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Abstract

Lipomas are benign neoplasms of fat and are amongst the most common tumours

with an estimated incidence rate of 1 per 1000 people per year (Rydholm & Berg

1983, Weiss et al. 2007). They need to be distinguished from atypical lipomatous

tumours (ALT) which are malignant and rare and present both a clinical and his-

tological challenge. The distinction is made by assessing nuclear and subtle archi-

tectural features which require reviewing multiple sections and the use of ancillary

genetic testing. Benign fatty tumours, therefore, present a considerable workload

in the general pathology setting and the distinction from malignancy often require

specialist review. This problem could be addressed by automated whole slide image

(WSI) analysis, however, there is a lack of existing tools for this task. The pauci-

cellular nature of the fatty tissues also presents a computational challenge which is

addressed in this study.

A tile-based deep learning workflow is developed to quantitatively analyse

fatty tumour WSIs. A total of 206 internal and 402 external slides were employed

for the training, validation and testing of the convolutional neural networks. A

semi-automatic nucleus annotating workflow is also proposed, and a nucleus-level

lipoma and ALT dataset is developed for the tasks of fatty tumour nucleus classifi-

cation and segmentation. A lipoma and ALT nucleus detector is trained on top of

this dataset. The tile-based workflow and the nucleus detector are then integrated

for the slide-level classification of lipoma and ALT.

The pipeline achieved 70.31% overall accuracy with an AUC of 0.777 for slide-

level diagnostic classification using the real-world dataset. The results suggest that

WSI analysis of fatty tumours is feasible but presents a unique set of challenges.
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With the increasing routine implementation of whole slide scanning and storing

technologies in clinical practice, massive archives of digitised tissue slides are be-

ing created. This new source of medical imaging data opens up exciting opportuni-

ties for computer scientists interested in digital pathology research. The workflows

and application of existing methods that I have developed in this study enable the

classification of benign and malignant fatty tumours at the digital slide level. To

my knowledge, this is one of the first couple of such implementations that have

been developed for tumours of fat. These solutions require further validation and

could be integrated into the routine clinical pathology pathways to support and as-

sist pathologists in making more rapid and accurate diagnoses.

There is currently a worldwide shortage of diagnostic histopathologists. The

pathologist-to-inhabitant ratio in developed countries such as the USA and most

European countries is about or below 1:30,000 (Märkl et al. 2021). However, this

ratio is around 1:70,000 in Poland or China and is greater than 1:1,000,000 in the

Sub-Saharan countries. Therefore, tools such as artificial intelligence models used

by pathologists could aid in alleviating some of the more routine aspects of work,

thereby freeing up time for pathologists to devote to more complex tasks of their

jobs. Workflows such as those proposed in my study add value for both routine and

bone and soft tissue specialist pathologists and complement other such methods

being developed for more common cancers. By presenting the regions of concern

detected by the model as well as proposing a putative diagnostic label of a digi-

tised slide based on an aggregation of features, computational approaches could

help pathologists triage cases appropriately for ancillary tests such as immunohisto-
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chemistry or molecular testing and thereby make their decisions in a more efficient

and timely way.
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Chapter 1

Introduction

1.1 Chapter Overview

In this chapter, the general background and research trends of histopathology and

whole slide imaging are given, followed by an introduction to the benign lipoma and

the malignant liposarcoma and atypical lipomatous tumour. The current situation

of distinguishing benign from malignant fatty tumours is also described. Recent

literature indicates that computational methods can be employed to address this

question. The challenges of this study are also highlighted at the end of this chapter.

1.2 General Background

Histopathology is a medical speciality encompassing the study of mechanisms of

disease and tissue reactions to disease processes through the microscopic examina-

tion of tissue sections and serves as the “gold standard” for the diagnosis of many

diseases, including cancer. Tissue samples are chemically �xed using buffered for-

malin and then processed such that thin sections can be generated. The tissue is

embedded in paraf�n, commonly referred to as formalin-�xed paraf�n-embedded

(FFPE) tissue. The next step is sectioning, which is cutting the thin slices of tissue

and mounting them on glass slides. Each of the tissue sections is 3 to 5 µm thick and

is nearly transparent under a light microscope. Staining is important at this point to

create contrast. Slides for routine histopathological assessment are stained with one

of the principal staining methods, the Hematoxylin and Eosin stain. Hematoxylin

and Eosin stain, also known as H&E stain or HE stain, is one of the most widely
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used stains for both clinical and research histology. Hematoxylin stains nucleic

acids resulting in a blue-purple colour in cell nuclei, while eosin stains cytoplasm

and appears pink-red depending on their constituents.

The philosophy of digital pathology is applying computational methods in-

cluding machine learning and deep learning techniques to quantitatively solve the

problems in the �eld of pathology for the bene�t of diagnosis and prognosis. The

use of deep learning in digital pathology was a relative niche topic when I started

my PhD in early 2018, but was developing very quickly over the past few years. So

a number of challenges I initially faced in processing and analysing my data have

now been overcome with the rapid pace of research in this area. Fig 1.1 shows the

cumulative numbers of digital pathology papers since 2015, and the numbers in this

�gure come from Google Scholar when usingdigital pathologyanddeep learning

as the keywords. Table 1.1 shows a roadmap for deep learning technologies relevant

to this study.

Figure 1.1: The cumulative numbers of digital pathology papers since 2015.
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Table 1.1: A roadmap for deep learning technologies relevant to this study.

Year Milestones and Events

2001 First colour normalisation method in digital pathology based on colour
deconvolution was proposed (Ruifrok et al. 2001)

2009 Colour normalisation method optimised by Macenko et al. (2009)
2013 Deep learning was �rst applied in digital pathology for the mitosis de-

tection task (Cireşan et al. 2013)
2015 U-net was developed for biomedical imaging segmentation tasks, in-

cluding cell segmentation (Ronneberger et al. 2015)
2016 A comprehensive tutorial of deep learning for digital pathology was

proposed by Janowczyk & Madabhushi (2016), and this is a practical
paper with various digital pathology use cases

2018 Different tile-based deep neural networks were widely started to be
employed in digital pathology for breast, lung and colon cancers (Ta-
ble 3.1)

2019 HoverNet was developed for nuclei classi�cation and segmenta-
tion (Graham, Vu, Raza, Azam, Tsang, Kwak & Rajpoot 2019)

2019 HistoQC was developed for whole slide imaging quality con-
trol (Janowczyk et al. 2019)

2019 Debates started to come out about whether colour normalisation should
be applied to deep learning in digital pathology (Tellez et al. 2019,
Hameed et al. 2020, Bianconi et al. 2020)

2019 A clinical-grade deep learning application in digital pathology was de-
veloped (Campanella et al. 2019)

2021 The �rst computational application in fatty tumour digital pathology
was developed (Foersch et al. 2021)

1.3 Whole Slide Imaging

Whole slide imaging is a signi�cant advance in the �eld of digital pathology whose

processes are scanning, digitising and then storing images of histopathological glass

slides taken from the biopsy or tissue resection. Whole slide images (WSIs), which

are created on slide scanners, are the foundation of clinicopathological computer-

aided diagnosis (CAD) systems. Most existing released CAD systems take advan-

tage of traditional image processing approaches for digital pathology tasks, such

as colour deconvolution, nuclei detection, quanti�cation, segmentation, and tumour

classi�cation. However, there are massive variations across the pipeline of produc-

ing WSIs such as staining variation and operational bias. Van Eycke et al. (2017)

indicated traditional approaches are not that intelligent in dealing with these vari-
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ances, and always require extra unique preprocessing and normalisation before the

execution of speci�c tasks. Figure 1.2 shows one example of digitised lipoma whole

slide image and one for the ALT.

(a) An example of lipoma whole slide im-
age.

(b) An example of atypical lipomatous tumour
whole slide image.

Figure 1.2: Examples of a lipoma and an atypical lipomatous tumour whole slide image
digitised usingHamamatsu Nanozoomer S360slide scanner. Due to the nature
of fatty tissues, paucicellular and whitespaces in the WSIs present a computa-
tional challenge for image analysis.

1.4 Lipoma, Liposarcoma and Atypical Lipomatous

Tumour

1.4.1 Lipoma and Liposarcoma

Lipomas are benign neoplasms that originate from fatty tissues and are amongst the

most common tumours with an estimated incidence (number of patients consult-

ing a doctor for a lipoma, even if not histologically veri�ed) of 1 per 1000 peo-

ple, and they can be located in almost any organ of the human body (Rydholm &

Berg 1983, Weiss et al. 2007). Kransdorf & Murphey (2006) indicated that most

lipomas are small and usually with a diameter of less than 5 cm. A lipoma is cat-

egorised to be a giant lipoma when it reaches a size of 10 cm or weight of 1000

grams (Sanchez et al. 1993). Liposarcoma, accounting for approximately 20%-25%

of all mesenchymal malignancies in a large European database (Conticabase: Euro-

pean sarcoma database and tumour bank2023, Dei Tos 2000, Coindre et al. 2010),

represents one of the most common soft tissue sarcomas. Liposarcoma can be cat-

egorised into three main subgroups, based on its clinicopathological and molecular
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genetic characteristics (Fletcher et al. 2002, Jones et al. 2005, Weiss et al. 2007,

Gardner 2020, Hisaoka 2014):

1. atypical lipomatous tumour (ALT)/well-differentiated liposarcoma (WDLPS)

and dedifferentiated liposarcoma,

2. myxoid/round-cell liposarcoma,

3. pleomorphic liposarcoma.

1.4.2 Atypical Lipomatous Tumour versus Well-differentiated

Liposarcoma

The use of the terminology atypical lipomatous tumour (ALT) and well-

differentiated liposarcoma (WDLPS) is based on the tumour's location in the body.

WDLPS usually refers to deep-seated tumours with a high risk of local recurrence,

differentiation or death. And ALT usually refers to tumours located in the periphery

that have a low risk of metastasis and can be treated by resection.

1.4.3 Lipoma and Atypical Lipomatous Tumour

Lipomas need to be distinguished from their malignant mimics atypical lipoma-

tous tumours (ALT), which are rare and present both a clinical and histological

challenge. Laurino et al. (2001), Coindre et al. (2010) indicated that ALTs show a

genomic pro�le characterised by ampli�cation of chromosome 12q14-15 region in-

volving theMDM2 gene. ALT makes up 40%-45% of liposarcoma and is the largest

subgroup of adipocytic malignancies (Weiss et al. 2007).

The distinction between the lipoma and the atypical lipomatous tumour is �rst

made by assessing nuclear and sometimes what can be subtle architectural features.

Due to tumour heterogeneity and variation in features, this process can require re-

viewing multiple sections to get a more representative view of the tumour. However,

many malignant fatty tumours could be mistaken for a lipoma based only on gross

and microscopic features, except for their extremely large size, the tendency to have

more �brous bands (also known as a septum, see example in Figure 1.3), or gelati-

nous zones said by Weiss et al. (2007). Coindre et al. (2010) found that the detection
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of theMDM2 gene ampli�cation is presented in 100% of cases byFluorescence in

Situ Hybridisation(FISH) test, an ancillary genetic test of the detecting ofMDM2

ampli�cation plays a role for the diagnosis of ALT. However, the genetic test can be

time-consuming and can be costly especially if the test needs to be performed on ev-

ery large lipoma specimen. Benign fatty tumours, therefore, present a considerable

workload in the general pathology setting and the distinction from malignancy of-

ten require specialist review. This problem could be addressed by automated whole

slide image analysis; however, there is a lack of existing tools for this task.

Figure 1.3: An example of septum (black arrow) in an atypical lipomatous tumour whole
slide image.

1.5 Deep Convolutional Neural Network

The deep convolutional neural network (CNN) technique is widely employed in the

classi�cation, detection and segmentation tasks of images. CNNs are usually struc-

tured with the combination of convolutional layers (ConV), recti�ed linear unit lay-

ers (ReLU) and pooling layers (Pool), and will sometimes contain fully-connected

layer, softmax layer or other adjustment layers. Convolutional process inConV is
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in fact a process of abstracting activation map and feature information from the

original pixel information using feature identi�ers (i.e. kernel), whileReLUbrings

in non-linearity and improves discriminative performance (Nair & Hinton 2010).

Pooling (also known as down-sampling) decreases the data size and the computing

time and can reduce over-�tting to some degree.

There are many successful CNN architectures such asAlexNet, VGG andIn-

ceptionand so on. LeCun et al. (1995) proposed LeNet as the �rst CNN for the

application of handwritten digit recognition.AlexNet, VGG, Inception, ResNet,

MobileNet, U-Net are widely employed in digital pathology and other medical

imaging areas. These CNNs have been used for tumour subtype classi�cation, pat-

tern detection, cell and nuclei segmentation, grading and prognosis prediction tasks

with promising results in pathological imaging datasets of the breast, lung, colon,

glomeruli and so on. Literature lists of digital pathology datasets and their deep

convolutional neural network applications can be found in Table 1.2 and Table 3.1

Table 1.2: A summary of open databases in digital histopathology.

Dataset & Year Cancer Type Tasks

MITOS, Tripathi et al. (2013) Breast Mitosis detection

MITOS-14, 22nd International Confer-

ence on Pattern Recognition(2014)

Breast Mitosis detection

TUPAC, Veta et al. (2019) Breast Mitosis counting and detection

HER2, Qaiser et al. (2018) Breast HER2 scoring

BreakHis, Spanhol et al. (2015) Breast Breast cancer detection

CAMELYON-16, Bejnordi et al. (2017) Breast Breast cancer metastasis detection

CAMELYON-17, Litjens et al. (2018) Breast Breast cancer metastasis detection

and pN-stage prediction

PCam, Veeling et al. (2018) Breast Breast Cancer metastasis detection

BACH ICIAR, Aresta et al. (2019) Breast Breast cancer classi�cation

BreastPathQ, Peikari et al. (2017) Breast Tumour cellularity scoring

Post-NAT-BRCA,Assessment of residual

breast cancer cellularity after neoadju-

vant chemotherapy using digital pathology

(Post-NAT-BRCA)(2017)

Breast Tumour cellularity scoring
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Table 1.2(continued)

Dataset & Year Cancer Type Tasks

ER+ Breast Cancer, Janowczyk & Madab-

hushi (2016)

Breast Detection, segmentation and classi-

�cation

CCMCT, Bertram et al. (2019) Breast Mitosis detection

GlAS, Sirinukunwattana et al. (2015,

2017)

Colon Gland segmentation

CoNSep, Graham, Vu, Raza, Azam,

Tsang, Kwak & Rajpoot (2019)

Colon Nuclei segmentation, classi�cation

NCT-CRC-HE-100k, Kather et al. (2018) Colon Tissue classi�cation

CRAG, Awan et al. (2017), Graham, Chen,

Gamper, Dou, Heng, Snead, Tsang & Ra-

jpoot (2019)

Colon Gland segmentation

CRCHistoPhenotypes, Sirinukunwattana

et al. (2016)

Colon Nuclei detection and classi�cation

Colorectal Cancer Grading Dataset, Awan

et al. (2017), Shaban et al. (2020)

Colon Colorectal Cancer Grading

Lizard, Graham et al. (2021) Colon Colonic Nuclear Instance Segmen-

tation and Classi�cation

PanNuke, Gamper et al. (2019, 2020) Pan Cancer Nuclei segmentation and classi�ca-

tion

MoNuSeg, Kumar et al. (2017) Pan Cancer Nuclei segmentation

LYON, Swiderska-Chadaj et al. (2019) Pan Cancer Lymphocyte detection

ACDC-LungHP, Reddy & Rana (2021) Lung Cancer Detection and classi�cation of lung

cancer subtypes

MSI & MSS, Kather, Pearson, Halama,

Jäger, Krause, Loosen, Marx, Boor, Tacke,

Neumann et al. (2019)

Gastric Cancer Classi�cation of MSI and MSS gas-

trointestinal cancer subtypes

1.6 Challenges in this Study

Though there are many deep learning studies using digital pathology imaging that

have predominantly been conducted for a wide range of carcinomas, there is very

limited research on sarcoma digital pathology nor public sarcoma imaging datasets.
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This study is mainly focusing on lipoma and liposarcoma histopathological im-

age analysis using computational methods, including machine learning and deep

learning techniques, and traditional image processing algorithms. Two pipelines

are proposed to detect the tile-level features and the aberrant nuclei features.

Traditional computational diagnosis prediction models rely on manual feature

extraction, which needs pathological expertise. This situation is changing in recent

years with the development of deep learning techniques (LeCun et al. 2015, Cam-

panella et al. 2019). Litjens et al. (2017) indicated although deep learning has been

widely applied in image analysis and diagnostic tasks for computational pathology,

there are additional challenges for digital pathology due to the nature of pathologi-

cal data compared to other �elds.

One main challenge is the lack of extensively annotated images as the ground

truth. This is mainly because of the high cost of the digitisation of the physical glass

slides and the time-consuming process of manual annotation for ground truth gen-

eration. Despite the challenge of manual annotation, there are some open-sourced

datasets in digital pathology, and Table 1.2 displays a list of public digital pathology

datasets for different computational tasks. Another feature of WSI is the large size

of a single image: there are about 10 billion pixels within a single digital pathol-

ogy image scanned at x40 magni�cation (0.25 µm pixel� 1). The entireImageNet

dataset of 14 million images contains approximately nine trillion pixels (Deng et al.

2009), which roughly equals only 930 whole slide images. Moreover, due to the

nature of fatty tissues, paucicellular and whitespaces in the images also present a

computational challenge which we sought to address in this study.

The Aachen protocol for deep learning in histopathology is a recent manual

with recommendations for hands-on pre-processing of whole slide images (Muti

et al. 2020). This protocol describes all steps from processing the clinical data of

the patient through to a set of image tiles that are ready to use for downstream

deep learning analyses, including metadata preparation, image preparation, anno-

tating the ROIs, tile generation, training and inference. During the image prepa-

ration process, in general, whole slide images exhibit similar types of artefacts
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and noise as other digital microscopy images which unless removed with appro-

priate pre-processing can affect downstream analysis and interpretation. Davidson

& Abramowitz (2014) showed a comprehensive overview of noise and artefacts in

digital microscopy and suggested methods to correct them.

1.6.1 Large Whole Slide Image Loading

The nature and structure of whole slide images are complex. There are four se-

quential steps for whole slide image digitisation, they are image scanning, storage,

editing, and display of images. The scanners acquire images on line-scanning or

tile-scanning bases, the multiple tiles of lines are then digitally assembled to gener-

ate a digital image of the entire slide (Zarella et al. 2019). Histopathological slides

are usually scanned using professional equipment under x40 magni�cation for digi-

tisation. The �le size of a single digital whole slide image is usually very large

and over 2GB, and therefore, the large image loading issue becomes a challenge for

most of the programming languages. A computational packageOpenSlide, devel-

oped by Goode et al. (2013), is widely used for the quick loading of large patholog-

ical slides, includingndpi, svsandBigTIFF �les generated respectively by Ham-

mamatsu, Leica, Phillips (BigTIFF) machines.OpenSlideis compatible with Java

and Python and is the current mainstream technique in large slide loading. Tools

such asQuPath(Bankhead et al. 2017) andCellPro f ilerTM (Lamprecht et al. 2007)

take advantage of the �exibility ofOpenSlidein handling such large and complex

whole slide images. I have used theOpenSlidepackage for all the raw data loading

throughout my work.

1.6.2 Whole Slide Images Scanning Quality Control

Slide quality issue is another challenge in digital pathology. Artefacts and batch

effects can unintentionally be introduced during both slide preparation as well as

the digitisation processes. Quality issues include variations in colour, tissue folding,

dust and bubbles on the slide, out-of-focus and blurriness and other scanning issues

such as variations in contrast and hue and stripes produced by poorly calibrated

optics.
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Manual review of the digital slides is time-consuming and laborious and may

not be consistently performed. Automated quality control software has been de-

veloped for this purpose. For example,HistoQC, developed by Janowczyk et al.

(2019, 2020), is a tool for rapidly performing quality control to not only identify

and delineate artefacts but also discover cohort level outliers. A combination of

image metrics, such as colour histograms, brightness, and contrast; features such as

edge detectors; and supervised classi�ers such as pen detection are integrated into

this tool. These regions and metrics are presented interactively to the end-users for

the digital slide's quality control purpose.

1.6.3 Colour Variation, Deconvolution and Normalisation

Back et al. (2016) stated that there are four main sources of colour variation in

pathological slides: experimental factors, chemical factors, machine factors and

timing factors. Experimental variability encompasses the variability among people

and operational processes producing the physical slides that can affect the stain-

ing colour, this is also known as operational factors. Chemical variability is the

variability of the staining reagents, for example, reagents produced from different

companies could sometimes lead to staining variation. Additionally, different scan-

ning machines could produce colour variations in the digitised whole slide image,

and �nally, timing variability represents the colour fading or bleaching over pro-

longed periods of storage, particularly in suboptimal conditions such as exposure

to sunlight. Van Eycke et al. (2017) indicated that colour variation among samples

may affect some of the analysis tasks in digital pathology, and colour normalisation

methods should be employed to reduce colour variation.

There exists a myriad of colour normalisation approaches speci�cally designed

for H&E stained images, and the solutions can be categorised into three main

groups: histogram matching, colour transfer and spectral matching (Li & Platan-

iotis 2015). Histogram matching and colour transfer methods rely on histogram or

values analysis for each of the red, blue and green colour channels (or hue, satura-

tion and lightness channels in HSV/HSL colour space) (Kothari et al. 2011, Tabesh

et al. 2007, Reinhard et al. 2001). The main limitation of these two groups of meth-
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ods is they cannot differentiate the origin of colour variation nor normalise the stain

variation properly. Spectral matching methods outperform other groups, as the aim

of spectral matching is to remove the stain variation which is the main concern of

colour variation in digital pathological image analysis tasks. Ruifrok et al. (2001)

proposed the �rst spectral matching algorithm. Based on Lambert-Beers law be-

low, Ruifrok's algorithm takes advantage of colour deconvolution to estimate the

contribution values for different stains respectively to red, green and blue channels.

I = I0 � 10� Ac (1.1)

OD = � log10(I=I0) = Ac (1.2)

with I0 is the intensity of light entering the specimen,I is the intensity of colour

that is detected, andA stands for the amount of stains wherec is the absorption fac-

tors matrix of the stains. The intensitiesIR, IG, andIB are obtained by the camera

for each pixel in the RGB colour space. However the intensities depend on the con-

centration of stain in a non-linear way, therefore the intensity values of the image

cannot directly be used for measurement of the stains. Alternatively, the optical

density (OD) for each channel is linear, and can therefore be used to measure the

contribution of multiple stains in a speci�c colour space. To be speci�c, the OD

gives an idea of how much dye is within the sample, whereas the actual pixel in-

tensity value doesn't give anything physical since it's a logarithm relationship, for

example, if an OD is twice the quantity from one sample to the other, then we can

say that the sample has twice the amount of dye from the other, as the ODs are

additive when it comes to adding amounts of dye together. As the original data is

a three-channel RGB image, therefore for digital histopathological slides, the com-

ponents of stains can be deconvoluted into hematoxylin, eosin, and a third channel.

For H&E images, the third channel is regarded as the complement channel which

can be the residual of colour. For H&E-DAB images, the third channel can be

the diaminobenzidine (DAB) colour. As a result, the colour deconvolution of the

H&E-stained image can be represented as:
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ODR;G;B = ODHematoxylin(R;G;B) � aHematoxylin+

ODEosin(R;G;B) � aEosin+

ODComplement(R;G;B) � aComplement

(1.3)

aHematoxylin, aEosin and aComplementhere are regarded as the optical density

contribution rate for hematoxylin, eosin and the complement to original H&E im-

age in RGB colour space. The staining depth for hematoxylin and eosin can be

measured by computingaHematoxylinandaEosin, which quanti�es the staining vari-

ation within inter-batch samples or the colour variation from slide to slide. Colour

deconvolution enables us to map the physical quantities (the RGB values) onto the

real-world quantities (the staining depth). For example, we can operate on the hema-

toxylin channel extracted using colour deconvolution technique for those nucleus-

related computational tasks as nuclei are mainly stained by hematoxylin in H&E

images according to domain knowledge.

In Python,skimage.color.rgb2hed()andskimage.color.hed2rgb()can be used

for RGB and Haematoxylin-Eosin-DAB (HED) colour space conversion (van der

Walt 2021). Fig 1.4 shows a sample output of applyingskimage.color.rgb2hed()to

pathological tile.

Colour deconvolution is a method to obtain stain concentration values when

the stain matrix is given, and the stain matrix describes how the colour is affected

by the stain concentration. This could sometimes be dif�cult for fatty tissues due to

their paucicellular nature that only a very small amount of hematoxylin and eosin

are stained on the slides. Another generic limitation of Ruifork's algorithm is this

algorithm is based on a mathematical calculation which may sometimes result in

negative contribution values. Negative values lead to imperfect normalisation, as

a negative amount of light cannot be absorbed and there does not exist a negative

amount of stain. Rabinovich et al. (2004) presented an improved algorithm based

on non-negative matrix factorisation (NMF) to force the staining contributions to be

non-negative to solve the negative value problem. Macenko et al. (2009) proposed

a fully automatic process which can be executed before colour deconvolution by
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Figure 1.4: A sample output ofskimage:color:rgb2hed() .

calculating the stain vectors plane and adjusting the stain vectors from the estimated

ones to overcome this kind of limitation. Colour normalisation methods are still

imperfect at this stage as all the above-mentioned methods cannot be used under

the condition of three or more stains within one slide. Alternatively, Kothari et al.

(2011) sampled and extracted the unique colours in an image and created a colour

map for the normalisation instead of counting all pixels within the whole image,

and this pipeline is applicable for multi-stains.

Unlike all other colour normalisation methods before 2015, Li & Platanio-

tis (2015) used a combination of illuminant and spectral normalisation. Li's algo-

rithm outperformed other methods such as (Rabinovich et al. 2004, Macenko et al.
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2009, Kothari et al. 2011). Li & Plataniotis (2015) also suggested this model can

be useful for histopathology image analysis tasks such as colour-based histolog-

ical component detection and segmentation. Bejnordi et al. (2016) developed a

whole-slide image colour standardiser (WSICS) method which utilises colour and

spatial information to classify the image pixels into different stain components un-

der hue-saturation-density (HSD) colour space. This approach is designed for H&E

images but can also be adopted in other kinds of histological staining images such

as immunohistochemistry (IHC). Bejnordi et al., using three quantitative empirical

evaluation methods, claimed their WSICS pipeline is the best in digital slide colour

normalisation compared with all published algorithms at that time. Anand et al.

(2019) proposed a fast GPU-enabled colour normalisation work�ow based on Va-

hadane et al. (2015) to make this structure preserving colour normalisation (SPCN)

method more robust as well as being able to apply on gigapixel whole slide images.

Ramakrishnan et al. (2010) also published their codebase for this task.

There are some good implementations for a combination of different colour

normalisation methods written in Python. PackageStainTool, developed by By�eld

(2018), is one of them, and is also applied in this study (Fig G.1 in Appendix G).

There also exist some debates in recent studies on whether colour normalisation is

actually needed in digital pathology image analysis tasks. Bianconi et al. (2020)

made a statement that colour pre-processing resulted in a noticeable reduction of

the accuracy in most cases, especially when coupled with image descriptors that

rely heavily on the colour of the image. This statement is also aligned with studies

of (Gadermayr et al. 2017, Hameed et al. 2020, Tellez et al. 2019) where all the

overall top performances in their tasks were achieved without the use of colour

normalisation techniques.

I employed all three colour normalisation algorithms in our own dataset for the

tile-based and the nucleus-based tasks. I decided not to apply colour normalisation

on the tile-based work�ow, and to apply this technique on the nucleus-based task

based on the validation results of each of the tasks. More details including why to

apply or not to apply the colour normalisation technique in each of the tasks will be
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discussed in Section 3.6 and Section 6.3.3.



Chapter 2

The Data

2.1 Chapter Overview

In this chapter, I mainly describe data acquisition, image digitisation and data cura-

tion. Two independent cohorts of whole slide images of fatty tumours were col-

lected individually from Royal National Orthopaedic Hospital (RNOH), United

Kingdom and Sahlgrenska University Hospital (SUH), Sweden. A total of 206

slides from RNOH are the internal ones for prototyping, training, validation and

evaluation. Another 402 slides from SUH are external and for generalisability and

scalability, but only 153 top-quality slides out of 402 are selected for the external

evaluation. In total, 359 slides are employed in this study for both the tile-based and

the nucleus-based tasks. The �le size for each of the slides is large, approximately

2-3GB, and there could be 8-10 billion pixels within a single slide scanned at x40

magni�cation (with 0.25 µm pixel� 1).

2.2 Internal Whole Slide Images

206 cases collected from RNOH were scanned and digitised at UCL Cancer Insti-

tute pathology research department using three different scanners from the same

manufacturer, namely theHamamatsu Nanozoomer C9600 series, Hamamatsu

Nanozoomer S210and Hamamatsu Nanozoomer S360. As there exist scanning

quality issues for the �rst two machines (stripes forC9600and out-of-focus for the

paucicellular fatty tumours forS210, which I will describe in the following subsec-

tion), theS360machine was �nally employed for the digitisation of slides.
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2.2.1 Quality Issue and Quality Control

Figure 2.1: Binarised whole slide image sample (internal sample ID: 021) showing scan-
ning stripes.

Fig 2.1 is an example of a whole slide image scanned and digitised using

Hamamatsu Nanozoomer C9600 seriesand it can be seen that there is an issue

with stripes within this image after binarisation. The stripe issue is common among

slides scanned with theC9600machine. In order to investigate where the stripes

come from, I digitised the same samples with other scanning devices. I found the

stripes disappeared when scanning withHamamatsu Nanozoomer S210or Hama-

matsu Nanozoomer S360machines. This scanning quality issue was caused by the

scanner.

I applied HistoQC to the Hamamatsu Nanozoomer S210and S360scanned

slides and observed the S210 scannings consistently contain focal out-of-focus qual-

ity issues. The quality control results of the S360 machine show consistency. Fig 2.2

and 2.3 display the quality control results respectively for these two machines, from

which we can observe the three main clusters of all the slides: the conventional

cases, the cases with pen marker, and the cases with various histology variations.
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Finally, I decided to use theHamamatsu Nanozoomer S360scanning copies in our

studies after manual examination of the original slides as well as their underlying

HistoQCquality control visualisation. A glass slide surface cleaning process was

executed to remove all the pen markers before the re-scanning process with theS360

machine.HistoQCresults shown in Fig 2.3 indicate the quality consistency of all

the internal slides, with two main clusters of conventional slides and the slides with

histology variation. Furthermore, I applied hierarchical clustering to explore the

structure of all the internal slides, and the hierarchical result aligns with the slide

clusters based on the manual labelled on-slide features. Fig 2.4 is an example of

internal digital slide.

2.2.2 Image Storing

All the whole slide images are stored under*.ndpi format, and are anonymised

using AnonymizeSlidetool developed by Gilbert (2015). Apart from the digital

images and their underlying diagnostic labels, we hold other clinical information for

each of the samples, including (1) age at diagnosis, (2) patient gender, (3) whether

the tumour arose super�cially or deeply, (4) the size of the tumour, (5) whether

the �uorescence in situ hybridisation (FISH) genetic test has been carried out for

MDM2 gene, and if yes the FISH result, (6) the resection status, (7) whether there

are other histology features shown on the slides. All these details are stored in a

spreadsheet as metadata. Table 2.1 is an anonymised example of the metadata of

internal slides, a full metadata is presented in Appendix A, and Appendix B shows

the mapping table of internal and clinical IDs.

2.2.3 Internal Slides Overview

163 slides out of 206 slides were selected to rescan with theS360machine. Some

slides, based on the review of images and metadata, were removed from this study

because they are not conventional and contain special histology variations which

make them out-of-scope for this study. Slides that have unclear ground truth in

terms of the whole slide level diagnostic label were also removed from this study.

The details of these slides are listed below:
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(a) The conventional cluster.

(b) The pen-marker cluster.

(c) The histology variation cluster.

Figure 2.2: HistoQCvisualisation and hierarchical analysis on the internal dataset for qual-
ity control purpose (Hamamatsu Nanozoomer S210).
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(a) HistoQCvisualisation on our internal lipoma and atypical lipomatous tumour cases.

(b) The hierarchical clustering of slides based onHistoQCfeatures.

Figure 2.3: HistoQCvisualisation and hierarchical analysis on the internal dataset for qual-
ity control purpose (Hamamatsu Nanozoomer S360).
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Figure 2.4: An example of an atypical lipomatous tumour digital slide 206.

Table 2.1: An examples of the metadata of whole slide images. The samples were
anonymised, and so the clinical ID was removed in this table.

Internal ID Diagnosis FISH Site Super�cial/Deep Max Size

001 Lipoma No Pelvis Deep 80mm
002 Lipoma No Abdomen Super�cial 50mm
003 Lipoma No Abdomen Deep 80mm
004 ALT No Thigh Deep 180mm
005 ALT No Thigh Deep 190mm
006 ALT No Thigh Deep 280mm
007 ALT No Thigh Deep 250mm
008 ALT No Thigh Deep 70mm
009 ALT No Arm Deep 70mm
010 ALT No Arm Deep 70mm
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1. cases 152, 167, 172, 183 and 184 contain only the necrosis or are dedifferen-

ciate liposarcoma,

2. cases 22, 24 and 192 are spindle cell lipomas,

3. case 150 has unclear ground truth from aFISH point of view: if we are using

the clinical diagnostic criteria such as counting the number of cells, then this

case would score as negative; but when these cells have an unusual pattern

that whilst they may not be obviouslyMDM2 ampli�ed, they do have gains

of MDM2 not quite yet at the level of ampli�cation.

First, theMDM2 FISH test result is used as the ground truth diagnostic label at

the whole slide level. I then split the internal slides into the training set of 87 slides

and the testing set of 76 slides. 59 conventional slides out of 87 of the training set

were further selected in this study for the training of the lipoma and ALT areas on

the tile-level, and these 59 slides were also used for the training of slide-level aggre-

gation. The rest of the training slides were employed for the training of histology

variation areas, including muscle, fat necrosis, calci�cation and in�ammation, on

the tile-level. 64 out of 76 of the testing set were further selected for testing, eval-

uation and for the distinction of the lipomas and the ALTs on the slide-level. The

testing set was fully unseen during the entire training process. Table 2.2 is a sum-

mary of the number of internal slides as well as a description of the slide selection

process.

Table 2.3 and Table 2.4 respectively show the internal training and testing set

statistics by diagnostic labels.

2.2.4 Tile the Whole Slide Images

The �rst step of any tile-based whole slide image analysis task is to tile the slides

up into small patches. Fig 2.5 shows an example of a slide before and after tiling.

There exists a tool,PyHIST, that can be used for this tiling process (Muñoz-Aguirre

et al. 2020), but I have developed my own scripts to allow �exibility since we also

need to be able to tile regions of interest (ROIs) from digital slides (Section 3.3.2).
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Table 2.2: The internal slides count and slide selection process.

Slides
Count

Description Issue Identi�ed and Selection Process

206 A mix ofHamamatsu C9600,
Hamamatsu S210andHama-
matsu S360scanned slides.

Scanning quality issues are identi�ed for
different scanning machines (stripes and
out-of-focus forHamamatsu C9600, out-
of-focus forHamamatsu S210). This ini-
tial dataset also consists of out-of-scope
slides with labels of neither lipoma nor li-
posarcoma, and these slides should be re-
moved.

163 After the slides with labels
of neither lipoma nor li-
posarcoma are removed from
the batch, all other slides
are rescanned withHama-
matsu S360(Section 2.2.1,
Table 2.3) with high quality.

After reviewing the slides, some of the
slides are identi�ed as out-of-scope with
special variants (e.g., spindle-cell lipoma)
or histology variation, though they have
the diagnostic label of either lipoma or li-
posarcoma. The scope of this project is to
distinguish the conventional lipomas and
atypical lipomatous tumours, and so slides
with special variants need to be removed.

151 87 training WSIs and 64 test-
ing WSIs scanned byHama-
matsu S360are the �nal in-
house training and testing
dataset. Within the training
set, 59 out of 87 are used
for both the slide-level and
tile-level training, the rest 28
slides are only used for the
tile-level training of histol-
ogy variations.

Table 2.3: Internal training set statistics by diagnostic labels.

Diagnostic
Label

Number of
Slides

Slide Internal IDs

Lipoma 26 001, 002, 003, 018, 020, 042, 043, 044, 047,
051, 053, 055, 063, 064, 108, 109, 111, 112,
113, 115, 116, 117, 118, 119, 120, 157

ALT 33 004, 005, 006, 008, 009, 010, 019, 025, 028,
032, 034, 035, 041, 069, 070, 077, 079, 083,
085, 086, 090, 092, 093, 096, 097, 098, 099,
100, 194, 197, 199, 200, 206
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Table 2.4: Internal testing set statistics by diagnostic labels.

Diagnostic
Label

Number of
Slides

Slide Internal IDs

Lipoma 39 021, 031, 033, 048, 049, 056, 103, 114, 121,
122, 123, 124, 125, 126, 127, 128, 129, 130,
131, 132, 133, 134, 136, 137, 138, 139, 151,
159, 173, 175, 181, 182, 185, 186, 187, 188,
193, 195, 196

ALT 25 023, 036, 038, 040, 072, 074, 076, 080, 084,
088, 094, 101, 106, 107, 161, 179, 180, 189,
191, 198, 201, 202, 203, 204, 205

(a) An example of whole slide image. (b) An example of whole slide image after
tiling.

Figure 2.5: An example of slide before and after tiling.

2.2.5 Tile-Level Data Augmentation

The philosophy of training a machine learning model is tuning its parameters such

that it can map a particular input to some output. State-of-the-art neural networks

typically have hundreds of millions of parameters, and if there are a lot of param-

eters in a model, we would need to train the model with a proportional amount

of input data in the training loop. Krizhevsky et al. (2012) indicated that there

are lots of popular methods for data augmentation in image-based computational

tasks, including basic transformations of �ip (horizontally or vertically), rotation,

crop and translations. Gaussian noise is also widely used to remove those high-

frequency features and patterns in the images that lead to over-�tting. In digital

pathology, stain colour augmentation is also used as one of the data augmentation

methods (Janowczyk 2018, Tellez et al. 2019).
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2.3 External Whole Slide Images

Similar to internal slides, a mix of 402 lipoma and atypical lipomatous tumour

digital slides were acquired from Sahlgrenska University Hospital, Sweden. These

external slides were employed mainly to evaluate the generalisability and scalability

of our proposed work�ows. There are 80 lipoma cases from 20 patients and 322

atypical lipomatous tumour cases from 33 patients in the external dataset, Table 2.5

shows the patient list for the external dataset and Appendix C shows the full list of

the external dataset.HistoQCis also applied to all the external slides, and Table 2.6

shows the top scanning quality slides for each patient.

Table 2.5: External dataset: the patient list.

Diagnostic
Label

Number of
Patients

Patient ID

ALT 33 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 35, 36

Lipoma 20 1, 2, 3, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36

In order to generate a fair slide-level external testing set, I used only one slide

per patient of the external dataset. Three batches of slide-level testing sets were

selected based on Table 2.6 as the external and independent sets for the evaluation

of machine learning models. Table 2.7, Table 2.8 and Table 2.9 show more details.
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Table 2.6: External dataset: the top scanning quality slides for each of the patients.

Patient ID Number of Slides Top Quality Slides

ALT.1 8 1, 2, 4
ALT.2 12 3, 4, 5
ALT.3 12 4, 9, 10
ALT.4 16 1, 2, 5
ALT.5 10 1, 2, 8
ALT.6 8 2, 5, 8
ALT.7 6 2, 5, 6
ALT.10 10 1, 2, 5
ALT.11 5 2, 3, 4
ALT.12 3 1, 2, 3
ALT.13 9 3, 4, 6
ALT.14 8 1, 3, 6
ALT.15 6 2, 3, 6
ALT.16 8 1, 6, 7
ALT.17 9 2, 6, 8
ALT.18 14 3, 7, 8
ALT.19 8 1, 2, 5
ALT.20 10 6, 8, 9
ALT.21 12 3, 4, 7
ALT.22 11 1, 2, 10
ALT.23 3 1, 2, 3
ALT.24 8 2, 7, 8
ALT.25 19 9, 10, 18
ALT.26 20 6, 17, 18
ALT.27 8 3, 4, 6
ALT.28 10 6, 7, 8
ALT.29 7 2, 6, 7

Patient ID Number of Slides Top Quality Slides

ALT.30 15 3, 7, 8
ALT.31 8 3, 4, 7
ALT.32 12 1, 2, 5
ALT.33 6 2, 3, 4
ALT.35 10 2, 5, 10
ALT.36 11 11, 15, 19
L.1 5 1, 3, 4
L.2 6 2, 4, 6
L.3 2 1, 2
L.20 3 1, 2, 3
L.21 3 1, 2, 3
L.22 3 1, 2, 3
L.23 4 1, 3, 4
L.24 4 1, 3, 4
L.25 5 1, 4, 5
L.26 5 1, 2, 4
L.27 2 1, 2
L.28 1 1
L.29 8 2, 3, 8
L.30 7 3, 5, 7
L.31 5 1, 2, 5
L.32 4 2, 3, 4
L.33 5 1, 2, 4
L.34 3 1, 2, 3
L.35 1 1
L.36 4 1, 2, 3

Table 2.7: External dataset: slide-level batch 1 (53 slides in total).

Diagnostic
Label

Number of
Slides

WSI ID

ALT 33 1.1, 2.3, 3.4, 4.1, 5.1, 6.2, 7.2, 10.1, 11.2, 12.1, 13.3,
14.1, 15.2, 16.1, 17.2, 18.3, 19.1, 20.6, 21.3, 22.1,
23.1, 24.2, 25.9, 26.6, 27.3, 28.6, 29.2, 30.3, 31.3,
32.1, 33.2, 35.2, 36.11

Lipoma 20 1.1, 2.2, 3.1, 20.1, 21.1, 22.1, 23.1, 24.1, 25.1, 26.1,
27.1, 28.1, 29.2, 30.3, 31.1, 32.2, 33.1, 34.1, 35.1,
36.1

Table 2.8: External dataset: slide-level batch 2 (51 slides in total).

Diagnostic
Label

Number of
Slides

WSI ID

ALT 33 1.2, 2.4, 3.9, 4.2, 5.2, 6.5, 7.5, 10.2, 11.3, 12.2, 13.4,
14.3, 15.3, 16.6, 17.6, 18.7, 19.2, 20.8, 21.4, 22.2,
23.2, 24.7, 25.10, 26.17, 27.4, 28.7, 29.6, 30.7, 31.4,
32.2, 33.3, 35.5, 36.15

Lipoma 18 1.3, 2.4, 3.2, 20.2, 21.2, 22.2, 23.3, 24.4, 25.4, 26.2,
27.2, 29.3, 30.5, 31.2, 32.3, 33.2, 34.2, 36.2
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Table 2.9: External dataset: slide-level batch 3 (49 slides in total).

Diagnostic
Label

Number of
Slides

WSI ID

ALT 33 1.4, 2.5, 3.10, 4.5, 5.8, 6.8, 7.6, 10.5, 11.4, 12.3, 13.6,
14.6, 15.6, 16.7, 17.8, 18.8, 19.5, 20.9, 21.7, 22.10,
23.3, 24.8, 25.18, 26.18, 27.6, 28.8, 29.7, 30.8, 31.7,
32.5, 33.4, 35.10, 36.19

Lipoma 16 1.4, 2.6, 20.3, 21.3, 22.3, 23.4, 24.4, 25.5, 26.4, 29.8,
30.7, 31.5, 32.4, 33.4, 34.3, 36.3



Chapter 3

A Tile-Based Lipoma and Atypical

Lipomatous Tumour Classi�er

3.1 Chapter Overview

In this chapter, I �rst examine state-of-the-art of the deep learning application in

digital pathology for diagnosis bene�ts. I then introduce and display the tile-based

work�ow that is proposed in this study for the distinction between benign lipo-

mas and malignant atypical lipomatous tumours, including the methodology, exper-

iments and results.

3.2 Introduction and Related Work

3.2.1 Tile-Based Method for the Bene�ts of Diagnosis

The development of whole slide scanners in late 1990 made the digitisation of

histopathological images easier. The scanners can scan slides at the microscopic

resolution which opens up opportunities for computer scientists to develop image-

based applications for the bene�t of diagnosis and prognosis.

Yuan et al. (2012) indicated the features extracted from histopathological slides

can be complementary to the genomic data. In the same year, Krizhevsky et al.

(2012) showed that convolutional neural networks (CNNs) can be employed as an

image classi�er for 1000 classes, winning theImageNetcompetition that year. In

the same year, CNNs were proved to outperform other methods in mitotic cell de-
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tection in histopathology images (Ciresan et al. 2012). CNN-based deep learning

methods have consistently had a better performance compared to other traditional

image-based methods in digital pathology since 2013. On the one hand, CNNs are

able to learn features directly from the raw data without feature engineering assisted

by pathologists. But on the other hand, CNNs are like black-boxes, and pathologists

still play an important role in the initial annotation and manual validation processes.

The �rst challenge for whole slide image analysis is that images are very large.

As explained in Section 2, a single whole slide image scanned under x40 magni�ca-

tion can be approximately 2-3GB with in total of 8-10 billion pixels. As a result, the

images need to be broken down into thousands of tiles so that the CNN can process

them. There are three major types of CNN models that are commonly used in digital

pathology image analysis and are based on the nature of their computational tasks

namely classi�cation, object detection and segmentation. The �rst type of model

does tile-level classi�cation. The second type of model focuses on predicting the

position of objects, an object in digital pathology can be a cell or nucleus. And the

third type is to generate pixel-level semantic segmentation results either for an area

or an object. This chapter focuses on the �rst category of tasks, which is applying

the tile-based method for slide-level classi�cation. Table 3.1 shows some highly

cited tile-based studies on digital pathology in chronological order.

There are only two published studies on the use of digital image analysis on

soft tissue sarcoma. The �rst study using the computational method based on digi-

tised pathology slides is (Foersch et al. 2021). A tile-based DenseNet121 CNN was

trained in this study to classify �ve subtypes of sarcoma, they are: dedifferentiated

liposarcoma, leiomyosarcoma, myxo�brosarcoma, synovial sarcoma and undiffer-

entiated pleomorphic sarcoma. Their work�ow achieved an accuracy of 79.9% in

the classi�cation of these �ve subtypes of soft tissue sarcomas. Separately, the au-

thors trained another deep neural network which showed the ability to predict the

prognosis of leiomyosarcoma. The other study indicated that tile-based deep learn-

ing models outperformed the pathologists with a signi�cant improvement of accu-

racy up to 97% compared to average pathologists of 69.7% for the classi�cation of
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Table 3.1: Selected tile-based studies on digital pathology (chronological order).

Authours Cancer Type Application

Cruz-Roa et al. (2014) Breast Invasive breat cancer detection
Sirinukunwattana et al.
(2016)

Colon Nuclei classi�cation

Wang et al. (2016) Breast Breast cancer detection
Litjens et al. (2016) Prostate, Breast Prostate and breast cancer detection
Sharma et al. (2017) Gastritis Necrosis detection
Vandenberghe et al.
(2017)

Breast HER2 status scoring

Mobadersany Mobader-
sany et al. (2018)

Gliomas Survival rate prediction

Arvaniti et al. (2018) Prostate Prostate grading
Campanella et al. (2019) Prostate, basal cell

carcinoma, breast
Slide-level classi�cation

Kather, Krisam, Charoen-
tong, Luedde, Herpel,
Weis, Gaiser, Marx, Val-
ous, Ferber et al. (2019)

Colon Survival prediction

Wei et al. (2019) Lung Subtyping of lung cancer
Nagpal et al. (2019) Prostate Gleason score prediction
Zhang et al. (2019) Bladder Bladder cancer diagnosis
Sudharshan et al. (2019) Breast Breast cancer classi�cation
Xie et al. (2019) Breast Breast cancer diagnosis
Aresta et al. (2019) Breast Breast cancer classi�cation
Vu et al. (2019) Lung, squamous

cell carcinoma,
glioblastoma,
glioma

Tumour detection, nucleus segmenta-
tion and classi�cation

Wang et al. (2019) Lung Lung cancer classi�cation
Iizuka et al. (2020) Gastritis, Colon Gastritis and colonic tumour classi�ca-

tion
Fu, Jung, Torne, Gonza-
lez, Vöhringer, Shmatko,
Yates, Jimenez-Linan,
Moore & Gerstung (2020)

Pan-cancer Tumour subtyping and grading

Kather et al. (2020) Pan-cancer Molecular change prediction
Echle et al. (2020) Colon Colorectal cancer detection
Lu et al. (2021) Renal, Lung Tumour classi�cation
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�ve main myxoid soft tissues (Yeung & Cheng 2022). Through an exhaustive liter-

ature search, I have not identi�ed a study on the classi�cation of lipoma and ALT

using deep learning on digital pathology images. However, a recent study (Yang

et al. 2022) used deep learning for the classi�cation of lipomas and ALTs based on

CT and MR images.

3.2.2 Tile-Aggregation Methods

Counting-based slide-level classi�cation using the tile-level CNN results is not ro-

bust, as misclassi�cation of the tile-level CNN could result in a different class pre-

diction on the slide level. One way to correct this issue is to train a slide aggregation

model on top of the tile-based CNN outputs. There are lots of existing slide-level

tile aggregation approaches. Hou et al. (2016) trained a logistic regression model

based on the number of tiles on the class basis as the slide-level classi�er. Wang

et al. (2016) extracted geometrical features from the slide-level visualisation result

of the heap map based on the tile-CNN and then trained a random forest to classify

the slides. Campanella et al. (2019) used the output from the feature extractor stage

of their primary model and select the N most suspicious (i.e., hottest) tiles, and then

they pass all these tiles sequentially into a recurrent neural network (RNN) for the

slide-level classi�cation.

3.2.3 Computational Tools in Digital Pathology

3.2.3.1 Python scienti�c tools

Although strictly not only used for digital pathology, I made extensive use of python

scienti�c tools such asscikit-imagefor image processing,scikit-learnfor machine

learning,Seabornefor data visualisation, andPyTorchfor training deep neural net-

works. A large number of bespoke python scripts were written to carry out this

research. Table 3.2 shows the list of packages that were employed for this study.

The well-documented GitHub repository for this study can be found at:https:

//gitfront.io/r/user-3345834/arKL97mKRVQz/liposarcoma/
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Table 3.2: Development environment and package requirements in terms of Python.

Package Version Number

openslide-python 1.1.1
scikit-image 0.17.2
scikit-learn 0.23.1
torch 1.7.1 (cuda 10.1)
torchvision 0.8.2 (cuda 10.1)
seaborn 0.11.2
large-image 0.3.0
libtiff 0.4.2
matplotlib 3.3.0
numpy 1.19.1
pandas 1.1.0
scipy 1.5.2
tiff�le 2020.9.3
tqdm 4.48.0

3.2.3.2 QuPath

There are some existing open-sourced digital pathology tools for slide preprocess-

ing and analytics for the purpose of research such asQuPath. QuPath, developed

by Bankhead et al. (2017, 2022), is an open-source software for bioimage analy-

sis and is widely used in digital pathology.QuPathis integrated with basic image

analysis features such as viewing and annotating whole slide images, colour decon-

volution and analysis, and work�ows for bright�eld or �uorescence image analysis

and so on.QuPathis also been developed iteratively with new algorithms for com-

mon and computational tasks, including nuclei segmentation using the watershed

method, tissue microarray de-arraying, and some interactive machine learning for

both object and pixel classi�cation and customisation.QuPathis also integrated

with ImageJ. In this study,QuPathis employed for annotation and regions of in-

terest (ROIs) generation from the original slides, and for daily cross-platform slide

viewing.

3.2.3.3 HistoQC

HistoQC, a quality control tool for digital pathology slides, consists of a pipeline

of modules sequentially applied to an image according to (Janowczyk et al. 2019,
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2020). HistoQC integrates traditional image processing methods together with

some machine learning techniques for the detection of digitisation (i.e., scanning)

quality issues, including dark, bright or fuzzy areas within slides, artefact (such

as bubbles, pen marker and so on), and for the generation of tissue mask using

Otsu's thresholding methods and so on. In this study,HistoQCis employed as the

automatic quality screening tool as a supplementary to manual veri�cation of the

internal and external slides.

3.2.3.4 Other useful tools

ImageJis a public domain Java image processing program inspired by NIH Image

for the Macintosh, which can load, edit, analyse, process images and conduct some

basic calculation and statistical tasks such as density analysis, sharpening, smooth-

ing, edge detection and so on according to (Abr�amoff et al. 2004, Schneider et al.

2012, Abramoff et al. n.d., Baecker 2012, Della Mea et al. 2017).PyHISTis de-

signed for tissue area detection using thresholding methods and tile generation for

further computational tasks.PyHISTfailed in this study because of the paucicellu-

lar nature of fatty tissue. The details will be discussed in Section 3.4.2, and Fig 3.7

and 3.16 show an example and a comparison.

3.3 Methodology

3.3.1 The Tile-Based Work�ow: an Overview

I trained a tile-based CNN to automatically distinguish the malignant atypical lipo-

matous tumour from the benign lipoma, the entire process is summarised in Fig 3.1.

The �rst step of the work�ow is to have all the original slides annotated on a regions-

of-interest (ROI) level for classes of (1) non-informative areas, this includes back-

ground and artefact, (2) conventional lipoma areas, (3) conventional atypical lipo-

matous tumour areas, (4) muscle areas, (5) calci�cation areas, (6) in�ammation

areas, (7) fat necrosis areas. I tiled ROIs up into 224� 224 images and used them

to train an Inception v3 deep CNN network to create a tile-level classi�er. I then

sent all the training slides into this classi�er for the calculation of tile-level predic-

tion scores. I then wrote bespoke python scripts to visualise the results by mapping
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Figure 3.1: The proposed tile-based work�ow for the prediction of lipoma and atypical
lipomatous tumour.
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the tile-level classi�cation results onto the whole slide image space, plots includ-

ing class-prediction map, heat map and contour map were employed at this stage.

I employed Gaussian smoothing as a post-processing operation before statistically

analysing the training results on the slide-level. Finally, a series of the slide-level

features were extracted for tile aggregation on the slide-level as well as to train a

slide-level diagnostic label predictor.

Pathologists played an important role in this whole work�ow. At the begin-

ning, the ROIs were generated by taking advantage of the pathologist's (Dr Nischa-

lan Pillay) annotations as the input. And although the slide-level features were ex-

tracted and selected using computational methods at the tile aggregation stage, the

pathologist's viewpoints and comments on those selected features provided some

veri�cations in agreement. And �nally, during the inference steps, the pathologist's

review of slide prediction results also opened up some work�ow optimisation ideas

and further discussion.

3.3.2 Tiles Generation and Annotation Strategy

The original tiles were generated from annotated regions of interest in the training

process in this study. The annotations were made throughQuPathversion 0.2.0,

and Fig 3.2 shows an example of the annotations of an atypical lipomatous tumour

case. AsQuPathannotations can only be exported into their dedicated format of

:qpdata, a groovy script (Appendix D) is needed for annotation conversion from

:qpdatainto : jpg image and:pngmask pairs. This script was modi�ed according

to (Bankhead 2021), and can only be used forQuPathversion greater than 0.2.0.

Fig 3.3 shows some examples of the informative tiles generated. And Fig 3.4 shows

some non-informative tile examples including background, pen-marker, dust, glue

and bubbles.

The ROIs were tiled up under x5 and x10 magni�cation, and I �nally decided

to train the tile-based deep convolutional neural network under x5 magni�cation

(discussed in the methodology optimisation Section 3.4.1, Table 3.6, Fig 3.11,

Fig 3.10). x5 tiles contain more structural information compared to x10s within

each of the tile windows for the paucicellular fatty tissues. Fig 3.5 shows a compar-
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Figure 3.2: An example of the annotations of sample 035. Grey annotations stand for non-
informative areas, red annotations stand for atypical lipomatous tumour areas,
and blue annotations stand for muscle areas.
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Figure 3.3: Some examples of the informative tiles.

Figure 3.4: Some examples of the non-informative tiles.



3.3. Methodology 61

ison of x5 and x10 tiles.

Figure 3.5: A comparison of x5 and x10 magni�cations tiles of lipoma, atypical lipomatous
tumour and fat necrosis.

Table 3.3: Training set tile-level statistics.

Training Class Slides Count ROIs Count Tiles (x10) Count Tiles (x5) Count

Lipoma 27 289 26,312 6,335
ALT 39 521 27,730 6,697

Background 87 347 52,511 12,603
Muscle 9 46 1,456 358

Calci�cation 5 13 174 42
In�ammation 8 40 112 23
Fat necrosis 16 66 11,160 2,711

Total 87� 1,322 119,455 28,769
� One slide can contain multiple classes of training ROIs and annotations.

Tiles were generated from ROIs annotated from training slides. 27 conven-

tional lipoma slides and 39 atypical lipomatous tumour slides were annotated for

the dominant classes of lipoma and ALT, and another 21 slides were annotated for

the main histology variations in fatty tumours, including muscle, calci�cation, in-
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Figure 3.6: The tissue detection pipeline proposed by Bizzego et al. (2018). The identi�-
cation of the tissue bounding box is performed on the WSI thumbnail in three
steps: (1) binarisation of the grayscale image using Otsu's algorithm, (2) binary
dilation and �lling the holes, and (3) biggest connected region detection.

�ammation and fat necrosis. To be mentioned, there exist some histology variation

annotations within some of the conventional lipoma and atypical lipomatous tumour

slides, and all of the 87 training slides contain non-informative (i.e., the background

class) ROIs. In summary, 7 classes were annotated for the tile-based part of work

in this study: (1) non-informative areas, which include background and artefact, (2)

conventional lipoma areas, (3) conventional atypical lipomatous tumour areas, (4)

muscle areas, (5) calci�cation areas, (6) in�ammation areas, (7) fat necrosis areas,

and in total, there were 28,769 tiles generated from 1,322 ROIs annotated from 87

whole slide images. Table 3.3 is the tile-level statistics for the training slides. The

training tiles were then split into a real training set and a validation set by classes

for the CNN training, with a splitting factor of 0.8.

3.3.3 The Tile-Level CNNs: the Evolution

A series of CNN models were trained in this study along with our exploration and

understanding of the dataset. At the very beginning, I did not have any of the an-

notations of ROIs in slides, so I generated the tiles directly from the whole slide

images and assumed the label of each of the tiles is the diagnostic label of its slide. I

then trained a simplest binary classi�er (Alex-a -binary) using AlexNet (Krizhevsky

et al. 2012) structure with these rough training tiles. The �rst observed issue was

the background (i.e., non-tissue areas in the slides), that I should really not assign

a tumour type class as the label of a background tile in that slide. I then tried to

identify the tissue area by taking advantage of a tissue detection pipeline shown in

Fig 3.6 (Bizzego et al. 2018), and to train a 3-class classi�er (Alex-a -3) of lipoma,

atypical lipomatous tumour and the background. Another observed issue was about
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histology variations, which the CNN confused when the muscle was presented in a

slide. The same as the background, I should not assign the diagnostic label to areas

of histological variation. So I manually and roughly annotated some of the muscle

areas and trained an initial 4-class classi�er (Alex-a -4) of lipoma, ALT, background

and muscle. The same logic was then applied to a broader range of histology vari-

ations of in�ammation, calci�cation and fat necrosis, and at this stage, a 7-class

classi�er (Alex-a -7) was trained. All these experiments were explorational.

As discussed in Section 1.6.2 and 2.2, slides were re-scanned considering

the scanning quality issues, such as stripes and focal out-of-focus, with the new

Hamamatsu NanoZoomer S360machine. Regions of interest of the 7 mentioned

classes were generated from this batch of digital slides in a more systematic way

using a pathologist's manual annotation plus veri�cation before tiles are generated.

See more details for the ROI and tile generation strategies in Section 3.3.2. One

thing to be stressed is I annotated the background ROIs rather than applying the

thresholding-based pipeline proposed by Bizzego et al. (2018) and shown in Fig 3.6,

as this pipeline is not robust in our scenario of fatty tissue slides. Lipoma and

atypical lipomatous tumour slides are paucicellular and contain lots of whitespaces

(examples shown in Fig 1.2) which may sometimes result in low contrast between

the tissue regions and the non-tissue background, especially for those conventional

cases without much histology variation. Fig 3.7 shows a successful and a failed ex-

ample for applying the normal tissue detection pipeline on our own dataset, which

well illustrates the failure of a typical tissue detection pipeline on conventional fatty

tissues.

So following the data cleaning and �ltering processes, I then trained another

4-class (Alex-b-4) and 7-class (Alex-b-7) classi�ers using this �nal version of tile-

level training set. I also prepared an independent tile-level dataset together with

a pathologist to roughly evaluate the two dominant classes of lipoma and atypical

lipomatous tumour. This tile-level dataset contains 10,392 lipoma tiles and 11,793

atypical lipomatous tumour tiles (22,185 tiles in total), and was applied to Alex-a -

4, Alex-a -7, Alex-b-4, and Alex-b-7. As explained before, the training slides were
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(a) Slide sample 171. (b) Slide sample 171 after tissue detection
pipeline.

(c) Slide sample 051. (d) Slide sample 051 after tissue detection
pipeline.

Figure 3.7: A success and a failed example for applying the normal tissue detection pipeline
on our own fatty tissue dataset.

not re�ned at the start, so there are a huge amount of non-informative tiles that were

mislabeled to be either lipoma or ALT for the training of Alex-a -4 and Alex-a -

7. I would expect them to have much lower accuracy when comparing the tile-level

performance with other models. Table 3.4 shows a tile-level evaluation accuracy for

all the Alex-CNNs, and Fig 3.8 shows the tile-level ROC for the Alex-CNNs for the

malignant class of atypical lipomatous tumours. I also visualised the tile prediction

onto WSIs to generate the class-prediction maps, and Fig 3.9 is an example, from

which we can �nd the classi�cation of non-informative areas including background

and artefact is poor in the Alex-a family due to the mislabelling issue in the training

tiles.

I also employed Inception V3 (Szegedy et al. 2016) to train our bespoke sar-

coma dataset (Inception-b-7) as the second last of our tile-based CNN evolution.

And �nally, Inception V3 trained on x5 magni�cation of tiles (x5 dataset is also
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Table 3.4: A rough tile-level evaluation for the Alex-CNNs.

CNN ID Lipoma Accuracy ALT Accuracy Overall Accuracy

Alex-a -4 33.63% 47.88% 41.20%
Alex-a -7 32.37% 43.94% 38.52%
Alex-b-4 87.11% 74.96% 80.65%
Alex-b-7 82.92% 66.11% 73.98%

Figure 3.8: The tile-level ROC for the Alex-based CNNs for the malignant class of atypical
lipomatous tumours.

described in Section 3.3.2) was the �nal version of the tile-based part of classi�er

(Inception-b-7-x5).

Table 3.5 shows the evolution of our tile-based lipoma and atypical lipoma-

tous tumour classi�er. At the beginning, no annotation of regions of interest (ROIs)

was introduced to the slides and only binary classes of benign and malignant were

considered based on their diagnostic labels. This was then expanded to 7 classes,

including two dominant classes, a background class and four additional histology

variation classes, after preliminary experiments. The training of 7 classes (b ver-

sions in Table 3.5) was performed with the pathologist's annotation on an ROI basis.
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(a) Sample 137. (b) Class prediction map for Alex-a -4 on
sample 137.

(c) Class prediction map for Alex-a -7 on
sample 137.

(d) Class prediction map for Alex-b-7 on
sample 137.

Figure 3.9: WSI-level visualisation using class prediction map for Alex-CNNs on lipoma
sample 137. In the class prediction maps, the green colour stands for lipoma
and red colour stands for atypical lipomatous tumour, grey colour stands for
non-informative tiles including background and all other colours stand for mi-
nor histology variations (details in Section 3.4.2).

Table 3.5: The evolution of tile-based lipoma and atypical lipomatous tumour classi�er.

CNN ID CNN Structure Class Count Data Cleaned? Magni�cation

Alex-a -binary AlexNet 2 N x10
Alex-a -3 AlexNet 3 N x10
Alex-a -4 AlexNet 4 N x10
Alex-a -7 AlexNet 7 N x10
Alex-b-4 AlexNet 4 Y x10
Alex-b-7 AlexNet 7 Y x10
Inception-b-7 Inception V3 7 Y x10
Inception-b-7-x5 Inception V3 7 Y x5
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3.4 Optimisation of Methods

This section shows the optimisation of methods discussed before. Preliminary anal-

ysis and results will be presented and discussed to support the method optimisation

process, and the �nal methodology of the tile-based work�ow will be summarised

at the end of this section.

3.4.1 The Tile-Level CNN Classi�er

As mentioned in Section 3.3.1, I trained the Inception V3 model with our dataset

of lipoma and atypical lipomatous tumour scanned usingHamamatsu NanoZoomer

S360machine. I prepared the dataset to be under x5 magni�cation as described in

Section 2.2 and 3.3.2, and I also took some basic transformations such as �ip and

rotation, with a triggering probability of 0.5, to augment the training tiles. I used

Adamoptimiser (Zhang 2018) together with a learning rate scheduler as suggested

by Loshchilov & Hutter (2017) to improve the training performance. I split the

training tiles by class with a train-validation factor of 0.8 (the statistics shown in

Table 3.3), and I employed the validation dataset to conduct a tile-level evaluation

for our �nal version models of Inception-b-7-x5.

I �rst calculated the accuracy by class (Table 3.6). Furthermore, I employed

confusion matrix to have a better understanding and comparison between the ac-

tual target labels and those predicted labels for each of the classes (Fig 3.10).

And �nally, ROC curves were plotted for both the Inception-b-7 and Inception-

b-7-x5 models (Fig 3.11). According to these tile-level evaluation, the Inception-

b-7-x5 model achieved a better performance for the dominant classes of lipoma,

atypical lipomatous tumour and fat necrosis compared to Inception-b-7 and to all

other Alex-family CNNs (Table 3.4) on the tile-level. Inception-b-7-x5 also outper-

formed slightly for background class from other models, and this shows Inception-

b-7-x5 has a better ability to differentiate the tissue areas from the non-informative

areas on the slide-level. This will be addressed in next slide-level visualisation sec-

tion.

I also trained a �ne-tuning version of Inception-b-7-x5 usingImageNetpre-

trained model. Please refer to Fig 3.12 and Table 3.7 for more details of the per-
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Table 3.6: Tile-level accuracy for Inception-b-7 and Inception-b-7-x5 models.

Class Inception-b-7 Inception-b-7-x5

Lipoma 80.09% 88.95%
Atypical Lipomatous Tumour 69.58% 73.36%
Background 99.80% 99.96%
Muscle 93.83% 94.44%
Calci�cation 88.89% 100.00%
In�ammation 83.33% 100.00%
Fat Necrosis 88.26% 93.37%

Overall 87.26% 90.65%

(a) Tile-level confusion matrix (in percentage)
for Inception-b-7.

(b) Tile-level confusion matrix (in percentage)
for Inception-b-7-x5 (the �nal tile-based
CNN).

Figure 3.10: Tile-level confusion matrix for Inception-b-7 and Inception-b-7-x5 models.

Table 3.7: Tile-level accuracy for Inception-b-7-x5 (training from scratch) and Inception-
b-7-x5 (�ne-tuning).

Class Training from scratch Fine-tuning

Lipoma 88.95% 87.69%
Atypical Lipomatous Tumour 73.36% 73.06%
Background 99.96% 99.92%
Muscle 94.44% 93.06%
Calci�cation 100.00% 80.00%
In�ammation 100.00% 100.00%
Fat Necrosis 93.37% 96.32%

Overall 90.65% 90.52%
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(a) Tile-level ROC curve for Inception-b-7. (b) Tile-level ROC curve for Inception-b-7-x5
(the �nal tile-based CNN).

Figure 3.11: Tile-level ROC plots for Inception-b-7 and Inception-b-7-x5 models.

(a) Tile-level Inception-b-7 (�ne-tuned) confusion
matrix.

(b) Tile-level ROC plot for Inception-b-7-x5
(�ne-tuned).

Figure 3.12: Inception-b-7-x5 (�ne-tuned) evaluation.
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formance of the �ne-tuned Inception-b-7-x5. These tile-level comparisons showed

that the train-from-scratch CNN has a slightly better performance compared to the

�ne-tuned CNN in this computation task.

The conclusion at the tile-level stage is Inception-b-7-x5 (train from scratch)

achieves the best performance over other CNNs, and is also slightly better compared

to the �ne-tuned Inception-b-7-x5. Inception-b-7-x5 (train from scratch) should be

employed in the tile-based work�ow for the slide-level diagnosis prediction.

3.4.2 The Slide-Level Visualisation

Although the previous section has showed the tile-level evaluation for different

CNNs, pathologists will never make their diagnosis based on a single tile. Patholo-

gists make their decision on the slide-level, so the �rst thing afterward is to visualise

the CNN outputs and map the tile-level results on the slide-level. I �rst plotted a

class-prediction map to spatially map the CNN prediction for each of the tiles within

a whole slide image. There are 7 outputs for the 7-class Inception-b-7-x5 represent-

ing a score for each class, I applied aSoftMaxfunction to those 7 scores to calculate

the probabilities of each tile being each in each class. I took the label of the highest

probability for each tile as its prediction, and applied this strategy to all the tiles

to plot the class-prediction map. Seven colours are used to represent seven CNN

output classes, and Table 3.8 is the colour list for the class-prediction map. Fig 3.13

is an example where Fig 3.13a is the thumbnail of the original slides, Fig 3.13b is

its underlying class-prediction map, and Fig 3.13c is the optimised version of class-

prediction map with a background smoothing post-processing step to remove noise

in the non-tissue area.

Fig 3.14 shows two examples of the class-prediction map (background opti-

mised) with one conventional lipoma case and one conventional atypical lipomatous

tumour case, and Fig 3.15 shows another two atypical lipomatous tumour cases with

some histology variation areas.

One thing to be stressed is this tile-based CNN is able to differentiate the tissue

area from the non-informative area as we took the background and artefact as an

output class of the CNN. This CNN-based tissue detection method also outperforms
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(a) Thumbnail image for atypi-
cal lipomatous tumour sam-
ple 102.

(b) Original class-prediction
map for atypical lipomatous
tumour sample 102.

(c) Background optimised class-
prediction map for atypical
lipomatous tumour sample
102.

Figure 3.13: A example class-prediction map of an atypical lipomatous tumour case 102
before and after background smoothing.

(a) Thumbnail image for lipoma sample 001. (b) Class-prediction map for lipoma sample
001.

(c) Thumbnail image for atypical lipomatous tu-
mour sample 206.

(d) Class-prediction map for atypical lipomatous
tumour sample 206.

Figure 3.14: Two examples (001 and 206) of the class-prediction map with one conven-
tional lipoma case and one conventional atypical lipomatous tumour case.
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Table 3.8: Colour list in the class-prediction maps.

Class Colour Colour RGB

Lipoma Green [0.00, 1.00, 0.00]
Atypical Lipomatous Tumour Red [1.00, 0.00, 0.00]
Background Grey [0.70, 0.70, 0.70]
Muscle Blue [0.00, 0.00, 1.00]
Calci�cation Black [0.00, 0.00, 0.00]
In�ammation Violet [0.75, 0.50, 1.00]
Fat Necrosis Pink [1.00, 0.70, 0.85]

(a) Thumbnail image for atypical lipomatous
tumour sample 035, there are some large
muscle areas in this sample.

(b) Class-prediction map for atypical lipoma-
tous tumour sample 035, and the muscle
areas are corrected predicted by the CNN
with blue colour in the map.

(c) Thumbnail image for atypical lipomatous
tumour sample 097, there are some fat
necrosis areas in this sample.

(d) Class-prediction map for atypical lipo-
matous tumour sample 097, and the fat
necrosis areas are corrected predicted by
the CNN with pink colour in the map.

Figure 3.15: Another two class-prediction map examples (035 and 097) for atypical lipo-
matous tumour cases with some histology variation areas.
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(a) Sample 051 thumbnail. (b) Sample 051 after tradi-
tional tissue detection
pipeline.

(c) Sample 051 class-
prediction map showing
tissue and non-tissue area.

Figure 3.16: Comparison of the tissue detection task between traditional threshold-based
pipeline and our tile-based CNN methods for sample 051.

the traditional threshold-based pipeline shown in Fig 3.6 for those paucicellular fatty

tissue slides. I used the same failed sample of 051 shown in Fig 3.7c and 3.7d as

an example to evaluate and compare the traditional pipeline and the tile-based CNN

for the tissue detection task. In this example, the CNN performs signi�cantly better

at background detection than the traditional pipeline (Fig 3.16).

(a) Thumbnail image for lipoma sample 001. (b) Heat map for lipoma sample 001.

(c) Thumbnail image for atypical lipomatous
tumour sample 206.

(d) Heat map for atypical lipomatous tumour
sample 206.

Figure 3.17: Two examples (001 and 206) of the heat map with one conventional lipoma
case and one conventional atypical lipomatous tumour case.
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(a) Thumbnail image for atypical lipo-
matous tumour sample 035, there are
some large muscle areas in this sam-
ple.

(b) Heat map for atypical lipomatous tu-
mour sample 035.

(c) Thumbnail image for atypical lipomatous
tumour sample 097, there are some fat
necrosis areas in this sample.

(d) Heat map for atypical lipomatous tumour
sample 097.

Figure 3.18: Another two heat map examples (035 and 097) for atypical lipomatous tumour
cases with some histology variation areas.

Though the class-prediction plot can map the tile-level prediction spatially and

visually onto the slides, it will be good to have a heat map to highlight the dominant

output classes of lipoma and atypical lipomatous tumour. I took the softmax-ed

output value for the atypical lipomatous tumour class as the malignant score on the

tile-level, and then plotted a heat map for each of the whole slide images using this

tile-level malignant score. I used the same lipoma (sample ID: 001) and atypical

lipomatous tumour (sample ID 206, 035 and 097) cases as examples to show the

malignant heat map, see Fig 3.17 and Fig 3.18 for more details.

From the class-prediction map and the heat map we can �nd there are some

inconsistencies or ”noise” in some prediction areas within these plots, for example,

we can �nd some minor and isolated predicted histology variation tiles in the ma-

lignant area in Fig 3.14d. Another example is we can �nd some minor and isolated
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predicted benign or malignant tiles in the muscle area in Fig 3.15b. From a tech-

nical perspective of view, the prediction output for each of the tiles is independent,

but from a biological perspective, isolated tiles that are predicted to be a different

class from the surrounding ones are likely to be incorrectly predicted. One way to

resolve this minor inconsistency and to optimise the plots is applying a Gaussian

smoothing. Finally, I decide to keep the original class-prediction map and heat map

to show how the original CNN outputs mapping onto the slide-level, and to use a

contour map with Gaussian smoothing as a post-processing step to build the con-

sistency on the basis of predicted areas. And these will be discussed in the next

section.

The visualisation plots for all the training and testing slides are shared in

this link https://gitfront.io/r/user-3345834/x4kyAGo621eb/

binghao-chai-phd-thesis-supplementary-material/ .

3.4.3 Colour Normalisation

Figure 3.19: Some samples for lipoma, atypical lipomatous tumour, muscle, calci�cation,
in�ammation and fat necrosis tiles before and after colour normalisation using
different algorithms.

As discussed in Section 1.6.3, there are debates on whether to apply colour

normalisation in the tile-based work�ow. For some of the computational tasks, the
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colour normalisation process makes the performance better while in some other

tasks not. I applied Reinhard's, Macenko's and Vahadane's colour normalisation

methods through StainTool implementation By�eld (2018) to some lipoma sample

tiles, and Fig 3.19 shows some comparison samples of different classes before and

after normalisation. It can be seen that in some cases, applying colour normalisation

can result in artefacts such as the blue regions for some of these images. This blue-

ish fake colour in eosin-stained muscle may be caused by the matrix inversion to

solve the least square with a low staining coef�cient that yields a negative value.

This issue may be addressed by using non-negative matrix factorisation or using

stain vectors from within the target image that is less sensitive. A comprehensive

investigation in colour normalisation on fatty tissue could be conducted, but this is

not really the scope of this study.

I designed an experiment to support the decision of whether colour normalisa-

tion should be employed in this speci�c task. I took a subset of the training dataset,

and trained two CNNs respectively with and without the colour normalisation as a

preprocessing step. The slide-level accuracy of training with colour normalisation

is 68.33% which is lower than without colour normalisation of 73.44%. No colour

normalisation was applied in this speci�c task according to these results.

3.4.4 Slide-Level Classi�cation Using Tile Aggregation Methods

3.4.4.1 Aggregation features exploration

The next step after mapping and visualising CNN results onto WSIs is to �nd a way

to analyse and aggregate tile-level outputs into a diagnostic label prediction, and

we call this tile-aggregation for the prediction of WSI-level diagnostic labels. A

straightforward way to aggregate the tile-level benign and malignant information to

WSI-level is to count the predicted-benign and predicted-malignant tiles within each

of the whole slide images, and then calculate the proportions of predicted benign

and malignant tiles in each of the slides, as stated in Table 3.9. This shows some

information, such as whether our CNN model infers slides to be putative benign

as the lipoma or putative malignant as the atypical lipomatous tumour. A baseline

result based on this shows in Table 3.10. However, according to domain knowl-
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edge, aggregating tile information this way is a sort of super�cial and is not always

correct, and we cannot simply use the ratio of the number of malignant tiles and

the number of benign tiles as the “malignant score” of a slide. An extreme scenario

for this statement is if we have a malignant case which is at a very early malignant

stage, where most areas are benign apart from a very limited number of malignant

tiles, we cannot make the diagnostic prediction in such cases by simply calculate the

predicted benign and malignant proportions. Instead, further and deeper statistical

analysis needs to be applied to �nd some more proper aggregation features.

Table 3.9: De�nitions of proportions of benign and malignant tiles in the slides.

Aggregation Features De�nition

Benign Proportion predicted lipoma tiles count
total in f ormative tile count in the slide

Malignant Proportion predicted ALT tiles count
total in f ormative tile count in the slide

Table 3.10:The baseline results for the tile-based work�ow on the internal testing dataset.

Label Correct Wrong Total Accuracy (%)

Lipoma 28 11 39 71.79%
ALT 18 7 25 72.00%

Overall 46 18 59 71.88%

I then plotted the tile-based CNN output (afterSoftMax) distribution for the

malignant ALT class for all the tiles in each of the slides, and some examples are

displayed in Fig 3.20. The distribution for case 097 shows on the left-hand side, and

on the right-hand side are for cases of 007, 039, 121, 056, 088, 127, 125 and 134.

This �gure shows the distribution of the probabilities for all the tiles to be malignant

within one WSI, where high score means high malignancy for that tile. Low scores

in this plot do not mean benign, as low score can be background or other histology

variation tiles as well.

To better visualise the tile-level malignant score distribution, I made the plot

with only the informative tiles (i.e., the putative malignant tiles and the putative

benign tiles) rather than all the tiles within each of the slides. Fig 3.21 shows a
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(a) Tile-level malignant score distribution for
ALT sample 097.

(b) Tile-level malignant score distribution for
8 cases as another example.

Figure 3.20: Tile-level malignant score distribution (all tiles included) samples.

lipoma and an atypical lipomatous tumour example for the distribution excluding

all background areas as well as the histology variation areas.

(a) Tile-level distribution for all informative
tiles for lipoma sample 111.

(b) Tile-level distribution for all informative
tiles for atypical lipomatous tumour sam-
ple 206.

Figure 3.21: Tile-level distribution for all the putative lipoma and ALT tiles for a lipoma
and an atypical lipomatous sample.

Furthermore, Fig 3.22 shows the tile-level malignant score distribution for all

the informative tiles (i.e., only putative benign tiles and putative malignant tiles are

included, all other tiles such as background and histology variation are excluded)
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for all of the whole slide images, where Fig 3.22a shows the distribution for all

training slides inferred by Inception-b-7 under magni�cation of x10, and Fig 3.22b

shows the distribution for all the training slides inferred by Inception-b-7-x5 under

magni�cation of x5. Statistic metrics, such as mean or median, of the distribution

for each of the slides could be used as one of the aggregation features.

To better visualise the malignant area in each of the slides, I also employed

contour map as a supplementary to the heat map. I took the median of the median

malignant scores for all the informative tiles for all the ALT slides (0.747), and

the median of the median malignant scores for all the informative tiles for all the

lipoma slides (0.378) shown in the distribution of Fig 3.22 as the initial contour

lines, and 0.9 was also provisionally taken as a supplementary contour lines to show

the extreme heat areas over the slides. Fig 3.23b shows an initial example of the

contour map for a malignant case of 206. The contour map can also be optimised

by applying Gaussian smoothing as well as removing the background areas (i.e.,

non-tissue areas), as shown in Fig 3.23c and Fig 3.23d.

A supplementary instructions on how the initial contour lines of 0.378 and

0.747 are calculated:

1. Calculate the median of tile-level malignant scores for all the informative tiles

within each WSI.

2. Take the above median values as the WSI-level malignant scores.

3. Calculate the median of WSI-level malignant scores for all the ALT slides

which equals to 0.747.

4. Calculate the median of WSI-level malignant scores for all the LP slides

which equals to 0.378.

There are �ve areas in the �nal contour map for each of the slides: (1) the white

area is the non-tissue area (i.e., the background), (2) contour value from 0 to 0.378

is the putative benign area shown in blue in the contour map, (3) contour value

from 0.378 to 0.747 is the uncertain area shown in green in the contour map, (4)
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(a) Tile-level distribution for all training slides inferred by
Inception-b-7 under magni�cation of x10.

(b) Tile-level distribution for all training slides inferred by
Inception-b-7-x5 under magni�cation of x5.

Figure 3.22: Tile-level malignancy distribution for all training slides with only informative
(i.e., putative benign tiles and putative malignant) tiles.
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(a) Thumbnail image for sample 206. (b) Contour map (initial) for sample 206.

(c) Contour map (after Gaussian smoothing)
for sample 206.

(d) Contour map (after Gaussian smoothing
and non-tissue area removed) for sample
206.

Figure 3.23: Contour map example for atypical lipomatous tumour sample 206.

contour value from 0.747 to 0.9 is the putative malignant area shown in orange in

the contour map, and (5) contour value from 0.9 to 1.0 is also the putative malignant

area, but this range of area is the hottest malignant area in the slides, shown in red in

the contour map. As I would like to capture the benign and malignant information,

making a scatter plot that shows each WSI as a single point with the putative benign

areas (contour value from 0 to 0.378 shown in blue) against the putative malignant

areas (contour value from 0.747 to 1.0 shown in orange and red) would be useful.

So I plotted the putative benign area (contour values from 0 to 0.378) against the

putative malignant area (values from 0.747 to 1.0) as a scatter plot (Fig 3.24). This

�gure shows roughly two regions, where the malignant cases are on the left-hand

side and benign cases are on the right-hand side. And these align with the x-axis
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and y-axis. Case 035 is a unique one as most of the area in slide 035 is histology

variation of muscle, but as I only take the putative benign and putative malignant

area into account in the scatter plot, case 035 is on the correct malignant cluster

in the plot. Case 005 and 006 are two dif�cult cases as most of the areas in their

contour maps are uncertain or benign, but they are in fact both malignant samples,

and these two cases are wrongly shown in the benign clusters in the scatter plot. All

other samples seems to have consistency with their ground-truth diagnostic label.

At this stage, I extracted six putative features on top of the tile-level malignancy

and the slide-level contour map, they are:

1. Median value of the tile-level malignant score for all the informative tiles

within each of the whole slide images.

2. Median value of the tile-level benign score for all the informative tiles within

each of the whole slide images.

3. The proportion of areas of contour values range from 0.9 to 1.0 (i.e., the

hottest putative malignant red areas) over all the informative areas in the con-

tour map.

4. The proportion of areas of contour values range from 0.747 to 0.9 (i.e., the

putative malignant orange areas) over all the informative areas in the contour

map.

5. The proportion of areas of contour values range from 0.378 to 0.747 (i.e., the

uncertain green areas) over all the informative areas in the contour map.

6. The proportion of areas of contour values range from 0 to 0.378 (i.e., the

putative benign blue areas) over all the informative areas in the contour map.

Fig 3.25 displays the data structure of all mentioned features (before re�ne-

ment) for the internal training slides visualised using PCA as well as t-SNE, and

both sub-�gures show consistency.



3.4. Optimisation of Methods 83

Figure 3.24: Scatter plot based on putative benign (contour value from 0 to 0.378 shown in
blue) and putative malignant (contour value from 0.747 to 1 shown in orange
and red) areas of contour maps for all the training slides.
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(a) PCA results for all 6 coarse features for all the
internal training slides.

(b) t-SNE results for all 6 coarse features for all
the internal training slides.

Figure 3.25: The data structure of all mentioned putative features for the internal training
slides visualised using PCA as well as t-SNE.

3.4.4.2 Aggregation features selection and re�nement

In order to re�ne the putative features, some further analysis was applied. Table 3.11

shows the percentage of variance explained by each of the selected components

using PCA from which we can �nd that PC-1 is the main axis. Table 3.12 shows the

principal axes in feature space, representing the directions of maximum variance

in the data, and we can �nd putative feature 2 (i.e., the median of tile-level benign

score) as well as putative feature 6 (i.e., the proportion of putative benign area on

the contour map) both have reasonable positive values showing that they positively

predict lipoma which is what we would expect. On the other hand, putative feature

1 (i.e., the median of tile-level malignant score) as well as the putative feature 4

(i.e., the proportion of the dominant putative malignant area on the contour map)

both have reasonable negative values showing their relationship to ALT. Putative

feature 3 (i.e., the proportion of the minor hottest putative malignant area on the

contour map) and putative feature 5 (i.e., the proportion of the uncertain area on

the contour map) make the least contribution to distinguishing of the benign lipoma

and the malignant ALT. A random forest classi�er was also applied to the internal

training and testing set, the feature ranking of all 6 features shows a similar result
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of the feature importance, see Table 3.13 for details.

Table 3.11:Percentage of variance explained by each of the selected components using
PCA.

Principal Axes Percentage of variance

PC-1 0.7535
PC-2 0.2255

Table 3.12:Principal axes in feature space representing the directions of maximum vari-
ance in the data.

PC Axes Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6

PC-1 -0.4581 0.4703 -0.0775 -0.4109 -0.1264 0.6149
PC-2 -0.0897 0.0664 -0.1493 -0.4372 0.8419 -0.2555

Table 3.13:Feature ranking generated by random forest method.

Feature ID Importance

Feature 1 0.2658
Feature 2 0.2956
Feature 3 0.0588
Feature 4 0.1531
Feature 5 0.0196
Feature 6 0.2072

According to both the putative feature analysis above and the pathological

knowledge, I �rstly suggest the feature 5 to be removed from the slide-level tile

aggregation feature list as this feature might be non-informative to some degree.

Regarding feature 3, a potential reason for this feature to be the least signi�cant is

not all the ALT case contains the red areas on the contour map. As a result, I then

suggest that feature 3 (i.e., the proportion of areas of contour values range from 0.9

to 1.0) to be merged into feature 4 (i.e., the proportion of areas of contour values

range from 0.747 to 0.9), and make them to be a single feature of the proportion of

the putative malignant areas (i.e., the proportion of areas of contour values range

from 0.747 to 1.0) in the contour map visualisation. So the putative features can

then be re�ned to be the following four:
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1. Median value of the tile-level malignant score for all the informative tiles

within each of the whole slide images.

2. Median value of the tile-level benign score for all the informative tiles within

each of the whole slide images.

3. The proportion of areas of contour values range from 0.747 to 1.0 (i.e., the

putative malignant orange and red areas) over all the informative areas in the

contour map.

4. The proportion of areas of contour values range from 0 to 0.378 (i.e., the

putative benign blue areas) over all the informative areas in the contour map.

Figure 3.26: Hyperparameter search of the putative benign and putative malignant contour
lines using the validation accuracy.

To re�ne the contour lines, I also conducted some hyperparameter search with

the validation set. Fig 3.26 is the result showing the hyperparameter search pro-

cess, from which we can �nd a proper putative benign contour line is 0.25, and the

putative malignant contour line is 0.75.

To conclude, two contour map based features were employed together with two

tile-level statistical metrics for the tile aggregation process, the aggregation features
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are listed in Table 3.14. And a slide-level diagnostic label can be predicted using

this tile aggregation method, the aggregation results will be discussed in Section 3.5

and 3.6.

3.4.5 Methodology Summary

In this study, 59 lipoma and ALT slides were employed in the training process of a

lipoma-ALT classi�er. I �rst generated ROIs based on the pathologist's annotation

for seven training classes, they are: (1) background and artefact, (2) conventional

lipoma, (3) conventional ALT, (4) muscle, (5) calci�cation, (6) in�ammation, (7)

fat necrosis. Smaller tiles were then generated from these ROIs and used to train an

Inception-V3 model to create a tile-based CNN classi�er. I visualised the tile-level

outputs and mapped them onto the slide-level. A class prediction map, a heat map

and a contour map were generated for each of the slides. I extracted and re�ned

four tile-aggregation features from the statistics and the visualisation (Table 3.14),

and then trained a logistic regression and a random forest classi�er for the slide-

level diagnostic prediction of the lipomas and the ALTs. Please refer to Fig 3.1 as a

graphical abstract for this full tile-based study.

Table 3.14:Tile aggregation feature list in the tile-based work�ow.

ID Feature Description

1 medianbenign Median value of the tile-level benign score for all the
informative tiles within each of the whole slide im-
ages.

2 medianmalignant Median value of the tile-level malignant score for all
the informative tiles within each of the whole slide
images.

3 areabenign The proportion of areas of contour values range from
0 to 0.25 (i.e., the putative benign blue areas) over all
the informative areas in the contour map.

4 areamalignant The proportion of areas of contour values range from
0.75 to 1.0 (i.e., the putative malignant orange and
red areas) over all the informative areas in the contour
map.
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3.5 Results and Discussion

A logistic regression and a random forest model were employed for the slide-level

classi�cation of WSIs. The slide-level results for the entire tile-based work�ow

(i.e., the tile-based CNN plus the tile-aggregation) for internal training slides are

shown in Table 3.15. For logistic regression, the F-score for lipoma is 0.943, and

for ALT is 0.954, and for the random forest method, it is 0.963 for lipoma and for

0.969 for ALT.

Table 3.15:Slide-level results for the tile-based work�ow on the internal training dataset.

Method Label Correct Wrong Total Accuracy (%) AUC

Logistic
Regression

Lipoma 25 1 26 96.15%
0.987ALT 31 2 33 93.94%

Overall 56 3 59 94.92%

Random
Forest

Lipoma 26 0 26 100%
0.998ALT 31 2 33 93.94%

Overall 57 2 59 96.61%

Feature analysis is also conducted based on the logistic regression and random

forest, the logistic regression coef�cients and random forest feature importance are

listed in Table 3.16. These feature values make a lot of sense: the putative lipoma

proportion on the contour map as well as the median of benign scores both have

negative values for logistic regression showing that they negatively predict atypical

lipomatous tumour, and on the other hand, the putative malignant proportions on the

contour map and the median of the malignant score have a positive value for logistic

regressions showing that the system correctly uses this information. And in random

forest, most of the features make a reasonable contribution to the differentiation

between lipoma and ALT as well.

The tile-based work�ow was then applied to the internal testing slides (de-

scribed in Section 2.2), and similarly, Table 3.17 and Fig 3.27 show the general

results. It's very dif�cult to say whether random forest or logistic regression model

is generally better than the other one, as the testing dataset size is small and both

are doing much better than random. The list of wrong predictions is shown in Ta-

ble 3.18 for the internal testing set.
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Table 3.16:Aggregation feature analysis based on logistic regression and random forest.

Feature ID Feature Logistic Regression Random Forest

1 medianbenign -1.755 0.362
2 medianmalignant 1.720 0.362
3 areabenign -0.763 0.070
4 areamalignant 2.243 0.205

Table 3.17:Slide-level results for the tile-based work�ow on the internal testing dataset.

Method Label Correct Wrong Total Accuracy (%) AUC

Logistic
Regression

Lipoma 29 10 39 74.36%
0.776ALT 18 7 25 72.00%

Overall 47 17 64 73.44%

Random Forest
Lipoma 27 12 39 69.23%

0.789ALT 18 7 25 72.00%
Overall 45 19 64 70.31%

(a) Slide-level ROC curve for the tile-based
work�ow on the internal testing dataset us-
ing logistic regression.

(b) Slide-level ROC curve for the tile-based
work�ow on the internal testing dataset us-
ing random forest.

Figure 3.27: Slide-level ROC curves for the tile-based work�ow on the internal testing
dataset.
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Table 3.18: Incorrect predictions for the tile-based work�ow on the internal testing dataset.

Diagnostic
Label

Incorrectly Predicted Slides
(Logistic Regression)

Incorrectly Predicted Slides
(Random Forest)

Lipoma 021, 033, 128, 131, 138, 139,
151, 181, 182, 185

021, 033, 128, 131, 137, 138,
139, 151, 173, 181, 182, 185

ALT 023, 038, 072, 074, 076, 106,
189

023, 038, 072, 074, 076, 106,
189

Though a tile-aggregation method was performed, there exist false predictions.

All the incorrectly predicted slides were sent to Sahlgrenska University Hospital

for an independent pathological review. Table 3.19 compares the slide-level ground

truth, the work�ow prediction and the pathological review for the incorrectly pre-

dicted slides. The incorrectly predicted lipoma cases are dif�cult cases with either

variation presenting on the slide or focal out-of-focus areas. All the incorrectly

predicted ALT cases were diagnosed to be lipoma by pathologists with only the

histopathological images to be used. Pathologists indicated these cases to be chal-

lenging, and suggested a furtherMDM2 FISH test would consider to make a more

accurate diagnosis.

The tile-based classi�er was also evaluated on the selected external testing

slides (Section 2.3). Table 3.20 shows a slide-level comparison results of the tile-

based classi�er for the internal and external testing sets. There are two observa-

tions based on this table. First, the tile-based classi�er tends to predict WSIs to be

lipoma for the external testing slides, that 95% of the lipoma cases are correctly

predicted. Then, more than half of the external ALT cases are incorrectly predicted

to be lipoma, and so the accuracy of the ALT also drops signi�cantly in the external

testing slides. This is an issue of sensitivity to the ALT class, and the generalisabil-

ity of the classi�er will be discussed in the next section.
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Table 3.20:The slide-level results of the tile-based classi�er for the internal and the exter-
nal testing slides.

Internal Testing Set External Testing Set
Method Label Accuracy (%) F1 AUC Accuracy (%) F1 AUC

Logistic Regression
Lipoma 74.36% 0.773

0.776
95.00% 0.655

0.695ALT 72.00% 0.679 42.42% 0.583
Overall 73.44% – 62.26% –

Random Forest
Lipoma 69.23% 0.740

0.789
95.00% 0.667

0.684ALT 72.00% 0.655 45.46% 0.612
Overall 70.31% – 64.15% –
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3.6 Conclusions

In this study, I proposed a CNN-based work�ow for the classi�cation of H&E

stained lipoma and atypical lipomatous tumour histopathological images. On the

tile-level, the tile features were learned by the deep convolutional neural networks.

And furthermore, tile-aggregation methods using logistic regression and random

forest were also performed for the slide-level prediction of the diagnostic labels.

The work�ow was trained on an annotated and re�ned dataset, and then vali-

dated and tested on a separate dataset. The combination of the CNN plus the

tile-aggregation classi�ers achieves comparable results showing the success of the

distinction of lipoma and ALT slides. Finally, an external and more challenging

dataset was used as the external validation and testing, and this is to explore the

generalisability of the work�ow.

Pathologists played an important role in the development of this tile-based

work�ow. Unlike computational tasks of classi�cation and detection of general

objects in daily life, pathological images need to be annotated carefully by domain

experts. Though manual annotating is time-consuming, the quality of the re�ned

training dataset depends on the quality of annotation, and ROI annotation by pathol-

ogists is an essential step in the dataset preparation process. Pathologists also gave

their reviews in the tile-level evaluation and slide-level aggregation processes which

accelerate the evolution of the work�ow.

In most cases, the results of tile-based classi�er cannot be used directly for

the diagnostic classi�cation of the slides, and there are two reasons for this. First,

the CNN cannot always predict all the tiles correctly, and on the other hand, some

tumours arise from a tumour centre and then grow larger amongst benign tissue. An

extreme example is if for an early tumour slide, there are 99% of the whole informa-

tive area showing benign while only 1% of areas in the slides showing malignant,

assuming the tile-based CNN have an 100% accuracy, and in this case, the slide

should be classi�ed as malignant rather than benign. Slide-level tile aggregation is

a key step on top of the tile-based classi�er when dealing with real-world data. In

this work�ow, a tile-aggregation method is employed for the slide-level diagnostic
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label prediction. I took a combination of the statistical features and the contour

map, and then employ a logistic regression and a random forest to make the clas-

si�cation. The contour map itself might potentially be used as the input of another

CNN to capture the geometrical or morphological features on the slide-level and

train a diagnostic classi�er if suf�cient numbers of samples and contour maps can

be generated. However, in this study, I only have 59 training points and so I can

only aggregate tiles by those more fundamental features.

This tile-based work�ow shows some abilities to differentiate lipoma from

ALT on the independent external dataset to some degree, however, the classi�er

is not as good as inference with the in-house dataset. Generalisability is a com-

mon problem in the digital pathology �eld, and is one of the reasons why only

a few work�ows are employed in clinical usage. The generalisability issue may

be addressed by training with external datasets. Future work for other researchers

includes the exploration of generalisability and the aggregation of a patient-level

classi�er if they have suf�cient data.



Chapter 4

A Novel Lipoma and Atypical

Lipomatous Tumour Nucleus Dataset

4.1 Chapter Overview

The tile-based methods that are so widely used in deep learning models differ sub-

stantially from how pathologists view lipoma slides i.e. pathologists use low-power

magni�cation images to have a survey of the architecture of the tumour and then go

down to higher magni�cations to better determine speci�c characteristics of cells.

In particular, the identi�cation of lipoblasts or atypical hyperchromatic cells are

key diagnostic �ndings that could prompt a diagnosis of malignancy. Given the

“black box” nature of deep learning models, it is not known if the tile-based meth-

ods capture these important cellular or nuclear features. Therefore using an entirely

tile-based work�ow to distinguish ALT from lipoma could be seen as a limitation.

As introduced in Section 1.4, pathologists will make use of the aberrant nuclei and

the lipoblast for the distinction of lipomas and ALTs. Our hypothesis is that the

distinction between the lipomas and the ALTs can achieve a better performance if

we mimic the pathologist's routine process of assessing slides by focusing on the

nuclei of the slides. This kind of “nucleus-based” work�ow could be evaluated by

taking its standalone performance or integrating it into the tile-based one. In order

to develop such a deep learning work�ow that is essentially based on what pathol-

ogists do when analysing lipomas and ALTs, a bespoke nucleus-level lipoma and
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ALT dataset would be needed for the training process.

4.2 Introduction and Related Work

4.2.1 Existing Nucleus-Level Datasets

There are several open-source datasets of object classi�cation, detection and seg-

mentation for different morphological features from digitised slides. The compu-

tational tasks are mainly mitosis detection, lymphocyte detection and nuclei classi-

�cation, detection and segmentation. Table 4.1 shows more details of the nucleus-

level datasets for different computational tasks. A thorough review of the literature

and accessible data repositories revealed no open-source lipoma and ALT nucleus

datasets. The �rst step to develop such a nucleus-based work�ow and to evaluate

the proposed assumption is to develop a lipoma and ALT nucleus dataset. Tech-

niques such as object detection and segmentation could be used for the pixel-level

nucleus dataset generation.

4.2.2 Traditional Segmentation Methods

There exist many well-known conventional segmentation algorithms (i.e., machine

learning or deep learning methods are not used), which can be mainly categorised

into thresholding segmentation, edge-based algorithm and region-based segmenta-

tion (Irshad et al. 2014).

Thresholding segmentation is a straightforward way to segment the selected

object from an image: simply choose a threshold based on the intensity histogram

of single channel values. The threshold can be applied on either single-channel

gray scale values, or multi-channel of red, green and blue values for segmentation.

Unfortunately, thresholding algorithms might miss the signi�cant parts of the iden-

ti�ed object, or merge parts of the background with the identi�ed object and would

then give an inappropriate outline of the objects.

Regarding edge-based segmentation, the main idea is to delineate the contours

of the speci�c object using related algorithms likeCannyedge-detector orSobel

edge-detector, thereafter, these contours are then �lled using mathematical mor-

phology. Although this method performs better compared to thresholding, edge-
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based segmentation is still not robust, as contours that are not perfectly closed will

not be �lled correctly.

Region-based segmentation outperforms either thresholding or edge-based

methods in many scenarios, and an existing representative algorithm for region-

based segmentation is watershed segmentation. The �rst step of watershed segmen-

tation is to �nd an elevation map of an image using theSobelgradient method. Then

markers of the background and the to-be-identi�ed objects need to be de�ned based

on the extreme parts of the density histogram of the selected channel. And �nally,

the watershed transform can be perfectly applied to �ll regions of the elevation map

starting from the determined markers.

One suggestion when applying traditional image processing approaches to seg-

ment nuclei in the H&E images is to execute the colour deconvolution before any

of the segmentation operations (more details are given in Section 1.6.3). As nuclei

are mainly bound with hematoxylin, applying algorithms such as watershed seg-

mentation on the hematoxylin-channel in aH-E-Complementcolour space should

perform better than applying the same algorithms on the original RGB colour space.

Fortunately, existing tools are available for a fast implementation of nuclei iden-

ti�cation and quanti�cation with traditional image segmentation approaches. A

straightforward work�ow could be like this: �rst of all,OpenSlide(Goode et al.

2013) provides the interfaces to load and handle the large-size pathological images

without any pre-processing, and secondly,skimage.colorcould be employed for

colour deconvolution. Subpackages ofskimage.feature, skimage.morphologyand

skimage.�ltersenables conventional segmentations to be implemented. And in the

end,label function inscipy.ndimagepackage provides quanti�cation features.

4.2.3 Nuclei Classi�cation, Detection and Segmentation Using

Deep Learning Methods

There are three main types of computational tasks at nucleus-level in digital pathol-

ogy which are classi�cation, detection and segmentation. Classi�cation summarises

an image into a few words (i.e., classes), for example, a classi�cation result tells us

the types of nuclei in a tile containing different nuclei. More speci�c details, such
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as location of the nucleus, is also important and can be useful information to have

in some scenarios. Object detection is a computer vision technique that uses bound-

ing boxes to localise objects on top of the classi�cation, and in digital pathology,

the object can be a nucleus for instance. Segmentation provides pixel-level details

which outline the exact shape of each of the objects within an image. On the other

hand, segmentation can reveal pixels from overlapping objects.

Nuclei classi�cation, detection and segmentation are important in digital

pathology and can be used for tumour diagnosis and grading (Srinidhi et al. 2021).

There exist many nuclei detection, segmentation and quanti�cation methods for

H&E images, and these approaches vary in principle and process. All existing pub-

lished algorithms can be divided into two groups: detection using traditional image

processing methods, and detection based on machine learning or deep learning tech-

niques.

Some of the traditional methods �rst segment clumps of nuclei areas from the

rest of the tissue and then proceed to deal with the overlapping nuclei to separate

those into individual ones, whereas others act reversely. The earliest work for nu-

clei detection dates back to 1996, Thiran & Macq (1996) proposed a computational

method using traditional image process techniques for nuclei segmentation based on

their underlying morphological features. Later in 2000,Automated Cellular Imag-

ing System(ACIS) developed byChromaVision Medical Systems Inc.is the �rst

hardware system designed for nuclei detection. And after that, Bauer et al. (2000),

Wang et al. (2001) tested the reliability and sensitivity of ACIS. They stated that

ACIS is a colour-based analysis system, and can only be able to analyse physical

slides with speci�c staining protocol. Qi et al. (2012) �rst presented a modern nu-

clei detection algorithm for digital H&E slides by following the direction of the

image gradient to infer the geometric centre of each nucleus. However, the limita-

tion of this pipeline is its �rst step of inferring the initial markers as the location of

nuclei, and this led to low performance and uncertainty. Veta et al. (2013) proposed

a watershed-based nuclei segmentation pipeline for H&E-stained breast cancer im-

ages that achieved a positive predictive value of 0.886 on their validation set.
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To my knowledge, the �rst published machine learning techniques used for

nuclei detection were in 2010. A supervised segmentation method using Bayesian

classi�cation was developed for the segmentation of overlapping nuclei, and this

work reduced the over- and under-segmentation to some degree (Jung et al. 2010).

Then in 2013, the �rst deep learning based method for nuclei detection and seg-

mentation was developed where a pixel-based CNN classi�er was developed for the

mitosis detection task using the ICPR2012 dataset (Cireşan et al. 2013). Wang et al.

(2014) integrated handcrafted features on top of the deep learning method using the

same ICPR2012 dataset for the same computational task. Xing et al. (2015) de-

veloped a combination work�ow of the CNN and the selection-based sparse shape

model for the nuclei segmentation of the brain, pancreatic and breast cancer images.

Thereafter, Sirinukunwattana et al. (2016) proposed a spatially constrained convo-

lutional neural network (SC-CNN) architecture which regresses the likelihood of

a pixel being the centre of nuclei, where high probability values are spatially con-

strained to locate in the vicinity of the centres of nuclei. And in the same year, Xu

et al. (2016) published a stacked sparse auto-encoder (SSAE) work�ow to learn the

higher-level morphological features for the ER+ breast cancer nuclei detection task.

Naylor et al. (2018) developed a CNN-based regression model for the colon nuclei

segmentation using TNBC and MoNuSeg datasets.

One of the latest and most advanced CNN architectures for nuclei classi�cation

and segmentation isHoverNet(Graham, Vu, Raza, Azam, Tsang, Kwak & Rajpoot

2019). HoverNetis a multiple-branch network and was applied on CoNSeP, Ku-

mar, MoNuSeg and PanNuke datasets for nuclei classi�cation and segmentation.

The pre-activated residual network with 50 layers (Preact-ResNet50) was �rst em-

ployed inHoverNetfor the feature extraction. Three distinct up-sampling branches

were then integrated onto thePreact-ResNet50for nucleus segmentation and clas-

si�cation. These three branches are:

1. nuclear pixel (NP) branch: �rst predicts on the pixel-level whether a pixel

belongs to nucleus,

2. the hover branch: predicts the horizontal and vertical distances of nucleus
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pixels to their centres of mass in order to separating touching nuclei,

3. the nucleus classi�cation (NC) branch: predicts the type of nucleus by aggre-

gating the pixel-level types within each nucleus instance.

HoverNetdemonstrated state-of-the-art performance compared to another 14

methods and tools, including the mainstream of U-Net and Mask-RCNN, on nu-

cleus classi�cation and segmentation on multiple independent multi-tissue patho-

logical datasets.HoverNetachieved a dice score of 0.853 on its main dataset (CoN-

SeP).

4.2.4 Image Registration

Most published image registration studies related to medical imaging are focused on

computerised tomography (CT) and magnetic resonance (MR) images. Image reg-

istration is a key component prior to 3D reconstruction. Registration methodologies

are commonly classi�ed using feature space image information. This information

could be the intensity of the raw pixels, the intensity gradient or statistical informa-

tion related to the intensity, or structures extracted from the images to be registered,

such as sets of points, edges, contours, surfaces and volumes and ROIs according

to (Song et al. 2017, Lundervold & Lundervold 2019, Fu, Lei, Wang, Curran, Liu

& Yang 2020, Oliveira & Tavares 2014).

Moles Lopez et al. (2015) proposed an ROI-matching work�ow for the regis-

tration of a series of digital slides in digital pathology. Tellez et al. (2018) aimed

to detect mitosis in the pathological slides, and they would like to use another stain

apart from H&E as their reference and ground truth. In this study, Tellez et al.

(2018) designed a two-step pipeline for pathological images co-registration for the

same tissue stained with H&E and H-DAB, with the �rst step a global and coarse

registration to minimise the vertical and horizontal shift between image pairs, and

then to repeat this procedure multiple times for each of the image pairs before av-

eraging across all the trials, and the second step is to register each mitotic �gure

individually following a similar procedure as before. Bulten et al. (2019) men-

tioned in their studies that there are additional nonlinear deformations caused by
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the chemical treatment during the re-staining process and these sometimes result

in the unmatching of spatially corresponding structures. They proposed to use the

normalised gradient �elds (NGF) distance that measures the alignment of image

gradients, to account for the multi-modality of the registration problem.

The registration of H&E and IHC image pair could be used in nuclei instance

level dataset generation, this is addressed in Section 7.2 (Fig 7.2).

4.3 Methodology: A Semi-Automatic Nucleus Anno-

tating Work�ow

There are potentially two ways for developing a nucleus-level dataset. On the one

hand, we can build the dataset using the pathologist's annotation on the nucleus

level. This is impracticable, as the approximate average number of nuclei in a

lipoma slide is 20,000, and this number in an ALT slide ranges from 30,000 to

200,000. Manual annotation on the nucleus level is time-consuming and is not cost-

ef�cient. On the other hand, we can attempt to annotate the lipoma and ALT nuclei

using a semi-automatic or automatic work�ow and build the dataset.

4.3.1 HoverNetPretrained with PanNukeDataset

I �rst took advantage ofHoverNetas well as the pan-cancer dataset ofPanNuke.

There are two modes forHoverNet, the Image Modeand theWSI Mode, and Ta-

ble 4.2 shows the input and output of HoverNet in either mode. According to (Hov-

erNet Github Site2019), both theImage Modeand theWSI Modeoutput a.json�le

with keys of:

1. bbox: bounding box coordinates for each nucleus

2. centroid: centroid coordinates for each nucleus

3. contour: contour coordinates for each nucleus

4. typeprob: per class probabilities for each nucleus (default con�guration

doesn't output this)

5. type: prediction of category for each nucleus
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Table 4.2: Input and output of HoverNet in each of the inference mode.

Mode Input Output

WSI Whole slide images sup-
ported byOpenSlide(Goode
et al. 2013), such as.svs, .tif,
.ndpiand.mrxs

A .json �le showing the detected
nuclei instances

Image Standard images �les, includ-
ing .png, .jpg and.tiff

A .json �le showing the detected
nuclei instances, an instance seg-
mentation map in.mat format, and
an overlaid results on image

The inference process forHoverNettakes a massive amount of GPU hours

for either mode. An estimation of inference of our 59 training slides usingHover-

Netwill be over 2,000 running hours on a local machine (eight-processorXeon(R)

W-2123 CPUand Nvidia Quadro P1000GPU). It will take even more time for

the inference of 64 internal testing slides and 402 external testing slides, or for

the re-train of a bespokeHoverNet. Multiple high-performance GPU nodes on the

UCL-HPC machine, Myriad, were employed to accelerate the inference process of

HoverNet. Technical notes of Appendix E and Appendix F show a sample script

and the development method respectively.

(a) A PanNukedataset
example: the origi-
nal RGB image.

(b) A PanNukedataset
example: the
instance segmenta-
tion mask.

(c) A PanNukedataset
example: the
classi�cation type
mask.

(d) A PanNukedataset
example: the 5-
channel stack.

Figure 4.1: An example ofPanNukedataset.

PanNukeis a semi-automatically generated pan-cancer nuclei dataset for the

computational tasks of segmentation and classi�cation (Gamper et al. 2019, 2020).

The nuclei are selected from 481 regions of interest, of which 312 are randomly

sampled from more than 20K whole slide images. There are 205,343 well-annotated
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Figure 4.2: PanNuke dataset nuclei type statistics (Gamper et al. 2019, 2020,PanNuke:
An Open Pan-Cancer Histology Dataset for Nuclei Instance Segmentation and
Classi�cation2019).

nuclei in thePanNukedataset, where each of them has an instance segmentation

mask and its underlying classi�cation type map. Fig 4.1 shows an example of the

PanNukedataset, where Fig 4.1a is the original RGB tile image, Fig 4.1b is the

instance segmentation mask that each nucleus has a unique ID, Fig 4.1c is the clas-

si�cation type mask that each nucleus type has a unique ID, and Fig 4.1d shows how

those channels are stacked together into a 5-channel image. ThePanNukedataset

consists of �ve annotated classes and a miscellaneous class for all other nuclei.

The �ve dominant classes are: in�ammatory nuclei, neoplastic nuclei, connective

nuclei, dead nuclei and epithelial nuclei. Fig 4.2 shows the nuclei type statistics

of PanNukedataset from which we can �nd most of the nuclei are selected from

different carcinoma.

As there is no existing open source lipoma and ALT nucleus dataset, I at-

tempted aHoverNetmodel pretrained with a well-built pan-cancer dataset (the Pan-
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Nuke) at this stage. As a result, inference of all the 59 internal training slides using

thePanNuke-trainedHoverNetis the starting point for our nucleus-based study.

4.3.2 The Semi-Automatic Lipoma and ALT Nucleus Annotat-

ing Work�ow: An Overview

As will be presented in the result section (Section 4.4.1), the standardHoverNet-

PanNukefailed on the lipoma and ALT slides in this study. We can still make

use of the original classi�cation and segmentation of the predicted in�ammatory

nuclei as well as the segmentation of the predicted neoplastic nuclei and connective

nuclei. These results were taken as the initial labels. A label correction process

together with a large ALT nuclei segmentation correction step can be applied on

top of the initial segmentation and classi�cation annotation. On this basis, a semi-

automatic work�ow was developed for the nucleus-level data labelling (i.e., ground

truth generation) for the in-house lipoma and atypical lipomatous tumour slides.

The �rst step of the work�ow is to generate large tiles with the size of

1024� 1024 pixel from the pathologist's regions-of-interest annotation from the

whole slide images. And then theHoverNet-PanNukewas applied to all these large

tiles for an initial nucleus-level classi�cation and segmentation result. TheRGB-

Segmentation-Classi�cation5-channel images are reconstructed using the source

RGB images together with the.jsonoutputs generated fromHoverNet. Immediately

thereafter, a label correction process is applied to the 5-channel images according

to the ROI-level pathological annotations as well as the slide-level diagnostic la-

bels. And if any of the ROIs are selected from an ALT slide, an additional label

correction for the large nuclei will be performed, and this will be discussed in de-

tail in Section 4.3.4. Lastly, a nuclei augmentation process is applied to the large

ALT nuclei to balance the classes of the dataset, and this will be discussed in Sec-

tion 4.3.5. Once all these steps are �nished, the 1024� 1024 large tiles will be

further tiled up into the size of 256� 256 which aligns with the training input of

HoverNet. Table 4.3 shows the classes of the proposed novel nucleus-level dataset,

and aHoverNet-based lipoma-ALT nuclei detector can be trained with this novel

dataset using a transfer learning technique. The full work�ow is summarised in
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Figure 4.3: The proposed semi-automatic nuclei labelling work�ow.
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Fig 4.3.

Table 4.3: The classes of the proposed novel nucleus-level lipoma and atypical lipomatous
tumour dataset.

Class ID Class Name

1 In�ammatory nuclei
2 Lipoma nuclei
3 Atypical lipomatous tumour nuclei (conventional)
4 Atypical lipomatous tumour nuclei (large)
5 Miscellaneous (i.e., other)

4.3.3 Nuclei Tile Selection

The nucleus-level lipoma and ALT dataset was developed using images of size

1024� 1024, therefore,HoverNet-PanNukewas applied to 1024� 1024 large tiles

generated from the annotated ROIs from the source slides. 1024� 1024 pixel region

is a small window compared to most of the annotated ROIs, so some selection pro-

cesses need to be taken place to ensure the high quality of 1024� 1024 tiles. First,

we need to make sure there are a reasonable amount of nuclei in each of the tiles

as the nuclei density in lipoma and some of the ALT cases are low, and those tiles

that contain few or no nuclei need to be removed. And then, tiles that contain too

much histology variation need to be removed as well. Third, the 1024� 1024 win-

dows with out-of-focus areas or artefacts need to be removed. In conclusion, the

1024� 1024 tiles were selected under the following criteria:

• the 1024� 1024 tiles should contain clear nuclei,

• the nuclei density within each of the tiles should not be low,

• the tiles should not contain histology variation,

• the tiles should not have scanning quality issues such as out-of-focus nor

containing artefact.

As the lymphocytes only appear in the histology variation of in�ammation in

the lipoma and ALT slides, the number of lymphocytes is relatively small compared
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to the dominant classes of lipoma and ALT nuclei. I added more lymphocytes to

balance the number of each class of nuclei by including a lymph node slide in the

proposed dataset. Table 4.4 shows the tile-level statistics, and the statistics with the

number of nuclei in each class will be introduced later in Table 4.6.

Table 4.4: The tile-level statistics for the proposed novel nucleus dataset.

Nuclei Type(s) Number of
Tiles

Slides IDs

In�ammatory nuclei 32 A lymph node slide
Lipoma nuclei 3,205 1, 2, 3, 18, 20, 42, 43, 44, 51, 52, 53, 55, 57,

63, 64, 108, 109, 111, 113, 115, 117, 120 (in
total 22 WSIs)

Small and large ALT
nuclei

722 4, 5, 6, 8, 9, 10, 19, 25, 26, 28, 32, 34, 41,
69, 70, 71, 73, 75, 77, 78, 79, 83, 85, 86, 90,
92, 93, 96, 99, 100, 104, 105, 197, 199, 206
(in total 35 WSIs)

4.3.4 Label Correction

HoverNet-Pannukewas employed for the inference of all the selected 1024� 1024

tiles to generate an initial nuclei segmentation and classi�cation result. A combi-

nation of the ROI annotations and the slide-level diagnostic label ground truth are

taken for the nucleus-level label correction, to be speci�c, the relabel protocol is

listed in Table 4.5.

Table 4.5: Nucleus class merge and relabel protocol.

Diagnostic Label of WSI HoverNet-PanNuke Output Relabelled Class

Lipoma

In�ammatory 1. In�ammatory
Neoplastic

2. Lipoma
Connective
Dead

5. Miscellaneous (other)
Non-neoplastic epithelial

ALT

In�ammatory 1. In�ammatory
Neoplastic

3. Small ALT
Connective
n/a (additional process) 4. Large ALT
Dead

5. Miscellaneous (other)
Non-neoplastic epithelial
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An additional process was executed for the label correction of the large ALT

nuclei in the ALT tiles. A sub-�ow is proposed for the large ALT nuclei label

correction, and this is summarised in Fig 4.4.

Figure 4.4: The large ALT nuclei label correction sub-�ow.

Fig 4.5a shows a 12532� 8491 region sampled from case 206, where six

smaller regions are randomly selected (Fig 4.5b), and Fig 4.5c to 4.5h shows the

corrected large ALT nuclei using the work�ow proposed in Fig 4.4 (Note: only the

large ALT nuclei are shown in this �gure as a highlight, and all the small nuclei are

hidden). First, a colour deconvolution process (described in Section 1.6.3) is applied

to the ROIs to extract theHematoxylin-channeland theEosin-channel, a watershed

segmentation (described in Section 4.2.2) is then performed onto theHematoxylin-

channelfor a coarse nuclei segmentation. In the end, we set a threshold to remove

the small segmented nuclei and only leave the large ones.

The 1024� 1024 windows were further tiled up into smaller 256� 256 tiles in

this study so thatHoverNetcan be retrained using these tiles later. 256� 256 tile

was de�ned as a valid tile if it contains nuclei. Table 4.6 displays the statistics after

the label correction (including large ALT nuclei label correction) stage, from which

we can �nd the numbers of nuclei are balanced apart from the large ALT nuclei. A

large ALT nuclei augmentation is carried out as the last step to solve this problem,

and this will be discussed in the next section.

4.3.5 Large Aberrant Nuclei Augmentation Strategy

According to Table 4.6, the class of large ALT nuclei is imbalanced compared to

all other types of nuclei, so a large ALT nuclei augmentation is performed. The

large ALT nuclei come with the small ALT nuclei in each of the tiles, and we do
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(a) A 12532� 8491 region sampled from case
206.

(b) Six randomly selected regions from the sam-
ple.

(c) Large ALT nuclei label
correction result (region
1).

(d) Large ALT nuclei label
correction result (region
2).

(e)Large ALT nuclei label
correction result (region
3).

(f) Large ALT nuclei label
correction result (region
4).

(g) Large ALT nuclei label
correction result (region
5).

(h) Large ALT nuclei label
correction result (region
6).

Figure 4.5: The proposed large ALT nuclei label correction work�ow: an example region
from case 206, note: only the large ALT nuclei are shown in this �gure as a
highlight, and all the small nuclei are hidden.
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not wish the small ALT nuclei to be augmented while we augment the large ALT

nuclei. Therefore, another sub-�ow is designed for this computational task. This

sub-�ow is summarised in Fig 4.6.

Figure 4.6: The large ALT nuclei augmentation sub-�ow.

This sub-�ow is described as: �rst, all small nuclei are masked out, and only

the large ALT nuclei are left in each of the ROIs, and then a cluster of augmentation

strategies are applied onto the masked ROIs with a probability of triggering. In

the preparation of this novel dataset, the following augmentation strategies were

employed:

1. augmentation A: rotated 90 degrees counter-clockwise,

2. augmentation B: re�ected upside down,

3. augmentation C: re�ected diagonally from left-bottom to right-top (equivalent

to augmentation A plus augmentation B),

4. augmentation D: rotated 180 degrees contour-clockwise,

5. augmentation E: rotated 270 degrees contour-clockwise,

6. augmentation F: re�ected from the left-hand side to the right,

7. augmentation G: re�ected diagonally from left-top to right-bottom (equiva-

lent to augmentation E plus augmentation B).

The above augmentation strategies gave eight images (including the original

one) for each of the tiles containing large ALT nuclei. We randomly selected about
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40% proportion of all these augmented tiles to match the number of large ALT

nuclei to other classes. This augmentation process enlarged the number of 256� 256

tiles containing large ALT nuclei from 2,694 to 10,236, and this also resulted in a

total of 20,607 large nuclei.

Data augmentation can be an extremely effective technique to improve gener-

alisability by balancing the dataset. However, it is true that certain biases may be

inadvertently introduced during this process, and here are some potential sources of

bias:

1. Over-representation: certain transformations may over-represent speci�c

characteristics or patterns within the data, which can lead to a model that's

overly tuned to those features. For instance, if we are doing excessive hor-

izontal �ipping, the model may overlearn certain symmetric properties that

might not be prevalent in the actual population of pathology slides.

2. Unrealistic transformations: some forms of data augmentation may create un-

realistic or rare instances that can mislead the model. For instance, excessive

rotation of pathology images might generate orientations that would never

occur in practice, leading the model to learn from non-existent or unlikely

scenarios.

3. Ignoring domain-speci�c features: pathological images have certain domain-

speci�c properties that should be maintained during augmentation. For exam-

ple, structures within a cell should be in the correct orientation. Introducing

augmentations that disregard these domain-speci�c factors may lead to unre-

alistic data that could skew the model.

4.3.6 Colour Normalisation

As we are focusing on nucleus-level classi�cation and segmentation, a colour nor-

malisation method was applied before the execution of the above-proposed work-

�ow to reduce the intra-batch colour variation. The �nal version of our proposed

dataset was colour-normalised using Reinhard's method. And the full steps of de-

veloping the �nal version of the dataset are:



4.4. Results and Discussion 114

1. apply Reinhard's colour normalisation method on the 1024� 1024 tiles,

2. applyHoverNet-PanNuketo all the normalised tiles to generate their initial

segmentation and classi�cation,

3. apply our label correction and large ALT augmentation work�ow to those

initial segmentation and classi�cation results,

4. tile up the 1024� 1024 images into 256� 256, integrate the segmentation in-

stance mask as well as the classi�cation type mask together into 256� 256� 5

images which align with the input format ofHoverNetfor training purpose.

The complete �nal dataset will be described in the following result section.

4.4 Results and Discussion

4.4.1 Applying the Standard HoverNet-PanNukeon Sarcoma

Slides

Fig 4.7 shows two zoomed-in areas of the lipoma sample 001 for the original

HoverNet-PanNukeinference result. In both �gures, red annotations stand for neo-

plastic predictions, green annotations stand for in�ammatory predictions, blue an-

notations stand for connective predictions, yellow annotations stand for dead nuclei,

and the very minor light brown annotations stand for epithelial predictions.

TheHoverNet-PanNukewas then applied to all 59 internal training slides. And

a WSI-level predicted nuclei count statistics (heatmap) is displayed in Fig 4.8. In

this �gure, samples from 206 to 4 are ALTs, and samples from 157 to 1 are lipomas.

From this stacked bar chart, we can �nd thatHoverNet-PanNukefailed to make the

correct prediction on our own lipoma and atypical lipomatous tumour dataset, as

most of the nuclei in our own lipoma and atypical lipomatous tumour slides were

predicted to be connective nuclei and were not as we expected to be the neoplastic

or miscellaneous classes. A potential reason is thatHoverNet-PanNukeis trained

on various types of carcinoma originating from epithelial carcinoma, and the output

classes ofHoverNet-PanNukeare most epithelial-related.
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(a)

(b)

Figure 4.7: Two regionalHoverNetinference result examples for lipoma case 001. In the
�gure, red annotations stand for neoplastic predictions, green annotations stand
for in�ammatory predictions, blue annotations stand for connective predictions,
yellow annotations stand for dead nuclei, and the very minor light brown anno-
tations stand for epithelial predictions.



4.4. Results and Discussion 116

Figure 4.8: A stacked bar chart for the slide-level numbers of predicted nuclei for all the 59
internal training slides usingHoverNet-PanNuke. In this �gure, samples from
206 to 4 are ALTs, and samples from 157 to 1 are lipomas.
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We also conducted some validation of theImage Modeinference, and the re-

sults were showing that standardHoverNet-PanNukedoes not work on our sarcoma

samples again. When doing neoplastic nuclei prediction on the ALT slides, the large

ALT nuclei (lipoblast) were badly predicted. These large ALT nuclei were usually

predicted to be multiple small nuclei or only part of the large nuclei was detected.

Fig 4.9 is an example of this failure on slide 206, only the predicted large nuclei

are shown in this �gure, and the small nuclei of the predicted connective nuclei and

in�ammatory nuclei are hidden. In this �gure, we can �nd that most of the large

ALT nuclei in this area were missing underHoverNet-PanNuke.

Figure 4.9: An example of the failure of large ALT nuclei prediction on an ALT slide 206.
Only the predicted large nuclei are shown in this �gure, and all the small nuclei
of the predicted connective nuclei and in�ammatory nuclei are hidden in this
�gure.

A conclusion for applying the standardHoverNet-PanNuketo our own lipoma

and ALT slides are:

1. HoverNetfailed to classify lipoma and ALT nuclei,

2. althoughHoverNetis able to segment the small lipoma and ALT nuclei to

some degree, the segmentation of the large ALT nuclei failed,

A suggestion for distinguishing lipoma and ALT nuclei is to retrain theHov-

erNet with a bespoke nuclei-level lipoma and ALT nuclei dataset and to build a
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lipoma-ALT nuclei detector. A novel nucleus-level lipoma and ALT dataset can be

developed under a semi-automatic work�ow as the �rst step.

4.4.2 The Novel Lipoma and ALT Nucleus Dataset

(a) 256� 256 sample tile
1.

(b) 256� 256 sample tile
2.

(c) 256� 256 sample tile
3.

(d) 256� 256 sample tile
4.

(e)HoverNet result of
256� 256 sample tile
1.

(f) HoverNet result of
256� 256 sample tile
2.

(g) HoverNet result of
256� 256 sample tile
3.

(h) HoverNet result of
256� 256 sample tile
4.

(i) Large ALT correc-
tion result of 256�
256 sample tile 1.

(j) Large ALT correc-
tion result of 256�
256 sample tile 2.

(k) Large ALT correc-
tion result of 256�
256 sample tile 3.

(l) Large ALT correc-
tion result of 256�
256 sample tile 4.

Figure 4.10: Some examples of the ALT 256� 256 tiles containing large aberrant nuclei. In
this �gure, blue annotations stand for the small ALT nuclei, red annotations
stand for the aberrant lipoblast, and the green annotations stand for the in�am-
matory nuclei.

A semi-automatically generated nuclei instance dataset of lipoma and ALT is

proposed for the computational tasks of segmentation and classi�cation. The nuclei

instance generation work�ow includes a label correction protocol, a large ALT nu-

clei correction sub-�ow and a large ALT nuclei augmentation sub-�ow. This novel
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Table 4.8: A proposed nucleus-level train-validation statistics for theHoverNettraining
purpose.

Nucleus Type Total Count Train Count Validation Count

In�ammatory 17,723 12,721 5,002
Lipoma 24,875 17,480 7,395
Small ALT 33,589 23,214 10,375
Large ALT 24,568 17,284 7,284
Miscellaneous 1,900 1,321 579

Total 102,655 72,020 30,635

dataset consists of 6,627 visual �elds (i.e., the 1024� 1024 tiles) that were selected

from 22 lipoma and 35 atypical lipomatous tumour whole slide images. Reinhard's

colour normalisation method was applied before this semi-automatic work�ow. In

total, the dataset contains 102,655 labelled nuclei, each with an instance segmenta-

tion mask and a classi�cation-type map. A tiled version consisting of 38,267 tiles

of size 256� 256 was created that aligns with the training input ofHoverNet.

Table 4.7 is the full statistics of the �nal version dataset. And as mentioned

before, we have 2,679 more augmented 1024� 1024 tiles for the large ALTs con-

taining 20,607 more large ALT nuclei after the augmentation process to make each

of the classes balanced. A train-validation split is also performed on the 256� 256

image level with a split factor of 0.7, and Table 4.8 shows a proposed nucleus-level

train-validation statistics for this novel dataset. This train-test split dataset will be

used in the next Chapter to retrain theHoverNet.

A subset of this dataset was validated manually, and the semi-automatic gen-

erated annotations for each type of nuclei are generally good though there exist a

few over- or under-segmentations. Some examples of the small 256� 256 tiles (the

size that is accepted byHoverNettraining) containing large ALT nuclei are shown

in Fig 4.10.

4.5 Conclusions

Analysis of nuclei in pathological slides is an important step towards automated dif-

ferentiation of the diagnostic labels, and the nuclear features have been often used to



4.5. Conclusions 121

distinguish the lipomas and the ALTs in pathological routine work. However, visual

examination of nuclei is time-consuming as there are often hundreds of thousands

of nuclei within each of the whole slide images. Nucleus segmentation and classi-

�cation help subsequent analysis of the role that nucleus features play in diagnosis

decision making, and existing work�ows such asHoverNetgenerate reasonable re-

sults for the nuclei segmentation but fail on the nuclei classi�cation on lipoma and

ALT cases. A nucleus-level dataset is the pre-condition for training a good nucleus

detector for the segmentation and classi�cation of lipoma and ALT.

In this study, I have proposed a semi-auto work�ow, including a label cor-

rection protocol, a large ALT nuclei correction sub-�ow and a large ALT nuclei

augmentation sub-�ow, for the generation of a novel nucleus-level dataset of lipoma

and atypical lipomatous tumour. Though there are lots of open nucleus-level dataset

(described in Section 4.2.1) for other types of cancer, this proposed dataset will be

the �rst lipoma and liposarcoma dataset to date.

Colour normalisation was applied before the execution of the semi-automatic

nucleus annotation work�ow. And the �nal dataset contains 6,627 images of 1024�

1024, with a total of 102,665 labelled nuclei, including 17,723 in�ammatory nuclei,

24,875 lipoma nuclei, 33,589 small ALT nuclei, 24,568 large ALT nuclei and 1,900

miscellaneous.

One limitation of this work is only the conventional lipoma and ALT nuclei

were labelled. More variants of fatty tumours, such as spindle cell lipoma or ALT

with histology variation, may be included as well to make the dataset more solid.

From a larger perspective, nuclei from more types of sarcoma such as synovial

sarcoma (SS), solitary �brous tumour (SFT) and undifferentiated pleomorphic sar-

coma (UPS) could be also included in one dataset for a wider range of sarcoma

nuclei segmentation and classi�cation tasks. The dataset can only be expanded if

we have suf�cient slides of these variants.



Chapter 5

Slide-Level Classi�cation between

Lipoma and ALT Using Handcrafted

Nucleus Features

5.1 Chapter Overview

Before the utilisation of machine learning techniques, computational image analy-

sis based on handcrafted features (Street et al. 1993) was used in many biological

and medical studies. Some studies in H&E histopathological images suggested that

handcrafted nucleus features can be employed for many computational tasks, in-

cluding tumour grading, diagnostic label classi�cation, prognostic prediction and

predicting whole genome doubling, etc. In this chapter, I explore the capability

of handcrafted nucleus features on distinguishing lipomas and atypical lipomatous

tumours at the whole slide level.

5.2 Related Work

Axelrod et al. (2008) indicated the nucleus grade based on handcrafted features is

able to contribute to the classi�cation and prognosis of ductal carcinoma in situ

(DCIS) of the breast. In this study, 39 handcrafted features were extracted and

calculated for nucleus grade before statistical analysis. These features were cat-

egorised into three groups: morphological features (such as area and perimeter),
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