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Trial history biases in decision-making tasks are thought to
reflect systematic updates of decision variables, therefore
their precise nature informs conclusions about underlying
heuristic strategies and learning processes. However, ran-
dom drifts in decision variables can corrupt this inference
by mimicking the signatures of systematic updates. Hence,
identifying the trial-by-trial evolution of decision variables
requires methods that can robustly account for such drifts.
Recent studies (Lak’20, Mendonça‘20) have made impor-
tant advances in this direction, by proposing a convenient
method to correct for the influence of slow drifts in deci-
sion criterion, a key decision variable. Here we apply this
correction to a variety of updating scenarios, and evalu-
ate its performance. We show that the correction fails for
a wide range of commonly assumed systematic updating
strategies, distorting one’s inference away from the veridi-
cal strategies towards a narrow subset. To address these
limitations, we propose a model-based approach for dis-
ambiguating systematic updates from random drifts, and
demonstrate its success on real and synthetic datasets. We
show that this approach accurately recovers the latent tra-

Abbreviations: MF: model-free

1

ar
X

iv
:2

20
5.

10
91

2v
1 

 [
q-

bi
o.

N
C

] 
 2

2 
M

ay
 2

02
2



2 Gupta and Brody

jectory of drifts in decision criterion as well as the gener-
ative systematic updates from simulated data. Our results
offer recommendations for methods to account for the in-
teractions between history biases and slow drifts, and high-
light the advantages of incorporating assumptions about
the generative process directly intomodels of decision-making.
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Nonstationarities

1 | INTRODUCTION

Animals’ choices in perceptual decision-making tasks often display a dependence on the recent history of stimuli,
choices, and outcomes. This dependence is thought to arise from systematic updating of decision variables from
trial to trial. These updates may reflect ongoing learning [1], for instance an agent learning to perform a perceptual
categorization task might update its beliefs about the prior probabilities of the different categories [2, 3], the category
boundary separating them [4, 5], or the values of the available actions [6, 7, 8]. Alternatively, systematic updates
may reflect heuristic strategies adopted by decision-makers due to resource constraints or mismatched objectives
[9, 10, 11]. For example, a reward-seeking agent might be prone to repeating rewarded actions and avoid unrewarded
ones, i.e. follow a win-stay lose-switch strategy, similarly high costs of motor switching may encourage an agent to
repeat previously chosen actions, yielding stay biases. These learning processes and heuristic strategies are often
identified by the distinct patterns of choices they predict.

In addition to these systematic updates, decision variables may drift randomly from trial to trial [12, 7, 13, 14,
15, 16, 17]. These “unsystematic” drifts may arise from history-independent fluctuations in internal states such as
attention, arousal and motivation, or from other unknown sources of noise [18]. However, despite their history inde-
pendence, unsystematic drifts may nevertheless produce correlations in choices that obscure the effect of systematic
updates and thereby complicate their inference [7, 19].

An important recent study [7] considered the challenge posed by unsystematic drifts in one key decision variable,
the decision criterion, i.e. the threshold for choosing one alternative over the other. The authors showed that a slow
drift in criterion produces an apparent history dependence that mimics the signatures of updates from a systematic
learning process. Hence, in order to remove the influence of these slow drifts, they proposed a model-free (MF) cor-
rection [7], similar in spirit to an approach employed by [5]. They reasoned that slow drifts would produce correlations
in choices across multiple successive trials. Thus behavior in a given trial would be correlated with both immediately
previous and immediately future trials, giving the appearance that experience in the current trial would not just in-
fluence future choices (a causal process), but would also spuriously influence past choices (an acausal, therefore not
biologically plausible process). Hence, they posited that the effect of slow drifts of decision criterion can be removed
by subtracting the influence of the current trial on past choice (the acausal component) from the influence of the current trial
on future choice. The simplicity of this correction is appealing and has already invited other authors to use it on their
datasets. Indeed, recently the International Brain Laboratory reported that their dataset displayed win-stay lose-stay
behavior, but when they accounted for possible slow drifts using the MF correction, they revealed instead a win-stay
lose-switch strategy [20].
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While [7] demonstrated convincingly that theMF correction can remove the influence of random slow drifts, they
did so in the absence of any systematic updates of decision-variables. It remains to be shown if the MF correction is
robust to the presence of learning or other heuristic strategies. If the MF correction indiscriminately removes corre-
lations across choices, including those expected from systematic trial-by-trial updating of decision-relevant variables,
that would considerably undermine its usefulness.

Here, using simulations we show that the proposed model-free (MF) correction fails in the presence of systematic
trial-by-trial updating, yielding potentially misleading conclusions about the nature of underlying behavioral strate-
gies. We show that the correction erroneously removes the effect of trial-by-trial updates that produce correlations
across choices, thereby misidentifying a variety of update strategies as belonging to a narrow subspace of win-stay
lose-switch or win-switch lose-stay biases. We advocate for an alternate, model-based approach for disambiguating
systematic updates from random drifts, and demonstrate the success of this approach by fitting synthetic data. Fi-
nally, we apply the two approaches to real data from rodents [21] and demonstrate that whereas the model-based
approach proposed here preserves individual variability in systematic history biases across animals (while removing
the influence of slow drifts), the previous model-free approach collapses this variability into a small subset of appar-
ent strategies. Our results highlight the importance of evaluating assumptions underlying model-free corrections, and
offer arguments for incorporating assumptions about the generative process directly into model fitting.

2 | RESULTS

2.1 | Correction in action

We begin by reproducing the results from [7] that the proposed model-free (MF) correction removes spurious choice
correlations that are introduced by slow drifts in decision criterion. We consider a generative model (Figure 1A) in
which the stimulus affects the choice of an agent in accordance with signal detection theory (see Methods ). On any
given trial t , the agent compares a noisy perceptual sample, centered around the true stimulus st with logistic noise
(scale βS ) to a decision criterion bt , and makes a rightward choice if the sample exceeds the criterion and leftward
choice otherwise. The probability of making a rightward choice is therefore given by the following logistic function:

p (ct = 1 |st , bt ) =
1

1 + e−(st −bt )/βS

The decision criterion bt of this observer varies from trial-to-trial relative to a fixed baseline β0 due to unsystematic
variations arising from random drift zt :

bt = β0 + zt

This drift z in decision criterion b (Figure 1B) was simulated according to the following autoregressive process (discrete
time Ornstein-Uhlenbeck process):

zt = (1 − λ)zt−1 + σd εt

where εt is an i.i.d sequence of standard Gaussian random variables and σd sets the standard deviation of the Gaussian
noise. The decay rate λ was fixed to a small value (λ = 5e − 4) to slightly dampen the pure Brownian motion thereby
reducing the odds of the criterion drifting too far from the true boundary.
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FIGURE 1 : Correction for removing influences of slow drift in psychometric parameters on choice data (as proposed
in [7]) A.Generativemodel of choices based on signal detection theory: Each trial’s choice c is made by comparing a noisy sample
of that trial’s stimulus s to a slowly drifting criterion (drift in the criterion represented by z , trials indexed by t ) B. Trajectory of
the slow drift in criterion over a period of 5000 trials revealing extended periods of consistent choice bias. Insets: psychometric
curves for the trials highlighted in grey when choices are on average unbiased (left) and biased (right) C. Psychometric curves
(fraction of rightward choices as a function of the current trial’s stimulus strength) conditioned on the previous trial’s choice
and outcome, displaying an apparent win-stay lose-stay bias. Colors indicate previous outcome (green - win, red - loss) and
lightness indicates previous choice (dark - right, light - left) D. History bias, measured as the difference between conditioned
psychometric curves following right and left wins (green) or losses (red). Solid lines indicate observed history bias, displaying
an apparent small win-stay, larger lose-stay effect. Dashed lines indicate history bias after applying the MF correction, which
removes the spurious choice correlation created by slow drift. E. Psychometric curves conditioned on the previous trial’s stimulus
when the previous trial was rewarded. Curves display an apparent dependence on past stimulus strength, and have bigger shifts
following hard trials compared to easy trials. Colors indicate previous stimulus category (violet - rightward, amber - leftward)
and lightness indicates strength of the stimulus (dark - high stimulus strength or easy trials, light - low stimulus strength or hard
trials) F. (Left) Stimulus history bias, measured as the difference between psychometric curves conditioned on previous stimulus
and average psychometric curve. Biases are larger following hard trials (color gradient along x-axis) and disproportionately affect
the performance on hard trials (color gradient along y-axis). Color indicates the direction of induced bias (blue - towards right,
red - towards left) (Right) Stimulus history biases after applying the model-free (MF) correction, which removes the spurious
dependence due to slow drifts in decision criterion.
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We assume that there is no learning or systematic trial-by-trial updating of any decision-related variables. In
spite of that, the slowly drifting criterion produces correlations in the agent’s choices across trials, such that when
the psychometric curve is conditioned on previous trial’s outcome and choice, it appears that the agent is following
a small win-stay larger lose-stay strategy (Figure 1C)– in other words, it appears that subjects use the experience of
a trial’s outcome to affect future trials, when in fact reward outcomes do not affect the decision process at all. The
psychometric curves following both correct and incorrect rightward choices are biased towards rightward choices and
vice versa following leftward choices. We summarize these apparent history effects by taking the difference between
conditioned psychometric curves following right and left wins/losses. Therefore, following correct trials the history
bias is given according to:

BiasPCt |t−1 =
1

2

(
p (ct = 1 |st , o t−1 = 1, ct−1 = 1) − p (ct = 1 |st , o t−1 = 1, ct−1 = 0)

)
where o t−1 = 1 if the trial t −1 is a win and is 0 otherwise (PC refers to post-correct). And to compute the bias following
error trials (PE) we instead condition on trial t − 1 being an incorrect trial or o t−1 = 0:

BiasPEt |t−1 =
1

2

(
p (ct = 1 |st , o t−1 = 0, ct−1 = 1) − p (ct = 1 |st , o t−1 = 0, ct−1 = 0)

)
This metric is positive if the behavior has a stay bias and is negative when there is a tendency to switch. Even though
the drift in criterion is independent of the previous trial’s outcome, the stay bias appears previous outcome-dependent
- its magnitude is smaller following correct choices than erroneous choices (Figure 1D, solid lines). This effect arises
because the agent is more prone to errors and more likely to have a persistent choice bias when the criterion has
drifted further away from the true boundary.

Further, we examine how recent sensory history affects future choices under such a generative model and ob-
serve that again, the slow drifts in criterion produce the semblance of systematic trial-by-trial updating (Figure 1E,F;
replication of Figure 2, figure supplement 1 from [7]). It appears as though the agent’s choice on the current trial is
modulated by the previous trial’s stimulus difficulty (Figure 1E). Following correct trials the agent has a higher propen-
sity to repeat the correct response to the previous trial’s category if the previous trial was difficult. In contrast if the
past trial was an error the bias is higher following an easy trial (not shown). This apparent difficulty-dependent stimu-
lus history bias (resembling confidence-guided updating) arises because of the statistics of occurrence of correct trials
in the presence of drifts in criterion. Easy trials are resilient to drifts in criterion and are just as likely to be correct
both when the drifts favor the correct option and when they are biasing the decision against it, whereas hard trials
have a higher tendency of being correct when the drift in criterion is biased towards the correct option. As a result,
trials following a correct hard trial are sampled from a distribution in which the median value of the criterion is biased,
hence the conditioned psychometric curve has a large bias. Whereas, trials following an easy trial results from choices
with relatively unbiased criterion values, hence the conditioned psychometric curve has a smaller bias.

We summarize these apparent stimulus history biases following rewarded trials for each pair of previous and
current stimuli in Figure 1F (left panel). These biases are computed by subtracting the psychometric curve computed
using all trials from the psychometric curves conditioned on the previous trial’s stimulus strength (similar to [7]):

Biasst |st−1 =
1

2

(
p (ct = 1 |st , st−1, o t−1 = 1) − p (ct = 1 |st )

)
Next, we apply the MF correction to this synthetic data. The MF correction exploits the idea that the effect of

slow drifts should be similar for at least a small stretch of trials (n >= 2) and any influence of future rewards on past
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choices is acausal, likely due to slow drifts and needs to be removed. Mendonca et al. (2020) [5] proposed the variant
of the correction for choice-outcome biases and Lak et al. (2020) [7] for stimulus history biases. We describe and test
the efficacy of both these variants here. For post-correct (PC) history bias, the MF correction entails subtracting the
(spurious) bias due to trial t − 1 on the past trial t − 2 from the bias due to trial t − 1 on the future trial t :

Corrected BiasPCt |t−1 = BiasPCt |t−1 − Bias
PC
t−2|t−1

Post-error history bias is corrected for slow drifts in a similar manner. The MF correction for stimulus history effects
stipulates that the effect of slow drifts in decision criterion can be removed by performing an equivalent operation on
inferred stimulus history bias:

Corrected Biasst |st−1 = Biasst |st−1 − Biasst−2 |st−1

When applied to synthetic data, the MF correction removes these apparent choice history effects caused by the
drifting criterion and successfully recovers the systematic component of past choice’s influence on subsequent choice
i.e. no influence (Figure 1D, dashed lines). Similarly, specious stimulus history effects could be successfully removed
by applying the MF correction (Figure 1F, right panel).

2.2 | Correction in misaction

In the past section, the generative model lacked active trial-by-trial updating and hence the correlations in choice
were entirely due to the slow drift in decision criterion. Next we consider a more complex scenario, one in which the
decision variables are systematically updated from trial-to-trial due to ongoing learning or other heuristic strategies
in addition to the random drifts in decision criterion, and we determine how the MF correction performs under these
circumstances.

Previous studies have shown that a large subset of possible learning strategies can be approximated by logistic
regression models that directly represent the influence of reward and choice history on future choices [22, 23]. For
this reason, in this study we explore the space of possible choice and outcome history effects instead of examining
the correction’s effect in the presence of individual learning algorithms. We parametrically vary the bias induced by
past choice (c) and outcome (o ) and study the effect of MF correction both in the presence and absence of slow drifts
(z ) of decision criterion (Figure 2A). We find that while the MF correction can correctly recover a symmetric win-stay
lose-switch history dependence, it fails to recover the generative history-dependence in other scenarios.

In order to simulate choices from this family of generative models, we update the randomly drifting decision
criterion bt every trial based on the recently observed choice and outcome from the previous trial. Therefore, on any
trial the decision criterion is given by:

bt = zt + β0 + βC (ÉRCt−1 − É
LC
t−1) + βE (É

RE
t−1 − É

LE
t−1)

where ÉRC
t−1, É

LC
t−1, É

RE
t−1 and É

LE
t−1 are indicator variables denoting successes or failures on the previous trial (t −1) following

rightward and leftward choices (RC refers to right correct, LC left correct, RE right error and LE left error). βC and βE
determine how much previous trial’s outcome modulates the criterion (βC following correct trials and βE following
error trials). As before, β0 is the fixed baseline and zt denotes unsystematic variations arising from random drift.

First, we simulate data with a symmetric win-stay lose-switch rule, such that positive outcomes or correct trials
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FIGURE 2 : Correction fails to recover generative parameters when decision variables are actively updated from
trial-to-trial A. Generative model in which the current trial’s choice ct is influenced by the previous choice ct−1 and previous
outcome o t−1 , in addition to the current trial’s stimulus s t and a slow drift in criterion zt . In some scenarios, the previous outcome
does not influence the choice on the next trial e.g. win-stay lose-stay or win-switch lose-switch. B. Psychometric curves post
rewarded trials, conditioned on previous trial’s choice for a model with win-stay, lose-switch (column 1), win-stay lose-nothing
(column 2), win-stay lose-stay (column 3) and win-switch lose-switch (column 4) biases. Solid lines represent psychometric curves
without slow drift and dotted lines with slow drift. Addition of slow drift gives rise to worse perceptual sensitivity. C. Same as
B but for trials following losses or unrewarded trials. Addition of slow drift masks lose-switch effects and overlays a stay bias
across all updating strategies. D. History biases following wins (green) and losses (red) without slow drifts in criterion. Solid:
generative systematic history biases, dashed: estimates from MF correction. MF correction nearly recovers the true generative
post win history biases (dashed vs solid green line) across different updating strategies. For post loss biases (dashed vs solid red
line), the MF correction has no effect for win-stay lose-switch bias (column 1), but produces spurious lose-switch effects for win-
stay lose-nothing (column 2) and win-stay lose-stay (column 3) biases. For win-switch lose-switch (column 4) bias the correction
returns a lose-stay bias. E. Same as D but for history biases following wins (green) and losses (red) with slow drifts in criterion.
The correction fails to recover the generative history biases (dashed vs solid lines) in this case as well. Dotted lines depict the
history bias observed in choices simulated with drift (corresponding to dotted lines in 2B,C).

bias the agent towards repeating the choice that led to them, and negative outcomes do the opposite i.e. βC = 1,
βE = −1 and zt = 0 [ t (Figure 2B,C, first column, solid lines). When, in addition to win-stay lose-switch, the decision
criterion slowly drifts over trials (zt , 0), the systematic lose-switch rule is obscured and the choice behavior seems to
have no updating following error trials (Figure 2B,C first column, dotted lines). Moreover, the slope of the psychometric
curve (also referred to as perceptual sensitivity) appears shallower.

We apply theMF correction to this data and examine the observed and corrected history biases with and without
an underlying slow random drift in the decision criterion of the generative process. In the absence of slow drifts, as
expected, the MF correction (dashed lines) does not change our estimate of history biases and we recover the gener-
ative win-stay lose-switch bias (Figure 2D, first column). But even in the presence of slow drifts, the MF correction
successfully nullifies its contaminating influence on history bias andwe approximately recover the generative win-stay
lose-switch bias Figure 2E first column).

Next, we consider a scenario in which the magnitude of biases following wins (i.e. rewarded trials) versus losses
(unrewarded trials) are asymmetric. We eliminate the bias induced by negative outcomes and study win-stay lose-
nothing (βC = 1, βE = 0; Figure 2B,C second column). Here the slow drift masks the true post-error biases and instead
accentuates stay biases (Figure 2B,C dotted lines). In the absence of slow drift, we can directly observe the generative
bias, therefore in principle the MF correction should not affect our estimate of history biases. But instead we observe
that the MF correction distorts our estimate of history biases, skewing them to resemble a win-stay lose-switch
updating strategy (Figure 2D second column).

This distortion arises from the interaction of average choice statistics cast by the win-stay lose-nothing strategy
with the functional form of the correction. TheMF correction dictates thatwe should be able to recover the systematic
influence of a trial on the next trial by subtracting the acausal influence (influence of a trial on the previous trial) from
the observed influence. In this case, the observed influence on error trials is zero (lose-nothing). The acausal influence
however is non-zero despite the absence of slow drifts - this is because on average there are more correct trials than
error, and hence more often than not the current choice is a repetition of past choice (due to win-stay), therefore the
acausual influence is inferred to be a stay bias. So when we apply the correction and subtract this stay bias from zero
we recover a spurious lose-switch bias on error trials. In the presence of slow drift too, the MF correction is unable
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to recover the generative systematic history bias (Figure 2E, second column solid vs dashed) and instead inaccurately
estimates a stay bias following wins and a switch bias following losses.

When there is no dependence on previous outcomes, and the bias following both correct and error trials are
towards the previous choice i.e. a win-stay lose-stay bias (βC = 1, βE = 1; Figure 2B,C third column), slow drifts in
decision criterion exacerbate the stay effects following error trials. In synthetic data generated without any drifts
in decision criterion but with stay bias in effect, the MF correction spuriously infers a win-stay lose-switch strategy
(Figure 2D third column). A similar failure in recovering the generative parameters is observed in the presence of slow
drifts (Figure 2E third column).

Next we examine the effect of the MF correction when the data is generated from an outcome independent
switch rule i.e. win-switch lose-switch (βC = −1, βE = −1; Figure 2B,C last column). In this case too, slow drift
obscures the true post-error effects and overlays a stay bias on it. Again, we find that the MF correction fails to
recover generative biases both in the presence and absence of slow drifts - it instead returns a win-switch lose-stay
like bias (Figure Figure 2D,E last column).

2.3 | A model-based solution

The foregoing analysis demonstrates that the proposed MF correction produces inaccurate results when the system-
atic trial-to-trial updating of history bias deviates from a symmetric win-stay lose-switch strategy. The correction
assumes that correlations in choice arise from processes unrelated to deterministic trial-by-trial updating - an assump-
tion that is untrue for many learning or heuristic algorithms. This could be remedied by explicitly estimating the
contributions of both slow drifts and systematic updates to choice behavior.

Here we describe one such approach for the simulations discussed in the previous section. We infer the param-
eters governing behavior by fitting the choices to the generative model at hand: a signal detection theory observer
with logistic noise, systematic trial-history dependent biases and drifts in criterion (Figure 3A, see Methods). We fit
the parameters Θ = {σd , b0, βS , βC , βE } of the model to choices using the Expectation Maximization algorithm with a
Laplace approximation of the posterior over the latent state (drifting variable; [24] as implemented in the ssm library
[25].

We simulate data from an agent that follows a win-stay lose-stay strategy and has random drifts in its decision
criterion (similar to Figure 2, third column). The MF correction is ineffective in recovering the generative parameters
in this case. The model successfully captures trends in the data (Figure 3B: Fits (dashed-dotted lines) plotted along-
side observed choice and outcome conditioned psychometric curves from the simulated data (solid lines)). We next
examine if the model is able to tease apart the relative influences of slow drift and trial history bias on choice behavior
and indeed, the inferred most likely trajectory of the latent drifting variable (Figure 3C, grey line) closely tracks the
true simulated drift (Figure 3C, black line). Furthermore, the model correctly infers the true parameters governing the
systematic component of the behavior. We demonstrate this by simulating choices in the absence of slow drifts with
both the generative parameters and estimated parameters. The previous choice and outcome conditioned psychomet-
rics from the generative and estimated parameters show good correspondence (Figure 3D). Additionally, this method
helps recover the true perceptual sensitivity, which is otherwise confounded by the drifting biases (as in Figure 2B,C).

Further, we explore the performance of this model-based approach in low trial-count and high drift-noise regimes.
We simulated datasets with systematic win-stay lose-stay biases (same as Figure 3B), with varying trial counts ranging
from 1000 to 50000. We then fit these datasets with the model, and examined the estimated systematic component
of history bias (measured at the point of indifference, i.e. the stimulus strength at which the probability of making
rightward and leftward choices is equal) as well as the time to fit. Even for trial counts as low as 1000, the model
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FIGURE 3 : Fitting the model helps disambiguate systematic history biases from effects of slow drift A. Schematic
of the model with parameters highlighted in pink. (Top right) Logistic distribution of noisy samples perceived by a subject for a
given true stimulus s t (dotted line). The probability of the current trial’s choice ct being rightward/leftward (shaded blue, bottom
right) is given by the mass to the right/left of the criterion bt (solid black line), which evolves according to the equations shown in
the box (left - zt is drift in criterion, Ét−1 is an indicator variable for the previous trial’s choice, outcome). B. Psychometric curves
from simulated data (solid lines) shown alongside fits (dashed-dotted lines) to a model containing both history biases and slow
drifts in criterion C. Inferred slow drifts from model fits (grey) compared to the true generative slow drift (black) showing good
correspondenceShaded error bars indicate two standard deviations of the posterior. D. Inferred history biases from model fits
(dashed-dotted lines) compared to the true history biases (solid lines) showing good correspondence. Note: these are hypothetical
psychometric curves that would have been observed in the absence of slow drift, and hence not directly observable from the
data as in B) E.Mean inferred systematic history bias (at the point of indifference) following correct (green) and error (red) trials
as a function of the number of trials (in log-scale). Dotted line represents the generative systematic bias (symmetric win-stay
lose-stay). Error bars denote standard deviation across 20 independent simulated datasets. F. Time taken to fit the model as a
function of the umber of trials (both axes in log-scale). Error bars denote standard deviation across 20 independent simulated
datasets. G.Mean inferred systematic history bias (at the point of indifference) following correct (green) and error (red) trials as a
function of standard deviation of the drift. Dotted line represents the generative systematic bias (symmetric win-stay lose-stay).
Error bars denote standard deviation across 20 independent simulated datasets.

accurately infers the win-stay lose-stay bias with reasonable precision (Figure 3E), with fitting time increasing linearly
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with trial count (Figure 3F). We also simulated datasets with varying amounts of noise in the drift, with standard
deviations ranging from 0 to 0.2. The model accurately recovered the systematic history bias with good precision
as long as the noise in random drift was lower than sensory noise (σd ≤ 1/βs , grey box). Beyond this regime, even
though the model correctly fits observed choices (not shown) and correctly infers the direction of systematic updates,
its estimates are biased and variable due to the high degree of indeterminacy in the data.

2.4 | Comparing the model-free correction and the model-based approach

Next, we compare the history biases estimated by the two approaches with synthetic as well as real data. We simulate
choices for a variety of possible post-correct and post-error biases (Figure 4A-C, squares, see Table 1 in Methods) in
presence of random drifts in decision criteria and evaluate the results obtained by applying the MF correction and by
model-fitting. We summarize these history effects by plotting the choice history bias observed following correct trials
against that observed following error trials, measured at the point of indifference i.e. the stimulus strength at which
the fraction of rightward choices is 0.5. First, we show that consistent with our previous simulations , the presence
of slow drifts exaggerates stay biases in the data (Figure 4A, dots) especially following error trials, and obscures the
true underlying update strategy (Figure 4A, squares). Application of the MF correction does not selectively remove
the influence of slow drifts, rather it warps all the history effects to lie along the diagonal represented by win-switch
lose-stay and win-stay lose-switch strategies (Figure 4B, dots). In contrast, the model-based inference of systematic
updates successfully removes the influence of slowdrifts and reveals the underlying strategy for all considered settings
(Figure 4C, dots vs squares).

Next, we analyze choice data from 19 rats participating in a two-alternative auditory evidence-accumulation task
(data from [21]; see Methods for more details). In this study, even though successive trials were independent of each
other, the rat subjects showed varying extents of win-stay and lose-switch biases (Figure 4D). The application of MF
correction to this dataset, squashes the variability in history biases across all rats and returns a homogenous win-stay
lose-switch bias (Figure 4E). In contrast, the model fits retain the individual variability (Figure 4F) and infer a higher
post error switch bias compared to that observed in raw data by accounting for stay tendency that is induced by slow
drifts (Figure 4A).

3 | DISCUSSION

Nonstationarities in decision-relevant variables, if overlooked, can bias one’s estimates of psychophysical parameters
and obscure strategies that underlie behavior [26]. Previous work [7] has shown that unaccounted for slow drifts
in decision criterion could obscure trial-by-trial updates produced by active learning, and proposed a correction to
remove its influence (Figure 1). Here we investigate the performance of this correction under a range of different
generative models, and demonstrate that it fails to selectively remove the influence of slow drifts in the presence
of systematic trial-by-trial updates of decision variables (Figure 2). Moreover, applying the correction corrupts the
estimates of trial-history influences, biasing them towards a small subset of possible strategies. To mitigate these
shortcomings, we propose an alternate approach of explicitly modeling slow fluctuations in the decision-making pro-
cess (Figure 3). We demonstrate that this model-based approach can successfully disambiguate systematic updates
from non-specific drifts, hence preserving the structure of individual variability in behavioral strategies (Figure 4).

Non-specific drifts in decision variables may arise from fluctuations in internal states such as attention, arousal
and motivation, or from other internal sources of noise [18]. Hence, some authors have used neural measurements
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FIGURE 4 : The model-based approach but not MF correction preserves variability in history updating in synthetic
and real datasets A. History biases following left and right wins (x-axis) or losses (y-axis) at the point of indifference . Squares
denote the biases caused by systematic trial by trial updates, and dots denote the observed biases when slow drifts are present.
Each color represents a unique setting of βC and βE parameters, which span a spectrum of stay (positive values) and switch
(negative values) biases. B. Distribution of biases after applying MF correction C. Distribution of inferred history biases from fits
to a model that includes slow drift and trial-by-trial updating. D. Distribution of observed history biases from 19 rats (dataset
from [21]). Symbols denote individual rats. E. Distribution of biases after applying correction from [7]. MF correction distorts
the distribution, uniformly producing equal degrees of win-stay and lose-switch biases. F. Distribution of inferred history biases
from fits to a model that includes slow drift and trial-by-trial updating. The distribution is shifted relative to A), but individual rats
retain their relative position and asymmetries between post-correct and post-error updating.

to gauge their dynamics [27, 28, 14]. Of particular interest is the work of Cowley and colleagues who leverage slow
drifts in stimulus encoding in visual and prefrontal cortex to explain fluctuations in behavior and pinpoint the affected
decision-variable.

Even in the absence of such detailed measurements, it may be possible to account for unsystematic influences by
modelling the noisy dynamics of unobserved variables, as we have done in this manuscript for the decision criterion
(see [29] for formative work). This approach has also been used to identify systematic and random contributions to
action value learning [30], allowing for the decomposition of errors into noise-driven and choice-driven components.

In general, it is likely that multiple decision variables drift over time, or that systematic updates occur over longer
timescales, in which case it is important to incorporate those assumptions into the model. While the model we sug-
gest can be readily extended to estimate additional forms of dynamics, other authors have put forward alternate
approaches. Previous studies have proposed regression models to infer the trajectory of psychometric parameters
over trials, regularizing their estimates with empirically determined priors [31, 32, 33, 16]. In another study authors
consider a generative model in which the latent state which governs the setting of psychometric parameters under-
goes discrete change [13]. In parallel, some generative models might allow for the use of filtering methods to recover
signal from the observations. Indeed, previous studies have shown that low-pass filtering the sequence of choices
using a moving average filter can adequately help estimate the slow drifts in bias [14, 34] without inducing the kind of
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biases induced by theMF correction. The relative utility of these different approaches (state space models, regression,
filtering, corrections) would depend on the desired level of explanatory power, number of data samples and efficiency
of the inference algorithms among other factors. In any case, studies would benefit from explicit comparison between
different hypothesized generative models.

Outside the realm of trial-based behavior many exciting advances have been made in inferring the dynamics
underlying naturalistic behaviour [35, 36, 37, 38]. In the future, it would be interesting to bring these advances into
the study of learnt perceptual behaviour and develop inference strategies for more sophisticated generative models.
Exploring the origins and logic of slow fluctuations inferred with such models might help advance our understanding
of the principles that underlie behaviour and learning.

4 | METHODS

4.1 | Simulation Details

We simulated a signal detection theory observer that compares a noisy sample of the stimulus (range 0 to 1, corrupted
by logistic noise) to a decision criterion, making a rightward choice if the sample exceeds the criterion and leftward
choice otherwise.

The decision criterion bt of this observer varies from trial to trial relative to a fixed baseline β0, due to unsystematic
variations arising from random drift zt and systematic variations based on the choice and outcome of the previous
trial ct−1, o t−1. The drift z in decision criterion b over trials t was simulated according to the following autoregressive
process (discrete time Ornstein-Uhlenbeck process):

zt = (1 − λ)zt−1 + σd εt

where εt is an i.i.d sequence of standard Gaussian random variables. Throughout the study the decay rate was fixed
to a small value (λ = 5e − 4) to prevent the criterion from drifting too far from the true boundary and the standard
deviation of the Gaussian noise, σd was set at 0.05 when applicable. The systematic variations based on previous
choice and outcome took the form of an additive bias to the decision criterion. The bias was βC /−βC following
rightward/leftward choices and positive outcomes, and βE /−βE following rightward /leftward choices and negative
outcomes. Therefore, the decision criterion on any trial was given by the following equation:

bt (ct−1, o t−1, zt ) = β0 + zt

+ βC É(ct−1 = 1, o t−1 = 1) − βC É(ct−1 = 0, o t−1 = 1)

+ βE É(ct−1 = 1, o t−1 = 0) − βE É(ct−1 = 0, o t−1 = 0)

where É(ct−1, o t−1) denotes an indicator variable for a particular combination of previous choice ct−1 and outcome
o t−1. The baseline value β0 was set to produce an equal proportion of leftward and rightward choices when stimulus
carried no information i.e. stimulus strength of 0.5.

Finally, choice c on trial t depended upon the stimulus strength on the current trial st , and the decision criterion
bt . The probability of making a rightward choice was given by the logistic function:

p (ct = 1 |st , bt ) =
1

1 + e−(st −bt )/βS
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The psychometric functions were fit using the logistic regression function from the scikit-learn module in Python [39].

TABLE 1 : Parameters used in simulations

Number of trials βS bt βC βE σd

Fig 1C-D 40,000 10 -5 0 0 0.05
Fig 1E-F 80,000 10 -5 0 0 0.10
Fig 2B-E solid (left to right) 80,000 10 -5 1,1,1,-1 -1,0,1,-1 0.00
Fig 2B-E dotted (left to right) 80,000 10 -5 1,1,1,-1 -1,0,1,-1 0.05
Fig 3B-D 40,000 10 -5 1 1 0.05
Fig 3E-F see x-axis 10 -5 1 1 0.05
Fig 3G 20,000 10 -5 1 1 see x-axis
Fig 4A-C 40,000 10 -5 ±1,±0.6,±0.2 ±1,±0.6,±0.2 0.05

4.2 | History Bias and Correction

History bias post-correct/error at each stimulus strength is computed as the difference between the probability of
going right following rightward and leftward correct/error trials. Therefore, the history bias following correct trials is
given by

bi asPCt |t−1 =
1

2
(p (ct = 1 |st , o t−1 = 1, ct−1 = 1) − p (ct = 1 |st , o t−1 = 1, ct−1 = 0))

And similarly, following error trials history bias is computed as

1

2
(p (ct = 1 |st , o t−1 = 0, ct−1 = 1) − p (ct = 1 |st , o t−1 = 0, ct−1 = 0))

To correct for the influence of slow drifts, we subtract the acausal bias due to the past trial on the choice preceding
it from the bias due to the past trial on current choice bi ast−2|t−1 [7, 5], i.e. following a rewarded trial the corrected
bias for each stimulus strength was computed according to:

bi asPCt |t−1 − bi as
PC
t−2|t−1 =

1

2

(
p (ct = 1 |st , o t−1 = 1, ct−1 = 1) − p (ct = 1 |st , o t−1 = 1, ct−1 = 0)

)
−

1

2

(
p (ct−2 = 1 |st=2, o t−1 = 1, ct−1 = 1) − p (ct−2 = 1 |st−2, o t−1 = 1, ct−1 = 0

)
The corrected bias following error trials was similarly computed, but by conditioning on previous error trials i.e. o t−1 =
0.

4.3 | Model-based fitting

We denote the choice on trial t ∈ 1...T as ct such that ct = 1 if the choice is towards right and 0 otherwise. The choice
on any given trial is formed by comparing the value of a noisy perceptual sample (centered around the true stimulus
st with logistic noise) to the category boundary or criterion bt , which we assume is time-varying and is modulated by
trial-history. If the value of the sample exceeds the criterion, a rightward choice is made. Therefore, conditioned on
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the drifting criterion and the stimulus the choice of an agent on any given trial is given by a Bernoulli distribution with
mean Å[ct |bt , st ] = 1

1+exp(−(βS st −bt ) )
where βS determines the sensitivity of an agent to the perceptual stimulus st .

We assume that the drift zt in criterion bt evolves according to a random walk with step size σd , we assume that
the mean and variance of the initial state are known (z0 = 0,σ20 = 0.01) :

z1 ∼ N(z0,σ20 )

zt+1 |zt ∼ N(zt ,σ2d )

The decision criterion bt is the summation of a fixed baseline β0, the drift, and trial-history influences:

bt = zt + β0 + βC (ÉRCt−1 − É
LC
t−1) + βE (É

RE
t−1 − É

LE
t−1)

where ÉRC
t−1, É

LC
t−1, É

RE
t−1 and É

LE
t−1 are indicator variables denoting successes or failures on the previous trial (t −1) following

rightward and leftward choices. βC and βE determine how much previous trial’s choice and outcome modulate the
criterion.

Thismodel for choice behavior is essentially a linear dynamical systemwith Bernoulli emissions. Therefore, to infer
the parameters Θ = {σd , b0, βS , βC , βE } of this latent variable model we use an expectation-maximization algorithm,
similar to those described before (Smith and Brown 2003, Macke et al. 2011, Macke et al. 2015). For the E-step, we
require the log of posterior distribution P (z |c,Θ) over the latent drift given the observed pattern of choices and our
current estimate of the parameters Θ:

logP (z |c,Θ) =
T∑
t=1

(
ct ht + log

(
1 − 1

1 + e−ht

))
− (z1 − z0)

2

2σ20
− 1

2σ2
d

T −1∑
t=1

(zt+1 − zt )2 + const

where ht = βS st − b0 − zt − βC ÉCt − βE ÉEt . Owing to Bernoulli observations this distribution is not available in closed-
formbut is concave, sowe approximate it with amultivariateGaussian distribution (Laplace approximation) P (z |c,Θ) ∼
Î(µ∗, Σ∗) where µ∗ is a vector of size T and is set to maximize the posterior µ∗ = argmaxz P (z |c,Θ) and Σ∗ is of size
T ×T and is set to the inverse Hessian of the log posterior evaluated at µ∗ i.e. Σ∗ = −[+2z logP (z |c,Θ) |z=µ∗ ]−1.

The M-step updates parameters by optimizing the expected total data log-likelihood with respect to the param-
eters

Θ∗ = argmax
θ

∫
[log(c |z,Θ) + logP (z |Θ) ]Î(z |µ∗, Σ∗)dz

We update the parameters using L-BFGS except σd which we update analytically. We use the ssm package [25] in
Python for this inference.

4.4 | Dataset studied

We analyze the trial-history effects of nineteen rats (50223 ± 21915 trials per rat) performing an evidence accumu-
lation task, originally published in [21]. In this task, the subjects were presented with two simultaneous streams of
randomly-timed discrete pulses of evidence (clicks), one from a speaker to their left and the other to their right, for
a predetermined duration. The subjects were required to maintain fixation throughout the entire stimulus, failure to
do so led to a violation trial. At the end of the stimulus, the subjects had to orient towards the side which played
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the greater number of clicks to obtain a water reward. The discrimination difficulty was controlled on each trial by
varying the ratio of the generative Poisson rates of the two click streams. Successive trial’s difficulty and rewarded
side were independently sampled. Since the animals neither made a choice nor received an outcome on violation
trials, we ignore them while computing trial-history effects.

4.5 | Data and Code availability

The code and data associated with this manuscript is available here: https://doi.org/10.24433/CO.8821874.v1 as
a standalone executable.
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