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Abstract 

Background:  There is considerable evidence for the importance of the DNA methylome in metabolic health, for 
example, a robust methylation signature has been associated with body mass index (BMI). However, visceral fat (VF) 
mass accumulation is a greater risk factor for metabolic disease than BMI alone. In this study, we dissect the subcuta‑
neous adipose tissue (SAT) methylome signature relevant to metabolic health by focusing on VF as the major risk fac‑
tor of metabolic disease. We integrate results with genetic, blood methylation, SAT gene expression, blood metabo‑
lomic, dietary intake and metabolic phenotype data to assess and quantify genetic and environmental drivers of the 
identified signals, as well as their potential functional roles.

Methods:  Epigenome-wide association analyses were carried out to determine visceral fat mass-associated differen‑
tially methylated positions (VF-DMPs) in SAT samples from 538 TwinsUK participants. Validation and replication were 
performed in 333 individuals from 3 independent cohorts. To assess functional impacts of the VF-DMPs, the associa‑
tion between VF and gene expression was determined at the genes annotated to the VF-DMPs and an association 
analysis was carried out to determine whether methylation at the VF-DMPs is associated with gene expression. Fur‑
ther epigenetic analyses were carried out to compare methylation levels at the VF-DMPs as the response variables and 
a range of different metabolic health phenotypes including android:gynoid fat ratio (AGR), lipids, blood metabolomic 
profiles, insulin resistance, T2D and dietary intake variables. The results from all analyses were integrated to identify 
signals that exhibit altered SAT function and have strong relevance to metabolic health.

Results:  We identified 1181 CpG positions in 788 genes to be differentially methylated with VF (VF-DMPs) with 
significant enrichment in the insulin signalling pathway. Follow-up cross-omic analysis of VF-DMPs integrating genet‑
ics, gene expression, metabolomics, diet, and metabolic traits highlighted VF-DMPs located in 9 genes with strong 
relevance to metabolic disease mechanisms, with replication of signals in FASN, SREBF1, TAGLN2, PC and CFAP410. PC 
methylation showed evidence for mediating effects of diet on VF. FASN DNA methylation exhibited putative causal 
effects on VF that were also strongly associated with insulin resistance and methylation levels in FASN better classified 
insulin resistance (AUC=0.91) than BMI or VF alone.
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Background
Obesity is a global health concern, where the number of 
obese adults worldwide has tripled since 1975 to 13% in 
2016 [1] and is predicted to continue to rise [2]. Obesity 
has a pronounced impact on an individual’s health, with 
obese individuals more likely to suffer from type 2 diabe-
tes (T2D), heart disease and cancer [3, 4], resulting in a 
significant economic impact [5].

Despite evidence for a clear genetic component to 
obesity, with GWAS studies identifying over 200 genetic 
variants, these explain only 2–3% of variability in obesity 
between individuals [6]. The dramatic rise in obesity in 
recent years suggests involvement of environmental driv-
ers. Epigenetic mechanisms are key regulators of gene 
function that can respond to external stimuli. Multiple 
epigenome-wide association studies of obesity have been 
carried out, with the majority of studies in blood [7] and 
relatively few investigating the adipose tissue methylome, 
which is one of the most biologically relevant tissues for 
metabolic health.

Several SAT methylome studies of obesity have been 
carried out to date [8–11], each in up to 250 participants 
across different ancestries and with different methyla-
tion technologies. A clear and strong adipose methylome 
signature of obesity has emerged, with subsets of signals 
also relating to glucose and insulin homeostasis, lipid 
metabolism, and type 2 diabetes (T2D). Ronn et  al. [9] 
identified thousands of strong associations between BMI 
and the adipose tissue methylome in approximately 200 
Northern Europeans, but without adjustment for adipose 
tissue cell heterogeneity. In contrast, Agha et al. [8] found 
that after adjustment for adipose cell composition there 
were no significant associations with BMI, but associa-
tions were observed with other aspects of adiposity such 
as android:gynoid fat ratio (AGR) in 100 participants 
of mixed ethnicity. Orozco et  al. [10] identified adipose 
methylation signals associated with one or more of 32 
traits related to obesity and T2D in 200 Finnish men and 
based on these results developed a T2D classifier. Most 
recently, Sharma et al. [11] detected over a hundred adi-
pose methylation signals related to BMI and measures 
of insulin sensitivity in 230 African Americans. Further-
more, a clear genetic influence on the adipose methylome 
has also been identified [12, 13], and GWAS signals for 
BMI exhibit strong impacts on adipose tissue methyl-
ome variation [12]. These observations suggest that adi-
pose tissue DNA methylation levels not only show major 

alterations with obesity but may also in part mediate 
some genetic risk effects in obesity.

However, the majority of adipose tissue methylome 
studies of obesity to date focus on BMI, which can be 
an imprecise measure of adiposity without distinction 
between lean and fat mass. In contrast, estimates of vis-
ceral fat (VF) mass accumulation around the abdominal 
organs have been shown to confer stronger risk for meta-
bolic disease than BMI alone [14]. For example, VF was 
associated with impaired fasting glucose [15], hyperten-
sion and metabolic syndrome [16], while general adipos-
ity was not. Multiple studies have linked VF to impaired 
insulin signalling and insulin resistance (IR) [17–19]. VF 
is correlated with liver fat accumulation and is prone to 
inflammation [17], both of which lead to reduced insulin 
signalling functionality, although the precise underlying 
molecular mechanisms are not fully characterised. Fur-
thermore, methylome profiling of visceral adipose tissue 
in 199 severely obese individuals has revealed hundreds 
of differentially methylated signals related to circulating 
lipid levels, with both tissue-specific and shared effects 
[20].

Here we aimed to dissect subcutaneous adipose tis-
sue methylome alterations relevant to metabolic health, 
by focusing on visceral fat accumulation as the major 
risk factor for metabolic disease. We characterised the 
SAT DNA methylation signature associated with VF 
after controlling for BMI in 538 twins from the Twin-
sUK cohort [21]. At the majority of identified signals, 
DNA methylation levels were concordant across SAT 
and visceral adipose tissue (VAT), with consistent levels 
of gene expression across these two types of adipose tis-
sue. We then conducted a multi-omic follow-up analysis 
integrating our signals with genetic, blood epigenetic, 
SAT gene expression, diet, plasma metabolomic varia-
tion, and a range of metabolic phenotypes to assess and 
quantify genetic and environmental drivers of the iden-
tified signals, as well as their potential functional roles. 
Replication of components of the analysis was pursued 
in three independent datasets (104 individuals from the 
LEAP cohort in the New England Family Study [8], 28 
T2D cases and 28 controls from the Danish Twin Regis-
try [22], and 199 severely obese individuals undergoing 
bariatric surgery at the Quebec Heart and Lung institute 
[20]). To consider how our results relate to the clinical 
consequences of elevated VF, we showed that a subset 
of the identified signals have strong associations with 

Conclusions:  Our findings help characterise the adiposity-associated methylation signature of SAT, with insights for 
metabolic disease risk.
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insulin resistance and can serve as potential predictors of 
IR.

Methods
Cohort sample datasets
The primary dataset in this study included 538 White 
British female twins (mean age 58.9±9.5 years; Table 1) 
from the TwinsUK cohort [23] who were free from major 
diseases including cancer, and for whom SAT biopsy 
DNA methylation levels were profiled. Three subsets 
of the 538 primary TwinsUK dataset were included in 
downstream follow-up analyses where participants had 
complete relevant data (including 397 of 538 for diet 
analyses, 347 of 538 for metabolomic analyses, and 528 
of 538 for lipid analyses). Details of data collection for 
the diet, metabolomic and lipid data have been previ-
ously described [23] and are described further below (see 
TwinsUK phenotype data). A second set of TwinsUK par-
ticipants included 901 individuals (mean age 57.8±10.1 
years 97% female; Table 1) for whom whole blood DNA 
methylation was profiled. These data are described fur-
ther below (see TwinsUK study participants). The final 
TwinsUK dataset included in this study contained 720 
participants from the TwinsUK cohort for whom adipose 
gene expression profiles were available, and these data 
were used in the analysis of the association between gene 
expression and visceral fat described previously [24], and 
below (see Gene expression profiles and analyses).

Validation and replication were carried out in three 
independent cohort datasets that are described in more 
detail below (see ‘Validation and replication’). For vali-
dation using AGR as a surrogate adiposity phenotype, 
we analysed a dataset of 104 individuals from the LEAP 
cohort in the New England Family Study, as previ-
ously described [8]. For replication of metabolic health 
impacts, two further datasets were used. These included 

28 T2D cases and 28 controls from the Danish Twin Reg-
istry as previously described [22], and 199 severely obese 
individuals undergoing bariatric surgery at the Quebec 
Heart and Lung institute as previously described [20].

A complete analysis plan including datasets, sample 
sizes and analysis carried out on each dataset can be 
found in Additional file 1: Fig. S1.

TwinsUK study participants
The primary dataset of 538 participants consisted of 
107 monozygotic (MZ) twin pairs and 163 dizygotic 
(DZ) twin pairs from whom SAT biopsy samples were 
obtained, as previously described [21]. Briefly, subcuta-
neous tissue was dissected from the abdomen, near the 
umbilicus. Fat was immediately stored in liquid nitrogen, 
after separation from the skin layer. The second set of 901 
study participants consisted of 422 MZ twin pairs and 
73 DZ twin pairs, and 222 individuals overlapped with 
the set of 538 twins with SAT biopsies. Descriptions of 
DNA extraction in blood samples and SAT have been 
described previously [21, 25]. All study participants pro-
vided informed consent. Ethical approval was granted by 
the National Research Ethics Service London-Westmin-
ster, the St Thomas’ Hospital Research Ethics Committee.

TwinsUK phenotype data
The individuals included in the study attended clinical 
research visits during which phenotype data and biologi-
cal samples were collected. During the visit height and 
weight were measured, and dual-energy X-ray absorp-
tiometry whole-body scans (DXA) were carried out. 
The total grams of VF obtained from the trunk region 
in the DXA data were used to quantify VF, as previously 
described [26, 27]. Briefly, DXA scans were undertaken 
with participants lying flat and straight, and the relevant 
fat mass was estimated in grams from a cross section of 
the whole body at L4–L5, the typical location of a CT 
slice. The procedure for taking these measurements, 
quality control and the calculation of VF has previously 
been described [26, 27]. Only individuals with complete 
information for height, weight and VF were used in the 
analysis. DXA scans were also used to estimate AGR and 
trunk fat mass (TFM).

Fasting insulin and glucose levels were obtained from 
all 538 participants’ whole blood samples collected dur-
ing the clinical visits. Insulin resistance (IR) and type 2 
diabetes (T2D) status were assessed through both ques-
tionnaire data and based on blood glucose and insulin 
levels. For an individual to be classified as insulin resist-
ant, they had at least two normal fasting blood glucose 
readings (below 7 mmol/L) accompanied by a fasting 
insulin level > 50 pmol/L or over 9 μU/ml. Individuals 
with only one instance meeting these thresholds were 

Table 1  Discovery sample participant characteristics

Tissue type Blood SAT

Number 901 538

Smoker status 109(S) 54(S)

283(Ex) 196(Ex)

509(N) 288(N)

% Female 97% 100%

Age (years) ± SD 57.8±10.1 58.9±9.5

BMI (kg/m2) 26.7±4.9 26.8 ±4.9

Visceral fat (g) 3117±1383 3198±1441

Correlation between BMI and 
visceral fat

0.87 0.90

AGR​ n/a 0.96±0.16

VF/TPM n/a 0.109±0.022
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removed from the controls. This categorisation resulted 
in 114 IR cases (HOMA-IR 3.5 ± 1.5) and 284 IR controls 
(HOMA-IR 1.1 ± 0.5) in the SAT dataset.

An individual was categorised as a T2D case if either 
there were two or more indicators of T2D or T2D medi-
cation was listed in regular medications taken. Indica-
tors included fasting blood glucose levels greater than 
7 mmol/L on any occasion and self-reporting of T2D 
incidence. Altogether, the SAT dataset included 15 T2D 
cases and 378 T2D controls.

Lipid data were available for 528 twins with SAT meth-
ylation profiles. Total cholesterol, HDL, LDL and triglyc-
erides were measured in blood serum in mmol/L. Total 
cholesterol, HDL and triglycerides were determined by 
a colorimetric enzymatic method. HDL cholesterol was 
determined after precipitation of larger particles (chy-
lomicron, VLDL and LDL) by magnesium and dextran 
sulfate. LDL levels were estimated by using the Friede-
wald equation. Checks were carried out to ensure the 
date difference between the date of methylation meas-
urement and lipid collection was within 5 years. Outliers 
were excluded based on a boxplot of lipid measurements, 
where data points that are located outside the whiskers 
of the boxplot are excluded. This left 525 subjects in the 
downstream analysis for HDL, 499 for triglycerides, 527 
for total cholesterol and 521 for LDL.

Fasting serum circulating metabolomic profiles were 
measured by Nightingale Health Ltd, formerly known as 
Brainshake Ltd (Vantaa, Finland; https://​night​ingal​eheal​
th.​com/​servi​ces) [28]. Metabolomic profiles were deter-
mined using targeted NMR spectroscopy, as previously 
described [28]. Metabolomic profiles were obtained for 
12 metabolic traits, 143 metabolite concentrations, 80 
lipid ratios, 3 lipoprotein sizes and a measure of albu-
min. Metabolomic data processing in the larger TwinsUK 
cohort sample has been previously described [29], and 
briefly traits were log-transformed and scaled to standard 
deviation units. This component of the analysis focused 
on 347 of the 538 twins, including only individuals who 
had metabolomic profiles within 5 years of the SAT 
biopsy.

SAT and blood cell composition estimates
SAT cell composition proportions were estimated based 
on previously developed approaches using gene expres-
sion profiles with CIBERSORT [24]. The estimated 
proportion of adipocytes, macrophages and micro-vas-
cular endothelial cells were included as covariates in all 
downstream analyses involving SAT. Blood cell subtype 
proportions were estimated based on DNA methyla-
tion profiles, using established methods [30]. Blood cell 
estimates were obtained for monocytes, granulocytes, 
immune cells (Natural Killer (NK) cells, CD8 and CD4) 

and plasmablasts. As the resulting cell subtype pro-
portions were correlated, downstream analysis models 
included only monocytes, granulocytes, NK cells and 
CD8 naïve cells.

TwinsUK DNA methylation profiles and analyses
DNA methylation profiles for both SAT and whole blood 
in twins were generated using the Ilumina HumanMeth-
ylation 450kBeadChip array (450k array) [31]. DNA 
methylation levels were determined using methyla-
tion beta-values, defined as the ratio of the methylated 
bead signal to the sum of the unmethylated bead signal 
plus the methylated bead signal plus 100 [32]. Methyla-
tion beta-values range between 0 at unmethylated CpG 
sites and 1 at fully methylated CpG sites. Enmix [33] was 
used for methylation data processing and quality control. 
ENmix was first applied for background and dye bias cor-
rection quantile normalisation of signals, and estimation 
of adjusted beta-values. Missing data was assigned for 
CpG signals with detP > 0.000001 and Nbead < 3. Sam-
ple outliers were excluded as missing data using stand-
ard parameters. Minfi [34] was used to exclude samples 
with median methylated and unmethylated signals 
below 10.5. Cross-reactive probes and probes contain-
ing and >2 alignment mismatches were excluded. Alto-
gether, 438,594 probes were included in the downstream 
analysis.

Epigenome-wide association scans (EWAS) were 
carried out for VF in SAT both with and without BMI 
as a covariate. DNA methylation values for each CpG 
site were normalised to N(0,1) prior to fitting linear 
models. Mixed effect linear models were fitted (using 
lme4 and LmerTest in R) [35] where methylation was 
the response variable, and VF was the predictor and 
fixed effect covariates were BMI, age, smoking status, 
cell type proportion and methylation chip and posi-
tion of the sample on the chip, random effects covari-
ates were zygosity, family. Multiple testing adjustment 
was performed using a Bonferroni adjusted threshold 
of 5% (P = 1.14 × 10−7). Methylation effect sizes were 
calculated using the same linear model, but without 
normalising DNA methylation levels to N(0,1) prior to 
data analysis, and the results were also compared to 
the normalised analysis. The association between VF 
and DNA methylation levels was also assessed over 
larger genomic regions, to identify VF differentially 
methylated region (VF-DMR) using DMRcate [36, 37]. 
VF-DMRs were identified after correction for multi-
ple testing genome-wide, based on DMRcate Fisher 
FDR 5%.

Epigenetic analyses were also carried out to relate 
methylation levels at the 1181 VF-DMPs as the 
response variables and a range of different metabolic 

https://nightingalehealth.com/services
https://nightingalehealth.com/services
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health phenotypes including AGR, VF/TFM, lipids, 
blood metabolomic profiles, insulin resistance and 
T2D. Overlap between the VF-DMPs and methylation 
association signals from each metabolic phenotype 
were established using a P-value cut off based on a 
Bonferroni multiple testing threshold (P = 4.2 × 10−5).

SAT epigenetic age analyses applied three different 
epigenetic ageing calculators to estimate DNA meth-
ylation age acceleration for each individual, based on 
DNAm GrimAge [38], DNAm PhenoAge [39] and Hor-
vath methylation age [40]. Mixed effect linear models 
were fitted (using lme4 and LmerTest in R), where the 
DNA methylation age acceleration was the response 
variable with predictor visceral fat. Fixed effect covari-
ates included age, smoking status and cell type compo-
sition and mixed effects included zygosity and family. 
The analysis was run with and without BMI as a fixed 
effect covariate.

Genome annotation and pathway analysis
CpG annotation to genes and with respect to CpG 
density was based on the 450k Illumina manifest. 
Further genomic annotations were carried out tak-
ing into account data from the ENCODE project 
[41] and ChromHMM categorisation [42]. This ena-
bled an assessment of the enrichment or depletion 
of the differentially methylated signals relative to all 
tested methylation probes from the 450k array. The 
number of VF-DMPs mapping to each annotation 
category (e.g. insulators) was compared to the total 
number of CpGs tested mapping to that category. 
Fisher’s exact test was used to determine whether 
differences were significant, with a P-value thresh-
old of P < 0.05.

To explore functional annotations to biological 
processes and molecular pathways, the genes that 
VF-DMPs annotated to were analysed with the Inge-
nuity Pathway Analysis (QIAGEN Inc. https://​www.​
qiage​nbioi​nform​atics . ​com/​produ​cts/​ingen​uityp​
athway-​analy​sis) and GOmeth in missMethyl [43]. 
Using IPA, we assessed evidence for enrichment of 
canonical pathways for the VF-DMP genes against 
all genes applying Fisher’s exact test. We considered 
IPA pathway results that surpassed a P-value thresh-
old (P < 0.01). We also applied the GOmeth function 
in the missMethyl Bioconductor package in R [43]. In 
GOmeth, we tested the 1181 significant CpGs against 
a background of all 438,594 CpGs included in the 
downstream analysis for enrichment in KEGG path-
ways. GOmeth includes allowance in the enrichment 
calculation for the number of probes per gene in the 
background set.

Tissue specificity
The SAT samples included in the study consisted of sub-
cutaneous fat. Previously published datasets [44, 45] 
were used to explore differences between subcutaneous 
fat methylation and visceral fat methylation levels at the 
VF-DMPs. Our first assessment [44] estimated the num-
ber of VF-DMPs that fell in genomic regions that showed 
over 10% methylation differences between the SAT and 
VAT [44]. Our second assessment explored how many 
VF-DMPs were also previously identified by Macartney-
Coxon et al. [45] to be differentially methylated after mul-
tiple testing adjustment between SAT and VAT.

To assess the level of tissue specificity across SAT and 
blood samples, we analysed the VF-methylation associa-
tions at the 1181 VF-DMPs in the 901 whole blood twin 
samples, with and without taking into account BMI. The 
resulting P-values were used to estimate their π0, the 
overall proportion of true null hypotheses in all tests 
performed, using Bioconductor qvalue [46]. We then 
quantified the proportion of significant results π1, or the 
proportion of true positives, corresponding to π1 = 1 − 
π0 [47]. For the 222 individuals for whom both blood and 
SAT methylation data were available, pairwise adipose-
blood methylation correlations were estimated at the VF-
DMPs to further assess the level of tissue specificity.

Gene expression profiles and analyses
RNA-seq data [48] were available for 720 individuals with 
available genotype information (median age 60, age range 
38–64, median BMI 25, BMI range 16–47), and these 
included the 538 twins in the current study. RNA-seq 
generation and pre-processing in the SAT samples have 
been previously described [24]. In summary, STAR soft-
ware v2.4.0.1 [49] was used to align reads to hg19. Sam-
ples were excluded if they had less than 10 million reads 
sequenced to known genes. Samples were also excluded if 
reads were not properly paired. Gene counts were trans-
formed into trimmed mean of M-values (TMM)-adjusted 
counts per million (CPMs) and inverse-normalised prior 
to all downstream analyses. The expression dataset was 
filtered to a minimum of 5 gene  counts in 25% of the 
subjects.

Two analyses were carried out to assess the functional 
impacts of the 1181 VF-DMPs. Firstly, the association 
between VF and gene expression was determined at the 
788 genes using a mixed effect linear model. The model 
applied gene expression level as the response variable 
and VF as the predictor, with fixed effect covariates 
smoking, BMI, age, insert size and GC content and ran-
dom effects covariates primer index, date of sequencing 
sample, processing batch, family and zygosity. Secondly, 
an association analysis was carried out to determine 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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whether methylation at the VF-DMPs is associated with 
gene expression. A mixed effect linear model for the 
538 individuals was constructed with gene expression as 
the response variable and methylation as the predictor. 
Fixed and random effect covariates were consistent with 
the analysis above, but also included VF as a fixed effect 
covariate (in addition to fixed effect covariates smoking, 
BMI, age, insert size and GC content and random effects 
covariates, primer index, date of sequencing sample pro-
cessing batch, family and zygosity). The strength of asso-
ciation was determined using LmerTest [35], consistent 
with the EWAS analysis.

To explore whether gene expression or methylation 
was the likely driver of the VF associations, the associa-
tion model between VF and gene expression above was 
rerun for the subset of 538 individuals with both methyl-
ation and expression data available. Methylation was then 
added to the model as a covariate and the significance 
(P-value) of the association between gene expression 
and VF was determined. The extent to which the P-value 
attenuated was observed. This analysis was also repeated 
starting with the significance of the association between 
methylation and VF, adding gene expression to the model 
and observing the extent to which the P-value attenuated.

Genetic data, heritability and QTL analyses
A twin-based heritability analysis was carried out to 
estimate heritability of the 1181 VF-DMPs using ACE 
modelling [50], which assumes that phenotypic variance 
is the sum of additive genetic effects (A), common envi-
ronmental effects (C) and unique environmental effects 
(E). Genotypes were available for all 538 individuals in 
the sample and were used for the identification of meth-
ylation Quantitative Trait Loci (meQTLs) and expression 
Quantitative Trait Loci (eQTLs). Genotyping of the full 
TwinsUK genetic dataset has been described previously 
[51]. Briefly HumanHap300, HumanHap610Q, Human-
Hap1M Duo and HumanHap1.2M Duo 1M arrays were 
used to genotype the sample. Following pre-phasing 
using IMPUTE2 without a reference panel, the resulting 
haplotypes were used to perform fast imputation from 
1000 Genome phase1 dataset. Following imputation, 
quality control measures included the exclusion of SNPs 
which failed Hardy Weinberg equilibrium (P < 1e−6), 
had a MAF < 0.01, had missingness of more than 5% or 
had an info score < 0.8. Individuals with discordant sex 
were removed. Outliers were also removed using PLINK 
2.0 (unrelated participants) and GENESIS (related par-
ticipants) where a deviation of more than 7 SD from the 
mean was considered an outlier. The data was further 
pruned for relatedness with participants with IBS > 0.125 
(calculated using PLINK 2.0) removed.

A meQTL analysis was performed to test for the asso-
ciation between genetic variation and DNA methyla-
tion levels at the 1181 VF-DMPs in SAT. SNPs that were 
meQTLs were determined by fitting a linear model in 
MatrixEQTL R package [52], where the corrected meth-
ylation beta-values were the response variables, and dos-
age of minor allele was the predictor. Covariates included 
age, predicted smoking status, genetic principal compo-
nents as fixed effects and family relatedness as a random 
effect. Only cis meQTL SNPs were included, where the 
cis interval was defined as ± 1 Mb from CpG site. A strin-
gent cis meQTL P-value threshold was used to test for 
significance (P = 1 × 10−5), as previously described [12], 
and the most associated SNP per CpG site was reported 
as the meQTL for the VF-DMP.

We assessed the overlap between the VF-DMP 
meQTLs SNPs and previously identified GWAS signals 
for VF from the GWAS catalog [53]. Altogether, all 71 
recorded GWAS studies in the catalogue for VF (26) or 
BMI-adjusted waist-to-hip ratio (45) were included. The 
studies identified 360 and 3172 SNPs associated with VF 
and BMI-adjusted waist-to-hip ratio respectively. VF-
DMP meQTLs SNPs were compared against this GWAS 
combined set of 3532 SNPs to explore overlaps.

We further analysed the association between genotype 
at the most significant SNP for each of the 203 meQTLs 
and VF in our sample of 538 individuals. A mixed effect 
linear model (lme4) was fitted for all 538 participants 
with VF as the response variable, dosage of the minor 
allele as predictor, and covariates included BMI, age, 
smoking status as fixed effects and family and zygosity as 
random effects. Due to the small sample size, 8 nominally 
significant SNPs (P < 0.05) were used in the downstream 
Mendelian randomisation analysis.

A ratio estimator approach was used for Mendelian 
randomisation [54]. Here, the causal estimate was calcu-
lated as the effect size of the association between geno-
type and VF, divided by the effect size of the association 
between genotype and methylation. The standard error of 
the estimate was calculated using the delta method based 
on Taylor expansion. Finally using the standard error, a 
95% confidence interval was constructed around the 
causal estimate. Where this interval did not include zero, 
the causal estimate was deemed to be significant. The 
assumptions for Mendelian randomisation were assessed, 
and the assumption that the SNP (meQTL) is associated 
with the risk factor (VF) is met by design. However, the 
second and third assumptions are less clearly met, as 
there could be additional unknown links between geno-
type and VF.

In addition to the meQTL analysis, a cis eQTL analysis 
was also carried out for the 788 genes annotated to the 
VF-DMPs in the larger sample of 720 individuals from 
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the TwinsUK cohort with available gene expression data. 
Genetic effects at SNPs for each gene in a cis-window (a 
1-MB region around the transcription start site (TSS) of 
each gene) were analysed. SNPs with a MAF <5% were 
excluded. As described in Glastonbury et  al. [24], the 
analysis was performed on the inverse-rank-normalised 
gene expression residuals corrected for family and zygo-
sity and RNA extraction batch. The QTLtools package in 
R [55] was used for the analysis, adjusting for BMI, gen-
otyping chip and 40 PEER factors. For consistency with 
meQTL results, cis eQTL significant threshold matched 
that applied for cis meQTLs (P-value = 1 × 10−5). To 
assess co-localisation of meQTLs and eQTLs, a simpli-
fied approach was taken, where a direct comparison was 
made between meQTL SNPs and eQTL SNPs.

Diet data and analyses
Dietary information was available for 397 of the 538 par-
ticipants with SAT methylation. The data were based on 
the 131 item EPIC-Norfolk food frequency questionnaire 
(FFQ [56]) where FFQ data processing in the larger Twin-
sUK sample has previously described [57]. Briefly, the 131 
food items were combined to form 54 food groups, with 
intake for each group estimated as the sum of all weekly 
servings. Data quality control was performed based on 
a comparison between the energy intake implied by the 
FFQ and the participants’ estimated basal metabolic rate. 
We analysed both nutrient intakes and overall diet qual-
ity estimated by diet scores. Nutrient intake variables 
explored here included biotin, cholesterol, magnesium, 
fibre, protein, total sugars, total trans fat, tryptophan and 
vitamin E intakes, all of which were previously identified 
to be associated with VF [26]. Overall diet quality meas-
ures included the Healthy Eating Index (HEI) [58], the 
alternate Healthy Eating Index (aHEI) [59], the Dietary 
Approaches to Stop Hypertension (DASH) score [60], 
the Alternate Mediterranean Diet Score (aMED) [61], 
the Dietary Quality Index International (DQI-I) [62] ], 
Health Eating Index (HDI) score [63] and the Nordic Diet 
Score [64].

Diet epigenetic analyses were carried out assessing the 
association between methylation levels at the 1181 VF-
DPs as the response variables and selected dietary intake 
variables including nutrient intakes previously associated 
with VF (biotin, cholesterol, magnesium, fibre, protein, 
sugars, trans fats, tryptophan, vitamin E; based on Le Roy 
et al. [26]), and estimated diet scores (HEI, aHEI, DASH, 
aMED, DQI-I, HDI, Nordic) as predictors. A consistent 
linear model was used to assess the methylation-diet 
associations with covariates including age, BMI, smok-
ing status, cell composition, batch effects as fixed effects, 
family and zygosity as random effects. To assess evidence 

for significant VF-DMP associations with dietary vari-
ables, we considered results that surpassed Bonferroni 
multiple testing correction (P = 4.2 × 10−5).

To assess the mediation effect of methylation on the 
impact of diet on VF, we carried out a mediation analy-
sis using the mediation package in R [65]. Methylation 
at CpGs identified to harbour differential methylation 
effects for both VF and diet (VF/diet-DMPs) was used as 
a mediator for the causal effect of the relevant diet vari-
able on VF. Before undertaking a mediation analysis, the 
association between VF and the dietary variables where 
overlapping methylation associations were found (fibre, 
magnesium, DASH score, Nordic score, DQI-I score) 
was determined. A consistent linear mixed effect model 
(lme4) was used with VF as response variable, the dietary 
variable as predictor, and fixed effect covariates including 
age, smoking, BMI, age, cell composition and batch, and 
random effects covariates zygosity and family. All of the 
dietary variables were significantly associated with VF at 
P <0.05 (Additional file 2: Table S5).

The R mediation package uses a single mediator and 
fibre, magnesium and DASH diet score all had more than 
one associated VF/diet-DMP. For each of these dietary 
variables, the CpG site with the most significant asso-
ciation with the diet variable was used as the mediator. 
Outcome models were constructed using mixed effects 
models (lme4) with the diet variable as the predictor 
and fixed effect covariates smoking, age, BMI, cell com-
position, batch and random effect covariates family and 
zygosity. Mediator models were constructed using the 
same approach with an additional predictor including 
DNA methylation levels at the relevant CpG site. For 
each mediation analysis, we report the average causal 
mediation effect (ACME), representing the average size 
of the effect of a diet variable on VF that is mediated by 
methylation. We also report the proportion of the effect 
that is mediated. We then report the average direct effect 
(ADE), where ADE represent the direct effect of the diet 
variable on VF. If only ACME is significant, there is a full 
mediation by methylation of the association between the 
diet variable and VF. If both ADE and ACME are signifi-
cant, methylation has a partial mediating effect.

Insulin resistance classifier
We tested whether insulin resistance status could be pre-
dicted using DNA methylation levels at the most signifi-
cantly differentially methylated site associated with IR, 
namely in FASN (cg11950105). The analyses were car-
ried out in the IR data set of 397 people (114 cases, age 
58.3±8.5, BMI 30.9±5.3; 284 controls, age 59.2±10.2, 
BMI 24.8±3.6). Training datasets were created by select-
ing 60% of the full dataset at random. Test datasets 
were created with the remaining 40% of the full dataset. 
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Altogether, 20 random samples were selected creat-
ing 20 random training and test set combinations. For 
each of the training datasets, a generalised linear model 
was fitted with IR as the outcome and predictors includ-
ing unadjusted DNA methylation levels and covariates 
(age, sex, BMI and smoker status) using the R glm func-
tion. The sensitivity and specificity were assessed using 
receiver operative curve (ROC), implemented using the 
pROC package in R [66]. Given the strong relationship 
between IR and BMI, we tested the performance of the 
methylation classifier compared to the performance of 
BMI alone. Additionally, we tested the performance of 
visceral fat alone. We tested whether there was a statisti-
cally significant difference between the two models using 
the ROC test function (pROC package). The test dataset 
was then loaded into the derived model with outcomes 
predicted using the R predict function and an average 
AUC was determined.

Validation and replication
We pursed validation and replication of VF-DMPs and 
their relevance to metabolic health in three independent 
cohort samples (Additional file 2: Table S9).

We first sought to validate the 1181 VF-DMPs using 
AGR as a surrogate central adiposity phenotype. We fit 
linear models with AGR as predictor and DNA meth-
ylation levels at VF-DMPs as the response variable in 
the data set from Agha et  al. [8]. The analysis included 
104 individuals from the New England Family Study, the 
LEAP cohort (mean BMI 30.9 ± 7.03, mean age 47 ± 1.7, 
48% male, mixed ancestry), described in detail previ-
ously [67]. SAT was collected from the upper outer quad-
rant of the buttock. DNA extraction and profiling, along 
with determination of AGR through DXA scanning has 
been previously described in detail [8]. For the validation 
analysis, a linear regression model was fit with covariates 
including age, sex, smoking status, BMI and batch effects. 
The analysis was carried out with and without adjustment 
for cell composition effects. The process for cell composi-
tion adjustment has previously been described [8] and is 
based on the reference-free method [68] with latent vari-
ables representing mean methylation. The latent variable 
dimension (i.e. number of cell types) was estimated to be 
23, which in a sample of 104 may lead to potential over-
fitting and attenuation of effects. The primary results do 
not include adjustment for cell composition, and in the 
cell adjusted reference-free analysis, we observed that 
51% (592) of tested VF-DMPs showed a consistent direc-
tion of methylation association with AGR in the LEAP 
cohort participants, and 2% displayed nominally signifi-
cant effects with no results significant after multiple test-
ing adjustment.

Second, we pursued replication of selected phenotype 
associations observed with the 19 VF-DMPs in 9 genes, 
which in our data showed significant associations with 
a wide range of metabolically relevant phenotypes, 
including insulin resistance, triglycerides, HDL and 
amino acid metabolites. We sought replication in two 
further cohort samples, a T2D case-control study from 
Nilsson et al. [22] and a set of unrelated obese individu-
als from Allum et al. [20].

The Nilsson et  al. [22] Scandinavian case-control 
study dataset included 28 T2D cases (BMI 27.4±3.6, 
mean age 74.5±4.2, 46% female) and 28 controls (BMI 
27.0±3.6; mean age 74.3±4.3; 46% female) from the 
Danish Twin Registry, described previously [22]. DNA 
extraction, methylation profiling and data quality con-
trol has been described previously [22]. Briefly SAT 
samples were extracted, frozen and stored at −80 °C. 
DNA was later extracted using DNeasy Blood and Tis-
sue kit (Qiagen) and profiled on the 450k array. Of the 
19 VF-DMPs, 18 CpG sites in 9 genes were available for 
replication testing. Relationships between T2D cases 
and controls were determined using paired Wilcoxon 
statistics and the resulting P-value compared with a 
Bonferroni threshold P = 2.8 × 10−3.

The final replication sample from Allum et  al. [20] 
included 199 severely obese individuals (BMI > 40; 
mean age 37.2±8.8; 60% female) undergoing bariatric 
surgery at the Quebec Heart and Lung institute, Que-
bec City, Canada, for whom visceral adipose tissue 
samples were collected. DNA extraction, methylation 
profiling and data quality control have been described 
previously [20]. Briefly participants fasted overnight 
and underwent anaesthesia, and VAT samples were 
obtained within 30 min of the surgery from the greater 
omentum. In addition to the VAT samples, lipid levels 
(total cholesterol, HDL cholesterol, triglycerides) were 
measured in blood plasma using enzymatic assays. 
Plasma low-density cholesterol levels were estimated 
with Friedewald formula. In the analysis, lipid levels 
not normally distributed were transformed to a log 
scale. Methylation was profiled using Methyl C Capture 
Sequencing (MCC-seq), a targeted bisulfite sequenc-
ing epigenome profiling approach targeting 79.6Mb 
including 210,883 CpG sites from the 450k array as 
previously described [69]. We assessed the association 
between DNA methylation levels of specific targeted 
CpGs detected using the MCC-seq approach and the 
lipid levels using a generalised linear model fitted to a 
binomial distribution weighted for sequence coverage 
adjusted for age, sex, batch effects and BMI. Further 
details on this modelling have been previously reported 
[20]. If there was not an exact match to the target VF-
DMP 450k array CpG site, we considered all MCC-seq 
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signals within a 250-bp window around the target CpG 
site, reporting the most associated signal. Of the 19 VF-
DMPs, there was an exact match for 11 CpG sites and 
at least one signal in the 250-bp window for 7 others.

Results
We characterised the SAT methylome signature of adi-
posity and metabolic disease risk, with integrative cross-
omic follow-up and deep phenotype profiling (Fig.  1). 
The primary analysis aimed to investigate the relationship 
between SAT DNA methylation levels and VF. We sought 
to relate these findings to clinical outcomes including 
insulin resistance and T2D. The biological relevance of 
the findings was further explored through a deeper meta-
bolic analysis of over 100 phenotypes including levels of 
lipids and amino acids. A detailed analysis plan is pre-
sented in Additional file 1: Fig. S1.

Differential methylome signature associated with VF
The association between VF, assessed using dual-energy 
X-ray absorptiometry (DXA) whole-body scans, and 
DNA methylation was explored in the primary dataset of 
538 SAT samples from TwinsUK (Fig. 1, Table 1), using 

linear regression models correcting a number of covari-
ates (see ‘Methods’). An epigenome-wide association 
analysis identified 1181 CpG sites (VF-DMPs) annotated 
to 788 genes that were statistically differentially methyl-
ated with VF, controlling for BMI, cell composition and 
further biological and technical covariates (see ‘Meth-
ods’), at a Bonferroni multiple testing threshold (P = 
1.14 × 10−7; Additional file 2: Table S1; Fig. 2a). Of the 
1181 VF-DMPs, 660 (56%) were hypermethylated with 
increasing VF, where VF-DMP effect sizes were estimated 
by repeating the association analysis without methylation 
normalisation. The effect sizes ranged in absolute value 
from less than 1% to up to 5% change in the unadjusted 
level of DNA methylation per kg of visceral fat, with a 
median of 1.6% methylation change per kg of visceral 
fat. The largest effect size was observed at cg23654401 
(VOPP1), where methylation values were on average 5% 
lower per kg increase of visceral fat. The lowest P-value 
signal was obtained in MAML3 (cg16218705; P = 2.4 × 
10−19), which was previously reported to be differentially 
methylated with BMI in blood [7]. For reference, results 
without adjustment for BMI and association with BMI 
only are both shown in Additional file 2: Table S1.

Visceral Fat controlling for BMI: 1,181 VF-DMPs

meQTL

eQTL eQTM

Clinical Phenotypes

Insulin Resistance
108 CpG

Classification of Insulin Resistance

Genetics Diet

Clinical Relevance

Metabolic Phenotype

Lipids
TG

564 CpG

HDL/HDL size
187 CpG

Amino Acids
Leucine
149 CpG

Isoleucine
132 CpG

FASN, SREBF1, TBC1D14, CHST11, ACSL1, TAGLN2, 
CFAP410, PC, BAT2FASN PC

Causal Mediation 
MR 6 CpG

FASN cg11950105

Dietary intake 
15 CpG

Meditation 
13 CpG

Epigenome-wide Analysis in Adipose Tissue

Heritability

Adipose Tissue Gene Expression

Genomic Annotations, Pathway Analysis, AGR Validation, Tissue specificity 

Replication

FASN, SREBF1, TAGLN2, 
CFAP410, PC

Fig. 1  Study design. Epigenome-wide analyses of visceral fat (VF) were performed in 538 SAT samples, identifying 1181 VF-DMPs. The 1181 
VF-DMPs were subject to downstream analyses assessing functional relevance using genomic annotations, tissue specificity, validation using a 
related phenotype android/gynoid ratio (AGR), and corresponding SAT gene expression changes related to VF. The VF-DMPs were then further 
analysed for association with genetic and lifestyle factors. Lastly, the signals were exploring using deep metabolic profiling across metabolic 
phenotypes, including lipid levels and metabolomic profiles, with replication. The resulting analyses were integrated to identify a set of replicated 
signals in genes with strong relevance to metabolic health
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The genomic distribution of the SAT VF-DMPs 
adjusted for BMI was explored across genomic annota-
tions, including location with respect to gene body and 
CpG density (Fig.  2b). Consistent with previous obser-
vations that CpG islands (CGI) are less dynamic in 
response to exposures than surrounding regions [70], we 
observed a significant depletion of VF-DMPs in CGI (4% 
relative to 30% of probes, P = 9 × 10−111) and enrich-
ment in CGI shores and shelves. The largest enrichment 
of VF-DMPs was obtained in enhancers, as predicted by 
ChromHMM (26% relative to 10% of probes tested, P = 
3 × 10−55), showing clear links between accumulation of 

VF and changes in the regulatory genomic signature of 
SAT. This is consistent with previous investigations into 
methylation differences in regulatory regions for cardio 
metabolic traits [20].

Enrichment analyses explored biological pathways tar-
geting the 1181 VF-DMPs and the 788 genes to which 
VF-DMPs were annotated. Using Ingenuity Pathway 
Analysis, we observed significant evidence for enrich-
ment for 47 molecular pathways, which included many 
signalling pathways affecting metabolic health and cancer 
(Additional file 2: Table S2), and where the top pathway 
was Insulin Signalling (P = 4 × 10−6). KEGG pathway 

Fig. 2  Subcutaneous adipose tissue differential methylation signature of VF. a A Manhattan Plot of the associations between VF and DNA 
methylation, taking into account BMI resulting from epigenome-wide association analysis (N = 538). The red line shows the multiple testing 
threshold (P = 1.14 × 10−7), and the blue line shows a relaxed significant threshold (P = 1 × 10−5). b Enrichment and depletion of VF-DMPs 
resulting from epigenome-wide association analysis (N = 538) across genomic annotations. Log Fold changes show the proportion of VF-DMPs 
annotated to particular genomic annotations, compared to all CpGs tested in each annotation. The plots show only annotation categories with 
significant enrichments and depletions. c Comparison between the discovery cohort (TwinsUK) (N = 538) and validation cohort (LEAP; N = 104) 
showing effect size for the associations resulting from the regression analysis between AGR and methylation at VF-DMPs without adjustment for 
cell composition in LEAP. d Significant positive association between PhenoAge acceleration and VF accumulation with a line of best fit shown in 
red along with its R2 value (N = 538). e GTEx gene expression levels in whole blood, visceral fat and subcutaneous fat for the 9 genes identified 
in the study following the omic integration showing shared expression levels in the two types of adipose tissue (SAT and VAT), but differences in 
expression levels between adipose tissue and whole blood. TPM is transcripts per kilobase million, and the median expression levels are shown in 
Additional file 2: Table S10
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enrichment using GOmeth [43] for the 1181 VF-DMPs 
similarly identified significant enrichment for signals in 
genes involved in insulin signalling (P = 1.9 × 10−3), as 
well as glycolipid and fatty acid metabolism pathways.

We sought to validate the VF-DMPs by assessing 
methylation associations with other adipose phenotypes 
related to VFM, including VF/TFM and android:gynoid 
ratio (AGR), which has previously been linked to altera-
tions in the SAT methylome in participants from the 
LEAP cohort [8]. We tested the association between 
AGR and DNA methylation levels, and between VF/TFM 
and DNA methylation levels, at the 1181 VF-DMPs after 
adjustment for BMI in the 538 participants from Twin-
sUK. All except one (cg00372886) of the 1181 VF-DMPs 
showed significant associations after multiple testing 
with VF/TFM with the same direction of effect as that 
observed for VF, and cg00372886 showed nominally 
significant associations. All the 1181 VF-DMPs showed 
significant associations after multiple testing adjustment 
with AGR (P = 4.2 × 10−5) with the same direction of 
effect as that observed for VF. A subset of 1172 VF-DMPs 
was then explored in the independent dataset of 104 
younger male and female participants of mixed ethnic-
ity from the LEAP cohort within the New England Fam-
ily Study (mean BMI 30.9 ± 7.03, mean age 47 ± 1.7, 48% 
male), described in detail elsewhere [8]. We observed 
that 92% (1073 of 1172) of tested VF-DMPs showed a 
consistent direction of methylation association with AGR 
in the LEAP cohort participants (Fig. 2c), with 21% (220 
of 1172) displaying nominally significant effects, with 9 
sites significant after multiple testing correction (P = 4.2 
× 10−5).

Two follow-up analyses explored the VF associated 
methylation signature, first, over larger genomic regions, 
and second, by minimising effects of genetic variation. 
First, we assessed the association between VF and DNA 
methylation levels over larger genomic regions, aiming to 
identify VF differentially methylated regions (VF-DMR) 
using DMRcate. Many VF-DMRs were identified after 
correction for multiple testing genome-wide, including 
cases where peak VF-DMRs overlapped peak VF-DMP 
signals such as in the FASN and SREBF1 genes (Addi-
tional file 2: Table S11). Second, to minimise differential 
methylation effects attributed to genetic variation, we 
also carried out DNA methylation analyses in a sam-
ple subset of MZ twins with discordant VF levels, such 
that differences in twin VF levels exceeded 1sd of the VF 
distribution in our sample. MZ twins have very similar 
genetic variation profiles and are matched for age and sex 
effects. Altogether, only 7 MZ twin pairs showed discord-
ant VF levels in our sample, and DNA methylation analy-
ses within this subset alone identified both genome-wide 
and nominally significant MZ-specific signals (Additional 

file 3), including at sites identified from the main analy-
ses, for example, for cg03498175 annotated to ACSL1 (P 
= 7.8 × 10−7), cg11950105 annotated to FASN (P =1.8 × 
10−5) and cg23875758 annotated to SREBF1 (P = 3.4 × 
10−5).

DNA methylation variation has been widely used to 
provide estimates of biological ageing measures across 
tissues, ages and species. We explored whether the accu-
mulation of VF has an impact on biological ageing in 
SAT, by testing the association between three epigenetic 
ageing measures and VF. Epigenetic ageing measures 
included the estimated age acceleration rates for three 
predictors of age, lifespan and healthspan (Epigenetic 
Age Acceleration [40], GrimAgeAccel [38] and Levine’s 
PhenoAgeAccel [39]). The original Horvath Epigenetic 
Age accurately estimates chronological age and devia-
tions from chronological age, while GrimAge and Lev-
ine’s PhenoAge have been proposed as different measures 
of lifespan and healthspan. In analyses not adjusting for 
BMI, all three epigenetic ageing measures in our SAT 
sample showed significant associations with VF, where 
the most significantly associated was PhenoAgeAccel (P 
= 2 × 10−28; GrimAgeAccel P = 1 × 10−7, Epigenetic 
Age Acceleration P = 6 × 10−3). After adjustment for 
BMI, only PhenoAgeAccel remained significantly associ-
ated with VF (P = 2 × 10−6; Fig. 2d).

VF‑DMP tissue specificity
This study was undertaken in SAT and identification of 
VF-DMPs took into account SAT cell composition vari-
ation. We sought to assess whether the 1181 VF-DMPs 
showed methylation differences between the SAT and the 
visceral adipose tissue (VAT) methylome in independ-
ent published datasets. In our first assessment, only 127 
out of 1181 VF-DMPs (10.8%) fell in genomic regions 
that showed over 10% methylation differences between 
the SAT and VAT methylomes in an independent data-
set of three SAT and VAT samples [44]. Our second 
comparison focused on SAT and VAT methylomes of 15 
obese individuals [45], and only 5 of the 1181 VF-DMPs 
showed significant differences between tissue types. The 
results suggest that the majority of VF-DMPs in our SAT 
sample have similar DNA methylation profiles across 
VAT and SAT. In line with these methylation results, 
gene expression profiles from the Genotype-Tissue 
Expression (GTEx) resource were also highly consistent 
between SAT and VAT at VF-DMP genes, but the major-
ity showed differences across SAT and whole blood sam-
ples (Fig.  2e, Additional file  1: Fig. S5, Additional file  2: 
Table  S10). These findings provide a strong argument 
that the SAT-DMPs identified are reflective of VAT.

Tissue specificity of VF-DMPs was also explored 
between SAT and whole blood, in both the secondary 
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TwinsUK dataset of 901 twins with blood methylation 
profiles and in a subset of 222 twins with both SAT and 
blood methylation profiles. Using the subset of 222 twins, 
we assessed the correlation between SAT and blood DNA 
methylation at the 1181 VF-DMPs. The majority of VF-
DMPs (888, 75%) show very low correlation between 
blood and SAT methylation levels (−0.1<r<0.1), with 
only 2 sites reaching a correlation greater than 0.5 (Addi-
tional file  1: Fig. S2). We next assessed the association 
between whole blood DNA methylation and VF using 
the 901 whole blood samples. Of the 1181 VF-DMPs 
and after adjustment for BMI, there were no significant 
associations between blood methylation and VF (π0 = 1). 
Without adjustment for BMI, there was very weak evi-
dence for blood methylation associations with BMI (π1 
= 0.07), where 102 VF-DMPs showed nominally signifi-
cant associations and no sites reached significance after 
multiple testing (P = 4 × 10−5). This suggests that the 
observed modest effects in blood are likely due to effects 
of BMI rather than specific impacts of VF accounting for 
BMI. These results provide evidence that the 1181 SAT 
VF-DMPs are predominantly not found in whole blood, 
and therefore may be adipose-specific or specific to the 
mesenchymal cell lineage.

Subsets of VF‑DMPs exhibit corresponding gene 
expression changes with VF
To characterize the functional signature of the SAT 
VF methylome signals, we explored SAT gene expres-
sion profiles at the 788 genes annotated to VF-DMP. 
We compared SAT DNA methylation and gene expres-
sion levels in the primary dataset of 538 twins, seeking 
to identify expression quantitative trait methylation sig-
nals (eQTMs). DNA methylation and expression levels 
were regressed at 848 CpG-gene pairs in cis, compris-
ing 807 CpGs annotated to 717 genes after expression 
quality control assessments. Significant associations 
were observed at 109 CpG sites (13%) with 72 genes 
(10%) after multiple testing correction (Additional file 2: 
Table S3). The most significant correlation was obtained 
between SAT DNA methylation at cg04029738 (in FASN) 
and FASN expression levels (P = 2.5 × 10−23) where an 
increase in methylation leads to a decrease in expression. 
Methylation at a further 12 CpGs annotated to FASN also 
significantly associated with its expression levels (Fig. 3). 
Further significant methylation-expression associations 
were observed at multiple CpG sites, including in the PC 
(6 CpGs) and SREBF1 (5 CpGs) genes.

We next investigated the association between SAT gene 
expression and VF at the 717 genes in the gene expres-
sion dataset of 720 TwinsUK participants. Pairwise gene 
expression and VF associations identified 227 genes 
(32%) to be significantly differentially expressed with 

VF after Bonferroni correction, with 415 genes (58%) at 
nominal significance. Next, conditional analyses explored 
whether methylation or expression was the likely driver 
of the association with VF. In the subset of 538 partici-
pants for which expression and methylation data were 
both available, 132 genes were significantly differentially 
expressed with VF after Bonferroni correction, leading to 
174 CpG-gene pairs. The majority of these associations 
(66%) were no longer significant when methylation was 
included as covariate in the VF-expression linear model 
(Additional file 1: Fig. S3). In contrast, when the reverse 
analysis was undertaken at the 1181 VF-DMPs, only 12% 
of VF-DMPs were no longer significant if gene expres-
sion was included as a covariate in the VF-methylation 
linear model. The observation that the majority of VF-
expression associations attenuate after conditioning on 
methylation suggests that methylation may likely be the 
driver of the association with VF at the majority (66%) of 
genomic regions that display both DNA methylation and 
gene expression associations with VF.

Integrative genetic analyses highlight FASN
Obesity and metabolic health traits exhibit a clear genetic 
component, and multiple studies have now shown that 
a proportion of the human methylome is under strong 
influence of genetic variation. We assessed if the differ-
ential methylation signature of VF may be influenced 
by genetic variants, or DNA methylation quantitative 
trait loci (meQTLs). Due to the study participants being 
twins, we first applied twin-based heritability to explore 
evidence for genetic effects underlying DNA methyla-
tion variation in the primary dataset of 538 TwinsUK 
participants. Heritability results showed that 33% of the 
SAT VF-DMPs had evidence for substantial influence of 
additive genetic effects (A > 0.4). We then explored the 
association between genetic variation in cis and DNA 
methylation levels at the 1181 VF-DMPs in SAT, iden-
tifying 203 VF-DMP CpG sites (17%) with at least one 
genome-wide significant cis meQTL SNP (P = 1 × 10−5; 
Additional file  2: Table  S4) in the primary dataset of 
538 TwinsUK participants. We also carried out expres-
sion quantitative trait locus (eQTL) analysis in cis at the 
717 genes in the larger dataset of 720 twins with SAT 
expression profiles. Cis eQTLs were identified at 125 
genes (17%) with at least one genome-wide significant 
cis eQTL SNP (P = 1 × 10−5). Altogether, meQTLs were 
also eQTLs at a little more than a quarter (54, 27%) of the 
203 VF-DMPs under genetic influence (Additional file 2: 
Table S4). For example, FASN had 211 eQTL SNPs that 
were also meQTL SNPs for FASN VF-DMP cg06906087.

We then assessed whether meQTL SNPs for VF-DMPs 
may also influence VF, integrating eQTL and eQTM find-
ings. Our SAT meQTLs did not overlap with previously 
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identified GWAS signals for VF or waist hip ratio 
adjusted for BMI [53]; therefore, we assessed the associa-
tion between the 203 most associated meQTL SNPs and 
VF in the 538 individuals in this study. No SNP-VF asso-
ciations were significant after multiple testing. Nomi-
nally significant SNP-VF associations were obtained with 
8 meQTL SNPs, which were then used as instrumental 
variables in an exploratory Mendelian randomisation 
analysis to investigate the putative direction of associa-
tion between VF and methylation at the corresponding 
VF-DMPs. At 6 VF-DMPs (in FASN, TNFSF14, LPCAT1, 

FOXO1, CARS2), we observed nominally significant evi-
dence for putative causal effects of DNA methylation on 
VF (Additional file 2: Table S4). One of the 6 signals was 
cg06906087 in the FASN gene, which has previously been 
associated with insulin resistance [71]. Both FASN DNA 
methylation and gene expression (P = 3.2 × 10−7) were 
associated with VF in our study. In FASN, the instrumen-
tal variable SNP (rs34673303) exhibited both meQTL 
and eQTL effects, and there was a corresponding sig-
nificant eQTM methylation-expression association. Fur-
ther examples included cg04828493 at the CARS2 gene, 

Positive Effect
Negative Effect

Fig. 3  Significant subcutaneous adipose tissue DNA methylation and gene expression associations at VF-DMPs. The strength of association 
between DNA methylation and gene expression levels is shown from regression analysis (N = 538). There were 109 significantly associated 
CpG-Gene pairs, where CpGs are shown in the outer ring with the length of the bars showing −log10(P-value) which ranges from 4.3 to 22.6. 
Negatively associated pairs are in red, positively associated pairs are in blue. Gene names are shown inside the circle with the innermost ring 
showing the chromosome number
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where the instrumental variable SNP was also both a 
meQTL and eQTL, as well as signals in other genes rele-
vant to metabolic health including cg01684175 in FOXO1 
(involved in glucose regulation and adipogenesis) [72] 
and cg22185977 in LPCAT1 (enzyme in the lipid-remod-
elling pathway) [73].

Methylation mediates diet effects in VF
DNA methylation levels can change in response to envi-
ronmental stimuli and diet is a major risk factor for meta-
bolic health. To explore impacts of diet on VF-DMPs, we 
assessed DNA methylation associations at the 1181 VF-
DMPs with 17 diet variables previously associated with 
VF accumulation [26] in the subset of 397 TwinsUK par-
ticipants with diet data, which included specific nutrient 
intakes and indices of overall diet quality (see ‘Methods’). 
After multiple testing correction, 13 VF-DMPs (diet/VF-
DMPs) exhibited differential methylation with fibre and 
magnesium intakes, and with three diet quality indices 
(DASH, DQI-I and Nordic diet score) (Additional file 2: 
Table  S5). At the 13 DMPs, the direction of diet-DMP 
effect was consistent with the VF-DMP effect, such that 
a poorer diet score always corresponded to increasing VF 
(Additional file 1: Fig. S4). The diet/VF-DMPs annotated 
to 12 genes, with fibre, DASH and DQI-I all showing 
differential methylation in PIK3R1 which is associated 
with insulin resistance [74]. The remaining 11 genes 
also included metabolically relevant genes such as PC 
(involved in insulin secretion [75]), SLC2A2 (involved in 
glucose transport, linked to T2D [76]), DGAT2 (involved 
in TG synthesis [77]) and others.

To assess whether DNA methylation may mediate the 
impact of diet on VF, we carried out mediation analy-
ses focusing on diet variables that were significantly 
associated with both VF and the 13 diet/VF-DMPs. As 
expected, fibre and magnesium intake, and the three 
diet quality indices (DASH, DQI-I and Nordic diet 
score) all showed nominally significant associations with 
VF in our data (Additional file  2: Table  S5) with DQI-I 
showing significance after multiple testing adjustment. 
We then tested whether the diet-VF associations were 
attenuated after inclusion of DNA methylation level as 
a covariate in the model. Following inclusion of DNA 
methylation as a covariate, all diet-VF associations were 
attenuated (Fig.  4a, Additional file  2: Table  S5). Asso-
ciations between VF and fibre, DASH and Nordic diet 
scores were all no longer nominally significant after 
accounting for DNA methylation levels at diet-CpGs. 
The association between magnesium and VF remained 
nominally significant after including DNA methylation 
levels at diet/VF-DMP cg19689330 (FARS2), with attenu-
ation (original effect size = −1.7, standard error = 0.54, 
P = 1 × 10−3 vs methylation conditional effect size −1.2, 

standard error = 0.53, P = 0.03), but not after includ-
ing methylation at cg06142324 (HEPACAM; methyla-
tion conditional P = 0.1). The association between DQI-I 
and VF remained nominally significant after including 
DNA methylation levels at diet/VF-DMP cg26804336 
(PIK3R1) and cg20793665 (intergenic) in the model, 
although the strength of association was attenuated 
(original effect size = −14.6, standard error = 4.2, P = 
6 × 10−4 vs methylation conditional effect size = −8.7 
(cg26804336) and −11.1 (cg20793665), standard error = 
4 (cg26804336 and cg20793665), P = 0.04 (cg26804336) 
and 0.008 (cg20793665)). A formal mediation analysis 
was then carried out with DNA methylation level at the 
most significantly associated CpG for each diet variable 
as the mediator between diet and VF, using R mediate 
[65]. We observed a full mediation effect of DNA meth-
ylation for VF associations with fibre, magnesium, DASH 
and Nordic diet scores, where only the average causal 
mediation effect (ACME) was significant (Fig. 4a, Addi-
tional file 2: Table S6). In total, methylation mediated 72% 
(cg09710316 in SLC2A2, P < 0.001) of the effect of fibre 
on VF, 47% (cg06142324 in HEPACAM, P < 0.001) of the 
effect of magnesium on VF, 46% (cg12187358 in LAYN, 
P = 0.004) of the effect of the DASH diet score and 60% 
(cg04278105 in INF2, P < 0.001) of the effect of the Nor-
dic Score on VF. Only partial mediation was observed for 
the DQI-I diet score, where both ACME and the aver-
age direct effect (ADE) were significant (cg26804336 in 
PIK3R1, P < 0.001).

Deep functional metabolic phenotype assessment 
of VF‑DMPs
To explore potential chemical sequelae of the adiposity-
related alterations to the SAT methylome, we assessed 
the association of SAT DNA methylation levels at the 
VF-DMPs with a large panel of blood lipid levels, serum 
metabolomic profiles and clinically relevant phenotypes 
such as insulin resistance (IR) and type 2 diabetes (T2D) 
in subsets of the 538 participants with relevant complete 
data.

We first linked the VF SAT methylation signatures to 
cardiometabolic disease risk, by relating the 1181 VF-
DMPs to circulating serum lipid levels. Methylation 
associations with levels of triglycerides (TG), total cho-
lesterol, high-density lipoprotein (HDL) and low-density 
lipoprotein (LDL) were assessed in 528 twins, controlling 
for BMI. Nearly half of the VF-DMPs (564) were signifi-
cantly associated with TG allowing for multiple testing 
adjustment with a consistent positive direction of effect 
as for VF-DMPs, and nearly all (1125) were nominally 
significant. Similarly, 10% of VF-DMPs (109) were signifi-
cantly associated with HDL allowing for multiple testing 
adjustment, with consistent opposite direction of effects 
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as for VF-DMPs, and the majority (984) were nominally 
significant. FASN harboured the most significant signals 
for TG and HDL associations, and SREBF1 also included 
top associated signals for TG.

To further investigate the blood metabolic footprint 
of the VF-DMPs, we related DNA methylation levels at 
VF-DMPs to 239 fasting plasma and serum metabolites 
analysed using a nuclear magnetic resonance (NMR) 
metabolomics platform (Nightingale Health Ltd [28]) in 
a subset of 347 (of the 538) twins. The platform assays 
lipids and lipoprotein subclass profiles, fatty acids, amino 
acids, ketone bodies and glycolysis-related metabolites. 
Methylation-metabolite associations taking into account 
BMI identified significant associations in 71 (42%) lipo-
proteins and 2 (66%) lipoprotein sizes, 2 (22%) cholesterol 
metabolites, 3 (22%) glycerides/phospholipids, 1 (33%) 
apoliprotein, 5 (31%) fatty acid, 1 (20%) glycolysis-related 

metabolite and 6 (67%) amino acids (Additional file  2: 
Table S7). The majority of significant VF-DMPs metabo-
lite associations were observed with leucine, isoleucine 
and HDL-related metabolites (Fig. 5a). As expected, most 
VF-DMPs exhibited negative associations with HDL, and 
positive associations with VLDL-related metabolites, 
in line with previously reported negative correlations 
between HDL and VF [78]. Similarly, the majority of VF-
DMPs showed positive associations with isoleucine and 
leucine, in line with previous reports of increased levels 
of these amino acids with increased risk of T2D, includ-
ing incident T2D [79].

Finally, we assessed if the 1181 VF-DMPs meth-
ylation profiles capture variation in clinically relevant 
phenotypes, such as IR and T2D. Methylation associa-
tions between VF-DMPs and IR, controlling for BMI, 
were tested in a subset of 397 (114 IR cases / 284 IR 

P value without 
methylation

P value with 
methylation

cg09710316

cg06142324

cg12187358

cg04278105

cg26804336

Fig. 4  VF-DMPs link to diet. Impact of DNA methylation on the association between diet and visceral fat (N = 397). Left-hand side plots show the 
proportion of the effect mediated by methylation for each diet variable from the mediation analysis, and right-hand side shows the change in 
P-value when methylation is included in the association model from regression analysis. A vertical dotted line shows P = 0.05 (nominal significance). 
Results are shown for diet variables with significant associations with VF-DMPs
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controls) SAT samples. Altogether, 108 of the 1181 VF-
DMPs (9%) showed a strong association with IR (IR/
VF-DMPs) after multiple testing correction (P = 4.2 
× 10−5), and the majority (822, 70%) showed nominal 
associations with a consistent direction of effect. The 
most significant IR-DMP was cg11950105 annotated to 
FASN (P = 5 × 10−12), with a further 14 sites in FASN 
also significantly associated with IR (Fig.  6a). In con-
trast to IR, our T2D sample was very small (15 T2D 
cases / 378 T2D controls) because the majority of the 
538 female subjects with SAT biopsies were free from 
major disease. Correspondingly, we did not observe sig-
nificant associations after multiple testing adjustment 
between VF-DMPs and T2D although at the majority 
of sites (840, 71%) the T2D-methylation effect matched 
the direction of the VF-methylation effect. Altogether, 
4% of VF-DMPs (48 signals) were nominally associated 
with T2D with a consistent direction of association as 
that observed for VF-DMPs.

Integrating the deep metabolic phenotype methyla-
tion association results, we assessed overlaps between 
VF-DMPs that were also significantly associated with IR, 
circulating lipids and lipid and amino acid metabolomic 
signatures (Fig. 1, Fig. 5b). The results identified 19 VF-
DMPs that annotate to 9 genes including FASN, SREBF1, 
TBC1D14, CHST11, ACSL1, TAGLN2, CFAP410, PC 
and BAT2, which leave a clear blood metabolic footprint 
and significantly associate with IR (Additional file  2: 
Table S8).

We pursued replication of the link between DNA meth-
ylation levels at the 19 VF-DMPs and metabolic health 
parameters in two independent cohort samples. The first 
replication set consisted of SAT samples from unrelated 
participants from the Danish Twin Registry, includ-
ing 28 T2D cases (BMI 27.4±3.6, mean age 74.5±4.2, 
46% female) and 28 controls (BMI 27.0±3.6; mean age 
74.3±4.3; 46% female). Of the 19 VF-DMPs, 18 were 
tested and all showed a consistent direction of association 
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Fig. 5  Deep functional metabolic phenotype analysis results. a Heatmap showing significant metabolite associations and their effect size from the 
regression analysis for the 19 VF-DMP CpGs in 9 genes identified in the multi-omic integration (N = 347). Only significant associations are shown, 
with grey areas reflecting correlations which did not meet the multiple testing significance threshold. Effect sizes for significant associations range 
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with T2D (Fig.  5c) and were nominally significant (P < 
0.05). Altogether, 5 signals (annotated to FASN, SREBF1, 
TAGLN, PC) replicated after multiple testing correction 
(P = 2.8 × 10−3). The second replication sample included 
visceral adipose tissue samples from 199 severely obese 
individuals of European ancestry (BMI > 40; mean age 
37.2±8.8; 60% female) undergoing bariatric surgery, as 
previously described [20]. Replication analyses assessed 
the association between DNA methylation levels at the 19 
VF-DMPs with circulating lipid levels of TG, HDL, LDL 
and total cholesterol. Of the 19 VF-DMPs, 18 were tested 
and 33–44% were nominally significant and matched 
direction of the discovery VF-DMP effect (Fig. 5c). Alto-
gether, 4 VF-DMPs (annotated to FASN and CFAP410) 
replicated after multiple testing correction (P = 2.8 × 
10−3). In summary, replication of the VF-DMP DNA 
methylation effects in metabolic health (T2D and circu-
lating lipid levels) was obtained for VF-DMPs in 5 genes 
including FASN, SREBF1, CFAP410, TAGLN and PC.

DNA methylation classifier of insulin resistance
Lastly, we investigated the extent to which DNA meth-
ylation levels could be used to classify insulin resistance. 

There was insufficient data to carry out the same analysis 
for T2D and no other clinical traits were considered in this 
study. Given the strong relationship between DNA meth-
ylation in FASN and IR, we focussed on this gene only. We 
assessed the performance of DNA methylation levels at 
FASN as a classifier of IR and therefore risk of metabolic 
disease in the primary dataset of TwinsUK participants. 
Given the strong relationship between IR and BMI, we 
assessed the performance of a classifier based on DNA 
methylation levels and BMI together, compared to the pre-
dictive power of BMI alone. Methylation at cg11950105 in 
FASN combined with BMI was a strong predictor of insu-
lin resistance with an average AUC of 0.91 (Fig. 6b). The 
predictive value of this model was significantly greater 
than that for a prediction model including only BMI, 
which had an average AUC of 0.86 (P-values over 20 ran-
dom training and test set combinations ranged from 0.001 
to 0.03) or VF, which had an average AUC of 0.85.

Discussion
In this study, we dissected the SAT methylation signature 
of visceral fat accumulation, a major risk factor for meta-
bolic health. Our approach identified 1181 CpG sites in 

Fig. 6  DNA methylation levels in FASN have predictive value for insulin resistance. a Epigenetic association from regression between VF and 
FASN DNA methylation (N = 538) displayed in a coMET plot [80], including VF-methylation association profiles (top panel) along with functional 
annotation of the region (middle panel), and pattern of co-methylation at the 53 CpG sites in the 450k array annotated to FASN (bottom panel). 
Broad ChromHMM regions are displayed using UCSC genome browser colour schemes. b ROC curves for insulin resistance based on unadjusted 
(not normalised) DNA methylation levels at cg11950105 (FASN) and age, smoking, BMI, SAT cell composition and technical covariates (n = 397, 114 
cases/284 controls)
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788 genes to be differentially methylated in 538 discovery 
participants—one of the largest SAT samples to date [21], 
with validation and replication in 333 individuals from 
3 independent adipose tissue samples. The vast majority 
of signals were not found in whole blood, annotating to 
genes strongly enriched for pathways relevant to meta-
bolic health with the most significant result in the insulin 
signalling pathway. The VF-DMP signals were also vali-
dated for association with multiple adiposity measures 
in the discovery cohort and one replication cohort. We 
further found that visceral fat accumulation was signifi-
cantly associated with accelerated biological ageing of 
SAT, which is one pathway through which VF may play a 
role in insulin resistance and metabolic disease. We inte-
grated our visceral fat-associated SAT methylome results 
with genetic, blood methylation, adipose gene expres-
sion, blood metabolomic, diet and metabolic phenotype 
data, to identify and replicate signals in 5 genes (in FASN, 
SREBF1, TAGLN2, PC, CFAP410) that exhibit altered 
SAT function and have strong relevance to metabolic 
health. A subset of these methylation signals showed evi-
dence for mediating effects of genetic variation and diet 
on VF, including signals in FASN and PC, respectively. 
Furthermore, FASN DNA methylation also exhibited 
putative causal effects on VF that were also strongly asso-
ciated with insulin resistance, such that methylation in 
FASN was a better classifier of IR than BMI alone.

Overall, FASN had the strongest links to metabolic 
health where a number of CpG sites were associated with 
visceral fat, insulin resistance and metabolic signatures. 
FASN encodes an enzyme which catalyses the synthesis 
of palmitate, the most common saturated fatty acid found 
in animals. In FASN, genetic variants affected both DNA 
methylation and gene expression levels, which were also 
in turn both associated with VF, with evidence for puta-
tive causal methylation effects on increasing VF. The 
locations of differential methylation in FASN observed 
in our female-only sample are consistent with the SAT 
methylome associations with insulin resistance observed 
by Orozco et al. [10] in males, providing evidence for sex-
shared effects of FASN on metabolic disease risk. Fur-
thermore, SAT methylation levels in FASN were strongly 
predictive of insulin resistance status, significantly more 
so than BMI alone. Circulating FASN has been previ-
ously proposed as a biomarker for overnutrition-induced 
insulin resistance [71]. Whilst FASN effects in our study 
were only observed in SAT, and not blood, our findings 
are in line with previous reports of higher expression of 
FASN in adipose tissue linked to increased visceral fat 
and impaired insulin sensitivity [81]. Our hypothesis is 
that SAT DNA methylation levels of FASN likely reflect 
its DNA methylation levels in VAT and potentially other 
tissues such as liver, which we propose in turn impact 

its gene function in these metabolically relevant tis-
sues, with downstream effects on metabolic health. The 
results also support a recently reported negative associa-
tion [82] between adipose tissue FASN expression and 
serum levels of a novel family of endogenous lipids with 
anti-diabetic and anti-inflammatory effects, palmitic acid 
hydroxy stearic acids (PAHSAs) [83]. Our results con-
firm the key role of FASN in metabolic disease risk and 
provide insights into how specific genetic variants in this 
gene exhibit regulatory functional genomic effects that 
contribute to metabolic health.

Beyond FASN, our integrative methylation analysis with 
genetic and gene expression data also identified puta-
tive causal effects of methylation in TNFSF14, LPCAT1, 
FOXO1, CARS2 on VF, and where CARS2 DNA meth-
ylation and gene expression were also both under genetic 
control. These genes have all been shown to have impor-
tant metabolic functions. TNFSF14 encodes an inflam-
matory cytokine and enhanced levels of this cytokine are 
associated with T2D [84]. Mouse studies have also shown 
that deficiency in TNFSF14 improves liver glucose toler-
ance and reduces liver inflammation and non-alcohol 
fatty liver [85]. LPCAT1 encodes an enzyme in the lipid-
remodelling pathway [73] and knockdown LPCAT1 mice 
have greater cytotoxicity due to excess polyunsaturated 
fatty acids [86]. FOXO1 encodes a transcription factor in 
the insulin signalling pathway, regulating gluconeogenesis 
and glycolysis. Inhibition of FOXO1 in fat cells has been 
shown to mimic the impact of T2D and induce an insu-
lin-resistant state [87]. Finally, whilst the role of CARS2 
in metabolic health regulation is less clear, it is a criti-
cal mitochondrial gene with a role in protein synthesis, 
charging tRNAs with amino acids. Whilst we observed 
a putative causal link between SAT methylation and vis-
ceral fat, there are many routes via which these associa-
tions may take place. One possibility is that genetic and 
environmental drivers of DNA methylation have similar 
effects across multiple tissues, including VAT, pancreas 
and others. Therefore, the methylation and gene expres-
sion changes observed in SAT could be surrogates for 
signals from other tissues, for example VAT, which may 
be the active mediators, including for potential dietary 
impacts. Overall, a third of the signals in our study dis-
played gene expression associations with VF, showing that 
not all of VF associated methylation signals have a corre-
sponding association between gene function and VF. The 
remaining signals may capture signatures of previously 
accumulated ‘historic’ epigenomic variants, marking a 
progression in central adiposity changes in the body.

Diet is a key risk factor for metabolic health; therefore, 
we investigated how our visceral fat-associated meth-
ylation signals relate to dietary intakes previously asso-
ciated with VF [26], revealing a subset of VF-DMPs also 
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associated with fibre and magnesium nutrient intakes. 
We also identified VF-DMPs associated with diet qual-
ity scores (DASH, DQI-I, Nordic), where in line with 
expectation a poorer diet score always corresponded 
to increasing VF. The signals are in 12 genes includ-
ing in metabolically relevant genes such as PC, PIK3R1, 
SCL2A2 and DGAT2. PC encodes pyruvate carboxy-
lase, an enzyme with an important role in gluconeogen-
esis. Reduced levels of PC are found in the islets of T2D 
patients and animal models have shown that blocking 
this enzyme reduced insulin secretion [75], highlight-
ing a role of this gene in metabolic health. Additionally, 
PC has been suggested as a therapeutic target for insu-
lin resistance [88]. PIK3R1 encodes an enzyme with 
a direct role in insulin signalling and individuals with 
mutations in PIK3R1 show severe insulin resistance [74]. 
For both PIK3R1 and SLC2A2 (which encodes a glucose 
transporter) genetic polymorphisms are associated with 
T2D [76]. Lastly DGAT2, is also an enzyme that cataly-
ses the synthesis of triglycerides [77]. Methylation levels 
at a subset of diet/VF-DMPs in SLC2A2 (cg09710316), 
HEPACAM (cg06142324), INF2 (cg04278105) and LAYN 
(cg12187358) mediated the association between diet 
and VF, with up to 72% of dietary effect of VF mediated 
through methylation levels. One exception was the asso-
ciation between DQI-I and VF at cg26804336 in PIK3R1; 
however, this same CpG site showed a mediating effect 
in the relationship between the DASH diet score and VF 
and the relationship between fibre and VF. One of the 
diet/VF-DMPs in the pyruvate carboxylase gene (PC, 
cg01599099) also showed strong associations in subse-
quent analysis with multiple deep metabolic phenotypes. 
Given these associations, a formal mediation analysis was 
carried out and showed that methylation at cg01599099 
(PC) mediated 35% of the association between the DASH 
diet score and VF (Additional file 2: Table S6).

To assess the functional and clinical phenotypes 
reflecting the adiposity-related alterations to the SAT 
methylome, we related VF-DMPs with a large panel of 
blood lipid levels, serum metabolomic profiles, insulin 
resistance (IR) and type 2 diabetes (T2D). The results 
identified marked strong associations between the 1181 
VF-DMPs and IR. In addition to FASN, strong associa-
tions were seen for sites within SREBF. SREBF1 has con-
sistently been reported to exhibit differential methylation 
with T2D in blood [89]. However, SREBF1 was not found 
to be associated with adiposity measures in other recent 
adipose methylation studies [10, 11]. The metabolomic 
profiling relationships further identified strong VF-
DMP associations with HDL and with leucine. There is 
evidence that leucine supplementation may offer thera-
peutic possibilities in metabolic-related disorders [90]. 
Effects observed from dietary supplementation of leucine 

include improved lipid and glucose metabolism. Previ-
ous studies have found circulating levels of branched 
chain amino acids including isoleucine and leucine to be 
positively associated with measures of adiposity [91] and 
T2D [92]. Integrating the results from all the metabolic 
and clinical phenotypic analyses identified 19 VF-DMPs 
that annotate to 9 genes, of which 5 achieved replication 
(FASN, SREBF1, PC, TAGLN2 and CFAP410). Aside from 
FASN, SREBF1 and PC, all of which have been previously 
linked to metabolic health, previous work has shown that 
TAGLN2 levels are increased in obese adipose tissue [93].

There are several limitations to the current study. Ide-
ally, this study would be undertaken in visceral adipose 
tissue (VAT). However, VAT samples are not typically 
available for healthy research participants due to the inva-
sive nature of the biopsy required. The VF-DMP signals 
we obtained showed overall concordant DNA methyla-
tion levels across SAT and VAT samples, with consistent 
gene expression changes. Although our discovery sample 
is among the largest adipose tissue methylation datasets 
profiled so far [21], a sample of 538 is nevertheless rela-
tively modest for epigenetic analyses aiming to identify 
moderate to small effects. The Mendelian randomisation 
analysis included in the paper was limited by the sample 
size and more robust conclusions would be drawn from 
larger sample sizes. Our sample consisted of female-only 
White British twins, and therefore, results may not trans-
late to males and to other ethnicities, although a propor-
tion of our findings were replicated in males and in mixed 
sex cohort samples. The SAT samples were also predomi-
nantly from individuals who were not affected by major 
disease [21], which may miss epigenetic changes relating 
to obesity-related disease. Utilising a Bonferroni adjust-
ment for multiple testing is a conservative approach as 
it assumes that DNA methylation levels at CpG sites are 
independent of each other, while multiple studies have 
reported evidence for co-methylation [94]. Furthermore, 
although the key clinical phenotypes were obtained at 
time of adipose tissue biopsy in the discovery dataset, the 
metabolomic profiles were obtained within up to 5 years 
of time of biopsy sampling, where the time differences 
may limit the interpretation of these results. A natural 
extension to this work would be to carry out a longitu-
dinal follow-up and to explore how baseline methylation 
levels and their longitudinal trajectory relate to metabolic 
disease incidence, to better disentangle cause from effect 
at the identified changes.

Conclusions
In conclusion, the SAT methylome shows a distinct epi-
genetic signature associated with visceral fat after con-
trolling for BMI. Integrating genetic, gene expression, 
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metabolomics, diet and metabolic traits highlights five 
genes after replication, with strong relevance to meta-
bolic disease mechanisms. Our findings may help to 
further understand the regulatory genomic pathways 
underlying metabolic disease risk.
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