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Abstract

Rare diseases collectively exact a high toll on society due to their sheer number
and overall prevalence. Their heterogeneity, diversity, and nature pose daunt-
ing clinical challenges for both management and treatment. In this review, we
discuss recent advances in clinical applications of gene therapy for rare diseases,
focusing on a variety of viral and non-viral strategies. The use of adeno-associated
virus (AAV) vectors is discussed in the context of Luxturna, licenced for the treat-
ment of RPE65 deficiency in the retinal epithelium. Imlygic, a herpes virus vector
licenced for the treatment of refractory metastatic melanoma, will be an example
of oncolytic vectors developed against rare cancers. Yescarta and Kymriah will
showcase the use of retrovirus and lentivirus vectors in the autologous ex vivo
production of chimeric antigen receptor T cells (CAR-T), licenced for the treat-
ment of refractory leukaemias and lymphomas. Similar retroviral and lentiviral
technology can be applied to autologous haematopoietic stem cells, exemplified
by Strimvelis and Zynteglo, licenced treatments for adenosine deaminase-severe
combined immunodeficiency (ADA-SCID) and f-thalassaemia respectively.
Antisense oligonucleotide technologies will be highlighted through Onpattro
and Tegsedi, RNA interference drugs licenced for familial transthyretin (TTR)
amyloidosis, and Spinraza, a splice-switching treatment for spinal muscular at-
rophy (SMA). An initial comparison of the effectiveness of AAV and oligonu-
cleotide therapies in SMA is possible with Zolgensma, an AAV serotype 9 vector,
and Spinraza. Through these examples of marketed gene therapies and gene cell
therapies, we will discuss the expanding applications of such novel technologies
to previously intractable rare diseases.
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1 | INTRODUCTION

This review outlines current gene therapy strategies
to treat rare diseases (RDs). In-depth analysis or a full
overview of the RD field is beyond our scope, but other
reviews are available.' Though definitions for RDs
vary, the defining factor is low prevalence, typically
<0.05%." There are nearly 10,000 RDs that cumulatively
affect over 5% of the global population, about 400 mil-
lion people, thus exacting a high global health burden.*
Their phenotype spectrum is extremely diverse, ranging
from mild, for example, Inherited Macroglossia,s‘6 to
severe, for example, Huntington's chorea”® or adenos-
ine deaminase—severe combined immunodeficiency
(ADA-SCID).”® Approx. 80% of RDs involve genetic
alterations,'’ and typically for each disease, there exist
multiple different causative mutations with important
implications for disease management. RDs also include
some infectious diseases, such as Babesiosis, '3 a tick-
borne infection.

The healthcare cost for RDs is high; they can be
chronic, often have devastating consequences and ef-
fective treatments are lacking, typically translating into
extensive and expensive symptomatic management, in-
cluding hospitalization. Undiagnosed RDs compound
the problem. Without underlying cause identification,
managing patient symptoms is inefficient and ineffective,
worsening outcomes and increasing healthcare resource
consumption.'*® Cumulatively, in developed countries
RDs account for ~10% of total direct healthcare spending
for a patient population of 5%-7%."7"*

Research and development for disease treatments are
expensive and protracted, regardless of patient numbers.
For common diseases with a patient base of millions, they
deliver value and can be funded largely by the patients
themselves directly or indirectly. This is not the case for
RDs whose patient base typically ranges from a few thou-
sands to a few hundred thousand but can be as low as a
single patient. Treatment development for RDs may not
be commercially viable, but the suffering and high health-
care costs imposed by RDs, make it worthwhile for gov-
ernments to step in. Initiatives such as the orphan drug
designation status'*~*! have been instrumental in incentiv-
izing pharmaceutical companies and spurring innovation.

As a group, the nature of RDs largely precludes small
molecule therapeutics; functions of aberrant or miss-
ing genes are not readily replaced by other molecules.
Successes, such as Imatinib for acute lymphoblastic leu-
kaemia (ALL) are exceptions.** Biologic therapeutics such
as protein supplementation can offer solutions but often
fail to fully restore homeostatic balance, offering only

partial symptom relief. Moreover, the development of one
biologic agent benefits only modestly from work done on
previous agents and their applicability is not universal.
Haemophilia A,*>** affects just one protein and is effec-
tively treated with recombinant Factor VIII. This is not
the case for 47XXY (occasionally also 48XXYY) Klinefelter
syndrome,”* a congenital X and Y chromosome dupli-
cation, which profoundly impacts global gene expression
patterns. Its correction is beyond current technological
capabilities leaving symptomatic management as the only
option.

By contrast, nucleic-acid-based therapies are ex-
ceptionally well-suited to treat RDs, because (i) the
nucleic-acid payload is interchangeable, so platform
and delivery developments can benefit many different
disease areas; and (ii) the internal homeostatic balance
is more effectively restored, either permanently or tran-
siently depending on the technology used, to confer
greater protection against the disease-inflicted damage.
In brief, gene therapy promises more effective treat-
ments and a much more efficient therapeutic discovery
process.

Here, we discuss current clinical development and
practice of gene therapy for RDs. We focus almost exclu-
sively on treatments that have received regulatory ap-
proval and are being used in people affected, contrasting
them to conventional therapeutics and illustrating the
wider applicability of their platforms.

Originally envisaged as alleviating or curing disease
by correcting defective genes, gene therapy has evolved to
encompass several therapeutic interventions (Figure 1).
Genetic defects can cause disease by abolishing, reducing
or increasing the expression of one or more proteins, or
by creating novel proteins with altered functions (gain-
of-function). The scale of these defects varies widely
from point mutations to multi-nucleotide deletions or
insertions, gene copy number variation and karyotypic
alterations. Current technology limits gene therapy to
individual gene defects, but recent advances have the po-
tential to correct larger scale abnormalities. To facilitate
our study of the subject, we will divide our discussion of
successful clinical applications of gene therapy into the
following broad categories:

1. Direct modification of somatic cell DNA in vivo.

2. Modification of DNA in differentiated somatic cells,
prior to reimplantation.

3. Modification of DNA in stem cells, prior to
reimplantation.

4. Manipulation of post-transcriptional RNA processing
and translation with nucleic acid technology.
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FIGURE 1 The expanding Gene Therapy field. Originally gene therapy was envisioned as the in situ modification of genetic information

of cells within tissues. The field has evolved beyond that encompassing more aspects of nucleic acid technology, particularly oligonucleotide

technology, which aims to modify gene expression, without necessarily changing the cell's genetic information. The modification of a

patient's cells ex vivo, outside the body prior to reimplantation has proven to be a successful clinical strategy. Although recent technological

advancements have now enabled mitochondrial and germ line or embryonic cell gene therapy, these approaches are not yet being used due

to safety and ethical issues.

2 | DIRECT MODIFICATION OF
SOMATIC CELL DNA IN VIVO

2.1 | Gene supplementation in somatic
and post-mitotic tissues: Luxturna AAV-
based gene supplementation treatment for
LCA2

The absence of a functional copy of a gene, key to the
function of a highly differentiated tissue (e.g. lung or
eye) is a common cause of RDs. Such cases lend them-
selves to direct addition of a functional gene copy to
cells of the target tissue. This is gene supplementation:
delivery of DNA containing the gene of interest to the
nucleus, while ensuring its expression and persistence
therein (Figure 2). Viruses can be engineered into pow-
erful gene supplementation platforms. The basic prem-
ise is to create a custom viral genome with the gene of
interest replacing viral genes and artificially package
it into virions. These virions can transduce cells and
deliver the target gene but cannot replicate or cause
disease. As an example, we shall look at the recent suc-
cessful clinical use of viral vector technology in inher-
ited retinal dystrophies.

The retinal pigment epithelium-specific 65-kDa pro-
tein (RPE65) is an enzyme critical for the regeneration
of 11-cis-retinal during the visual cycle*”*® (Figure 3).
Without RPE65, 11-cis-retinal is depleted, leaving the
photoreceptors unable to operate, while other interme-
diates in the metabolic pathway build up to potentially
toxic levels. RPE65 mutations cause a spectrum of inher-
ited retinal dystrophies, which result in blindness at birth
or very early childhood.””*® The most common pheno-
types are Leber's Congenital Amaurosis®*° and Retinitis
Pigmentosa,®’ but other rarer phenotypes are also possible
depending on the RPE65 genetic defect.”®

Replacement of RPE65 function in the patient's eye
cannot currently be achieved by means other than gene
therapy and is an attractive gene therapy target (see
Figure 3). An intense research and development effort cul-
minated in the development of Voretigene neparvovec, an
adeno-associated virus (AAV) RPE65 gene replacement
platform.**" In 2017, it was approved by the US Food and
Drug Administration (FDA), under the commercial name
Luxturna for the treatment of type 2 Leber's Congenital
Amaurosis (LCA2).%®

Adeno-associated virus is a non-pathogenic com-
mensal Parvovirus,**™*' whose biology makes it suitable
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FIGURE 2 Common gene supplementation strategies.

(A) A gene of interest (GoI) can be incorporated into a
chromosomal break, which may disrupt an existing gene, as the
insertion point may be random. Examples include integrating

viral vectors (RV, retrovirus vector; LV, lentivirus vector) and
transposons. (B) Persistence of the new genetic material as an
extrachromosomal element. Adeno-associated virus (AAV),
adenovirus (Ad) and integration-deficient lentivirus vectors
(IDLVs) are common examples. Without matrix-attachment region
and sequences directing replication, the extrachromosomal element
will be diluted out through cell division. (C) Homology-dependent
repair (HDR) involves the targeted replacement of a host sequence.
It is the safest method, yet also the hardest to harness.

as a gene therapy platform (Figure 4). It is unable to exit
its latent stage and begin its lytic cycle spontaneously,
without superinfection by another virus.**! The natu-
ral AAV genome is capable of preferential site-specific
integration into the host genome at chromosome 19, but
it can also maintain itself for long periods of time in the
cell nucleus episomally (as an extra-chromosomal ele-
ment).**™*® There are 12 different natural AAV variants
in humans (referred to as serotypes), each with a unique
type of capsid which controls their tropism,***’ that is,
the type of cells it can infect. Collectively, these vari-
ants confer upon AAV a very wide tropism, which can
be further extended using non-human and genetically
engineered variants.*’

An AAV vector is created by flanking a transgene ex-
pression cassette capable of producing the transcript of
interest with viral sequences called inverted terminal re-
peats (ITRs).* The ITRs allow the viral structural proteins
to package the transgene cassette into virions. These en-
gineered virions are typically produced by the expression
of the ITR-transgene cassette in cells that are also made
to express the viral structural genes, from an expression
vector rather than the viral backbone. Supplying the struc-
tural genes in trans, with only the ITR-transgene available

as the genome, allows packaging of the ITR-transgene,
without including any of the structural genes in the vi-
rion and therefore with a much lower risk of producing
live virus in the process. By removing the structural genes,
AAV vectors can transduce to transmit the transgene, but
cannot replicate and create new virions. Typically, the
genes needed for site-specific integration of the AAV ge-
nome are not supplied during packaging and are not pres-
ent in the vector. AAV vectors, therefore, lack the capacity
for site-specific integration and rely on episomal mainte-
nance, substantially reducing their potential genotoxicity.
The downside of episomal maintenance is rapid loss of
the viral genome in replicating cells, limiting the utility
of AAV to somatic post-mitotic cells.*” An important con-
straint of AAV vectors is packaging capacity. AAV pack-
aging has a size limit of approximately 5kbp, this being
at the low end of what viral vector systems can offer (i.e.
lentiviral vectors can carry 8 kb inserts, and high-capacity
adenoviral vectors can include 37kb). Considering all the
elements (e.g. promoters, enhancers, regulatory domains)
that need to be included, this is an important limitation.
This size limitation is particularly salient for a second gen-
eration of AAV vectors that use the self-complementary
strategy, but we will discuss that along with an example
of a self-complementary AAV vector in Section 5.3. A key
advantage of AAV vector systems is serotype switching,
to alter vector tropism.**%4° Serotype switching involves
packaging the vector with the capsid of the AAV variant
most efficient at transducing the target cell population.

Until very recently LCA2 was both incurable and un-
treatable. The approval of Luxturna has brought new
hope, not just for LCA2 but also for a host of other previ-
ously incurable retinopathies. Luxturna is an AAV2-based
recombinant, non-integrating vector designed to deliver
the RPE65 gene (Figure 5). In clinical trials, Luxturna was
administered via subretinal injection into both eyes with
a gap of 6-18days.***>"" Patients treated with Luxturna
showed a strong and durable improvement in visual acu-
ity 1year after treatment. The visual field and the ability
to perceive light also showed substantial improvements.
Remarkably, patients from earlier phase 1 and 2 trials re-
tained most of this improvement for 3 years or more. Such
changes can have enormous effects on the quality of life of
affected people, taking them from near blindness to par-
tial sight.

The success of Luxturna has validated an entirely
new therapeutic avenue for congenital retinopathies and
other genetic afflictions of the eyes. Indeed, RPE65 mu-
tations account for only a small proportion of inherited
retinopathies. Luxturna inspired an explosion in clini-
cal development for gene therapy products targeting the
eye.** Outcomes should start filtering through in the mid
to late 2020s.
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FIGURE 3 The visual cycle in rod cells. The optical signal is generated by the opsin proteins with the help of 11-cis retinal (RAL),

which absorbs light, changes to all-trans retinal and in the process activates opsin. All-trans retinal is no longer photosensitive and needs

to be converted back to 11-cis RAL. This conversion is not carried out by the rod cells themselves but by the supporting retinal pigment

epithelium (RPE). Trans-RAL is released from opsin and since it is membrane permeable it is transported with the help of special carrier

proteins (interphotoreceptor retinoid-binding protein, IRBP) in the extracellular matrix to the RPE, where a series of specialized enzymes

catalyse the conversion. The 11-cis-retinal product is transported back to the rod cells. Metabolic defects in the RPE enzymes block the

conversion of 11-cis retinal and lead to accumulation of various intermediates such as retinol (ROL) esters, which can reach toxic levels.

External supply of 11-cis retinal and removal of the intermediates via the blood is not sufficient to maintain vision.

2.2 | Gene therapy for solid tumours:
Imlygic and HSV gene supplementation
for melanoma

Cancer is a genetic disease, whose extreme heterogeneity
makes it a virtual microcosm for the RD field. Collectively
cancer is common, but with so many different cancers, in-
dividual types can be rare. The highly variable ontogenesis
and resistance to conventional treatments means person-
alized medicine is very challenging and yet also a key pri-
ority. Gene therapy offers an attractive proposition: taking
advantage of specific defects within a particular cancer
to create engineered viral vectors selectively toxic to that
cancer. The technology can then be readily repurposed to
target other cancer types.

Melanoma is the fifth most common cancer in the
United Kingdom, with an incidence of approximately
25 per 100,000.%° It is very aggressive, with in situ mela-
noma quickly progressing to metastatic disease, at which
point survival rates drop precipitously.50 Talimogene
laherparepvec (Imlygic) is a licenced herpes simplex vi-
rus-1 (HSV1) gene therapy treatment for melanoma.’">
The lifecycle of herpes viruses is illustrated in Figure 6.

Herpes viruses rely on key virulence factors that disrupt
the interferon I pathway®® and antigen presentation to
evade immunity™ and cause disease (Figure 6). In can-
cer, particularly melanoma, the same processes are often
defective. Imlygic lacks these virulence factors, crippling
its ability to infect normal cells, but leaving cancer cells
highly vulnerable (Figure 7).>> Two additional modifi-
cations enhance Imlygic's anti-cancer potency: the virus
expresses granulocyte-macrophage colony-stimulating
factor (GM-CSF) during replication, plus is unable to
undergo lysogeny, immediately activating the lethal lytic
cycle (Figure 7).°%

Imlygic performed well in clinical trials against stage
III-IV melanoma, refractory to surgery.”®> It increased
the proportion of patients achieving durable disease re-
mission, increasing disease-free survival at 60 months by
50%. Although Imlygic was ineffective against late-stage
IV melanoma, it more than doubled overall survival in
stage IIIB/B and IIIB-IVM1. Remarkably, almost all pa-
tients achieving complete remission remained disease-
free at the 5-year follow-up. In addition, it was found
that Imlygic shows substantial synergy with checkpoint
inhibitors.5¢!
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FIGURE 4 The lifecycle of adeno-associated virus (AAV). AAV enters the cells via receptor-mediated endocytosis and then disrupts the
endosome to escape into the cytoplasm. The capsid disassembles and simultaneously passes the viral genome onto nuclear pores facilitating
nuclear entry. In the nucleus, the AAV genome, which is single-stranded, makes use of the inverted terminal repeats (ITRs) to become
double-stranded. In the absence of a concomitant helper virus, AAV goes dormant, preferentially integrating into the MBS85 locus on
Chromosome 19 in a site-specific manner that requires the AAVS1 genomic sequence. Superinfection with a helper virus reactivates AAV,

allowing it to reproduce its genome and express its lytic stage proteins. Lysis of the cell by the helper virus helps AAV escape the cell.

3 | MODIFICATION OF
DNA IN DIFFERENTIATED
SOMATIC CELLS, PRIOR TO
REIMPLANTATION

3.1 | Exvivo gene therapy benefits and
challenges

Ex vivo gene therapy is the genetic modification of cells
outside the body, followed by transplantation. These cells
could be differentiated somatic cells or stem/progeni-
tor cells.®” The main advantages of this ex vivo approach
include the selective targeting of the cell population of
interest, the avoidance of immune defences and the im-
plementation of quality control systems before the geneti-
cally modified cells are reimplanted. In this section, we
will focus on differentiated somatic cells that retain suffi-
cient replicative capacity to allow extraction, modification
outside the body and re-implantation.

3.2 | Retroviral vectors for ex vivo
gene therapy: chimeric antigen receptor
(CAR) T cells

Retroviruses are enveloped single-stranded RNA viruses,
whose life cycle involves converting their RNA genome
into double-stranded DNA and stably integrating it into
the host genome.®*"® Their RNA-containing capsid is sur-
rounded by a lipid bilayer derived from the host cell plasma
membrane and containing the envelope protein, a trans-
membrane host cell invasion factor. Gammaretroviruses®
and Lentiviruses®’ are most used as viral vectors. Figure 8
shows a brief summary of the retroviral/lentiviral life
cycle. Retroviruses use special sequences called long termi-
nal repeats (LTRs) to direct packaging of their genome into
virions.®*®” The LTRs contain signals facilitating several
steps in the virus life cycle and act as powerful promoters.
Retroviral vectors are made from an LTR-flanked transgene
cassette by supplying the virus structural proteins in trans.
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FIGURE 5 Luxturna vector design and treatment protocol. Luxturna is produced by packaging an expression cassette for RPE65 into

an AAV2 capsid. The RPE65 vector virions are harvested from cells transfected with the relevant plasmids, purified and a high-titre vector

preparation is injected directly into the sub-retinal space. The vector will diffuse outwards and insert the gene into a large region of the

retinal pigment epithelium, creating a new source of 11-cis-retinal. The transcellular nature of the 11-cis-retinal cycle allows the effects to

spread more widely throughout the retina. The cassette design contains the genomic RPE65 sequence with all three exons and two introns.

Efficient high-level expression is ensured by an artificial promoter/enhancer pair created by joining the chicken p-Actin promoter with the

cytomegalovirus (CMV) enhancer and an artificial poly-adenylation sequence. The cassette is flanked by the AAV2 ITR sequences.

Retrovirus vectors are thus used to directly insert trans-
genes into the host genome. Although integration is pro-
miscuous, it is not random and integration patterns have
been reported. For example, HIV prefers active transcrip-
tional units but integrates at similar frequencies across the
gene.®® Although the promiscuity of the integration is po-
tentially problematic, it also ensures that the payload will
be inserted in an area of active chromatin. Lentiviruses
offer an additional advantage over other retroviruses.
They can translocate their genome across the intact nu-
clear membrane and do not need to wait for cell division
to access the host genome for integration. Lentivirus vec-
tors can thus transduce quiescent cells.”’

Acute lymphoblastic leukaemia (ALL) is a malignancy
of the lymphocyte progenitor cells that primarily affects
paediatric patients.” It is associated with a range of chro-
mosomal translocations in key oncogenes, such as PAX5
and TCF3 and, in some cases, gain of function mutants,
such as the BCR-ABL1 (Philadelphia translocation) and
ETV6-RUNXI rearrangements.””’* The incidence of ALL
is estimated at 10-20 cases per million.”” Unlike many
other inherited cancers, ALL develops early in life mak-
ing it one of the most common paediatric cancers. B-cell

precursor malignancies account for the bulk of ALL.
Advances in chemotherapy and the understanding of the
signalling networks that are disrupted by mutations in
ALL, have led to the development of relatively effective
chemotherapy regimens,”>””> but unfortunately, when pa-
tients relapse after treatment or even worse when initial
responses are poor, the prognosis is typically bleak.”®””

Non-Hodgkin lymphoma (NHL) is one of the more
common lymphoid tissue-derived cancers affecting the
head and neck.”®” It includes a highly heterogeneous
group of malignancies that collectively have an incidence
of approximately 1 in 10,000 in the European Union.
Diffuse Large B-cell Lymphoma (DLBCL) accounts for
between a quarter and a third of NHL incidence and it is
highly aggressive.**®" Familial forms of NHL have been
characterized.**** Like ALL, effective treatment options
are generally available for NHL, but refractory DLBCL has
a very poor prognosis.*

The development of artificial T-cell receptors (TCRs)
which target CD19, a surface marker of B-cell precursors
that is strongly expressed in most B-cell lymphomas,***
was a revolutionary advance (Figure 9). These chimeric re-
ceptors are constructed by joining together the signalling
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FIGURE 6 Herpes virus lifecycle. Herpes enter the cell by receptor-mediated fusion of their envelope with the plasma membrane. The

viral genome is injected into the nucleus, where it circularizes to facilitate simultaneous replication (through a rolling circle mechanism)

and viral gene transcription. The linear viral genome copies are exported to the cytoplasm and interact with newly synthesized capsid

proteins. The complete virion is internalized into vesicles within the endoplasmic reticulum (ER) guided by the viral envelope protein that is

inserted into the ER membrane. The enveloped virus is trafficked within the ER into the endosomes and eventually released by exocytosis.

Two viral proteins are important in blocking host responses against the virus. ICP47 blocks the loading of virion peptides onto MHC class I,

hindering cytotoxic T-cell recognition. ICP34.5 blocks protein kinase R (PKR), crippling the interferon pathway response to the virus.

apparatus of the TCR with parts taken from costimulatory
molecules and a binding site against the target protein, in
this case CD19.%% Anti-CD19 CARs target T-cells artifi-
cially to B cells. The CAR signalling steps are distinct from
actual TCR signalling,”’™° vary depending on the type
of costimulatory molecule used, and the immunological
synapse formed is atypical. Nevertheless, the signals pro-
duced are sufficient to emulate T-cell receptor signalling,
enabling the modified T-cells to attack and destroy targets
expressing CD19 while bypassing the human leucocyte
antigen (HLA) restriction.

Autologous CD19-CAR T-cells turned out to be
highly effective in treating refractory NHL and ALL.
The first two products approved for this purpose were

tisagenlecleucel (Kymriah) and axicabtagene ciloleucel
(Yescarta). Kymriah®® is a preparation of CD19-CAR
engineered T-cells using the 4-1BB co-stimulatory domain
and the CD8alpha transmembrane and hinge region. CD3-
positive cells (CD4 and CD8 T-cells) isolated from autolo-
gous blood are transduced, using a lentiviral vector, with
a CD19-CAR transgene driven by the Elongation Factor-1
promoter.*® After selection and expansion, the CAR-T
cells are reinfused into patients that have undergone lym-
phocyte depletion treatment.® Yescarta®*° is prepared
in a similar manner, except it uses the CD28 transmem-
brane/hinge region and co-stimulatory domain instead of
CD8alpha/4-1BB. The vector is Retroviral and driven by
the mouse stem cell virus (MSCV) promoter.”
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FIGURE 7 Talimogene laherparepvec (Imlygic) overall design.
The herpes genome has two long inverted repeats (terminal and
internal, TRL and IRL) and two inverted short repeats (IRS and
TRS). It also has a long unique segment (UL) and short unique
segment (US). In Imlygic, the promoters of the lytic cycle genes

are altered for immediate activation, preventing lysogeny, ICP34.5
is replaced with GM-CSF and ICP47 is deleted. Imlygic can only
replicate effectively in cancer cells, where the interferon pathway
and antigen presentation are compromised. Replication lyses the
cancer cells and produces GM-CSF, enhancing immune destruction
of the tumour.
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Kymriah is licenced for the treatment of refractory
ALL and NHL/DLBCL, while Yescarta is only licenced for
refractory NHL/DLBCL.'*>'°! Both help drive substantial
remission rates in excess of 50%, whereas conventional
treatments are largely ineffective.**® They can also have
serious side-effects.'?*'% Cytokine release syndrome is a
potentially life-threatening complication capable of harm-
ing several major organs, including the nervous system
via the IEC (immune effector cell) associated neurological
syndrome or ICANS. A second distinct complication of
CD19 cell elimination is predictably beta-cell aplasia and
a collapse in blood immunoglobulin levels. This can po-
tentially predispose the patient to infections and must be
managed to mitigate the risks.

The success of CAR-T technology in blood cancers
has spearheaded substantial research on possible applica-
tions to solid tumours, a more challenging environment.
Applications of gene therapy to cancer now account
for around half the gene therapy treatments under
development.'?’
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FIGURE 8 Retrovirus life cycle. Retroviruses and lentiviruses enter the cell via receptor-mediated fusion of their envelope with the cell
membrane. In the cytoplasm, the viral capsid disassembles and genomic RNA (gRNA) is converted to a double-stranded (dsDNA) genome
by reverse transcriptase (RT). The dsDNA genome is either transported through the nuclear pores by viral proteins (lentivirus) or enters

the nucleus during cell division (gamma-retrovirus). In the nucleus, cyclization and episomal persistence or direct integration into the host
chromosomes occur. Integrated dsDNA produces both viral transcripts and the gRNA genome. The viral particles are assembled in the
cytoplasm. The envelope protein, which is inserted in the plasma membrane, directs budding of the assembled nucleocapsid out of the cell

and acquisition of the viral membrane envelope.
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FIGURE 9 The chimeric antigen receptor (CAR) design. The
artificial T-cell receptor (TCR) is made in a modular manner by
combining the following parts: the CD3( signalling domain from
the TCR, a transmembrane and hinge region and co-stimulatory
domains from receptors that are needed for TCR signalling, such
as CD8, CD28 and 4-1BB (CD137), and a single chain variable
fragment (scFv) targeted against the protein of interest. This
creates a receptor capable of generating a full TCR signal upon
binding of the scFv target. The CAR is thought to become activated
by dimerization or multimerization allowing cross-interaction
between the signalling domain of one CAR molecule with the
co-stimulatory domain of another. This drives CAR activation,
creating a CD3 signal and activating other accessory receptors,
particularly the IL2 receptor.

4 | MODIFICATION OF DNA
IN STEM CELLS, PRIORTO
REIMPLANTATION

An alternative ex vivo approach targets stem/progenitor
cells,®? which underpin the natural maintenance of or-
gans. This strategy is particularly suited to correction of
genetic defects of the blood, which builds on the clinical
experience of bone marrow transplantation.'®**!!

To illustrate the effectiveness of this approach, we will
look at two clinically approved treatments for genetic dis-
eases affecting blood cells, Strimvelis for ADA-SCID and
Zynteglo for p-thalassaemia.

4.1 | Severe combined
immunodeficiency: Strimvelis HSC
gene therapy

Severe combined immunodeficiency is a heterogenous
group of genetic disorders that cause complete or nearly
complete impairment of T-lymphocyte function, com-
bined with primary or secondary dysfunction in other im-
mune cell types.''? The SCID spectrum is very rare, with
a prevalence of approximately 1 in 60,000 live births.'"?
The complexity of T-lymphocyte ontogenesis explains the

extensive genetic heterogeneity of SCID. There are cur-
rently 16 known causative genes and over 20 separate de-
fects."**'> The most common mutations are in X-linked
IL2 receptor components (SCID-X1).

Adenosine deaminase-severe combined immunodefi-
ciency is another common form and one of the most dam-
aging.'® The Adenosine Deaminase enzyme is essential
for the purine salvage pathway that regulates the purine
nucleotide balance. ADA activity is important in prevent-
ing adenine nucleotide accumulation. Lack of ADA results
in a marked imbalance in the dNTP pool, compromising
DNA polymerase function.'*” " In rapidly or continu-
ously proliferating cells the result is genotoxic shock and
apoptosis,'?*'?! and the lymphoid cell differentiation path-
way is particularly sensitive to ADA deficiency.''®!'**1%*
ADA deficiency also impacts cAMP synthesis, disrupting
general cell signalling and giving rise to a more diffuse pa-
thology, in most other tissues including the brain.'**

Adenosine deaminase-severe combined immunodefi-
ciency can be treated by allogeneic haematopoietic stem
cell (HSC) transplantation'®'** and PEGylated ADA (PEG-
ADA).'*!?® PEG-ADA has a long plasma half-life and can
help reduce intracellular adenine build-up, by keeping ex-
tracellular levels low and facilitating transporter-mediated
efflux, alleviating some of the worst symptoms.'” Bone
marrow transplantation is limited by the availability of
HLA-matched donors and by the risk of graft-versus-host
disease (GVHD) with allogeneic donors.'*’

A gene therapy option for ADA-SCID has been li-
cenced by the European Medicines Agency (EMA) in the
European Union (EU). Strimvelis is a preparation of autol-
ogous HSCs, engineered to express functional ADA.'*13!
CD34-positive HSC cells are isolated from the person af-
fected and expanded using a cocktail of soluble mediators:
FLT3L, KITL/SCF, THPO, IL3, and IL6 (FKT36). In this
proliferative state, the cells are transduced with a func-
tional ADA copy using an amphotropic Murine Moloney
Leukaemia virus vector,>> whose 4070A envelope gene,
targets Pit-2 and mediates efficient transduction of
HSCs.'** The transduced HSC pool is re-infused after non-
myeloablative conditioning with anti-proliferative agents
such as busulfan to suppress the proliferation of endoge-
nous HSCs.

Strimvelis has performed exceptionally well in clini-
cal trials.*""**13% A follow-up of 18 people treated with
Strimvelis at a very early age revealed that all of them
survived (follow-up 2-13years, median 7years), and they
were well enough to resume normal social interactions.
Several of the patients were able to return to school. In
those who could be evaluated ADA expression reached or
exceeded 10% normal and remained stable in all myeloid
and lymphoid cells, immune function was successfully
reconstituted and a response to antigen challenge could
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be observed. The rate of infection decreased dramati-
cally, and the recipients managed to resolve infections
in most cases. In almost all cases PEG-ADA treatment
could be discontinued. Intervention-free survival re-
mained above 80%. These results match autologous HSC
transplantation and compete very favourably with all
other treatments.

Successful reconstitution of the T-cell population does
not eliminate the complete health impact of ADA-SCID,
since it does not replace ADA function in cells of a non-
haematopoietic linage, but it effectively provides (via ex-
pression in red blood cells) a ready pool of plasma ADA
that can serve the same function as PEG-ADA. At the same
time, it eliminates the supply issues with donor-matched
HSC transplantation and the risks associated with alloge-
neic transplantation (e.g. GVHD).

4.2 | p-Thalassaemia gene therapy with
Zynteglo HSCs

Beta-thalassaemia is one of the most common genetic
anaemias.”*®'*” It is autosomal recessive, with a highly
variable distribution. Its prevalence approaches 1 in
1000 live births in areas where malaria is currently en-
demic or was endemic in the recent past but is very rare
elsewhere. Globally, prevalence is close to 1:100,000 live
births.

The disease phenotype depends on the exact genetic
defect in the HBB (adult p-globin) gene, a subunit of hae-
moglobin. Homozygous inheritance of an allele that pro-
duces no functional protein causes p-thalassaemia major
and severe life-threatening anaemia.**"*” Homozygous
inheritance of a partial loss of function mutant leads to
p-thalassaemia intermedia and milder disease.

Beta-thalassaemia has all the typical hallmarks of
anaemia3%!37 including fatigue, weakness, and palpita-
tions. The major disease also leads to muscle cachexia,
skeletal and cartilage deformities, osteoporosis and sple-
nomegaly. Regular blood transfusions can address most of
these symptoms, but they generally also cause iron over-
load, leading to heart, liver and endocrine complications.

Recently an ex vivo gene therapy approach,
Zynteglo'**'*! was licenced for the treatment of severe,
transfusion-dependent, p-thalassaemia. The patient is
treated with G-CSF and a CXCR4/SDF-1 antagonist,
which leads to substantial proliferation and mobili-
zation of HSCs from the bone marrow into the blood.
CD34-positive HSCs are collected from the blood and
transduced in the laboratory with the BB305 lentiviral
vector, which contains a mutated HBB (T87Q).14*143
The BB305 lentiviral vector has a self-inactivating de-
sign, which removes the transcriptional activity of the

LTR. It includes the entire HBB coding sequence with its
native control elements: the p-globin promoter,'** its 3’
enhancer'® and selected fragments from the upstream
locus control region,'*® facilitating high-level expres-
sion. The T87Q variant confers enhanced anti-sickling
activity and can be differentiated chromatographically,
serving as a biomarker.”’ The patient is conditioned
with myelosuppressive drugs to facilitate donor cell en-
graftment prior to infusion of the corrected HSCs.

Like Strimvelis, Zynteglo was highly successful in clin-
ical trials.”**'*! The majority of patients showed long-
lasting improvement in haemoglobin levels and were able
to stop blood transfusions. Most patients that could be
evaluated for over a year, achieved near normalization of
haemoglobin levels and blood transfusion independence.

5 | GENE THERAPY THROUGH
MANIPULATION OF POST-
TRANSCRIPTIONAL RNA
PROCESSING AND TRANSLATION

Gene expression levels can be modulated after transcrip-
tion using synthetic nucleic acid molecules able to interfere
with splicing, translation or RNA degradation, without
directly altering the cell's genetic material (Figure 10).'*
Diseases resulting from gain-of-function mutants are par-
ticularly amenable to this intervention method.

Control of RNA levels within the cell occurs through
RNA interference,"** ' which uses endogenous (e.g.
miRNA) or exogenous (e.g. siRNA) double-stranded RNA
templates, to target specific mRNA sequences for degrada-
tion. Artificially produced RNA molecules (short hairpin
RNAs, which are artificial miRNA mimics’*""*%) can be
used to hijack this system and selectively target mRNA
molecules for degradation'**'** (Figure 11).

Antisense oligonucleotides (ASO) are short nucleic
acid sequences designed to base pair with a specific RNA
target within the cell.'*® Typically, ASOs consist of mod-
ified nucleotides with increased stability, and frequently
include artificial nucleotide analogues, such as morpholi-
nos'* and locked/bridged nucleic acids.'*® ASOs can ma-
nipulate the post-transcriptional fate of mRNA in various
ways,"”’ but here we will mostly focus on RNase H target-
ing (Figure 11). Splice-switching oligonucleotides (SSO)
are designed to base pair with splicing sites, or splicing
enhancers/suppressors within a pre-mRNA sequence
and direct alternative splicing of the target gene.'>® RNA
ASOs designed to base pair with sequences within the 5’
or 3’ untranslated region (UTR) can suppress or enhance
mRNA translation.'>**%

Here, we will discuss some key examples of RNA
interference and SSO-based therapeutics that have
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FIGURE 10 Post-transcriptional control of gene expression in eukaryotic cells. The first control point is during splicing. Splicing in
eukaryotic cells is controlled by a series of splicing site elements and factors, and more than one product can be produced from the same
gene. The splicing factors expressed by the cell determine the splice variant balance. The mature RNA is further regulated by degradation.
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mechanism (RNA interference) allows the cell to fine-tune gene expression, by producing special RNA molecules (micro-RNAs or miRNA).
Splicing and RNA interference can be controlled using artificial oligonucleotides. The final control point is binding to the ribosome and

translation initiation.

recently cleared clinical trials and are now being used to
treat rare diseases. In particular, we will look at familial
transthyretin amyloidosis (FTA) and spinal muscular
atrophy (SMA).

5.1 | Familial transthyretin amyloidosis:
Onpattro RNAi and Tegsedi ASO

Familial transthyretin amyloidosis is a rare genetic disease
of the Transthyretin (TTR) gene that causes the protein to
misfold.'*""'%* The misfolded protein forms amyloids that
deposit into and damage tissues. This is a slow gradual
process, so the symptoms typically begin in adulthood.
The exact onset age is variable and correlates with disease
progression. The peripheral nervous system is particularly
vulnerable, so neuropathies are among the earlier symp-
toms, but as the disease progresses, eyes, kidney, heart,
and CNS typically become involved. FTA is eventually
fatal on average 10years after the onset of symptoms, with
a younger onset being associated with more aggressive

disease. The prognosis in patients presenting with early
cardiac involvement is extremely poor. Few patients sur-
vive for longer than 5years.

Genetically, FTA mutations are autosomal dominant,
but progression and penetrance vary depending on the
exact genetic defect.'®! Most patients are heterozygotes.
The global prevalence of FTA is of the order of 1 in
10,000,'** though clusters have been observed within cer-
tain ethnic groups or populations, such as in certain areas
of Portugal, Sweden, Japan, and West Africa,16%164

The current gold standard treatment for FTA is liver
transplantation'®'~*** since the liver is a major source of
TTR. Liver transplantation arrests the development of
polyneuropathies and slows but does not prevent progres-
sive degeneration of the eyes, heart, and kidney.

In the last few years, the FDA has approved two
oligonucleotide-based therapeutics for FTA: Patisiran
(Onpattro)165 and Inotersen (Tegsedi).166 Onpatt1r0167’168 is
a stable nucleic acid lipid particle (SNALP) formulation
containing short interfering RNA (siRNA—Figure 11)
against TTR. Onpattro is a new generation of siRNA, using
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DNA overhangs (dTdT), instead of RNA (UU), increasing
RNA resistance for a longer lasting effect. In addition,
Onpattro has most of the U and C residues methylated in
the sense strand, to promote incorporation of the siRNA
correct strand into the RISC (RNA-induced silencing com-
plex) assembly. Onpattro is designed to target the 3’ UTR
of the TTR transcript and will suppress expression of both
mutant and wild-type forms. This is desirable because
once misfolded aggregates are formed, they can induce
misfolding and deposition of even the wild-type protein.
The Onpattro SNALP's formulation'®® consists of a
1:1 mixture of cholesterol and phospholipids. The phos-
pholipids have a strong positive charge (4:1 ratio of cat-
ionic to neutral) to facilitate complex formation with
the siRNA. 5% of the cationic phospholipids used have
a PEG2000 (polyethylene glycol 2000MW) polymer at-
tached to them, creating a sheath that greatly prolongs
SNALP plasma half-life. Lipid nanoparticles in the plasma
are typically decorated by ApoE, despite the PEG sheath,
and only extravasate effectively in tissues with fenestrated
endothelium'’>'""; thus, they naturally target the liver.
After ApoE-directed internalization, charged interaction
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between the positive SNALP and negatively charged en-
dosomal membrane, mediates endosome escape, deliver-
ing the siRNA to the cytoplasm. The long SNALP half-life,
and the longevity of the primed RISC assembly, allow the
effect to persist over several days.

Onpattro is highly effective at suppressing TTR expres-
sion. During clinical trials,"®”**" it was found that ex-
pression is reduced by >70% within 5days and remains
below that threshold for at least 20days. Infusion of
Patisiran every 3weeks over 18 months halted progression
in virtually all patients that achieved sustained TTR sup-
pression. Small but significant improvements were also
seen in the polyneuropathy and cardiomyopathy aspects
of the disease. Adverse reactions to Onpattro are primarily
related to infusion of the liposomal formulation. Serious
adverse effects were rare.

Tegsedi'’>'"* is an RNaseH-dependent GAPmer ASO
formulation (Figure 11) also targeting the TTR 3'UTR.
The inner DNA core has phosphorothioate linkages'”
that make it strongly resistant to degradation but can
also cause to><icity.176'178 To mask the phosphorothioate
toxicity, the central core is flanked on either side by five

(B)
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gASO TTTTTTTTTTTTITI
DNA core
GAPmer ASO with DNA

core recognized by RNaseH

rrna LT
Rnase H

mRNA degraded l

mRNAllllllllllll”
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FIGURE 11 Oligonucleotide control of gene expression. (A) siRNAs are duplex RNA molecules made from two complementary 20-21

nt strands designed to leave 1-2 nt overhangs on the 3’ side after annealing. The Dicer protein complex processes siRNAs and incorporates

one of the strands and degrades the other based on their physical properties. Any mRNA sequence that can base pair with the chosen strand

is degraded. Artificial siRNA molecules are designed to force selection of the non-coding strand. (B) Another design is gapmer antisense

oligonucleotides (gASOs), which consist of a DNA core flanked by artificial nucleotides. The artificial nucleotides are nuclease resistant
and have a high affinity for RNA. When the gapmer ASO anneals to its target RNA, the DNA core forms a DNA/RNA heteroduplex, thus
recruiting RNaseH and marking the target RNA for degradation. The resistance of gASOs to nucleases allows for cytoplasmic persistence

and durable responses.
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FIGURE 12 Generation of self-complementary AAV vectors.
AAV variants with faster expression kinetics can be produced
through the use of a mutated ITR (blue, right), to frustrate terminal
resolution. As a result, the two strands fail to separate, leaving
them joined through the mutant ITR. The complete viral genome
is still flanked by normal ITRs, therefore it can be replicated

and packaged. Once released in the host cell the two strands can
reanneal to form the structure marked with (*). This structure does
not rely on second-strand synthesis to stabilize it within the cell
and initiate transgenic expression.

2’-O-methoxyethyl ribonucleotide residues, which are
also resistant to degradation.'” The entire 20-mer oligo-
nucleotide is complementary to the target sequence in
the TTR 3'UTR and stable enough to deliver via intra-
muscular injection of a preparation in saline, without
a liposomal formulation. The ASO makes its way into
the circulation and is actively taken up by cells in vari-
ous tissues, with the liver being a primary site. During
clinical trials,'”*'”* patients received three injections of
Inotersen in the first week, followed by weekly injections
for a period of 64weeks. At the end of the first-week
plasma TTR levels reduced by ~70% and remained at
that level for the entire 64-week period. Like Onpattro,
Tegsedi effectively halted disease progression over the
entire treatment period, albeit with variations between
different patient groups.

The ability to control gene expression levels is vital
in shutting down gain-of-function mutants. Like other
nucleic-based therapies, once the delivery method is

optimized, it can be repurposed for any payload. For ex-
ample, research into liposomal siRNA delivery paved the
way for the SARS-CoV2 mRNA vaccines, by BioNTech
and Moderna.'7*%

5.2 | Spinal muscular atrophy: Spinraza
splice-switching oligonucleotide

Spinal muscular atrophy is the most common cause of
genetic death in childhood with a prevalence of approxi-
mately 1 in 10,000 live births."®%2 It is caused by loss-
of-function mutations in the survival motor neuron 1
(SMNT) gene.'® It is autosomal recessive and the severity
of the phenotype inversely correlates with the copy num-
ber and expression level of the highly related, but only
partially functional, SMN2 gene.'®*'% SMA is a systemic
disease, due to SMN being ubiquitously expressed, but the
lower motor neurons are particularly sensitive to loss of
SMN function."®’

SMN2 differs by a few nucleotides from SMN1,'81,184188
Crucially, it is spliced differently, with 85%-90% of the
transcripts typically skipping exon 7. The truncated pro-
tein isoform is unstable and rapidly degraded. SMN2
proved to be pivotal in developing an oligonucleotide-
based therapeutic for SMA. Nusinersen (Spinraza) is an
SSO designed to prevent the excision of exon 7 from the
SMN?2 gene product, increasing the production of full-
length, stable SMN protein from it.'"®*® The 20-mer SSO
oligo is made from 2’-O-methoxyethyl (2MOE) ribo-
nucleotides,'®® which resist degradation and base-pair
more efficiently,'”! enhancing intronic splicing silenc-
er-N1 (ISS-N1) inhibition. The oligo is injected directly
into the spinal cord via lumbar puncture.’* Initially, a
small number of frequent injections are given to quickly
establish a steady state, followed by maintenance doses
that are more infrequent. In the most recent clinical
trial'* the conditioning regime is three bi-weekly doses,
followed by a maintenance regime with 4 months be-
tween doses. Spinraza has proven highly efficacious in
infantile-onset SMA (type I),'**"'**> producing dramatic
improvements in survival and motor milestone achieve-
ment, with some infants developing skills never seen
in the natural history of this disease. The incidence of
adverse events was high, but mostly related to the com-
plex spinal injection procedure in this vulnerable patient
population.

Onpattro, Tegsedi, Spinraza and other examples repre-
sent important milestones for the oligo therapeutics field,
by demonstrating that it is possible to exert sustained, ef-
fective, direct control over gene expression without stable
genetic modification.
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5.3 | A gene therapy comparison of
oligonucleotides versus viral vectors:
Spinraza versus Zolgensma

The existence of a viral vector gene therapy alternative
to Spinraza offers a unique opportunity to directly com-
pare the effectiveness of the two approaches. Zolgensma
(Onasemnogene Abeparvove(:)l%"200 is an AAV-based
gene supplementation treatment aimed at directly and
permanently restoring SMNI1 expression with a single
dose. The design of the Zolgensma expression cassette
is similar to Luxturna (Figure 5), in using the hybrid
CMV-Chicken beta actin promoter to drive the expres-
sion of SMN1 cDNA. To enhance expression, the design
incorporates an artificial intron (from SV40) and codon
optimization. The sequence of AVXS-101 (the vector for
Zolgensma) is proprietary and the exact optimizations
are not in the public domain, but the effectiveness of
this approach was documented by using a similar AAV9
platform.”*% A self-complementary design (Figure 12)
was employed, where one of the flanking ITRs was a spe-
cially engineered variant to synthesize genome dimers,
rather than monomers.*** This design is advantageous
in that it can speed up transgenic expression without the
need for DNA synthesis, a possible rate-limiting step for
single-stranded AAV vectors.

Zolgensma performed very well in clinical tri-
als,'?72%2% showing both a high response rate and sub-
stantial symptom alleviation. In the SPRINT phase 3 trial,
all 14 participants achieved the primary endpoint of sitting
unaided, while 11 and 10 out of 14 managed to stand and
walk respectively. None of the 23 untreated SMA patients
achieved these developmental milestones. Impressively,
a substantial number of children (40%-80% depend-
ing on the endpoint), reached the milestones within the
regular developmental time. Motor assessment showed
that all children improved rapidly after administration
and reached at least 80% of the normal score. Typically,
SMA children achieve on average 40% of the normal score
and their scores decline, rather than improve with age.
All children managed to avoid the need for mechanical
ventilation during the study and 13 children were spared
the need for assisted feeding. This was confirmed by
other studies, which also found that the gains were du-
rable. These results compare favourably with Spinraza.
Indeed, Bitetti et al.*® investigated children previously
treated with Spinraza and found that Zolgensma helped
the children make further gains, with the greatest bene-
fits in children that had responded less well to Spinraza.
An important factor in this improved response is likely to
be the systemic treatment provided by Zolgensma, while
Spinraza is delivered by intrathecal injection, with direct
beneficial effects expected to be restricted to the CNS.
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Although the evidence so far points to a higher efficacy
and response rate for Zolgensma compared with Spinraza,
safety concerns with the use of AAV9 use have emerged.
Two common serious adverse events have been observed,
hepatotoxicity and thrombocytopenia. Although these
adverse effects proved self-limiting in the clinical trials, a
subsequent meta-analysis*® of the clinical data confirmed
that the majority of patients show evidence of liver dam-
age, though this responded well to steroid treatment.

In 2021, Thomsen et al.*”’ reported the expression of
SMN1 in two infants that received Zolgensma but had
died due to reasons unrelated to treatment. SMNI ex-
pression was readily observed in the central nervous sys-
tem, but also in several peripheral organs, particularly
the liver where expression was 2-3 orders of magnitude
higher compared to the CNS. Although the reasons for
AAV9 vector hepatotoxicity are not fully understood,
the observation that it responded to steroid treatment
suggests that it might be related to an immune response
to the vector. Sadly, two patients recently treated with
Zolgensma have died of acute liver failure. Both deaths
occurred several weeks post-treatment, shortly after
corticosteroid taper was initiated.?®® Clinical trials with
AAV vectors for other indications have also been marred
by similar severe adverse events to those described for
Zolgensma, including death at high vector doses. While
Zolgensma has been used on more than 2300 people so
far, these findings reiterate the need for better under-
standing and control of viral vector tropism and the
associated immune response, to develop even safer
treatments.

Just as the lessons learned from Luxturna are expected
to greatly reduce the effort required to target retinopa-
thies, so will Zolgensma aid the development of other
gene therapy solutions targeting the central nervous sys-
tem,”” thereby offering further evidence for the suitability
of gene therapy to treat RDs. Moreover, as development
and production costs fall with the adoption of these meth-
ods into mainstream clinical practice, we can expect treat-
ment costs to reduce significantly from their current high
price tags.

6 | CONCLUDING REMARKS AND
FUTURE PROSPECTS

In this review, we have used specific examples of success-
ful clinical implementation to showcase what gene therapy
can achieve and how it is already helping address the chal-
lenges of treating RDs. Around 50years have passed since
gene therapy was first mooted as a possible therapeutic av-
enue, illustrating how complicated it can be to implement
anovel concept into clinical practice. Some of the licenced
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therapies fit the original mould (gene supplementation to
rescue a genetic defect), but many do not as they involve
mechanistic pathways discovered and adapted more re-
cently, such as dsRNA interference, splicing modulation
and exon skipping. Significant initial successes in treating
SCID with ex vivo gene therapies built on the accumulated
experience of allogeneic bone marrow transplantation,
showed how existing clinical practice can be instrumental
for implementation of novel technologies. Application of
gene therapies to some forms of SCID paved the way to
develop clinical gene therapies for other immunodeficien-
cies, and also additional disorders of the haematopoietic
system like p-thalassaemia, thus demonstrating how ther-
apeutic strategies can be adapted relatively quickly to dif-
ferent diseases of the same tissue. Moreover, advances in
ex vivo modification of haematopoietic cells have also led
to unforeseen successes such as CAR-T cells. A similar ex-
pansion is underway with AAV9 vectors, which can cross
the blood-brain barrier via intravascular delivery to treat
inherited diseases of the CNS, as first demonstrated with
Zolgensma for SMA."**2% For those interested in tracking
marketed gene (and cell) therapies across the world, the
International Society for Stem Cell Research maintains an
up-to-date map.210 Note, however, that this resource does
not include oligonucleotide therapies, as they are not tech-
nically considered gene therapies by FDA or Advanced
Therapeutic Medicinal Products by EMA.

The application of gene therapy technologies to the vac-
cine field has provided resounding successes in the fight
against COVID-19, with mRNA-based and adenovirus-
based formulations being developed in record time and
used to immunize a large part of the world population.
These platforms are now being explored for other applica-
tions in both vaccinology and RD therapy, with very prom-
ising prospects.

Our discussion has focused on some of the clinical suc-
cesses of gene therapy. Consequently, we have not dwelt on
other recent advances in gene therapy methods that are yet
to reach full clinical implementation. However, to conclude
our review we briefly cite some recent advances likely to
drive the field forward. These include synthetic virology,*"*
lipid nanoparticles** and membrane-active peptides®® as
key areas of intense research development. Similarly, AAV
capsid engineering to alter tropism has seen much resource
investment and is starting to deliver optimized AAV sero-
types for targeted therapies in vivo. However, to close this
review it is clear that genome editing technologies are eas-
ily the most promising therapeutic strategies for the future.
The accessible engineering of CRISPR/Cas enzymes, based
on short synthetic RNAs, has facilitated enormously the
introduction of defined genetic and epigenetic modifica-
tions in the genome***!* through a variety of approaches
including indel-mediated knockouts, homology-dependent

repair, prime editing, base editing, and epigenetic regulation
of transcription. Indeed, recent clinical trials with CRISPR
in Transthyretin Amyloidosis,*'® sickle cell disease and f-
thalassaemia®” offer very promising demonstrations of the
technology and its exciting potential for patient benefit.
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