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Image Separation with Side Information: A
Connected Auto-Encoders Based Approach
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Abstract—X-radiography (X-ray imaging) is a widely used
imaging technique in art investigation. It can provide information
about the condition of a painting as well as insights into an
artist’s techniques and working methods, often revealing hidden
information invisible to the naked eye. X-radiograpy of double-
sided paintings results in a mixed X-ray image and this paper
deals with the problem of separating this mixed image. Using the
visible color images (RGB images) from each side of the painting,
we propose a new Neural Network architecture, based upon
‘connected’ auto-encoders, designed to separate the mixed X-ray
image into two simulated X-ray images corresponding to each
side. This connected auto-encoders architecture is such that the
encoders are based on convolutional learned iterative shrinkage
thresholding algorithms (CLISTA) designed using algorithm
unrolling techniques, whereas the decoders consist of simple
linear convolutional layers; the encoders extract sparse codes
from the visible image of the front and rear paintings and mixed
X-ray image, whereas the decoders reproduce both the original
RGB images and the mixed X-ray image. The learning algorithm
operates in a totally self-supervised fashion without requiring a
sample set that contains both the mixed X-ray images and the
separated ones. The methodology was tested on images from the
double-sided wing panels of the Ghent Altarpiece, painted in 1432
by the brothers Hubert and Jan van Eyck. These tests show that
the proposed approach outperforms other state-of-the-art X-ray
image separation methods for art investigation applications.

Index Terms—Image separation, image unmixing, deep neural
networks, convolutional neural networks, auto-encoders, side
information

I. INTRODUCTION

OLD Master paintings – precious objects illuminating
Europe’s rich cultural heritage and history – are often

the subject of detailed technical examination, whether to
investigate an artist’s materials and technique or in support
of conservation or restoration treatments in order to preserve
them for future generations. These processes have traditionally
relied on X-ray radiography (or X-ray imaging) [1], infrared
reflectography [2] or micro-sample analysis [3] – an invasive
and destructive process – in order to understand the materials
present within specific features of a painting [4], [5].

W. Pu, C. Zhou, Z. Sabetsarvestani and M. R.D. Rodrigues are with
the Department of Electronic and Electrical Engineering, University College
London, UK. Z. Sabetsarvestani is also with the American International
Group, UK. B. Sober is with the Department of Mathematics and Rhodes
Information Initiative, Duke University, US. N. Daly and C. Higgitt are with
the Scientific Department, National Gallery, London, UK. I. Daubechies is
with the Department of Electrical and Computer Engineering, Department of
Mathematics, and Rhodes Information Initiative, Duke University, US.

This work is sponsored by Engineering and Physical Sciences Research
Council (Ref. EP/R032785/1) and the Royal Society (Ref. NIF/R1/180735).

More recently, to complement these traditional approaches
to the technical study of works of art, the cultural her-
itage sector has been gradually witnessing the increased use
of non-invasive and non-destructive, cutting-edge analytical
and imaging techniques and generating large and typically
multi-dimensional datasets associated with artwork [6]–[8].
Such techniques include macro X-ray fluorescence (MA-
XRF) scanning [9]–[11] and hyperspectral imaging [12]–
[15]. Sophisticated multimodal image and data processing
tools have been developed to exploit these new datasets and
the increasingly high-resolution digital images now available
using more traditional imaging techniques (e.g. X-ray imaging,
infrared reflectography and various forms of multispectral
imaging [13]) to tackle various challenging tasks arising in
the field of art investigation [16], [17], such as crack detection
[18], [19], material identification [20]–[23], brush stroke style
analysis [24]–[27], canvas pattern or stretcher bar removal
[28]–[30], automated canvas weave analysis [31], [32], and
improved visualization of concealed features or under-drawing
[12], [33]–[36].

Due to the ability of X-rays to penetrate deep into a paint-
ing’s stratigraphy, X-radiographs (X-ray images) are especially
important during the examination and restoration of paintings
[1], [37], [38]. They can help to establish the condition of a
painting (e.g., losses and damages not apparent at the surface)
and the status of different paint passages (e.g., to identify
retouchings, fills or other conservation interventions). X-ray
images can also provide insights into an artist’s technique
and working methods, for example revealing the painting’s
stratigraphy (the buildup of the different paint layers which
may include concealed earlier designs or pentimenti), and
information about the painting support (e.g., type of canvas
or the construction of a canvas or panel) or even some
indication of the pigments used. However, where a support
is painted on both the front and reverse sides, the resulting
X-ray image of the painting will inevitably contain a mix or
blend of the features associated with the paint application on
each side (including any design changes, areas of damage,
etc). In addition, the X-ray image of a double-sided painting
will include other features associated with support for the
painting (e.g., nails and battens, wood grain, stretcher bars,
etc.). As the resulting mixed X-ray images - which are 2D
representations of 3D works of art - are difficult for even
experts to interpret, it is relevant to devise approaches that
can separate such a mixed X-ray image into (hypothetical)
constituent images, corresponding to the various component
features. Typically, the mixed X-ray images are separated
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into two images, associated with each side of the double-
sided painting, with any (typically minor) contributions from
the painting support being divided between the two resultant
images. While a mixed X-ray image could potentially be
divided into two images associated with the two paintings and
a third associated with the support, the separating of the mixed
image into just two resultant images should ensure that all of
the highly informative detail about the surface and sub-surface
features of the paint layers on a given side of the painting
remain associated within a single image.

The task of separating mixed signals has been studied
extensively in the blind source separation (BSS) and the
informed source separation (ISS) literature. Among the ap-
proaches designed to tackle this challenge, we can mention
independent component analysis (ICA) [39], [40], robust prin-
cipal component analysis (PCA) [41]–[43] and morphological
component analysis (MCA) [44]–[46]. These methods often
rely on some strong prior assumptions including independence,
sparsity or low-rankness. However, the implementation of
such techniques in art investigation applications is generally
problematic because such typical prior assumptions adopted
by other methods do not always hold.
Recently, deep learning architectures have also been suc-

cessfully applied to various signal and image separation chal-
lenges [47]–[50]. Such approaches typically fall into three
different categories: unsupervised, semi-supervised and su-
pervised approaches. The supervised case typically assumes
one has access to a training dataset containing a number of
examples of mixed and associated component signals that
can be used to train a deep neural network carrying out the
separation task [47], [48]. In contrast, in the unsupervised case
one does not have access to such a training dataset; instead,
the sources are typically separated by minimizing joint adverse
and remix losses as in [50]. Finally, in the semi-supervised
case one may have access to samples of one individual source
but not other sources; a neural egg separation (NES) method
[49] integrated with generative adversarial networks (GANs)
[51] has been recently proposed to tackle the semi-supervised
source separation challenge. However, again, the application of
these approaches to challenges associated with the unmixing
of an X-ray image into its constituents can also be problematic
since the data one typically has access to prevents the use of
supervised or semi-supervised approaches.

Fig. 1. Two double-sided panels from the Ghent Altarpiece [52]: (left) visible
RGB image of the front side, (centre) visible RGB image of the back side,
(right) mixed X-ray image.

There are, however, various cases where one has access to
both mixed X-ray images along with additional images that
can potentially be exploited to aid in the image separation
task. For example, in the separation of mixed X-ray images
associated with double-sided paintings – such as the outer
wing panels of the large polyptych The Adoration of the
Mystic Lamb, painted by Hubert and Jan van Eyck and more
commonly known as the Ghent Altarpiece [52]–[54], shown
in Fig. 1 – one can also potentially use the visible (RGB
or grayscale) images associated with both sides of the outer
panels, in order to understand traits such as general contours,
paint passages and losses to improve the separation.

A number of image processing approaches based on sparsity
[55], Gaussian mixture models [57] or deep learning [56], [58]
have been proposed to address such a challenge in the context
of double-sided paintings. The approaches proposed in [55],
[57], which exploited sparsity and Gaussian mixture models,
have been partially successful, whereas the deep learning
approaches in [56], [58] have led to signifi cantly better results.
It should be noted that although X-ray images do contain
physical meaning and will depend on the acquisition and
processing parameters, to simplify the challenge of separating
the mixed signals, they are typically considered as simple
images.
In this paper, we propose another self-supervised learning

approach to perform the separation of mixed X-ray images
originating from double-sided paintings given the visible im-
ages associated with each side of the painting. Our approach
is motivated by recent advances in algorithm unrolling tech-
niques [59]. Moreover, our approach outperforms the state-
of-the-art approaches designed to tackle this specific problem
[56], [58].

Our main contributions can be summarized as follows:

• Firstly, we formulate the mixture model of the X-ray
image based on the attenuation model of X-ray trans-
mission. The novel X-ray mixture model makes the
hypothesis of the proposed method more reasonable. With
this theoretical basis, the novel X-ray mixture model can
also lead to better results. Additionally, we also formulate
the X-ray image separation problem with side information
by leveraging a convolutional sparse coding model.

• Secondly, we decouple the X-ray image separation prob-
lem into three separate optimization problems, solve them
using convolutional iterative thresholding (CISTA) algo-
rithms, and unroll such solvers into deep neural networks.

• Thirdly, we recouple different networks into one overall
network, resulting in a connected auto-encoder structure.
The various auto-encoders are connected in the sparse
feature maps and the auto-encoders for the RGB images
of the front and rear paintings share the same weights.

• Fourthly, we also offer a detailed analysis of the effect
of various regularization parameters associated with our
separation method on performance.

• Finally, we apply our proposed approach to a real dataset,
showcasing state-of-the-art results over competing meth-
ods. The dataset relates to images taken from the double-
sided wing panels of the Ghent Altarpiece in Fig. 1.
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The remainder of the paper is organized as follows: Section
II overviews related work. Section III introduces our proposed
approach. Section IV introduces our experimental results.
Finally, Section V draws various conclusions. The dataset the
Ghent Altarpiece is available at [52]. The code of the proposed
approach and the other databases utilized in this paper are
available at https://github.com/ChaoEdisonZhouUCL/Code.

II. RELATED WORK

Our work is inspired by the sparsity-driven image separation
with side information approach put forth in [55], whose
purpose is to separate a mixed X-ray image of a double-
sided painting into its constituent X-ray images by leveraging
the availability of the visible images, i.e., RGB or grayscale
images, pertaining to the front and reverse of the painting.

Suppose xv denotes a vectorized version of a mixed X-
ray image patch; xv1 and xv2 denote the vectorized versions of
the corresponding individual constituent X-ray image patches
(corresponding to the front and back side paintings, respec-
tively); and gv1 and gv2 denote the vectorized versions of the
corresponding grayscale image patches (corresponding to the
front and back side paintings, respectively).

The authors in [55] assume that the mixed X-ray signal is
the sum of the individual X-ray signals as follows:

xv = xv1 + xv2 (1)

The authors also assume that the various signals obey a sparse
representation under some given dictionaries as follows:

gv1 = Φgz
v
1

gv2 = Φgz
v
2 (2)

and

xv1 = Φxz
v
1 + Θsv

xv2 = Φxz
v
2 + Θsv (3)

where zv1 , zv2 and sv represent sparse vectors and Φg , Φx and
Θ represent dictionaries. Note that this model is such that the
sparse vectors zv1 and zv2 are common to the images in the
grayscale and X-ray domains – capturing similarities between
both individual modalities – whereas the sparse vector sv is
specific to the images in the X-ray domain in order to capture
features specific to this image modality only.

The authors then propose to recover the individual X-ray
image patches from a mixed X-ray patch and the individual
grayscale image patches using a two-step approach as follows:
• Firstly, the various dictionaries associated with the model

in (1) are learnt using a modified Orthogonal Matching
Pursuit (OMP) algorithm, by using various image patches
sampled from X-ray images and grayscale visual images
sampled from single-sided panels.

• Secondly, the individual X-ray image patches are re-
covered from a mixed X-ray patch and the individual
grayscale image patches using the sparse coding problem
given by: 1

1This optimization problem was solved using a method based on a recursive
decomposition of the mixed X-ray and visible images into low- and high-pass
bands [55].

min
zv1 ,z

v
2 ,s

v
‖zv1‖1 + ‖zv2‖1 + 2‖sv‖1

s.t. xv = Φxz
v
1 + Φxz

v
2 + Θsv

gv1 = Φgz
v
1

gv2 = Φgz
v
2 . (4)

The estimated X-ray image patches x̂v1 and x̂v2 are then
obtained from the estimated sparse representations ẑv1 , ẑv2 , and
ŝv as follows:

x̂v1 = Φxẑ
v
1 + Θŝv

x̂v2 = Φxẑ
v
2 + Θŝv (5)

Overall, this approach exhibits some limitations:
• Firstly, it deals with a vectorized version of the image

patches rather than the image patches themselves, so it
fails to capture two-dimensional information that might
be relevant to improve separation.

• Secondly, it deals with the grayscale version of the visible
images instead of the RGB version of the same images,
so it also fails to capture color information that might be
relevant to improve separation.

• Finally, the X-ray image separation still exhibits various
artefacts [55], bearing further witness to the limitations
of the method.

A similar approach – relying on Gaussian mixture models
instead of sparsity based models – proposed in [57] also shares
some of these limitations.

Some of these limitations have been recently partially ad-
dressed by relying on deep models in [56], [58]. In particular,
let x ∈ Rn1×n2 denote a mixed X-ray image patch, let
x1 ∈ Rn1×n2 and x2 ∈ Rn1×n2 denote the hypothetical,
separated X-ray image patches corresponding to the front and
rear sides of the painting, respectively, and r1 ∈ Rn1×n2×3

and r2 ∈ Rn1×n2×3 denote the RGB visible image patches
corresponding to the front and rear sides of the painting. Let
also the mixed X-ray patch x be expressed in terms of the
individual X-ray patches x1 and x2 as follows:

x ≈ x1 + x2. (6)

Reference [56] postulates the existence of a mapping func-
tion F(·) that converts the RGB image patches r1 and r2

into the corresponding X-ray image patches. The mapping
function F(·) is modelled via a 7-layer convolutional neural
network. This mapping function is then learnt in a completely
self-supervised manner by solving the following optimization
problem:

min
F

‖x−F(r1)−F(r2)‖F . (7)

where ‖ · ‖F denotes the Frobenius norm of the argument.
On the other hand, reference [58] uses a more complex

connected auto-encoder mechanism for the X-ray image sep-
aration task. Various encoders and decoders are connected
together to reconstruct the mixed X-ray image patch as well
as RGB image patches of the front and rear sides, and a
composite loss, containing reconstruction loss, energy loss
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and dis-correlation loss, then was used as the loss function
to learn the auto-encoders. These two approaches have led to
substantially better separation results compared to [55], [57].
However, these approaches also exhibit some limitations:
• The method in [56] does not impose many constraints

on the structure of x1 and x2, so it can also lead to
separated individual X-ray images that share features with
the corresponding individual RGB ones.

• The method in [58] in contrast imposes additional con-
straints on the various images, hence it leads to much
better separation results. However, since the approach
reported in [58] is largely heuristic, it is difficult to
appreciate the reason a connected auto-encoder structure
can lead to such remarkable mixed X-ray separation
results.

Given the above limitations of the existing approaches, it’s
of huge significance to further improve the performance of X-
ray image separation with side information. In this paper, we
make our effort to proposed a deep learning approach for the
X-ray image separation problem.

III. PROPOSED APPROACH

We deal with these limitations by proposing a new approach
to separate mixed X-ray images taken from double-sided
paintings given access to visible images on the front and rear
part of the painting.

Our proposed approach is principled: it builds upon state-of-
the-art sparsity-driven image processing techniques as well as
sparsity-driven image separation with side information (akin
to [55]), and it exploits algorithm unrolling techniques [59].
Interestingly, by using these various ideas, our approach also
leads to a connected auto-encoder structure that is akin to the
connected auto-encoder adopted in [58].

A. General structure

Suppose x ∈ Rn1×n2 represents the mixed X-ray image
patch, x1 ∈ Rn1×n2 and x2 ∈ Rn1×n2 represent the individual
X-ray image patches, r1,i ∈ Rn1×n2 for i = 1, 2, 3 denotes
the red, green and blue channel patches of one of the RGB
images, and r2,i ∈ Rn1×n2 for i = 1, 2, 3 denote the red,
green and blue channel patches of the other RGB image.

The general structure of the proposed connected auto-
encoder is depicted in Fig. 2, where x̂ is the reconstructed
mixed X-ray, r̂1,i and r̂2,i denote the regenerated RGB image
of the front and rear painting of the ith channel, respec-
tively, zk1 ∈ Rn1×n2 and zk2 ∈ Rn1×n2 denote the sparse
representations underlying the image patches on the front and
rear sides of the painting, respectively, and k = 1, 2, · · · ,K
indexes the channel number. n1 and n2 denote the number
of pixels for each image patch with respect to horizontal and
vertical directions, respectively. Note that as we propose a
convolutional model, which will be illustrated in the following
subsection, both sparse codes z1 and z2 have K channels in
total.

Our connected auto-encoder consists of various compo-
nents:

Fig. 2. General structure of the connected auto-encoder.

• Encoder Er (represented by the green arrows) is used to
extract sparse features z1 and z2 from the RGB image
patches r1 and r2, respectively. This is done by adopting
the feed-forward neural network structures derived later.

• Encoder Ex (represented by the yellow arrows) is used
to extract sparse feature z from the mixed X-ray image
patches x. This is also done by adopting the feed-forward
neural network structure derived later.

• Decoder Dr (represented by the blue arrows) is used to
convert the sparse features z1 and z2 into an estimate of
the RGB image patches r̂1 and r̂2, respectively.

• Decoder Dx (represented by the purple arrow) is also
used to convert the features z into an estimate of the
X-ray image patches x.

The connection between the auto-encoders lies in two aspects:
1) they share the same encoders and decoders, i.e., Er, Ex,
Dr, and Dx, and 2) the various auto-encoders will be learnt
together by leveraging a joint loss.

In the following subsection, we design the various encoders
using the algorithm unrolling technique and the decoders based
on a convolutional sparse coding model.

B. Model

The progressive attenuation of an X-ray beam as it passes
through matter can be denoted by the Beer-Lambert Law [1],
[62], [63] as follows

I = I0e
−αht (8)

where h denotes the density of the material, t denotes the
thickness of material, α1 denotes the attenuation coefficient,
and I0 is the intensity of the initial beam.

Based on traditional film-based X-radiography, in regions
where more X-rays go through the material (i.e. less atten-
uation) the resulting X-ray image appears dark, whereas in
regions where fewer X-rays penetrate through the material
(i.e. more attenuation) the image appears lighter. Supposing
that the X-ray images are normalized, i.e., the value at each
pixel of the X-ray images vary between 0 and 1, this will
mean that the X-ray intensity measured has decayed fully in
areas with the value 1. Thus, 1 minus the value of the X-
ray image would describe the remaining X-ray intensity after
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going through the material. Then, the mixed X-ray image patch
x can be expressed in terms of the individual X-ray image
patches x1 and x2 as follows:

1− x1 = I1 = I0e
−α1h1t1

1− x2 = I2 = I0e
−α2h2t2

1− x = I = I0e
−α1h1t1−α2h2t2 (9)

where h1 and h2 denote the density of the material for
both sides of the painting, t1 and t2 denote the thickness of
material for both sides, and α1 and α2 denote the attenuation
coefficients for both sides. In this model, it is assumed that
the attenuation from the support material that the X-rays pass
through is minor and so is not included and h, t and α values
relate to the two paint layers (one on front and one on back of
support). So then we are talking about the two painted sides
only

According to (9), we have

log(1− x) = log(1− x1) + log(1− x2). (10)

Then, there exists one constraint between the mixed X-ray
image and separated individual X-ray images as follows:

1− x = (1− x1)(1− x2). (11)

During the training phase of the proposed approach, we will
add one regularization term to guarantee this constraint.

We propose to use convolutional sparse coding techniques to
model each individual image patch. The convolutional sparse
coding paradigm is an extension of the sparse coding model,
in which a redundant dictionary is modeled as a concatenation
of circulant matrices. While the global sparsity constraint
describes the target signal as a linear combination of a few
atoms in the redundant dictionary.

We adopt this model because it has been shown to lead
to state-of-the-art performance in various image processing
tasks [60]. It can also be coupled with algorithm unrolling
techniques to lead to convolutional neural networks [61]. The
convolutional sparse coding model is shown as follows:

r1,i =

K∑
k=1

Φki ∗ zk1 , r2,i =

K∑
k=1

Φki ∗ zk2 ,

x1 =

K∑
k=1

Θk ∗ zk1 , x2 =

K∑
k=1

Θk ∗ zk2 ,

x =

K∑
k=1

Θk ∗ zk, (12)

where Φki ∈ RM×M denotes the k-th convolutional dictio-
nary filter for the RGB image patches of the ith channel,
Θk ∈ RM×M denotes the k-th convolutional dictionary filter
for the X-ray image patches, and ∗ denotes the convolution
processing. The convolution operation c = a ∗ b between two
image patches a and b is given by:

c(i, j) =
∑
p

∑
q

a(p, q)b(i− p+ 1, j − q + 1). (13)

Note that this model immediately links the various images by
imposing that the X-ray and RGB image patches associated

with the same side of the painting share the same sparse
representation. This model also imposes that the mixed X-ray
image is equal to the sum of the individual X-ray images (as in
other works mentioned earlier) since 1−x = (1−x1)(1−x2).

C. Connected auto-encoder details

We now show the details of the design of the various
encoders and decoders.

Firstly, we propose to separate the mixed X-ray image patch
into its individual constituent image patches given access to
the individual RGB image patches by using a connected auto-
encoder structure derived from a sparsity-driven optimization
problem akin to that in (4). In particular, if we have access
to the dictionaries Θk and Φk, for k = 1, . . . ,K, we can
recover the underlying sparse representations by adopting the
following optimization problem:

min
zk,zk1 ,z

k
2

‖x−
K∑
k=1

Θk ∗ zk‖2F + λ

K∑
k=1

‖zk‖1

+

3∑
i=1

‖r1,i −
K∑
k=1

Φki ∗ zk1‖2F + λ

K∑
k=1

‖zk1‖1

+

3∑
i=1

‖r2,i −
K∑
k=1

Φki ∗ zk2‖2F + λ

K∑
k=1

‖zk2‖1

s.t. 1−x = (1−
K∑
k=1

Θk ∗ zk1 )(1−
K∑
k=1

Θk ∗ zk2 ). (14)

where λ is the regularization parameter. One can then also
recover the individual X-ray images based on (12).

We can now turn this optimization problem into a connected
auto-encoder by following a four step procedure:

1) Firstly, we decouple the original optimization problem
into three separate optimization problems.

2) Secondly, we develop solvers to each such individ-
ual optimization problem using convolutional iterative
thresholding (CISTA) algorithms.

3) Thirdly, we turn such CISTA solvers into a layered
network architecture – denoted by CLISTA – using
algorithm unrolling techniques.

4) Finally, we recouple the various individual networks into
an overall network, leading up to a connected auto-
encoder structure whose parameters can be further learnt
in a totally self-supervised manner under a joint loss
function that couples the various constituent networks.

We acknowledge that there may not be guarantees that this
decoupling and recoupling strategy leads to a solution that
coincides to that of the original problem in (13). However,
numerical results demonstrate outstanding performance.

We describe these steps further below.
1) Decoupling: Our first step is to decouple the original

optimization problem in (13) into three individual optimization
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problems given by:

min
zk

x−
K

k=1

Θk ∗ zk2F + λ

K
k=1

zk1

min
zk
1

3
i=1

r1,i −
K

k=1

Φk
i ∗ zk12F + λ

K
k=1

zk11

min
zk
2

3
i=1

r2,i −
K

k=1

Φk
i ∗ zk22F + λ

K
k=1

zk21, (15)

Again, it is clear that the solutions to the optimization prob-
lems in (15) do not have to coincide with the solutions to the
optimization problems in (14) in view of the fact that we are
explicitly dropping the constraint 1 − x = (1 − x1)(1 − x2).
We will deal with this constraint a posteriori in step 4 (see
section III.D).

2) Solver: Our second step is to develop an iterative solver
for each individual optimization problem appearing in (15).
Let us fi rst consider the optimization problem given by:

min
zk

x−
K

k=1

Θk ∗ zk2F + λ

K
k=1

zk1. (16)

A solution to this optimization problem can be computed iter-
atively by adopting a convolutional iterative soft thresholding
algorithm (CISTA) as follows:

zk,j = S λ
L


zk,j−1 +

1

L
(Θk)T ∗ (x−

K
m=1

Θm ∗ zm,j−1)


,

(17)

where zk,j denotes the sparse representation associated with
the kth fi lter at iteration j, (Θk)T denotes the transpose of
Θk, L > 0 is the step size and operator S λ

L
(·) is the soft

thresholding operator, and is applied element-wise on its vector
argument as follow:

S λ
L
{x} = sign(x) ·max(|x| − λ

L
, 0). (18)

Equation (17) can also be rewritten as:

zj = S λ
L


zj−1 +

1

L
ΘT 


x−


(Θ  zj−1)


(19)

where zj = [z1,j , z2,j , · · · , zK,j ] ∈ Rn1×n2×K denote
the series of sparse representations associated with the dif-
ferent fi lters at iteration j, Θ = [Θ1,Θ2, · · · ,ΘK ] ∈
RM×M×K is an array of K M × M fi lters, ΘT =
[(Θ1)T , (Θ2)T , · · · , (ΘK)T ] ∈ RM×M×K is the transposed
version of Θ, and


denotes the summation along the third

dimension. Symbol  denotes the convolution along the fi rst
and second dimension, i.e.,

Θ  zj = [Θ1 ∗ z1,j ,Θ2 ∗ z2,j , · · · ,ΘK ∗ zK,j ]

Θ  x = [Θ1 ∗ x,Θ2 ∗ x, · · · ,ΘK ∗ x]. (20)

Similarly, a solution to the optimization problems given by:

min
zk
1

3
i=1

r1,i −
K

k=1

Φk
i ∗ zk12F + λ

K
k=1

zk11

min
zk
2

3
i=1

r2,i −
K

k=1

Φk
i ∗ zk22F + λ

K
k=1

zk21, (21)

can also be computed iteratively using CISTA as follows:

zk,j1 =

S λ
L


zk,j−1
1 +

3
i=1


1

L
(Φk

i )
T ∗ (rk1,i −

K
m=1

Φm
i ∗ zm,j−1

1 )


,

zk,j2 =

S λ
L


zk,j−1
2 +

3
i=1


1

L
(Φk

i )
T ∗ (rk2,i −

K
m=1

Φm
i ∗ zm,j−1

2 )


,

(22)

where zk,j1 and zk,j2 denote sparse representations associated
with the kth fi lter at iterationj for the front and rear paintings,
respectively. (22) can also be rewritten as:

zj1 = S λ
L


zj−1
1 +

3
i=1


1

L
ΦT

i 

r1,i −


(Φi  zj−1

1 )


zj2 = S λ
L


zj−1
2 +

3
i=1


1

L
ΦT

i 

r2,i −


(Φi  zj−1

2 )


,

(23)

where zj1 = [z1,j1 , z2,j1 , · · · , zK,j
1 ], zj2 = [z1,j2 , z2,j2 , · · · , zK,j

2 ]
and Φi = [Φ1

i ,Φ
2
i , · · · ,ΦK

i ] ∈ RM×M×K .
3) Unfolding: Our third step is to convert the iterative

solver into a feedforward layered neural network architecture
using unfolding techniques [59]. In particular, we re-write (19)
as follows

zj = S


zj−1 +WΘ2 


x−


(WΘ1  zj−1)


, (24)

where we have replaced the original parameters Θ, 1
LΘ

T , λ
L

using new parameters WΘ1, WΘ2 and . We can then map each
solver iteration operation into a feedforward neural network
operation; and likewise we can also map J solver iterations
into a J layer feedforward neural network. Each network layer
is represented in Fig. 3.

Fig. 3. Layer structure associated with (24).
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Likewise, we can also rewrite (23) as follows:

zj1 = S


zj−1
1 +

3
i=1


WΦ2,i 


r1,i −


(WΦ1,i  zj−1

1 )


zj2 = S


zj−1
2 +

3
i=1


WΦ2,i 


r2,i −


(WΦ1,i  zj−1

2 )


,

(25)

where we have also replaced the original parameters Φi, 1
LΦ

T
i ,

λ
L by parameters WΦ1,i, WΦ2,i and . This then also maps J
iterations of the algorithm into a J layer feedforward neural
network with each layer depicted in Fig. 4.

Fig. 4. Layer structure associated with (25).

The rationale for adopting new parameters to describe the
neural network layer instead of the original ones derives from
the fact that we can further learn this using entirely self-
supervised mechanisms, as described next in Step 4.

Note that the learnable parameters WΘ1, WΘ2, WΦ1,i,
WΦ2,i and  are set to vary in each layer to give the
proposed network more freedom to achieve better separation
performance.

4) Recoupling: Finally, we assemble the various individ-
ual convolutional neural networks that attempt to solve the
optimization problems appearing in (14) into a connected
auto-encoder structure that attempts to solve the original
optimization problem appearing in (15). The general structure
of the proposed connected auto-encoder is shown in Fig. 2.

Decoder Dr is designed as

r̂1,i =


(WΦ,i  z1)

r̂2,i =


(WΦ,i  z2), (26)

where WΦ,i ∈ RM×M×k denotes a convolutional layer, z1 =
zJ1 and z2 = zJ2 denote the sparse codes of the front and rear
image patch, respectively, and J layers are assumed to be used
in the encoder Er.

In a similar manner, decoder Dx is designed as follows:

x̂ =


(WΘ  z) (27)

where WΘ ∈ RM×M×k denotes a convolutional layer and
z = zJ denotes the sparse code of the mixed X-ray image
patch, and J layers are assumed to be used in the encoder
Ex.

Our connected auto-encoder is also such that the encoders
associated with the RGB images are equal (i.e. they share the
same weights) but the encoder associated with the mixed X-
ray image is different; likewise, the decoders associated the
two RGB images share the same convolutional layer. Note
the reason we use decoders to map the underlying sparse
representations to estimates of the original mixed X-ray image
and the original RGB images is to allow learning the connected
auto-encoder parameters in a totally self-supervised manner.

D. Training strategy

Finally, in view of the fact that the parameters of the
various encoders and decoders in our auto-encoder structure
are learnable, we propose to tune these parameters by using
the loss function given by:

min
W

1

S

S
s=1

3
i=1

rs1,i − r̂s1,i2F + rs2,i − r̂s2,i2F

+
1

S

S
s=1

xs − x̂s22

+
1

S

S
s=1

λzs1 + λzs11 + λzs21

+
1

S

S
s=1

µ1− xs − (1− xs
1)(1− xs

2)22. (28)

where W = {WΘ1,WΘ2,WΘ,WΦ1,i,WΦ2,i,WΦ,i, } denote
the weights of the connected auto-encoder, superscript s is the
patch-wise index and it is assumed that we have S patches in
total.

This loss consists of various components:
1) The first and second components make sure the con-

nected auto-encoder maps patches of the RGB images
to themselves;

2) The third component makes sure the connected auto-
encoder also maps patches of the mixed X-ray image to
itself;

3) The remaining three components attempt to promote
sparsity of the underlying sparse representations;

4) The fi nal component attempts to enforce the constraint
(1− x) = (1− x1)(1− x2) in (14), thereby connecting
the various sparse representations.

The regularization parameters λ and µ trade-off the effect
of these various overall loss components. We use the set of
regularization parameters λ = 10−4 and µ = 3. The method
used to select the regularization parameters λ and µ is shown
in section IV-B.
We then optimize the learnable parameters by using stochas-

tic gradient descent (SGD) with constant learning rate 0.00001.
We set J = 5, i.e., we have 5 layers in the encoders Ex and
Er, M = 5 and K = 64.

E. Approach comparison

While the proposed approach is similar to [57], there are a
number of differences and these differences include
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• Model: We formulate the mixture model of the X-ray
image based on the physically more meaningful attenu-
ation model, and correspondingly, the addition mixture
model in [58] that x ≈ x1 + x2 is changed into 1− x =
(1− x1)(1− x2) in this paper. The novel mixture model
gives the hypothesis of the proposed approach rationality
and theoretical basis. We also formulated the X-ray
image separation problem with side information into a
convolutional sparse coding model, while the approach
reported in [58] is more heuristic. Comparatively, the
proposed algorithm gives a more intuitive explanation of
the X-ray image separation problem from the perspective
of mathematical modeling.

• Structure: In the proposed algorithm, the encoders are
designed based on unrolling the sparse coding algorithm
into a neural network architecture, and decoders are
designed based on the linear sparse coding model shown
in (10), while the network structure in [58] is designed
empirically by using different convolutional neural net-
works in both encoder and decoder.

• Loss: In the proposed algorithm, we added an l1 norm
constraint on the sparse feature maps and another loss to
minimize the difference between the sparse feature maps
of the mixed X-ray image and sum of separated X-ray
images, and in addition, we deleted the energy loss and
dis-correlation loss adopted in [58] as they were no longer
required (see the results section of the paper).

IV. EXPERIMENTAL RESULTS

We conducted a number of experiments to assess the ef-
fectiveness of our proposed X-ray image separation approach.
These involved:
• an analysis of the effect of the various regularization

parameters associated with our approach on X-ray image
separation performance;

• an analysis of the effectiveness of our approach in relation
to the state-of-the-art, both on synthetically mixed X-
ray images and real mixed X-ray images (the results
on synthetically mixed X-ray data are shown in the
supplementary material).

The effectiveness of our approach is reported both quan-
titatively and qualitatively. For a qualitative assessment of
the separation performance of our approach, we report a
number of performance metrics. Of particular reference, Peak
Signal to Noise Ratio (PSNR), average Structural Similarity
(SSIM), average Interference to Signal Ratio (ISR) [64], and
average normalized correlation coefficients (NCC) [65], [66]
are exploited to evaluate the separation performance.

A. Datasets

Our experiments rely on a number of datasets associated
with real paintings, including:
• The Ghent Altarpiece by Hubert and Jan van Eyck.

This large, complex 15th-century polyptych altarpiece
comprises a series of panels – including panels with a
composition on both sides (see Fig. 1) – that we use to

showcase the performance of our algorithm on real mixed
X-ray data.

• Lady Elizabeth Thimbelby and Dorothy, Viscountess An-
dover by Anthony van Dyck (Fig. 5). This one-sided
canvas painting was used to design a number of experi-
ments allowing us to understand the impact of the various
regularization parameters associated with our separation
approach.

B. Regularization Parameter Selection Protocol

In this section, we present experiments to assess the effec-
tiveness of our proposed X-ray image separation approach.
These involved an analysis of the effect of the various
regularization parameters associated with our approach on
X-ray image separation performance. Our experiments used
the dataset associated Anthony van Dyck’s painting of Lady
Elizabeth Thimbelby and Dorothy, Viscountess Andover (Fig.
5). This canvas painting is painted on one side and was used
to design a number of experiments allowing us to understand
the impact of the various regularization parameters associated
with our separation approach.

(a) (b)

Fig. 5. Anthony van Dyck, Lady Elizabeth Thimbelby and Dorothy, Viscount-
ess Andover (NG6437), about 1635. Oil on canvas © The National Gallery,
London. (a). RGB image. (b). X-ray image.

1) Experimental set-up: We use two small areas with the
same size from the oil painting Lady Elizabeth Thimbelby
and Dorothy, Viscountess Andover by Anthony van Dyck, one
associated with the face of Lady Elizabeth Thimbelby and the
other with the face of her sister in the portrait, in order to create
a synthetically mixed X-ray image. The corresponding RGB
images, X-ray images, and synthetically mixed X-ray image
are shown in Fig. 6. The synthetically mixed X-ray image in
Fig. 6 (e) is obtained by mixing the X-ray images shown in
Fig. 6 (c) and Fig. 6 (d) based on the model shown in (11).

Each such image is of size 1100 × 1100 pixels. These
images were then further divided into patches of size 64×64
pixels with 56 pixels overlap (both in the horizontal and
vertical direction), resulting in 11,236 patches. Each patch
associated with the synthetically mixed X-ray image was
separated independently; the various patches associated with
the individual separated X-ray images are then put together
by placing various patches in the original order and averaging
the overlapping portions.

We carried out the separation experiments over a number
of trials associated with different random initializations of the
auto-encoders in our method. We then assessed the separation
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(a) (b)

(c) (d) (e)

Fig. 6. Images used for regularization parameter selection (small areas
of Lady Elizabeth Thimbelby and Dorothy, Viscountess Andover shown in
Fig. 5). (a). First RGB image. (b). Second RGB image. (c). X-ray image
corresponding to first RGB image. (d). X-ray image corresponding to second
RGB image. (e). Synthetically mixed X-ray image.

performance by reporting on the average PSNR, SSIM, ISR
and NCC.

This experimental procedure was carried out for different
combinations of regularization parameters λ and µ appearing
in (24) of the main manuscript. We restricted these regular-
ization parameters to lie in the interval log10 λ ∈ [−5, 0] and
µ ∈ [0, 6], we also selected instances of the regularization
parameters from this interval in steps of 0.1 and 0.02, respec-
tively.

(a) (b)

(c) (d)

Fig. 7. Quantitative metrics as functions of λ and µ. (a). Average PSNR. (b).
Average SSIM. (c). Average ISR. (d). Average NCC.

2) Effect of regularization parameters λ and µ: Fig. 7
depicts the average PSNR, SSIM, ISR and NCC as functions
of the regularization parameters λ and µ. It is clear that

different regularization parameter values result in different
separation performances. For example,

• Fig. 7 suggests that the regularization parameter values
leading to the best quantitative metrics performance are
λ = 10−4 and µ = 3. Fig. 8 (a) and (b) also confirm
that the separated X-ray images are very similar to their
ground truth counterparts.

• With λ = 10−5, µ = 0, the loss function component

Lr = Lr1 + Lr2 (29)

dominates over other components, implying one tends to
promote fidelity of the reconstruction of the individual
RGB images and the mixed X-ray image, where

Lr1 =
1

S

S∑
s=1

3∑
i=1

‖rs1,i − r̂s1,i‖2F + ‖rs2,i − r̂s2,i‖2F

Lr2 =
1

S

S∑
s=1

‖xs − x̂s‖22. (30)

Fig. 7 suggests that this may result in relatively worse
quantitative metrics and Fig. 8 (c) and (d) also confirm
that the separated X-ray images are very similar to the
original mixed X-ray image.

• With λ = 1, µ = 0, the loss function component

Ls =
1

S

S∑
s=1

λ‖zs‖1 + λ‖zs1‖1 + λ‖zs2‖1 (31)

dominates over other components, implying one tends to
promote the sparsity of the feature maps. Fig. 7 suggests
that this also results in relatively worse quantitive metrics
and Fig. 8 (e) and (f) also confirm that the separated
X-ray images are seriously blurred and very similar
to the corresponding grayscale versions of the visible
RGB images (thereby losing information present in X-ray
images associated with sub-surface design features such
as previous compositions and pentimenti, concealed areas
of damage or structural features such as the wood grain
(for paintings on panel) or canvas weave and wooden
stretcher bars (for paintings on canvas).

• With λ = 10−5, µ = 6, the loss function component

Lc =
1

S

S∑
s=1

µ‖1− xs − (1− xs1)(1− xs2)‖22 (32)

dominates over other components, implying one tends
to guarantee that sparse feature maps should meet the
constraint 1 − x = (1 − x1)(1 − x2). Fig. 7 suggests
that this may result in a relatively high average separation
average MSE, low average PSNR and low average SSIM,
and Fig. 8 (g) and (h) reveal that the separated X-ray
image is seriously blurred, and contain some unwanted
mutual information.

To summarize, based on these results, in our experiments
reported in the main paper, we use the set of regularization
parameters λ = 10−4 and µ = 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. X-ray separation results: (a) and (b) Separated X-ray images for
λ = 10−4 and µ = 3; (c) and (d) Separated X-ray images for λ = 10−5,
µ = 0; (e) and (f) Separated X-ray images for λ = 1, µ = 0; (g) and (h)
Separated X-ray images for λ = 10−5, µ = 6.

Fig. 9. Images used for real data experiments. Columns 1 to 3 correspond
to the RGB image of the front side, the RGB image of the back of the
panel (image reversed) and the mixed X-ray image, respectively. Rows 1 to
3 correspond to areas 1, 2, 3, respectively.

C. Experiments with Real Mixed X-ray Data

1) Set-up : In this experiment, we use three small areas
from the Ghent Altarpiece (see Fig. 9). The first two areas
are of size 1000× 1000 pixels, while the third area is of size
600× 1200 pixels.

The previous procedure was again followed: the two RGB
images and the corresponding mixed X-ray image were di-
vided into patches of size 64×64 pixels with 56 pixels over-
lap (both in the horizontal and vertical direction), resulting
in 13,924 patches in the first two areas and 9,724 patches
in the third area. The patches associated with the mixed X-
ray image were separated independently. The various patches

associated with the individual separated X-ray images were
finally put together by placing various patches in the original
order and averaging the overlap portions. All patches were
also used in the training of the auto-encoders by randomly
shuffling their order. Note that these three different areas are
processed separately.

We adopted the regularization parameter values λ = 10−4

and µ = 3.

Fig. 10. Losses vs. number of epochs on area 1. (a). Ltotal. (b). Lr1, Lr2,
Ls and Lc.

2) Results: Fig. 10 depicts the evolution of the overall loss
function along with the individual ones as a function of the
number of epochs on area 1. The observations in Fig. 10
depict that the total loss decreases gradually during the first
80 epochs. Lr1, Ls and Lc decrease dramatically in the first
25 epochs, and Lr2 only decreases fast after epoch 25.

Fig. 11 depicts the evolution of the reconstruction of the
various images as a function of the number of epochs on
area 1. It is clear that the proposed algorithm has learnt how
to reconstruct the RGB images by epoch 50; it is also clear
that the algorithm only learns how to successfully reconstruct
the individual X-ray images and the mixed one by epoch
100. Indeed, during the initial learning stages, the individual
reconstructed X-ray images are very similar to grayscale
versions of the RGB ones (e.g. the inscription on the banner
that is present in the RGB images but should not be present in
the X-ray images). By contrast, during the last learning stages,
the individual reconstructed X-ray images become increasingly
natural and contain much more detailed information.

Finally, Fig. 12 shows that the proposed algorithm produces
much better separations than the algorithms in [56] and [58]
on area 1. Specifically,
• Our algorithm – in contrast to that in [56] – also appears

to reconstruct the pattern of cracking in the paint and
the wood grain of the panel better, including more fine
detail such as the crack on the right hand side of the
reconstructed X-ray image for the front side.

• Our algorithm – again in contrast to that in [56] – also
produces X-ray images without the addition of RGB
image information not present in the true mixed X-ray
image.

• The proposed algorithm produces two individual X-ray
images that recombine almost perfectly to match the
original mixed X-ray image. By contrast, the algorithms
in [56] and [58] produce individual X-ray images that do
not quite add up to the original mixed X-ray image, as
the error maps of the reconstructed mixed X-ray images
obtained by [56] and [58] than that achieved by the
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Fig. 11. Reconstructed images vs. number of epochs on area 1. Columns 1 to 7 correspond to reconstructed result after the 1st, 4th, 10th, 50th, 100th, 150th
and 200th epoch, respectively. Rows 1 to 2 correspond to the reconstructed RGB images. Rows 3 to 4 correspond to the reconstructed X-ray images.

TABLE I
QUANTITATIVE ANALYSIS OF DIFFERENT APPROACHES

Methods Metrics on the mixed X-ray images of area 1 (3rd column in Fig. 12)

average PSNR average SSIM average ISR average NCC

[56] 18.1012 0.908 -26.35 0.827
[58] 32.4819 0.960 -41.59 0.927

Proposed approach 39.6478 0.986 -49.57 0.988

Methods Metrics on the mixed X-ray images of area 2 (3rd column in Fig. 13)

average PSNR average SSIM average ISR average NCC

[56] 17.5244 0.891 -30.51 0.852
[58] 37.5987 0.940 -45.62 0.931

Proposed approach 45.8614 0.972 -52.64 0.979

Methods Metrics on the mixed X-ray images of area 3 (3rd column in Fig. 14)

average PSNR average SSIM average ISR average NCC

[56] 18.4876 0.872 -25.34 0.894
[58] 36.6113 0.921 -41.38 0.944

Proposed approach 41.0224 0.966 -47.49 0.982

proposed approach. Note that – in contrast to the synthetic
data experiments – it is not possible to compare the
individual reconstructions to a ground truth.

The separation results using the different algorithms on area
2 and 3 are shown in Fig. 13 and Fig. 14, respectively. From
the results, we can again observe that the proposed algorithm
outperforms the methods in [56] and [58].

The corresponding quantitative metrics to evaluate the sep-
aration performance of the different approaches are given in

Table I. Again, as with the visual comparisons in Fig. 13 and
Fig. 14, the quantitative metrics, i.e., average PSNR, SSIM,
ISR and NCC, demonstrate the superiority of the proposed
algorithm. The reconstructed mixed X-ray images obtained
using the proposed approach is closer to the ground truth than
the approaches in [55] and [57]”.

D. Ablation study

In this subsection, we utilize area 1 of the Ghent Altarpiece
to conduct five ablation studies to verify the effectiveness
of the proposed approach. The detailed information for each
ablation study is noted in Table II. In studies I and II,
we mainly verify the effectiveness of the proposed CLISTA
network structure. Learnable iterative thresholding (LISTA)
network architectures and CNN network architectures are
exploited in studies I and II to replace the CLISTA network
structure, respectively. In studies III, IV, and V, we focus on
validating the effectiveness of the joint loss in (28), i.e., joint
loss without loss function components Lr, Ls, and Lc are
leveraged in studies III, IV and V, respectively.

The separation results of the different studies are shown in
Fig. 15. In Fig. 15, rows 1 to 6 correspond to the results
yielded by Study I, Study II, Study III, Study IV, Study
V, and our proposed method, respectively. Columns 1 and
2 correspond to the reconstructed X-ray images, Columns
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Fig. 12. Comparison of different X-ray separation methods on area 1. Rows 1 to 3 correspond to the results yielded by the method in [56], the method in
[58] and our proposed method, respectively. Columns 1 and 2 correspond to the reconstructed X-ray images, Columns 3 and 4 correspond to the reconstructed
and true mixed X-ray images, and Column 5 corresponds to the error maps.

TABLE II
DETAILED INFORMATION OF THE ABLATION STUDIES.

Studies Detailed information

Study I Using LISTA instead of CLISTA in the proposed approach
Study II Using CNN instead of CLISTA in the proposed approach
Study III Using joint loss without Loss function component Lr

Study IV Using joint loss without Loss function component Ls

Study V Using joint loss without Loss function component Lc

3 and 4 correspond to the reconstructed and true mixed X-
ray images, and Column 5 corresponds to the error maps.
Comparing the last row in Fig. 12 with the first and second
rows in Fig. 15, the effect of different network structures on
the separation results using the proposed approach can be
assessed and the CLISTA architecture can be seen to lead to
a better performance than the LISTA and CNN architectures.
The third row of Fig. 15 presents the separation results of
the proposed approach without adopting reconstruction loss
Lr. It can be seen that, without using the reconstruction loss
Lr, the proposed approach fails to reconstruct high-quality
separated individual X-ray images, as the first and second
images in the third row of Fig. 15 contain information from
both sides. The fourth row of Fig. 15 indicates that if the

TABLE III
QUANTITATIVE ANALYSIS OF DIFFERENT ABLATION STUDIES

Methods Metrics on the mixed X-ray images of area 1 (3rd column in Fig. 12)

average PSNR average SSIM average ISR(dB) average NCC

Study I 35.8947 0.969 -44.62 0.974
Study Ii 30.9758 0.958 -32.51 0.962
Study III 32.1287 0.959 -39.79 0.968
Study IV 33.2318 0.965 -42.17 0.970
Study V 11.9549 0.827 -22.68 0.879

Proposed approach 39.6478 0.986 -49.57 0.988

L1 norm is not applied to constrain the sparse codes z1,
z2 and z, the brightness of the separation result is high,
resulting in a little distortion of the separated individual X-
ray images. If the loss component Lc is not applied, the
constraint (1− x) = (1− x1)(1− x2) cannot be guaranteed,
and correspondingly, the separated individual X-ray images
are very similar to the corresponding grayscale versions of
the RGB images.

The quantitative metrics, i.e., average PSNR, SSIM, ISR
and NCC, used to evaluate the separation performance of the
different ablation studies are given in Table III. Table III also
indicates that the proposed approach described in the main
text leads to better reconstructed mixed X-ray images than
obtained in the different ablation studies.
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Fig. 13. Comparison of different X-ray separation methods on area 2. Rows 1 to 3 correspond to the results yielded by the method in [56], the method in
[58] and our proposed method, respectively. Columns 1 and 2 correspond to the reconstructed X-ray images, Columns 3 and 4 correspond to the reconstructed
and true mixed X-ray images, and Column 5 corresponds to the error maps.

E. Limitations

In this subsection, we discuss and present experiments to
show the limitations of our proposed X-ray image separation
approach. In our proposed approach, we assume that the mixed
X-ray image is the mixture of the X-ray images of the two
painted sides of the artwork and that these painted surfaces are
the only attenuators on the incident X-ray intensity. However,
if the assumption cannot be guaranteed, i.e., there is another
layer or sub-surface detail with some additional content, the
proposed approach is invalid, and it will be difficult to obtain
well separated individual X-ray images for each painted side.
Our model does not, for example, take account of the impact
of the support material of a painting on the X-ray intensity.
While generally attenuation from the support material will
only be minor, in some instances the support may dominate the
mixed X-ray image and our proposed appoach will no longer
be valid. Even where the contribution of the support to the
mixed X-ray image is small, if only two separated images are
produced, how this contribution should be divided between the
two separated X-ray images is unclear - both in terms of the
mathematical model and to the heritage sector end user. As the
separated X-ray images for the two paintings are hypothetical
images there is no ground truth is available and for heritage
sector end users, what it would be useful to be able to visualise
(or to suppress) in the separated X-ray images may also depend
on the particular painting or question being investigated.

Our approach has also not been tested on paintings where
there is any degree of significant change within the painted
layers that is not visible in the RGB images. For example, if
there were changes within one or both paintings on a double-
sided painting that had been completely concealed below
subsequent layers of paint our approach might also struggle. It
has also been assumed that the paint layers on both sides of a
double-sided painting have similar properties (e.g. thickness,
materials used etc) and if this is not the case issues may also be
encountered. In such circumstances, the fact that X-ray images
are collected from one side of a painting may impact on the
results obtained as there will be more variation between the
mixed X-rays obtained from different sides of the painting.

Experiments to demonstrate this phenomenon rely on the
dataset associated with the painting Lady Elizabeth Thimbelby
and Dorothy, Viscountess Andover by Anthony van Dyck (Fig.
5). In Fig. 5, the horizontal and vertical bars in the middle and
around the painting are stretcher bars, structural elements of
the support of the painting. We use two small areas from the
painting with the same size, one area associated with the body
of Lady Elizabeth Thimbelby and the other one with the body
of her sister, in order to create a synthetically mixed X-ray
image. Note that in both areas there are horizontal bars in
the X-ray images. The horizontal bars are obvious with high
energy, which will have a significant effect on our proposed
approach. The corresponding RGB images, X-ray images, and
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Fig. 14. Comparison of different X-ray separation methods on area 3. Rows 1
to 3 correspond to the results yielded by the method in [56], the method in [58]
and our proposed method, respectively. Columns 1 and 2 correspond to the
reconstructed X-ray images, Columns 3 and 4 correspond to the reconstructed
and true mixed X-ray images, and Column 5 corresponds to the error maps.

synthetically mixed X-ray image are shown in Fig. 16. The
synthetically mixed X-ray image in Fig. 16 (e) is obtained by
mixing the X-ray images shown in Fig 16 (c) and Fig 16 (d)
based on the model presented in (11).

The separation results of the proposed approach are shown
in Fig. 17. These results suggest that the proposed approach
cannot cope well with situations where the mixed X-ray image
is dominated by additional content that does not relate to
the painted design on either side of the artwork. However,
it is able to correctly preserve details about paint thickness
or brushstrokes etc captured in the mixed X-ray image where
these relate to the painted designs. In addition, the horizontal
stretcher bars that can be seen so clearly in the original indi-
vidual X-ray images are not reconstructed successfully. Note
that these limitations are also shared with other approaches.

V. CONCLUSION

X-ray images of polyptych wings, or other artworks painted
on both sides of their support, contain in a single image
content from both paintings, making them difficult for experts
to interpret. It is therefore desirable to conceive approaches
to separate the composite X-ray image into individual X-
ray images containing content pertaining to one side only, in
order to improve the utility of X-ray images in studying and
conserving artworks.

Fig. 15. Comparison of different ablation studies on area 1. Rows 1 to 6
correspond to the results yielded by Study I, Study II, Study III, Study IV,
Study V, and our proposed method, respectively. Columns 1 and 2 correspond
to the reconstructed X-ray images, Columns 3 and 4 correspond to the
reconstructed and true mixed X-ray images, and Column 5 corresponds to
the error maps.

This paper proposes a new approach to X-ray image sep-
aration. By leveraging sparsity-driven data models, sparsity-
driven data processing, and algorithm unrolling techniques,
we have derived a self-supervised learning approach based
on the use of “connected” auto-encoders that extract sparse
features from available side information, i.e. RGB images of
the front and back of the artwork along with sparse features
of the mixed X-ray image in order to reproduce both of
the original RGB images and regenerate the mixed X-ray
image. This approach allows image separation without the
need for labelled data. A composite loss function is introduced
to guide the training of the connected auto-encoders. On
the basis of a number of quantitative metrics and qualitative
visual assessment the approach outperforms the state-of-the-art
separation algorithms, as verified by side-by-side experiments
on images from a number of paintings. It should however be
noted that with no absolute ground truth images available,
assessing performance remains challenging and there are some
details where the method in [57] possibly performs better.
The model underlying the proposed method is however more
physically meaningful than previous models, being based on
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(a) (b)

(c) (d) (e)

Fig. 16. Images used in the failure case (small areas of Lady Elizabeth
Thimbelby and Dorothy, Viscountess Andover shown in Fig. 5). (a). First RGB
image. (b). Second RGB image. (c). X-ray image corresponding to the first
RGB image. (d). X-ray image corresponding to the second RGB image. (e).
Synthetically mixed X-ray image.

(a) (b)

Fig. 17. Separation results of the failure case. (a). First individual separated
X-ray image. (b). Second individual separated X-ray image.

the exponential attenuation of X-rays as they pass through
materials.

The proposed method is robust, having successfully sepa-
rated several areas of real X-ray image data from a double-
sided panel of the Ghent Altarpiece. Importantly, the results
from this image separation also maintain features of the
support, such as wood grain and canvas weave, that are not
readily apparent in the RGB images used as side information.
In the future it will be important to further assess this image
separation approach on more challenging sets of X-ray imag-
ing data, such as those with large structural components or
other features of interest not apparent at the surface of the
painting.
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