows 

Logit model (Cramer 2003), which is a discrete choice model popular in statistics area. Its functional model 

is: 
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Through coordinate translation (Figure 17b), we can express the stress distribution under local 

compression by Logit model: 
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where   is the vertical strain of specimen topmost surface， l  is the length of steel block (i.e. the contact 

length)， x  is the position of point between 0 and / 2l . Therefore, the vertical strain is: 
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Then, the compressive force N  exerted by steel block on the specimen is: 
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where E  is the elastic modulus in the transverse direction, b  is the width of specimen. 

Substituting Equation (21) into Equation (22), and according to the principle of force balance, we can 

get: 
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Finally, the relationship between the external load P  and the vertical displacement u  in the linear 

elastic stage is: 
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The analytical solution of Equation (24) cannot be obtained. According to Section 3.3, the stress out of 

range of contact length could be neglected. Therefore, Equation (24) could be simplified as: 
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Where A  is the bearing area. 

Calculated results, test results, FEA results are shown in Figure 18. The elastic modulus used for PH and 

PV group are 1192 MPa and 1468 MPa, respectively. In FEA-2, the displacement results are obtained from 

topmost surface of specimens under the steel block, because the displacement from steel block cannot reflect 

the real situation when elastic boundary conditions are applied. As can be seen in Figure 18, the calculated 

results are slightly smaller than simulated results, which could be attributed to ignoring stress concentration. 

Although the proposed equations are applicable to some extent, they have some limitations. If the sample is 

slightly bigger than the bearing area, it may behave like an entire-surface compression specimen. Besides, if 

the bearing shape is circular, the stress distribution must be totally different. In the next section, some 

preliminary parameter studies are conducted to discuss these issues. 



 

(a) PH (b) PV 

Figure 18 Compared results 

3.5 Parameter studies 

To furtherly study the mechanical behavior of laminated bamboo lumber under different working 

conditions, the effects of bearing area, bearing shape and loading mode are discussed using finite element 

analysis method. The simulation works are conducted in the radial direction of LBL, because the FEA results 

of PH group are more consistent with test results. The boundary conditions are same as PH group. The 

calculation step is set to 1s, and the displacement-controlled loads of 3 mm are loaded through the smooth 

analysis step. 

3.5.1 Effect of bearing shape on stress distribution 

In practical engineering application, circular and rectangular shapes are widely used. Therefore, a circular 

steel block with dimension of ∅50 mm is set. The thickness of steel block is 25 mm. The load-displacement 

curve and vertical stress distribution curves are shown in Figure 19. The vertical stress distribution at the 

position of 0 mm, 12 mm and 25 mm are extracted. Similar to rectangular bearing shape, there are stress 

concentrations at the edge of steel block, and then the stress distribution becomes uniform. The significant 

difference is that the stress distribution along the width direction is various, so Equation (25) is not applicable 

in this case. At the position of 0 mm, there is only a narrow area that could bearing capacity. 
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(a) Load-displacement curve (b) Vertical stress distribution 

Figure 19 Results at 26.44 kN 

The compressive force N  exerted by circular steel block on the specimen should be: 
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The change of contact length along the width direction l  is: 

 2 22l r z= −  (27) 

Therefore, the compressive force exerted by circular steel block could be written as: 
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According to the principle of force balance, we can get: 
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The comparison of calculated results and FEA results is shown in Figure 20. Thus, if there is a known 

function which could describe the profile of the steel block, the load-displacement curve could be derived. 



 

Figure 20 (a) Calculation diagram (b) Load-displacement curve 

3.5.2 Effect of bearing area on bearing capacity 

According to Equation (25), the bearing capacity will change approximately linearly with the change in 

bearing area. However, Equation (25) is derived under the condition of steel block could totally cover the 

specimen. If the specimen is slightly bigger than the bearing area, it may behave like an entire-surface 

compression specimen. To study this problem, the steel block is set as 48mm× 48mm× 25mm. Besides, a 

specimen with dimension of 48mm× 48mm× 50mm is created and compressed under the steel block with 

dimension of 80mm×80mm×25mm, as shown in Figure 21. 

 

(a) Local compression (b) Entire compression 

Figure 21 Finite element model 

The load-displacement results and vertical stress distribution along the height direction are shown in 

Figure 22. It can be seen in Figure 22a that the load-displacement curves of two group are very consistent in 

the initial stage, which proves that specimen will behave like entire-surface compression specimen if the 

specimen is slightly higher than the bearing area. Besides, the friction effect between specimen and steel 
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members is largely diminished. However, the specimen under local compression still has higher bearing 

capacity due to the load dispersed mechanism. The stress distributions are extracted at the displacement of 

0.77 mm. As can be seen in Figure 22b, the stress of local compression specimen gradually decreases, while 

that of entire compression specimen keeps unchanged except the part near the loading end. Therefore, even 

though their mechanical behaviors are similar, the specimen under local compression can still bear larger load. 

 

(a) Load-displacement curves (b) Load at displacement of 0.77 mm 

Figure 22 Effect of bearing area on bearing capacity 

3.5.3 Effect of loading mode on bearing capacity 

Transverse compression of structural components can be divided into three types according to their 

loading mode (see Fig. 23), namely entire-surface compression, intermediate-surface local compression and 

end-surface local compression. In this section, effect of loading mode on bearing capacity was studied and the 

stress distribution under the steel block was compared. L   (150 mm) and l   (50 mm) are the length of 

specimen and steel block, respectively. 

 

Figure 23 Three types of transverse compression: (a) Entire-surface compression (b) Intermediate-surface local compression 



(c) End-surface local compression 

Figure 24 shows the load-displacement curves of specimens under different loading mode. Although the 

bearing capacity of three loading modes is close in the initial stage, the specimen subjected to the entire-

surface loading exhibits apparently highest load bearing capacity under larger deformation, which could also 

be explained by the load dispersed mechanism. From the above parameter studies, it can be concluded that 

the bearing capacity of laminated bamboo lumber under local compression can be affected by many 

parameters, such as the bearing shape, bearing area, loading mode. Equation (24), (25) and (29) are only 

suitable for intermediate-surface local compression specimens. Thus, more experimental studies should be 

conducted in the future to create a more universal equation. 

 

Figure 24 Load-displacemnt curves 

4. Conclusions 

To investigate the mechanical properties of laminated bamboo lumber under compression in the two 

transverse directions, 144 prismatic specimens were prepared and tested. Meanwhile, finite element analysis 

was conducted for revealing mechanism and parameter studies. Based on the test and FEA results, the 

following conclusion can be obtained: 

(1) The failure patterns of specimens under entire-surface compression in the two transverse directions 

are similar, i.e., a 40-70 degrees shear face occurring. The failure patterns of specimens under local 

compression are also similar. However, there are a few distinctions between the two directions due to different 



layer structure. The radial specimens under entire-surface compression exhibit apparent local buckling, while 

the tangential specimens under local-surface compression exhibit obvious falling off trend of side surfaces. 

(2) The compressive strength and elastic modulus in the tangential direction are roughly 1.1 times higher 

than those in the radial direction. This may be attributed to the higher densification pressure in the tangential 

direction during the manufacturing process. The proportional limit strength of the specimen when compressed 

locally in the radial and tangential directions is 1.63 times and 1.67 times greater than when compressed 

entirely. The reason obtained from FEA results and theoretical analysis is that the load is dispersed throughout 

thickness thus effectively reduce the stress. 

(3) Based on Logit model, the relationship between displacement and load of specimen under local 

compression in the elastic region is derived, taking into account the contact length l  between steel block and 

specimen, as well as the height H , width b  and length L  of specimen. 

(4) FEM results show that the bearing capacity and stress distribution of laminated bamboo lumber under 

local compression can be affected by many parameters, such as the bearing shape, bearing area, loading mode. 

Thus, more experimental studies should be conducted in the future. 
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