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ABSTRACT

Background: Heart valve implantation in juvenile sheep to demonstrate
biocompatibility and physiologic performance is the accepted model for regulatory
approval of new biological heart valves (BHVs). However, this standard model does
not detect the immunologic incompatibility between the major xenogeneic antigen,
galactose-a-1,3-galactose (Gal), which is present in all current commercial BHVs,
and patients who universally produce anti-Gal antibody. This clinical discordance
leads to induced anti-Gal antibody in BHV recipients, promoting tissue calcification
and premature structural valve degeneration, especially in young patients. The
objective of the present study was to develop genetically engineered sheep that,
like humans, produce anti-Gal antibody and mirror current clinical immune
discordance.

Methods: Guide RNA for CRISPR Cas9 nuclease was transfected into sheep fetal
fibroblasts, creating a biallelic frame shift mutation in exon 4 of the ovine
a-galactosyltransferase gene (GGTA1). Somatic cell nuclear transfer was
performed, and cloned embryos were transferred to synchronized recipients.
Cloned offspring were analyzed for expression of Gal antigen and spontaneous
production of anti-Gal antibody.

Results: Two of 4 surviving sheep survived long-term. One of the 2 was devoid of
the Gal antigen (GalKO) and expressed cytotoxic anti-Gal antibody by age 2 to
3 months, which increased to clinically relevant levels by 6 months.

Conclusions: GalKO sheep represent a new, clinically relevant advanced standard
for preclinical testing of BHVs (surgical or transcatheter) by accounting for the first
time for human immune responses to residual Gal antigen that persists after
current BHV tissue processing. This will identify the consequences of
immune disparity preclinically and avoid unexpected past clinical sequelae. (J
Thorac Cardiovasc Surg 2023;-:1-10)
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CRISPR Cas9 engineering of GGTA1 creates a new
GalKO sheep immune model for BHV testing.
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CENTRAL MESSAGE

For the first time, genetically engi-
neered GalKO sheep producing
cytotoxic anti-galactose-a-1,
3-galactose antibody as humans
do have been created, represent-
ing a new, clinically relevant
immune model for future more
optimal testing of biological heart
valves.
PERSPECTIVE
Clinical discordance between current biological
heart valves (BHVs; surgical or transcatheter), all
of which contain the xenogeneic galactose-a-1,
3-galactose (Gal) antigen, and patients who uni-
versally produce anti-Gal antibody is linked to
age-dependent BHV tissue calcification and struc-
tural valve degeneration (SVD). The genetically
engineered sheep from this study can be used
to directly test the impact of this immune discor-
dance, define the role of immune injury in SVD,
and create a new model for future BHV testing.
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Abbreviations and Acronyms
BHV ¼ biological heart valve
ELISA ¼ enzyme-linked immunosorbent assay
Gal ¼ galactose-a-1, 3-galactose
GalKO ¼ a-galactosyltransferase-deficient

mutation
GGTA1 ¼ a-galactosyltransferase gene
GLUT ¼ glutaraldehyde
GSIB-4 ¼ Griffonia simplicifolia-IB4 lectin
HEK ¼ human embryonic kidney
PCR ¼ polymerase chain reaction
PBMC ¼ peripheral blood mononuclear cell
SCNT ¼ somatic cell nuclear transfer
SVD ¼ structural valve degeneration
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Valve implantation into sheep is the primary experimental
and regulatory testing model used for the development
and approval of new mechanical and biological heart valves
(BHVs). For mechanical heart valves, sheep implantation is
used to test physiological compatibility and hemodynamic
function with special focus on the degree of valve-
dependent thrombogenesis. For BHVs, both surgical and
percutaneous, the sheep model tests physiological
compatibility and hemodynamic function but is also used
to test additional biological responses. Juvenile sheep are
preferentially used to assess tissue fixation methods and
their effectiveness in preventing tissue calcification, a
hallmark of structural valve degeneration (SVD).
Adolescent and adult sheep are used for testing valve
function, durability, and tissue inflammation and also for
testing novel regenerative valve designs that require
recellularization of the implanted valve. The standard valve
implantation sheep model has been important for
developing and refining the effective BHVs currently in
use; however, the standard sheep model is not an effective
immune model for detecting clinical immune responses to
the dominant xenogeneic antigen galactose-a-1,
3-galactose (Gal).

All current commercial BHVs are made of porcine valve
tissue, porcine pericardium, or bovine pericardium. These
tissues all contain the dominant xenogeneic antigen Gal,
and humans universally produce abundant amounts of
anti-Gal antibody.1,2 This Gal-specific clinical immune
discordance results in induction of anti-Gal antibody in
2 The Journal of Thoracic and Cardiovascular Surger

Downloaded for Anonymous User (n/a) at University of Minnesota 
2023. For personal use only. No other uses without permissio
BHV recipients but not in recipients of mechanical heart
valves or after coronary artery bypass procedures.3,4 The
immune response to BHVs is especially strong in children5

and has been replicated in nonhuman primates,6 confirming
that the Gal antigen on BHVs remains immunogenic despite
modern tissue fixation techniques. Both preformed and
induced anti-Gal antibody bind to BHV tissue, and clinical
and experimental studies indicate that bound antibody
enhances the rate of tissue calcification, likely contributing
to SVD.7-10

SVD is a complex, strongly age-related, multifactorial
process associated with tissue calcification, leaflet tearing,
and perforation, leading to hemodynamic dysfunction.11

A host of long-recognized passive physiochemical
processes contribute to tissue calcification and SVD in all
patient populations, including calcium binding to unreacted
glutaraldehyde (GLUT) and carboxylic acid, organic
phosphate, acidic phospholipids, and calcium-binding
proteins exposed in the devitalized cellular cytosol,
membranes, and organelles. Direct calcification of
extracellular matrix also occurs and is exacerbated by
mechanical and oxidative injury and ineffective elastin
fixation.11 These physiochemical processes occur in all
patients, and manufacturers have adopted fixation processes
aimed at preventing passive tissue calcification by blocking
unreacted GLUT with primary amines, minimizing GLUT
oxidation, and using detergents or alcohols to extract
charged acidic membrane phospholipids that serve as
calcium nucleation sites.12-15 These commercial
treatments reduce tissue calcification in the standard
juvenile sheep mitral valve model by approximately
10-fold12,13 but have not prevented BHV calcification in
patients, especially younger patients.16,17 Indeed, current
practice guidelines predict a 15-year risk of requiring
reoperation from SVD of 50% for patients age 20 years,
30% for patients age 40 years, and 22% for patients age
50 years.18 In children and teenagers, the use of BHVs
has largely been abandoned owing to the high rates of SVD.

The effectiveness of commercial anticalcification
treatments is clear in animal models, but their inability to
mitigate age-dependent SVD in patients suggests that for
modern commercial BHVs, passive physiochemical
calcification is no longer the key remaining mechanism of
clinical SVD.7,11 This suggests that an immune-mediated
process, created by the clinical Gal-specific discordance
between Gal-containing BHVs and patients producing
anti-Gal antibody, may contribute substantially to
age-dependent clinical tissue calcification and SVD. Using
standard sheep, we and others have shown in vitro19-21 and
in vivo22 that porcine GalKO tissues can be used to make
effective and durable BHVs. This hypothesis has not been
fully testable to date, because standard sheep synthesize
the Gal antigen and thus do not produce anti-Gal antibody.
Here we describe the production of the first viable GalKO
y c - 2023
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sheep, which lack expression of the Gal antigen and begin
producing cytotoxic anti-Gal IgG at clinically relevant
levels by age 2 to 3 months. GalKO sheep represent the first
large animal BHV testing model that accounts for human
immune responses to the major xenogeneic antigen and
will enable direct tests of the role of antibody in
age-dependent SVD. This model will be critical for further
refinement of BHVs to resist immune-mediated tissue
calcification and SVD and as an immune model for
regenerative heart valve development.
B
S

METHODS
All animal studies were approved and monitored by Utah State

University’s Institutional Animal Care and Use Committee (protocol

11908) and conformed to National Institutes of Health guidelines.

Sheep Fetal Fibroblast Transfection and Screening
Polymerase chain reaction (PCR) primers were designed according to

the sheep GGTA1 genome sequences (GenBank, NC_040254.1) and used

to amplify exon 4 with partial flanking intron. Three guide RNAs (gRNAs)

were designed targeting exon 4 (Table 1) and synthesized with chemical

modifications (Synthego). Male sheep fetal fibroblasts (SFFs) at early

passages were cultured in Dulbecco’s Modified Eagle’s medium

(DMEM, high-glucose; Gibco) supplemented with 15% fetal bovine serum

(Hyclone) and 100 U/mL penicillin/streptomycin (Life Technologies) at

38.5 �C in an atmosphere of 5% CO2 in air.23

Cells were transfected with complexes of gRNA and Cas9 protein by

electroporation, and the gene mutation efficiency was determined 3 days

after transfection by Sanger sequencing of exon 4 PCR products cloned

into a T-vector (Promega). Single-cell–derived colonies were isolated by

limiting dilution and screened by PCR and Sanger sequencing. Four

GGTA1�/�male colonies were used as donor cells for somatic cell nuclear

transfer (SCNT).

SCNT
Domestic sheep (Ovis aries) used as embryo recipients in this study

were 2 to 5 years old. Sheep SCNTwas performed with slight modification

as described by Yang and colleagues24 for goats. SFFs were grown to 80%

to 90% confluence and used as nuclear donor cells for SCNTafter 24 hours

of serum starvation (0.5% fetal bovine serum). The cloned embryos were

cultured in synthetic oviduct fluid medium for 10 to 12 hours and then

transferred into estrus synchronized recipients as described previously.23

A total of 130 cloned embryos were transferred into 10

estrus-synchronized recipients. Exon 4 of GGTA1 was amplified from

genomic DNA (forward primer: 50-TCCAGCTCTTTGCAACGCTA-30;
reverse primer: 50-TAGGGCTCAGGGAAACAGGA-30), cloned, and

then analyzed by Sanger sequencing.

Detection of Gal Antigen
Sheep peripheral blood mononuclear cells (PBMCs) were isolated by

Lymphoprep centrifugation (Stemcell Technologies) and washed in

Minimal Essential Medium for Suspension Culture (S-MEM;Gibco). Cells
TABLE 1. Guide RNAs and mutation frequencies for sheep GGTA1 exon

gRNA Sequence (50–30)

gRNA1 GAGAAAATAATGAATGTCAA

gRNA2 AAAAGTGATTCTGTCAATGC

gRNA3 TGTTTTGGGAATATATCCAC

gRNA, Guide RNA; PAM, protospacer-adjacent motif. *The mutation efficiencies were de
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were resuspended in fluorescence buffer (phosphate-buffered saline [PBS]

containing 0.1% bovine serum albumin and 0.01% sodium azide) at

106/mL, washed, and stained with a combination of affinity-purified human

anti-Gal IgG8 and antibody to sheep CD2 (1.5 mg of MUC2A; Novus

Biologicals) or CD21 (1.5 mg of GB25A; Novus Biologicals). Human

antibody binding was detected with a 1:100 dilution of Alexa Fluor

488–conjugated goat anti-human IgG secondary monoclonal antibody

(Southern Biotech; catalog no. 2040-30). Murine anti-CD2 or anti-CD21

binding was detected using a 1:100 dilution of phycoerythrin-conjugated

F(abʹ)2 fragment goat anti-mouse IgG (H&L) (Jackson ImmunoResearch;

catalog no. 115-116-146). Before analysis, cells were stained for gating of

viable cells using Live/Dead Blue Fixable Cell Stain (Invitrogen; catalog

no. L34961) and fixed in fluorescence fixative (1% formaldehyde in

PBS). Flow cytometry analysis was done using a BD FACSAria II flow

cytometer running FACSDiva v6.1.3 software (BD Biosciences).

Anti-Gal Detection of Sheep Anti-Gal Antibody
Enzyme-linked immunosorbent assay (ELISA) plates were coated with

50 mL of 10 mg/mL human serum albumin (HSA) conjugated to

galactose-a-1,3-galactose b-1,4 N-acetylglucosamine (HSA-Gal; Dextra

Labs) or HSA in carbonate buffer (pH 9.6) overnight at 4 �C. Plates
were blocked with 100 mL of ELISA buffer (PBS containing 2% HSA

and 0.1% Tween 20) for 30 minutes at room temperature. A dilution series

of sheep serum (1:20-1:1024) in ELISA buffer was added (50 mL) to

HSA-Gal (duplicate) and has-coated wells and incubated for 90 minutes

at 4 �C. Plates were washed 3 times (150 mL each) with wash buffer

(PBS containing 0.1% Tween 20) and then incubated for 60 minutes at

room temperature with horseradish peroxidase–conjugated rabbit

anti-sheep IgG or IgM (Bethyl Labs). Antibody binding was detected

with 100 mL of 1-Step Turbo TMB (Thermo Fisher Scientific), and the

color reaction was stopped by adding 100 mL of 3 M sulfuric acid. The

optical density at 450 nm (OD450) was measured with a FLUOstar

Omega plate reader (BMG Labtech). Anti-Gal–specific antibody was

calculated as:

Anti-Gal¼ðODHSA-Gal � blankÞ�ðODHSA � blankÞ

Detection of Gal-Specific Staining Using Human
Embryonic Kidney Cells

Human embryonic kidney 293 (HEK) cells and stably transfected HEK

cells expressing the porcine GGTA1 gene (HEK-Gal) were grown in

DMEM media supplemented with 10% fetal calf serum, 1% glutamine,

13 nonessential amino acids, and 110 mg/L sodium pyruvate to 80%

confluence. Cells were collected by trypsin digestion, washed, and

resuspended in FACS buffer (PBS with 2% human serum albumin) at a

concentration of 4.63 106 cells/mL. For antibody staining, 44 mL of cells

(�200,000 cells) were combined with 6.25 mL of heat-inactivated neat

sheep serum (1:8 dilution) and then incubated at 4 �C for 45 minutes.

HEK and HEK-Gal cells were also stained with fluorescein isothiocyanate

–conjugated Gal-specific lectin Griffonia simplicifolia–IB4 (GSIB-4;

Vector Laboratories, catalog no. FL-1201) to detect the Gal antigen.

The cells were washed with FACS buffer and stained with Dylight

488–conjugated donkey anti-sheep IgG (Bio-Rad) diluted 1:200 in PBS

with 5% donkey serum at 4 �C for 35 minutes to detect IgG binding.
3

PAM Mutation efficiency, n/N (%)*

AGG 5/9 (55.6)

TGG 1/8 (12.5)

AGG 9/9 (100)

termined by polymerase chain reaction/T-vector cloning assays.
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FIGURE 1. Analysis of cloned galactose-a-1,3-galactose (Gal) knockout (GalKO) sheep. A, Schematic diagram of the ovine a-galactosyltransferase 1

gene (GGTA1) showing the position of the guide RNA (gRNA) sequence in exon 4. The translation start codon, ATG, for GGTA1 is in the gRNA and is

underscored. Letters in red indicate the protospacer-adjacent motif (PAM). Arrows indicate locations of polymerase chain reaction primers.

B, Representative sequence analysis for theGGAT1�/� FO lamb. The sequences for a wild-typeGGTA1 lamb and the 2102GGTA1�/� FO lamb are shown.

The arrow indicates the mutation site. C, FACS analysis of peripheral blood mononuclear cells (PBMCs) fromwild-type sheep 2106 and healthyGGTA1�/�

sheep (GalKO 2102). Approximately 41% of the PBMCs in the wild-type sheep were Galþ with CD2þ a/b T cells and CD21þ B cells. The GGTA1 KO

sheep did not express Gal but showed normal T cell and B cell profiles.
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Cell staining was analyzed by flow cytometry using a BD FACSCanto II

and FACSDiva software.

Detection of Gal-Specific Cytotoxicity on HEK Cells
An equal volume of HEK or HEK-Gal cells (2 3 106 cells/mL) were

mixed with 50 mL of dilute heat-inactivated sheep serum (final serum

concentration of 1:8-1:32) and incubated at 4 �C for 30 minutes. HEK and

HEK-Gal cells were also incubated with a serial dilution of affinity- purified

human anti-Gal IgG (2 mg/mL-15.5 ng/mL) to create a standard cytotoxicity

curve.8 After antibody incubation, cells were washed once with 2 mL of

FACS buffer, resuspended in 100 mL of 10% baby rabbit complement

(Cedarlane; catalog no. CL3441) and incubated at 37 �C for 90 minutes. Pro-

pidium iodide (PI; 200 mL of 10 mg/mL) was added to each tube, and the cells

were analyzed by flow cytometry. Specific lysis was calculated as the ratio of:
ð%PIþ cells treated with serum and complementÞ�ð%PIþ cells treated with complement onlyÞ=
ð100�%PIþ cells treated with complement onlyÞ:
RESULTS
Generation of GGTA1�/� Cloned Male Sheep by
CRISPR/Cas9 and SCNT

Three gRNAs targeting exon 4 of GGTA1 were designed
and synthesized. Male SFFs at early passages were
4 The Journal of Thoracic and Cardiovascular Surger
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transfected with gRNA and Cas9 protein using an
electroporation-based method. The mutation efficiencies
of 3 targeting compounds ranged from 12.5% to 100%
(Table 1). Single-cell–derived mutated fibroblast colonies
were isolated by limiting the dilution of cells transfected
with the gRNA1 (Figure 1, A). Targeted biallelic disruption
atGGTA1was achieved in colonies at a screening efficiency
of 38.5% (10 of 26). FourGGTA1�/� colonies were used as
donor cells for SCNT. A total of 130 embryos were
transferred to 10 ewes, and 5 pregnancies were established
(Table E1). Four of the 10 pregnancies developed to term
(40%) and gave birth to 4 cloned lambs, of which 1 was a
stillbirth and 1 died within 48 hours of hypoxia resulting
from pulmonary atelectasis and large offspring syndrome,
commonly observed in cloned sheep. One of the 2
remaining healthy lambs showed evidence of continued
Gal expression (data not shown) and was not analyzed
y c - 2023
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FIGURE 2. Enzyme-linked immunosorbent assay of anti–galactose-a-1,3-galactose (Gal) IgM and IgG in wild-type sheep 2106 (WT2106) and GalKO sheep

2102 (KO2102). A-D, Anti-Gal IgM dilution profiles at age 1 to 4months. E-H,Anti-Gal IgG dilution profiles at age 1 to 4months. Serum dilutions ranged from

1:20 to 1:10,240. I, Anti-Gal IgM at a 1:160 dilution for age 1 to 4 months. J, Anti-Gal IgG at a 1:40 dilution for age 1 to 4 months. OD, Optical density.
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further, and the other (KO2102) is presently alive at 1.5
years of age. Sequencing results indicated that the cloned
lambs carried the same mutations as those of the donor cells
from which they originated. The genotyping results indicate
a single cytosine base deletion at the gRNA target site of
cloned lamb KO2102 (Figure 1, B).

Expression of Gal Antigen in GalKO Sheep
PBMCs from wild-type WT2106 and GalKO KO2102

were analyzed for Gal antigen expression on CD2þ and
CD21þ lymphocytes (Figure 1, C). Approximately 40%
of ovine lymphocytes express the Gal antigen. In
wild-type sheep, 2106 Gal expression is evident on CD2þ

a/b T cells and CD21þ B lymphocytes. The proportion of
CD2þ a/b T cells and CD21þ B lymphocytes in GalKO
sheep is similar to that seen in wild-type sheep; however,
Gal antigen is not present.
The Journal of Thoracic and C
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Spontaneous Expression of Anti-Gal Antibody in
GalKO Sheep
Anti-Gal ELISA. Genetically engineered pigs, mice, and
rabbits with mutations in GGTA1 show a loss of tolerance
to the Gal antigen and spontaneously produce serum
anti-Gal antibody.25-27 We analyzed consecutive monthly
serum samples from KO2102 for the presence of anti-Gal
IgM and IgG using a Gal-specific ELISA (Figure 2). At
age 1 month, there was no evidence of anti-Gal IgM or
IgG reactivity in either KO2102 or the wild-type sheep
WT2106 (Figure 2, A and E). In months 2 to 4, however,
HSA-Gal–specific serum IgM binding from KO2102 was
consistently higher across a wide range of serum dilutions,
indicating the expression of anti-Gal IgM (Figure 2, B-D).
Consistent HSA-Gal–specific IgG reactivity in
KO2102 was first clearly apparent at age 3 months
(Figure 2, F and G). At serum dilutions of 1:160 for IgM
ardiovascular Surgery c Volume -, Number - 5
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cells. B, GSIB-4 staining of HEK-Gal cells. C and D, Sheep IgG binding to HEK (black bars) and HEK-Gal cells (white bars) at age 3 to 6 months for IgG

reactivity of GalKO sheep 2102 (C) and IgG reactivity of wild-type sheep 2106 (D). FITC, Fluorescein isothiocyanate; FI, fluorescence.
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and 1:40 for IgG, there was a progressive increase in
HSA-Gal reactivity in KO2102 and little reactivity in
WT2106 (Figure 2, I and J).
Antibody reactivity and cytotoxicity to HEK and
HEK-Gal cells. To confirm the expression of anti-Gal
IgG in KO2102 serum, we compared serum IgG reactivity
to HEK and HEK-Gal cells. HEK cells are an O blood group
human cell line that does not express the Gal antigen
and does not bind the Gal-specific lectin GSIB-4
(Figure 3, A). HEK-Gal cells are a stable HEK cell line
expressing the porcine GGTA1 gene that produce abundant
Gal antigen on the cell surface (Figure 3, B). Serum
collected at age 3 to 6 months from KO2102 showed high
IgG reactivity to HEK-Gal cells with minimal binding to
HEK cells (Figure 3, C). Serum from WT2106 bound at
very low levels to both HEK and HEK-Gal cells
(Figure 3, D). Antibody in KO2102 serum was highly
cytotoxic to HEK-Gal cells but minimally cytotoxic to
HEK cells, consistent with the low level of anti-Gal IgG
reactivity to HEK cells (Figure 4, A). We compared the
cytotoxicity of KO2102 serum at serum dilutions of 1:8,
6 The Journal of Thoracic and Cardiovascular Surger
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1:16, and 1:32 to the cytotoxicity of known amounts of
affinity-purified human anti-Gal IgG (Figure 4, B).
KO2102 serum showed Gal-specific cytotoxicity of
HEK-Gal cells equivalent to the cytotoxicity induced by
1.07, 0.87 and 0.26 mg/mL of human anti-Gal IgG,
respectively (Figure 4, B). When the serum dilutions are
accounted for, KO2102 sheep serum cytotoxicity at 1:8,
1:16, and 1:32 dilutions was comparable to 8.5, 14.0, and
8.4 mg/mL of human anti-Gal antibody, giving an overall
mean serum cytotoxicity equal to 10.3 � 3.2 mg/mL of
human anti-Gal IgG.

DISCUSSION
The adaptation of CRISPR Cas9 nuclease for gene

modification in mammals has greatly facilitated the
development of new large animal models. Here we report
the successful engineering of a sheep containing a
biallelic frameshift-inactivating mutation in the GGTA1
a-galactosyltransferase gene. Analysis of PBMCs
confirmed the absence of the major xenogeneic glycan
Gal. Furthermore, the spontaneous production of cytotoxic
y c - 2023
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anti-Gal antibody beginning at age 2 to 3 months in GalKO

sheep but not in standard sheep confirms the loss of
tolerance to this glycan. This is consistent with previous
analysis of engineered GalKO mice, rabbits, and pigs.25-27

An earlier attempt to generate GalKO sheep embryos
using targeted homologous recombination did not produce
live animals.28 Given our present results, this was most
likely due to the low targeting frequencies and prolonged
culture times required for isolating cells targeted by
homologous recombination, as suggested by Denning and
colleagues.28

Sheep have provided an essential model for testing the
physiologic compatibility and function of new BHV
designs. As such, they have been instrumental in improving
BHV durability and minimizing passive tissue calcification
and, more recently, as a model for regeneration of tissue
engineered heart valves. Standard sheep have major
immunologic limitations, however. The Synergraft
homograft is an effective decellularized homograft valve
reported to have greater durability and lower
immunogenicity than standard allografts for pulmonary
valve replacement.29 When this same technology was
adapted to xenogeneic pig tissue, the cryopreserved heart
valve worked well in preclinical standard adolescent sheep
studies, showing good hemodynamic function and little
tissue calcification.30 However, early clinical application
was followed by the premature death of 3 of the 4 children
owing to severe valve degeneration from an aggressive
inflammatory response and significant calcific deposits.31

Subsequent analysis indicated that the decellularization
procedure had not been successful, and that cellular debris
The Journal of Thoracic and C
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and Gal antigen remained on the devices.32 The potential
roles of Gal antigen and antibody in this rapid inflammatory
process are supported by the premature valve degeneration
reported in patients developing Gal allergies after heart
valve replacement.10

Human and Zilla,7 using experimentally generated
immune serum, demonstrated that BHV-specific antibody
bound to GLUT-fixed tissue would enhance tissue
calcification in a subcutaneous implant model. They
described a model in which BHV-specific antibody binding
initiates opsonization and complement activation, creating
a self-sustaining inflammatory process that releases
anaphylatoxins (C3a and C5a), recruits and activates
monocytes (macrophages and neutrophils), and promotes
BHV matrix degradation via release of protease and
superoxide radicals. This immune injury enhances tissue
calcification and SVD by weakening the BHV matrix,
allowing further antibody binding, cellular infiltration,
and passive tissue calcification. We showed that preexisting
human anti-Gal antibody bound to standard GLUT-fixed
pig pericardium increased tissue calcification after
subcutaneous implantation in rats or rabbits, thereby
identifying a clinically plausible source of anti-BHV anti-
body and obviating the need for an induced BHV-specific
immune response.8 Furthermore, we demonstrated that
this antibody-induced calcification occurred even when
tissue was treated with anticalcification processing,9

showing that passive and immune induced tissue
calcification are distinct processes.
Animal tissues (including standard sheep) express 2

additional xenogeneic glycans that bind human antibody:
ardiovascular Surgery c Volume -, Number - 7
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N-glycolylneuraminic acid modified glycans (Neu5Gc) and
the SDa blood group antigen (encoded by the B4GALNT2
locus). Gene modifications eliminating each of these
xenogeneic glycans, Gal (GGTA1�/�), Neu5Gc (CMAH�/�),
and SDa (B4GALNT2�/�), have been produced in pigs and
when combined, greatly reduce the level of human antibody
binding to pig cells compared with standard pig tissue.33

High expression levels of all 3 glycans are known to be
present on pig endothelial cells, porcine pericardium, and
commercial porcine BHVs.21 Elimination of these other
8 The Journal of Thoracic and Cardiovascular Surger
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xenogeneic glycans has no apparent detrimental effect on
the biophysical properties of porcine pericardium.21

Exogenous addition of purified anti-Neu5Gc antibody has
been shown to increase calcification of fixed tissue in a
subcutaneous implant model,4 and elimination of
Neu5Gc-modified glycans from BHV tissue would be
expected to further reduce human antibody binding. In sheep,
the B4GALNT2 gene shows high ovarian expression, and
coding and noncoding polymorphisms in ovine B4GALNT2
are associated with the FecL mutation, which promotes
y c - 2023
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high fecundity in Lacaune sheep and increased litter size in
Small Tail Han sheep.34 It appears that overexpression of
B4GALNT2 results in altered glycosylation of
follicular proteins, leading to increased ovulation and
prolificacy. The effects of eliminating B4GALNT2
expression on sheep fertility are unknown. In any case, the
Gal antigen has by far the greatest impact on human antibody
reactivity to porcine cells and tissues, suggesting that
elimination of anti-Gal antibody reactivity to BHV tissue
may have a disproportionate impact on BHV immune injury.

The GalKO sheep presented in this report represent a new
model for the development and testing of biomedical
devices, particularly new BHVs (Figure 5). The
spontaneous production of cytotoxic anti-Gal antibody in
GalKO sheep allows these animals to model the current
immune discordance between patients and current
commercial clinical BHVs. The industry standard
orthotopic BHV implantation model in juvenile/adolescent
sheep is well characterized, reproducible, and accepted by
regulatory bodies with excellent preclinical outcomes.
This long history of BHV testing in sheep confers
advantages to the GalKO sheep over other engineered
GalKO species (mice, rabbits, and pigs), which also
produce anti-Gal antibody, This will, for the first time, allow
a detailed examination of the role of immune injury in BHV
tissue calcification and the progression to SVD.
CONCLUSIONS
Consistent with other mammals that have been

engineered for mutations in the GGTA1 gene, this GalKO
sheep lacks expression of the Gal antigen and produces
cytotoxic anti-Gal antibody by age 2 to 3 months. GalKO
sheep represent a new standard for preclinical testing of
BHVs (surgical or transcatheter) and innovative emerging
regenerative technologies because they are the first time
to account for human immune responses to the major
xenogeneic antigen.
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TABLE E1. Development rates following somatic cell nuclear transfer using GGTA1�/� fibroblast colonies

Colony ID/sex Cell line

No. of embryos,

transferred/recipients

Pregnancy rate,

n/N (%)

Term rate,

n/N (%)

No. of lambs

alive at 1 mo

13/male SFF4 30/2 2/2 (100) 2/2 (100) 2

16/male SFF4 34/3 2/3 (66.7) 2/3 (66.7) 0

20/male SFF4 43/3 0/3 0/3 0

23/male SFF4 23/2 1/2 (50) 0/2 0

Total 130/10 5/10 (50) 4/10 (40) 2

The frequencies of pregnancies from somatic cell nuclear transfer (SCNT), pregnancies going to term, and the number of live born offspring in this study are similar to the results

of larger SCNT cloning efforts to create cystic fibrosis CFTR�/� sheep23 and for the broader experience in the field in other sheep and goat cloning models (see Polejaeva IA.

Generation of genetically engineered livestock using somatic cell nuclear transfer. Reproduction. 2021;162:F11-F22. doi: 10.1530/REP-21-0072.2021).
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