
Atomic Simulation Interface (ASI): application
programming interface for electronic structure codes
Pavel V. Stishenko 1¶, Thomas W. Keal 2, Scott M. Woodley 3, Volker
Blum 4, Benjamin Hourahine 5, Reinhard J. Maurer 6,7, and Andrew J.
Logsdail 1¶

1 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, United Kingdom 2 Scientific
Computing Department, STFC Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD,
United Kingdom 3 Department of Chemistry, Kathleen Lonsdale Materials Chemistry, University College
London, London, United Kingdom 4 Thomas Lord Department of Mechanical Engineering and Materials
Science, Duke University, Durham, North Carolina 27708, United States 5 SUPA, Department of Physics,
University of Strathclyde, John Anderson Building, 107 Rottenrow, Glasgow G4 0NG, United Kingdom 6
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom 7 Department of
Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom ¶ Corresponding author

DOI: 10.21105/joss.05186

Software
• Review
• Repository
• Archive

Editor: Rachel Kurchin
Reviewers:

• @xwang862
• @junghans
• @srmnitc

Submitted: 12 December 2022
Published: 17 May 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
The Atomic Simulation Interface (ASI) is a native C-style API for density functional theory
(DFT) codes. ASI provides an efficient way to import and export large arrays that describe
electronic structure (e.g. Hamiltonian, overlap, and density matrices) from DFT codes that
are typically monolithic. The ASI API is designed to be implemented and used with minimal
performance penalty, avoiding, where possible, unnecessary data copying. It provides direct
access to the internal data structures of a code, and reuses existing data distribution over MPI
nodes. The ASI API also defines a set of functions that support classical, AIMD (ab initio
molecular dynamics), and hybrid QM/MM simulations: exporting potential energy, forces,
atomic charges, and electrostatic potential at user defined points, as well as importing nuclear
coordinates and arbitrary external electrostatic potentials. The ASI API is implemented in
the DFTB+ (Hourahine et al., 2020) and FHI-aims (Blum et al., 2009) codes. A Python
wrapper for easy access to ASI functions is also freely available (asi4py). We hope that the
ASI API will be widely adopted and used for development of universal and interoperable DFT
codes without sacrificing efficiency for portability.

Statement of need
Although numerous modern electronic structure codes have a common mathematical basis and
often share core algorithm implementations (such as ESL (Oliveira et al., 2020), ELSI (Yu et al.,
2018, 2020), libxc (Lehtola et al., 2018; Marques et al., 2012)), a portable and efficient way to
access resulting electronic structure variables from the user side remains elusive. For classical,
AIMD, and hybrid QM/MM calculations, a similar issue is solved by the widely adopted i-PI
interface (Kapil et al., 2019), MolSSI Driver Interface (Barnes et al., 2021), ASE library (Larsen
et al., 2017), and ChemShell environment (Lu et al., 2019), however, for electronic structure
data, such as wave functions, band structure, Hamiltonian or density matrices, there is no
widely adopted solution, probably due to diversity of basis sets. Therefore, many well-developed
codes for electronic structure analysis and integrating machine learning are hard to employ due
to their explicit dependence on the specific electronic structure code used. For example, the
MPE solvent model (Filser et al., 2022) is implemented only in FHI-aims, there are SchNOrb
(Schütt, Gastegger, et al., 2019) models that are available only for ORCA code (Neese et al.,

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

1

https://orcid.org/0000-0003-4653-9899
https://orcid.org/0000-0001-8747-3975
https://orcid.org/0000-0003-3418-9043
https://orcid.org/0000-0001-8660-7230
https://orcid.org/0000-0002-7667-7101
https://orcid.org/0000-0002-3004-785X
https://orcid.org/0000-0002-2277-415X
https://doi.org/10.21105/joss.05186
https://github.com/openjournals/joss-reviews/issues/5186
https://gitlab.com/pvst/asi
https://doi.org/10.5281/zenodo.7931108
rkurchin.github.io
https://orcid.org/0000-0002-2147-4809
https://github.com/xwang862
https://github.com/junghans
https://github.com/srmnitc
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.05186


2020). Machine-learning models can be trained disregarding details of a specific electronic
structure code’s basis sets, therefore even without a universal representation of electronic
quantities, a convenient and efficient way to access detailed electronic structure description
will benefit the efforts towards modularization of electronic structure software.

State of the field
Demand to access electronic structure data is driven currently by the urge to apply recent
machine-learning advances in the quantum chemistry field. After numerous successful applica-
tions of machine learning for direct prediction of energies and forces from atomic coordinates
(Bartók et al., 2018; Z. Li et al., 2015; Schütt, Kessel, et al., 2019), data-driven models that
predict electronic structure beyond energies and forces are being developed. Such data-driven
models provide more interpretable outcomes, possess higher transferability, and can be used
for prediction of a wider set of material properties. For example, Carleo & Troyer (2017) have
employed reinforcement learning to compute ground-state and unitary time evolution of a
few prototypical systems, and H. Li et al. (2018) have developed a deep-learning model that
predicts a Hamiltonian matrix for subsequent DFTB calculations. The SchNOrb deep-learning
framework uses neural tensor network representation of wave-functions for Hamiltonian matrix
prediction (Schütt, Gastegger, et al., 2019).

Today, many electronic structure software packages use files to export or import information
about electronic structure or potentials; this approach is implemented in ORCA (Neese et
al., 2020), Quantum Espresso (Giannozzi et al., 2020), CP2K (Kühne et al., 2020), FHI-aims
(Blum et al., 2009), DFTB+ (Hourahine et al., 2020), etc. Although file-based data exchange
has advantages, it unavoidably introduces performance penalties and often takes additional
coding efforts for data parsing and formatting, as storage formats are rarely good for active
calculations. Rare exceptions such as GPAW (Mortensen et al., 2005), Psi4 (Turney et al.,
2012), DFTK.jl (Herbst et al., 2021) do provide Python or Julia API’s and thus simplify
development of new functionality.

We believe the field will benefit from implementation of a universal API for access to DFT-
related quantities in popular quantum chemistry codes. Even without universal specifications
of basis sets, an API for access to Hamiltonian, overlap, and density matrices would be helpful
for the applications mentioned above. It will pave the way to implementation of new machine
learning models and electronic structure analysis tools, and will accelerate their adoption.

Functionality
The Atomic Simulation Interface (ASI) is a specification of pure C functions, designed to be
implemented in existing quantum chemistry codes. The scope and capabilities of ASI mostly
focus on efficient way to transfer electronic structure data. The complete ASI specification can
be found on the project web page pvst.gitlab.io/asi. The plain C API was chosen for simplicity
of implementation in Fortran codes and for simplicity of invocation from other languages
including Python and Julia. For the sake of convenience, a Python wrapper for ASI functions
has been created: asi4py is available for installation via pip (package installer for Python).
The asi4py wrapper was designed to be used with the ASE framework (Larsen et al., 2017)
implementing the ASE’s Calculator interface. Therefore, any DFT code that implements ASI
API automatically gets an ASE calculator with efficient data transfer.

There are four groups of key ASI functions that are briefly described in Table 1, united by
their primary purpose: control flow, atomic information, electrostatic potential exchange, and
transfer of large arrays describing electronic structure of the simulated system (currently routines
for Hamiltonian, overlap and density matrices are included in the ASI specification). Table 1
lists only a subset of ASI functions, ommiting auxiliary functions such as ASI_get_basis_size,
ASI_n_atoms, etc.

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

2

https://pvst.gitlab.io/asi
https://doi.org/10.21105/joss.05186


Codes implementing the ASI API are expected to be built as a shared object library for
dynamic linkage with the client code. Therefore, client codes get direct access to internal data
structures of an ASI-implementing code, minimizing interoperability performance overhead.
The suggested control-flow of a client code that employs ASI is shown in Figure 1.

Table 1. Key functions of the ASI API. For full list see ASI API Specification

Control flow

ASI_init Initialize calculation (load configuration files)
ASI_run Do single-point calculation. Can be called multiple times

with ASI_set_atom_coords for dynamics simulation or
geometry optimization

ASI_finalize Finalize calculations, free resources

Atomic information

ASI_set_atom_coords Sets atomic coordinates. Can be called (after ASI_init)
multiple times.

ASI_energy Returns total system energy.
ASI_forces Returns pointer to the array of forces acting on atoms.
ASI_atomic_charges Returns pointer to the array of atomic charges.

Supported partitioning schemes depend on
implementation

Electrostatic potential exchange

ASI_register_external_potentialSet local electrostatic potential and its gradient at
arbitrary points during calculations (during ASI_run call)

ASI_calc_esp Calculate local electrostatic potential and its gradient in
arbitrary points (after ASI_run call)

Electronic structure calculations

ASI_register_dm_init_callback Initialize SCF loop via density matrix
ASI_register_dm_callback Get density matrix on each SCF iteration
ASI_register_overlap_callback Get overlap matrix on each geometry change
ASI_register_hamiltonian_callback Get Hamiltonian matrix on each SCF iteration

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

3

https://pvst.gitlab.io/asi/asi_8h.html
https://doi.org/10.21105/joss.05186


Figure 1: Suggested control-flow of a code that uses ASI API. The loop condition depends on the
particular use case.

Given that the ASI API is expected to be implemented within existing codes using minimal
changes necessary in a code base, we have made the group of control-flow functions as small as
possible, preferring employment of callback functions. Registering a callback function gives the
client code direct access to data objects of an ASI-implementing code and eliminates the need
to copy them or to manage their lifetime. Callback functions that work with large matrices
(Hamiltonian, overlap, and density matrices) support distributed storage via BLACS (Basic
Linear Algebra Communication Subprograms) library (Basic Linear Algebra Communication
Subprograms, n.d.). Each callback receives a BLACS descriptor of the matrix if MPI (Message
Passing Interface (Walker & Dongarra, 1996)) parallelization is enabled. The dense storage
format is currently supported, whilst support for sparse formats is expected in future versions.

The atomic information functions are designed to simplify calculation setup and for integration
with classical simulation codes. The group of functions for electrostatic potential exchange are
primarily meant for integration in QM/MM and AIMD workflows, for example into ChemShell

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

4

https://doi.org/10.21105/joss.05186


(Lu et al., 2019) framework or in IC-QMMM (Golze et al., 2013) calculations.

The group of functions for electronic structure calculations are designed to support development
of new algorithms for density functional theory, for example density-matrix extrapolation (Polack
et al., 2021), and employment of machine-learning techniques on the electronic structure
level, such as SchNOrb model (Schütt, Gastegger, et al., 2019) or atomic cluster expansion of
Hamiltonians (Zhang et al., 2022). New use cases are expected to emerge once the electronic
structure properties are exposed via the ASI API.

Currently the ASI API is implemented in the open-source DFTB+ code, and in the
FHI-aims code. Most of the ASI API is implemented in both codes with exception of
ASI_register_dm_init_callback that is unavailable for DFTB+ due to different nature of
the self-consistent loop in its algorithm. In addition, the set of supported charge partitioning
schemes in the ASI_atomic_charges function depends on implementation. Although the
currently available implementations both use localized basis sets, we do not foresee obstacles
for ASI API implementation for plane-wave or hybrid basis sets.

For the sake of implementation simplicity, we tried to keep the number of ASI functions as small
as possible. Therefore, implementations of client code in languages like C or Fortran can be
cumbersome. To ease code development with the ASI API, we have created a Python wrapper
for it: asi4py. asi4py provides a wrapping class ASIlib for a dynamically loaded shared
library that implements ASI. That class forwards Python calls to native C calls via the ctypes

library. Direct access to large matrices and arrays is provided via NumPy (Harris et al., 2020)
arrays, so no data is copied during wrapping, and therefore performance overhead is minimal.
For redistribution of BLACS matrices, access to necessary subroutines of the ScaLAPACK
(Blackford et al., 1997) implementation linked with the loaded ASI library is provided via an
additional package scalapack4py, so the existing BLACS contexts and MPI communicators
are reused by a client code. To ease the calculation setup, an Atomic Simulation Environment
(ASE) (Larsen et al., 2017) calculator interface is implemented by ASI_ASE_calculator class.

Use Case
A minimal example of ASI API usage with DFTB+ for access to Hamiltonian, overlap, and
density matrices is shown below:

import os

import numpy as np

from ase.build import molecule

from asi4py import ASI_ASE_calculator

def write_input(asi):

from ase.calculators.dftb import Dftb

calc = Dftb(label='Some_cluster',

Hamiltonian_SCC='Yes',

Hamiltonian_MaxAngularMomentum_='',

Hamiltonian_MaxAngularMomentum_O='"p"',

Hamiltonian_MaxAngularMomentum_H='"s"')

calc.write_input(asi.atoms, properties=['forces'])

atoms = molecule('H2O')

atoms.calc = ASI_ASE_calculator(os.environ['ASI_LIB_PATH'], write_input, None, atoms)

atoms.calc.asi.keep_density_matrix = True

atoms.calc.asi.keep_hamiltonian = True

atoms.calc.asi.keep_overlap = True

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

5

https://doi.org/10.21105/joss.05186


print(f'E = {atoms.get_potential_energy():.6f}')

S = atoms.calc.asi.overlap_storage[(1,1)]

H = atoms.calc.asi.hamiltonian_storage[(1,1)]

DM = atoms.calc.asi.dm_storage.get((1,1), None)

DM_cnt = atoms.calc.asi.dm_calc_cnt[(1,1)]

print(f'Number of electrons = {np.sum(S*DM):.6f}')

print(f'Sum of eigenvalues = {np.sum(H*DM):.6f}')

print(f'Number of iterations = {DM_cnt}')

In this example the ASI_ASE_calculator class is used for ASI library loading. The path to
the library is specified in ASI_LIB_PATH environment variable. To create DFTB+ input files,
the ase.calculators.dftb.Dftb class from ASE is used. The ASIlib object is aggregated by
the calculator as asi property. Three boolean properties keep_* are used to enable storing of
copies of corresponding matrices in dictionaries named *_storage. Keys of these dictionaries
are pairs of 1-based indices of k-points and spin channels (always (1,1) for non-periodic
spin-paired systems). The exemplar code just saves three matrices of a water molecule and
prints out the system energy, number of electrons, sum of eigenvalues, and number of the
density matrix evaluation iterations from the dm_calc_cnt dictionary.

Author Contribution Statement
Conceptualization by Andrew Logsdail and Reinhard Maurer. Coding and development by
Pavel Stishenko with support from Ben Hourahine (DFTB+) and Volker Blum (FHI-aims).
Project management and paper writing by all.

Acknowledgements
The ASI development was supported by ARCHER2 eCSE Programme (project eCSE03-10).
A.L. acknowledges funding by the UKRI Future Leaders Fellowship Program (MR/T018372/1).
R.M. acknowledges funding by the UKRI Future Leaders Fellowship Program (MR/S016023/1).
Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by
EPSRC (EP/R029431), this work used the ARCHER2 UK National Supercomputing Service
(http://www.archer2.ac.uk). The authors are grateful to Mariana Rossi for her contribution to
foundations of this work.

Citations
Barnes, T. A., Marin-Rimoldi, E., Ellis, S., & Crawford, T. D. (2021). The MolSSI driver

interface project: A framework for standardized, on-the-fly interoperability between com-
putational molecular sciences codes. Computer Physics Communications, 261, 107688.
https://doi.org/10.1016/j.cpc.2020.107688

Bartók, A. P., Kermode, J., Bernstein, N., & Csányi, G. (2018). Machine learning a general-
purpose interatomic potential for silicon. Phys. Rev. X, 8, 041048. https://doi.org/10.
1103/PhysRevX.8.041048

Basic linear algebra communication subprograms. (n.d.). https://netlib.org/blacs/

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., & Whaley, R. C. (1997).
ScaLAPACK users’ guide. Society for Industrial; Applied Mathematics.

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

6

https://doi.org/10.1016/j.cpc.2020.107688
https://doi.org/10.1103/PhysRevX.8.041048
https://doi.org/10.1103/PhysRevX.8.041048
https://netlib.org/blacs/
https://doi.org/10.21105/joss.05186


Blum, V., Gehrke, R., Hanke, F., Havu, P., Havu, V., Ren, X., Reuter, K., & Scheffler, M.
(2009). Ab initio molecular simulations with numeric atom-centered orbitals. Computer
Physics Communications, 180(11), 2175–2196. https://doi.org/10.1016/j.cpc.2009.06.022

Carleo, G., & Troyer, M. (2017). Solving the quantum many-body problem with artificial
neural networks. Science, 355(6325), 602–606. https://doi.org/10.1126/science.aag2302

Filser, J., Reuter, K., & Oberhofer, H. (2022). Piecewise multipole-expansion implicit solvation
for arbitrarily shaped molecular solutes. Journal of Chemical Theory and Computation,
18(1), 461–478. https://doi.org/10.1021/acs.jctc.1c00834

Giannozzi, P., Baseggio, O., Bonfà, P., Brunato, D., Car, R., Carnimeo, I., Cavazzoni, C.,
Gironcoli, S. de, Delugas, P., Ferrari Ruffino, F., Ferretti, A., Marzari, N., Timrov, I.,
Urru, A., & Baroni, S. (2020). Quantum ESPRESSO toward the exascale. The Journal of
Chemical Physics, 152(15), 154105. https://doi.org/10.1063/5.0005082

Golze, D., Iannuzzi, M., Nguyen, M.-T., Passerone, D., & Hutter, J. (2013). Simulation
of adsorption processes at metallic interfaces: An image charge augmented QM/MM
approach. Journal of Chemical Theory and Computation, 9(11), 5086–5097. https:
//doi.org/10.1021/ct400698y

Harris, C. R., Millman, K. J., Walt, S. J. van der, Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., Kerkwijk,
M. H. van, Brett, M., Haldane, A., Río, J. F. del, Wiebe, M., Peterson, P., … Oliphant,
T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

Herbst, M. F., Levitt, A., & Cancès, E. (2021). DFTK: A julian approach for simulating
electrons in solids. Proc. JuliaCon Conf., 3, 69. https://doi.org/10.21105/jcon.00069

Hourahine, B., Aradi, B., Blum, V., Bonafé, F., Buccheri, A., Camacho, C., Cevallos, C.,
Deshaye, M. Y., Dumitrică, T., Dominguez, A., Ehlert, S., Elstner, M., Heide, T. van der,
Hermann, J., Irle, S., Kranz, J. J., Köhler, C., Kowalczyk, T., Kubař, T., … Frauenheim,
T. (2020). DFTB+, a software package for efficient approximate density functional
theory based atomistic simulations. The Journal of Chemical Physics, 152(12), 124101.
https://doi.org/10.1063/1.5143190

Kapil, V., Rossi, M., Marsalek, O., Petraglia, R., Litman, Y., Spura, T., Cheng, B., Cuzzocrea,
A., Meißner, R. H., Wilkins, D. M., & others. (2019). I-PI 2.0: A universal force engine
for advanced molecular simulations. Computer Physics Communications, 236, 214–223.

Kühne, T. D., Iannuzzi, M., Del Ben, M., Rybkin, V. V., Seewald, P., Stein, F., Laino,
T., Khaliullin, R. Z., Schütt, O., Schiffmann, F., Golze, D., Wilhelm, J., Chulkov, S.,
Bani-Hashemian, M. H., Weber, V., Borštnik, U., Taillefumier, M., Jakobovits, A. S.,
Lazzaro, A., … Hutter, J. (2020). CP2K: An electronic structure and molecular dynamics
software package - quickstep: Efficient and accurate electronic structure calculations. The
Journal of Chemical Physics, 152(19), 194103. https://doi.org/10.1063/5.0007045

Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., Christensen, R., Dułak, M.,
Friis, J., Groves, M. N., Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C.,
Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., Kubal, J., Kaasbjerg, K.,
Lysgaard, S., … Jacobsen, K. W. (2017). The atomic simulation environment—a python
library for working with atoms. Journal of Physics: Condensed Matter, 29(27), 273002.
https://doi.org/10.1088/1361-648x/aa680e

Lehtola, S., Steigemann, C., Oliveira, M. J. T., & Marques, M. A. L. (2018). Recent
developments in libxc — a comprehensive library of functionals for density functional theory.
SoftwareX, 7, 1–5. https://doi.org/10.1016/j.softx.2017.11.002

Li, H., Collins, C., Tanha, M., Gordon, G. J., & Yaron, D. J. (2018). A density functional tight
binding layer for deep learning of chemical hamiltonians. Journal of Chemical Theory and

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

7

https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1021/acs.jctc.1c00834
https://doi.org/10.1063/5.0005082
https://doi.org/10.1021/ct400698y
https://doi.org/10.1021/ct400698y
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.21105/jcon.00069
https://doi.org/10.1063/1.5143190
https://doi.org/10.1063/5.0007045
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1016/j.softx.2017.11.002
https://doi.org/10.21105/joss.05186


Computation, 14(11), 5764–5776. https://doi.org/10.1021/acs.jctc.8b00873

Li, Z., Kermode, J. R., & De Vita, A. (2015). Molecular dynamics with on-the-fly machine
learning of quantum-mechanical forces. Phys. Rev. Lett., 114, 096405. https://doi.org/
10.1103/PhysRevLett.114.096405

Lu, Y., Farrow, M. R., Fayon, P., Logsdail, A. J., Sokol, A. A., Catlow, C. R. A., Sherwood,
P., & Keal, T. W. (2019). Open-source, python-based redevelopment of the ChemShell
multiscale QM/MM environment. Journal of Chemical Theory and Computation, 15(2),
1317–1328. https://doi.org/10.1021/acs.jctc.8b01036

Marques, M. A. L., Oliveira, M. J. T., & Burnus, T. (2012). Libxc: A library of exchange and
correlation functionals for density functional theory. Computer Physics Communications,
183(10), 2272–2281. https://doi.org/10.1016/j.cpc.2012.05.007

Mortensen, J. J., Hansen, L. B., & Jacobsen, K. W. (2005). Real-space grid implementation
of the projector augmented wave method. Phys. Rev. B, 71, 035109. https://doi.org/10.
1103/PhysRevB.71.035109

Neese, F., Wennmohs, F., Becker, U., & Riplinger, C. (2020). The ORCA quantum chemistry
program package. The Journal of Chemical Physics, 152(22), 224108. https://doi.org/10.
1063/5.0004608

Oliveira, M. J. T., Papior, N., Pouillon, Y., Blum, V., Artacho, E., Caliste, D., Corsetti, F.,
Gironcoli, S. de, Elena, A. M., García, A., García-Suárez, V. M., Genovese, L., Huhn,
W. P., Huhs, G., Kokott, S., Küçükbenli, E., Larsen, A. H., Lazzaro, A., Lebedeva,
I. V., … Yu, V. W. (2020). The CECAM electronic structure library and the modular
software development paradigm. The Journal of Chemical Physics, 153(2), 024117.
https://doi.org/10.1063/5.0012901

Polack, É., Dusson, G., Stamm, B., & Lipparini, F. (2021). Grassmann extrapolation of
density matrices for born–oppenheimer molecular dynamics. Journal of Chemical Theory
and Computation, 17 (11), 6965–6973. https://doi.org/10.1021/acs.jctc.1c00751

Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R., & Maurer, R. J. (2019). Unifying
machine learning and quantum chemistry with a deep neural network for molecular wave-
functions. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12875-2

Schütt, K. T., Kessel, P., Gastegger, M., Nicoli, K. A., Tkatchenko, A., & Müller, K.-R. (2019).
SchNetPack: A deep learning toolbox for atomistic systems. Journal of Chemical Theory
and Computation, 15(1), 448–455. https://doi.org/10.1021/acs.jctc.8b00908

Turney, J. M., Simmonett, A. C., Parrish, R. M., Hohenstein, E. G., Evangelista, F. A.,
Fermann, J. T., Mintz, B. J., Burns, L. A., Wilke, J. J., Abrams, M. L., Russ, N. J.,
Leininger, M. L., Janssen, C. L., Seidl, E. T., Allen, W. D., Schaefer, H. F., King, R. A.,
Valeev, E. F., Sherrill, C. D., & Crawford, T. D. (2012). Psi4: An open-source ab initio
electronic structure program. WIREs Computational Molecular Science, 2(4), 556–565.
https://doi.org/10.1002/wcms.93

Walker, D. W., & Dongarra, J. J. (1996). MPI: A standard message passing interface.
Supercomputer, 12, 56–68.

Yu, V. W., Campos, C., Dawson, W., García, A., Havu, V., Hourahine, B., Huhn, W. P.,
Jacquelin, M., Jia, W., Keçeli, M., Laasner, R., Li, Y., Lin, L., Lu, J., Moussa, J.,
Roman, J. E., Vázquez-Mayagoitia, Á., Yang, C., & Blum, V. (2020). ELSI — an open
infrastructure for electronic structure solvers. Computer Physics Communications, 256,
107459. https://doi.org/10.1016/j.cpc.2020.107459

Yu, V. W., Corsetti, F., Garcıá, A., Huhn, W. P., Jacquelin, M., Jia, W., Lange, B., Lin,
L., Lu, J., Mi, W., & others. (2018). ELSI: A unified software interface for kohn–sham

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

8

https://doi.org/10.1021/acs.jctc.8b00873
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1103/PhysRevLett.114.096405
https://doi.org/10.1021/acs.jctc.8b01036
https://doi.org/10.1016/j.cpc.2012.05.007
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1103/PhysRevB.71.035109
https://doi.org/10.1063/5.0004608
https://doi.org/10.1063/5.0004608
https://doi.org/10.1063/5.0012901
https://doi.org/10.1021/acs.jctc.1c00751
https://doi.org/10.1038/s41467-019-12875-2
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1002/wcms.93
https://doi.org/10.1016/j.cpc.2020.107459
https://doi.org/10.21105/joss.05186


electronic structure solvers. Computer Physics Communications, 222, 267–285. https:
//doi.org/10.1016/j.cpc.2017.09.007

Zhang, L., Onat, B., Dusson, G., McSloy, A., Anand, G., Maurer, R. J., Ortner, C., &
Kermode, J. R. (2022). Equivariant analytical mapping of first principles hamiltonians to
accurate and transferable materials models. Npj Computational Materials, 8(1). https:
//doi.org/10.1038/s41524-022-00843-2

Stishenko et al. (2023). Atomic Simulation Interface (ASI): application programming interface for electronic structure codes. Journal of Open
Source Software, 8(85), 5186. https://doi.org/10.21105/joss.05186.

9

https://doi.org/10.1016/j.cpc.2017.09.007
https://doi.org/10.1016/j.cpc.2017.09.007
https://doi.org/10.1038/s41524-022-00843-2
https://doi.org/10.1038/s41524-022-00843-2
https://doi.org/10.21105/joss.05186

	Summary
	Statement of need
	State of the field
	Functionality
	Table 1. Key functions of the ASI API. For full list see ASI API Specification

	Use Case
	Author Contribution Statement
	Acknowledgements
	Citations

