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Abstract: Transcranial ultrasound simulations are increasingly used to predict in situ exposure parameters for ultrasound
therapies in the brain. However, there can be considerable uncertainty in estimating the acoustic medium properties of the
skull and brain from computed tomography (CT) images. This paper shows how the resulting uncertainty in the simulated
acoustic field can be predicted in a computationally efficient way using linear uncertainty propagation. Results for a represen-
tative transcranial simulation using a focused bowl transducer at 500 kHz show good agreement with unbiased uncertainty
estimates obtained using Monte Carlo. VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Transcranial ultrasound simulations are increasingly used to predict in situ exposure parameters for ultrasound therapies
in the brain, including for blood-brain barrier opening (Deffieux and Konofagou, 2010), high-intensity focused ultrasound
ablation (McDannold et al., 2019), and transcranial ultrasound stimulation (TUS) (Lee et al., 2016). Simulations are partic-
ularly important for treatment planning in TUS, as online monitoring methods (such as thermometry and acoustic radia-
tion force imaging) are not yet sufficiently sensitive for use with low-intensity ultrasound therapies (Li et al., 2022).

The current approach for transcranial ultrasound simulation is to map the geometry and acoustic properties of
the skull and brain from computed-tomography (CT) images (Marquet et al., 2009). However, there can be considerable
uncertainty in the mapping from Hounsfield units to acoustic parameters (Webb et al., 2018; Webb et al., 2021). Errors in
the sound speed of the skull, in particular, can result in changes to the amplitude and shape of the acoustic field inside
the brain (Montanaro et al., 2021; Robertson et al., 2017; Vaughan and Hynynen, 2002). In principle, these variations
could be quantified using a Monte Carlo approach, where many simulations are performed using different acoustic prop-
erty mappings, and the results of these simulations are used to quantify the uncertainty. However, Monte Carlo estimation
can take a large number of samples (i.e., simulations) to converge, significantly increasing the computational cost of
model-based treatment planning.

In general, quantifying uncertainty is a challenging task for which many methods have been developed to avoid
expensive Monte Carlo simulations. These range from the application of the Koopman operator (Gerlach et al., 2020), to
density estimation (Papamakarios and Murray, 2016). Here, we demonstrate how computationally efficient uncertainty
estimation can be achieved using linear uncertainty propagation with a differentiable wave simulator, j-Wave (Stanziola
et al., 2022).

2. Linear uncertainty propagation

For a given scanner and image acquisition and reconstruction settings, the mapping from a CT image in Hounsfield units
to an image of mass density in kg�m–3 can be performed with the aid of a calibration image of a test object with known
density. Figure 1(a) shows an example of such a calibration acquired using a CIRS electron density phantom (model
062M, Sun Nuclear, Melbourne, FL) using the scanner details described in Caballero-Insaurriaga et al. (2019). The error
bars show the standard deviation in the image values averaged over each tissue equivalent electron density plug. A linear
curve is then typically used to map from density to sound speed [or, equivalently, two different linear mappings are used
to map to density and sound speed from Hounsfield units (Marquet et al., 2009)]. Figure 1(b) shows a scatterplot of the
density and sound speed of the skull samples measured in Webb et al. (2018) and Webb et al. (2021), along with a linear
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fit and the 95% confidence interval for the linear model. There is considerable spread in the measurement data, which
may be attributed to both measurement noise (e.g., in the time-of-flight picking used to estimate the sound speed) and
inherent variations in the mapping for different skulls and different regions of the skull. Here, we only consider the uncer-
tainty in the mapping from density to sound speed, but in principle, it is also possible to propagate the uncertainty in the
mapping from Hounsfield units to density and to account for uncertainty in other acoustic and thermal parameters.

Using the data shown in Fig. 1(b), it is assumed the mapping between density q and sound speed c is given by
the linear relationship

cða;bÞ ¼ ĉ þ aðq� q̂Þ þ b; (1)

where ĉ ¼ 2481 m�s–1 and q̂ ¼ 1782 kg�m–3 are the mean values for the sound speed and the density in the data, respec-
tively [shown by the cross-hairs in Fig. 1(b)]. Fitting the model on mean-zero data results in a linear fit with uncorrelated
estimates for the a and b parameters. While correlation of the input variables can be accounted for by linear uncertainty
propagation, this simplifies the implementation. The least squares estimate of the slope and intercept are given by
a0 ¼ 1:333 and b0 ¼ 0 m�s–1, with a standard deviation of ra ¼ 0:168 and rb ¼ 18:8 m�s–1.

Rather than performing a single acoustic simulation with a fixed mapping between density and sound speed (i.e.,
just using the values of a0 and b0), to account for the uncertainty in the mapping, it is assumed that a and b can be repre-
sented by uncorrelated Gaussian probability distributions. For a fixed problem (for example, a particular transducer and
density map), the simulated acoustic pressure field p can be written as a function of the parameter vector v ¼ ða; bÞ,

p ¼ f ðvÞ: (2)

Here, f includes the wave simulation and any other pre- or post-processing steps needed to generate the output pressure
field. To propagate uncertainty, it is assumed that v is drawn from a normal distribution centered around lv with varianceP

v, given by

lv ¼ ða0; b0Þ; Rv ¼
r2

a 0

0 r2
b

 !
; (3)

that is, v ¼ lv þ e, with e � Nð0;
P

vÞ. If e is small enough, Eq. (2) can be expanded as a Taylor series up to second
order,

f ðvÞ � f ðlvÞ þ Jðv � lvÞ; with J ¼ rf jv¼lv
¼

@f =@a

@f =@b

 !
; (4)

where J is the Jacobian.
The truncated first-order Taylor series expansion of f ðvÞ is a linear function of v; thus, inputs drawn from a

normal distribution are mapped to outputs that are also normally distributed. The mean value of the distribution is f ðlvÞ
(in other words, the simulated pressure field using a0 and b0), while the variance is given by Giordano (2016),

Varðf ðvÞÞ ¼ JRvJ
T : (5)

Since the variables are uncorrelated, the formula for the variance simplifies to

Fig. 1. (a) Conversion between Hounsfield units and mass density obtained using an image of a CIRS electron density phantom (model
062M). The error bars show the standard deviation in the image values averaged over each tissue equivalent electron density plug. (b)
Conversion between density and sound speed using the data from Webb et al. (2018) and Webb et al. (2021). Each data point shows the den-
sity and sound speed measured for a specific skull sample (one outlier was removed from the data). The dashed line shows a linear fit to the
data, and the solid lines show the 95% confidence interval for the linear model. The cross-hairs show the mean values.
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Varðf ðvÞÞ ¼ @f
@a

����
v¼lv

 !2

r2
a þ

@f
@b

����
v¼lv

 !2

r2
b: (6)

If the Jacobian is non-singular, this estimate can provide a good approximation for the variance for small variations of the
parameter vector v. To estimate the normal distribution of the outputs, all that is needed is an efficient way to calculate
f ðlvÞ and the Jacobian vector of f at v ¼ lv.

3. Numerical experiments

To demonstrate uncertainty estimation using Eq. (6), an ultrasound simulation through a CT-derived acoustic property
map was performed in the context of TUS. A CT image of the head was taken from the dataset described in Caballero-
Insaurriaga et al. (2019) and Miscouridou et al. (2022), re-sampled to an isotropic resolution of 0.5� 0.5� 0.5mm3, and
truncated to a 120� 70� 70mm3 domain in the region of the primary motor cortex. The simulation uses speed of sound
and density values derived from the CT image, while medium is considered lossless. The transducer was a focused bowl
defined following Aubry et al. (2022), with a radius of curvature and aperture diameter of 64mm, source pressure of
60 kPa, and driving frequency of 500 kHz.

Simulations were performed using j-Wave (Stanziola et al., 2022), a differentiable wave solver, by running a
time-domain simulation to steady state and then recording the maximum pressure amplitude over several cycles. To avoid
staircasing artefacts, the transducer was represented on the grid using the band limited interpolant (Wise et al., 2019). The
grid spacing gave 6 points per wavelength (PPW) in water, and the time step was set using a Courant–Friedrichs–Lewy
number of 0.3.

To calculate the gradients @f =@a and @f =@b, forward-mode differentiation was used (Stanziola et al., 2021,
2022). In j-Wave, this can be performed in parallel with the unperturbed forward computation, at a cost of one forward
computation for each partial derivative. Forward-mode differentiation, in contrast to the widely used adjoint method, does
not necessitate storing the intermediate computations. In the context of wave physics, it has been used, for instance, to
perform sensitivity analysis of photonic devices (Hughes et al., 2019). Alternatively, the gradients could also be approxi-
mated using a non-differentiable wave solver by replacing the gradients with a finite difference approximation.

As a reference, the standard deviation of the simulation was also estimated via Monte Carlo, by running 200
simulations (also with j-Wave) with samples of the parameter vector v (i.e., different values for the slope and intercept in
the linear relationship between density and sound speed) drawn from its probability distribution, that is, a Gaussian with
mean and standard deviation equal to the ones estimated by the linear regression.

4. Results

The simulated acoustic pressure field for a plane passing through the focus is shown in Fig. 2(a). The standard deviation
calculated using Monte Carlo is displayed in Fig. 2(b), while the standard deviation calculated using linear uncertainty
propagation is displayed in Fig. 2(c). The two uncertainty maps are in close agreement, both in terms of the structures
shown and the size of the standard deviation estimate. The difference between the two, illustrated in Fig. 2(d), shows that
the uncertainty is accurately estimated, particularly below the skull and close to the focal region, while the most noticeable
discrepancies between the two are found inside the skull and in the reflected wave-field. The uncertainty estimates for lat-
eral and axial profiles through the focus are shown in Fig. 3, highlighting how the algorithm predicts an error of up to
40 kPa near the focal region, which is very close to the Monte Carlo estimate.

A representative example of the empirical probability distribution for the pressure value at the focus is shown in
Fig. 4. This shows a histogram of the pressure values at a single grid point for each of the 200 Monte Carlo simulations.
The normal distribution predicted by the linear uncertainty propagation is shown on top. Despite the fact that the

Fig. 2. (a) The simulated pressure field, (b) the standard deviation of the simulation results using 200 Monte Carlo samples, (c) the standard
deviation estimated by the linear uncertainty propagation method, and (d) the error between the estimated standard deviations. STD, stan-
dard deviation.
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empirical distribution appears to be slightly skewed and, therefore, is deviating marginally from the supposed Gaussian
distribution, the approximated distribution still satisfactorily explains the spread of possible pressure values for the given
pixel.

Figure 5 shows the convergence of the estimated uncertainty using Monte Carlo for ten different random seeds.
With small numbers of iterations (simulations), the Monte Carlo estimate has a large amount of variability. While the
Monte Carlo solution will eventually converge to an unbiased value, this can take, on average, a very large number of sim-
ulations. In contrast, linear uncertainty propagation only requires two simulations, so it is computationally efficient.
However, while for the simulation parameters used in this study it provides a good approximation of the true variance, for
large values of e, the biased nature of linear uncertainty propagation may start to become relevant.

5. Summary

We show that linear uncertainty propagation can be used to estimate uncertainty in simulated transcranial ultrasound
fields when there is uncertainty in the medium property mapping between mass density and sound speed. Compared to
Monte Carlo sampling, this provides a computationally efficient way of putting error bars on acoustic simulations used for
treatment planning due to uncertainty in the material properties. In future, we will explore accounting for additional
uncertainties (for example, in the skull attenuation) and the sensitivity of the predicted field to variations in different
material properties and evaluate the regime of validity of linear uncertainty propagation for different model parameters
(e.g., transducer shape, frequency, target region, etc.).

Another potentially interesting extension would be to directly couple the acoustic simulation with a thermal sim-
ulation to estimate the uncertainty on the temperature rise induced by the acoustic field (this is relevant for thermal abla-
tion as well as safety for non-thermal therapies). As long as the thermal simulation is also written using a differentiable
language, the algorithm outlined in this paper will still be applicable.

Fig. 3. The standard deviations estimated using Monte Carlo and linear uncertainty propagation, and the difference error between the two,
for the (a) axial and (b) lateral lines passing through the focus. Subplots (c) and (d) show the axial and lateral pressure profiles through the
focus, along with the 95% confidence interval (2-sigma) estimated using linear uncertainty propagation. STD, standard deviation; MC, Monte
Carlo; Linear, linear uncertainty propagation.

Fig. 4. The histogram of the empirical distribution of the pressure value at the focus, estimated using 200 Monte Carlo runs, and the corre-
sponding normal distribution estimated by linear uncertainty propagation. LUP, linear uncertainty propagation.
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Last, note that the algorithm derived for estimating uncertainty is itself differentiable. This allows the predicted
uncertainty map to be included in another optimization loop and the definition of a cost function that depends on uncer-
tainty that is still optimizable using gradient descent, as done, for example, in Gerlach et al. (2020) using a different
method for estimating uncertainties.
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