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Decisions regarding new products are often difficult to make, and mistakes can have grave consequences

for a firm’s bottom line. Often, firms lack important information about a new product such as its potential

market size and the speed of its adoption by consumers. One of the most popular frameworks that has

been used for modeling new product adoption is the Bass model (Bass 1969). While the Bass model and its

many variants have been used to study dynamic pricing of new products, the vast majority of these models

require a priori knowledge of parameters that can only be estimated from historical data or guessed using

institutional knowledge. In this paper, we study the interplay between pricing and learning for a monopolist

whose objective is to maximize the expected revenue of a new product over a finite selling horizon. We

extend the generalized Bass model to a stochastic setting by modeling adoption through a continuous-time

Markov chain where the adoption rate depends on the selling price and on the number of past sales. We

study a pricing problem where the parameters of this demand model are unknown, but the seller can utilize

real-time demand data for learning the parameters. We propose two simple and computationally tractable

pricing policies with O(lnm) regret where m is the market size.
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1. Introduction

Decisions regarding new products are difficult and risky because mistakes can have grave conse-

quences for a firm’s bottom line. Before a product launch (or even after a launch), firms often have

little information regarding demand (e.g., the market size or the speed of adoption by customers).

The lack of information makes pricing a new product very challenging.

To cope with this information deficiency, firms use several strategies to forecast the demand for

a new product. For instance, historical data of similar products could be used to infer the new

product’s demand characteristics. Lenk and Rao (1990) propose a Hierarchical Bayes procedure

to gain information from different products which share some common structures and to use this

information for forecasting sales of a new product. Alternative techniques include forecasting based

on judgment (e.g., using an expert opinion) or market research (Kahn 2006). Yet, due to insufficient

or inaccurate data, the expense of market research or subjective biases injected by management,

forecasting new product demand is prone to errors. Such errors lead to weak market penetration

(due to a market price that is too high) or to lost potential revenue (due to a market price that is

too low).
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For instance, Apple released its new generation of smartphones, iPhone XS (priced at $999),

iPhone XS Max ($1,100) and iPhone XR ($749, which is the “budget” choice to replace the previous

$349 SE model) in 2018. Even though the new iPhones received many technological improvements,

many consumers found it difficult to accept a $1,100 price tag (USA TODAY 2019). In Q1 of 2019,

iPhone revenues declined 15 percent from the previous year’s even though, in that same quarter,

revenue for Apple’s other products and services grew significantly (Business Wire 2019). In an

earnings call, Apple’s CEO Tim Cook admitted that, though the weakened U.S. dollar in Q1 2019

accounted for some of this decline, “price was a factor” for the iPhone’s weak performance since

the cheapest model (iPhone XR) was also the most popular among the new models (ZDNet 2019).

Another example can be found in high-end streetwear brands such as Yeezy and Supreme. These

brands release new styles or colors of sneakers sporadically. The sneakers are usually sold for

a limited time and in limited quantities. As soon as the new products are released, celebrities,

influencers and collectors start to create a buzz for some styles on social media platforms. The resale

price of these new styles can have a markup as high as 1000% compared with the original release

price (BBC 2018). Judging by the aftermarket sales, streetwear brands can severely underestimate

consumers’ valuation, inadvertently leaving a significant portion of the revenue on the table.

These examples illustrate how hard it is to price a new product. First of all, pricing decisions

(about the initial price and subsequent price changes) for a new product are challenging due to

the limited sales data available. As a result, it is difficult to estimate how the market will respond

to a price change. Furthermore, the demand for a new product is often influenced by how many

people have bought the product so far, which creates the word-of-mouth effect. Thus, the current

selling price not only affects the current revenue and demand, but it also influences how quickly

product adoption will occur in the future.

In this paper, we study the interplay between demand learning and dynamic pricing for a new

product. In order to model the dynamics of demand and learning in a tractable way that is consis-

tent with existing literature on new product adoption, we modify the generalized Bass model (Bass

et al. 1994) to capture stochastic adoption in a Markovian Bass model. The main contributions of

this paper are outlined below.

• Markovian Bass model. Traditional stochastic adoption models that add noise to the cumulative

demand are not well-behaved when modeling new product adoption. For instance, Brownian dif-

fusion models violate the fact that cumulative sales must be nondecreasing in time. To overcome

this technical challenge, we propose a different way to introduce stochasticity in an adoption

process while capturing the features of the Bass model. We model the cumulative adoption pro-

cess as a continuous-time Markov chain where the time between adoptions depends on price and

cumulative sales. We refer to this as the Markovian Bass model. We show that the Markovian
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Bass model converges to the original Bass model as the market size grows. Further, we derive

the optimal pricing policy (MBP) under a Markovian Bass model when the seller has complete

information—this setting is used as a benchmark when evaluating data-driven pricing policies.

• Demand learning. We establish several theoretical properties of the maximum likelihood (ML)

estimators of the Markovian Bass model parameters. First, we derive sufficient conditions for the

parameters to be identifiable. Second, we establish the convergence properties of the estimation

error of the ML estimators. The challenge in proving the latter result is that inter-adoption times

is non-i.i.d., so we cannot use the standard proof techniques to show convergence when data is

i.i.d.. We circumvent this impediment and show that, in this non-i.i.d. setting, the mean squared

errors of the ML estimators are inversely proportional to the number of adopters.

• Performance guarantee for tractable pricing policies. We propose two computationally efficient

data-driven pricing policies. The first policy (MBP-MLE) is a tractable approximation of the

optimal MBP policy and can be used in a setting where a firm can change the price frequently.

The second policy (MBP-MLE-Limited) reflects a business constraint that the firm can change

prices a limited number of times. We provide analytic performance bounds for both policies and

show each has a regret that is in the order of the log of the market size. We prove a fundamental

lower bound on the regret of any pricing-and-learning policy, and show that the regret of our

policies match this limit.

1.1. Review of related literature

Our paper is related to the literature on new product adoption models as well as dynamic pricing

and learning. Both areas draw on a considerable body of literature from economics, marketing, and

operations research. We also review the literature on continuous-time Markov chains (CTMCs)

with unknown transition rates since our Markovian Bass model is essentially a CTMC.

1.1.1. New product adoption models. Since the seminal work by Bass (1969), numerous

papers have used a Bass-like model to explain new product adoption. In the original Bass model,

sales are temporally influenced by innovators (who try a product on their own) and imitators

(who follow earlier adopters). Variants of the Bass model have been used to explain the impact of

competition (Krishnan et al. 2000; Savin and Terwiesch 2005; Guseo and Mortarino 2013) and of

overlapping generations (Norton and Bass 1987; Bayus 1992). Comprehensive surveys of adoption

models are provided by Mahajan et al. (1995) and Baptista (1999). Most relevant to our work are

the variants that explain the role of price in adoption, such as the generalized Bass model introduced

in Bass et al. (1994). There has been a long tradition in marketing literature to derive the optimal

pricing policies for new products under variants of the Bass model (Robinson and Lakhani 1975;
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Dolan and Jeuland 1981; Bass and Bultez 1982; Kalish 1983; Horsky 1990; Krishnan et al. 1999).

Dynamic pricing under a Bass-type model has also recently gained attention in operations (Li and

Huh 2012; Shen et al. 2013; Li 2020). However, most of these works assume deterministic adoptions.

Raman and Chatterjee (1995) and Kamrad et al. (2005) study pricing under a stochastic adoption

process by adding a normally distributed noise to the Bass adoption rate. While adding Brownian

noise can leverage stochastic calculus, Brownian noise violates the fact that cumulative sales must

be non-decreasing in time. Alternatively, Böker (1987) and Niu (2002) propose modeling adoption

as a counting process, though these works do not consider the fact that a firm can influence

adoption through pricing decisions. Our model uses a counting process as a model construct in a

setting where a firm can dynamically control price. Furthermore, none of the aforementioned works

(deterministic or stochastic) study the interplay between pricing and learning.

In both stochastic and deterministic models, a common assumption is that the firm knows the key

parameters of the demand model. These parameters include the market size (denoted by m0), the

innovation rate (p0), and the imitation rate (q0). In the case of unknown parameters, Bass (1969)

and Srinivasan and Mason (1986) propose least squares methods to estimate these parameters,

whereas Schmittlein and Mahajan (1982) suggests using maximum likelihood estimation. However,

these approaches assume that the firm has sufficient data to build accurate estimates. Our model

uses the stochastic Bass model for pricing decisions during the product launch, hence we study

how a revenue-maximizing firm, which starts with very little demand information, can use pricing

and real-time data to better calibrate the demand parameters.

1.1.2. Dynamic pricing and learning. There is a growing literature on dynamic pricing

with limited demand information (see surveys in Araman and Caldentey 2010 and den Boer 2015a).

Some papers use parametric approaches in demand learning. These papers assume that an under-

lying model belongs to a parametric family and the unknown parameters are estimated using

various estimators. Lin (2006); Araman and Caldentey (2009); Farias and Van Roy (2010) and

Harrison et al. (2012) study Bayesian learning. Other learning methods include regression (Bert-

simas and Perakis 2006) and maximum likelihood estimation (Besbes and Zeevi 2009; Broder and

Rusmevichientong 2012; Keskin and Zeevi 2014; den Boer and Zwart 2015). On the other hand,

nonparametric approaches do not impose a particular form to model underlying demand. Lim and

Shanthikumar (2007); Besbes and Zeevi (2009) and Eren and Maglaras (2010) use the worst-case

analysis to develop robust policies. Kleywegt et al. (2002) use sample average approximation to

approximate underlying demand. Ferreira et al. (2015) consider a price optimization model where

the demand information is estimated with a regression tree.
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Under a Markovian Bass model, the market is nonstationary because the adoption rate depends

on how many customers have already adopted. Dynamic pricing with demand learning in a time-

varying market is largely unexplored. Besbes and Zeevi (2011) and Besbes and Sauré (2014) con-

sider settings where the willingness-to-pay distribution changes at some unknown time. Keskin and

Zeevi (2016) study an unknown time-varying demand with a constraint on the number of price

changes. Chen and Farias (2013) and den Boer (2015b) study pricing policies under a setting where

the time-varying market size is unknown. Our work adds to this literature by studying the pricing

strategies under an adoption model where the unknown time-varying demand rate is influenced by

the price and by the changing cumulative adoptions.

1.1.3. Learning in stochastic processes. Our work is related to estimating the unknown

transition rates in continuous-time Markov chains (CTMCs). Duffie and Glynn (2004) propose a

family of generalized-method-of-moments (GMM) estimators sampled at random time intervals. On

the other hand, Kessler (1995, 1997, 2000) considered GMM estimators using data samples taken

at deterministic time intervals (discrete observations). Although all those estimators are consistent,

GMM methods are more computationally challenging than MLE methods, which are derived from

the first-order conditions. There are other approaches, which include simulation-based methods

(e.g., the simulated-method-of-moments estimation studied by Duffie and Singleton 1993) and

nonparametric estimations (e.g., approximating transition rates using analytic expansions studied

by Aı̈t-Sahalia 2002). However, theoretical results with these approaches are only limited to cases

where the random noise follows a Brownian motion (or one of its variants).

There exists literature addressing optimal controls under the setting where the transition matrix

of a Markov decision process is unknown. For example, Araman and Caldentey (2010) propose

a Bayesian approach to learn an unknown parameter of a price-modulated Poisson process. A

Bayesian method requires the knowledge of the prior distribution; further, it is time-consuming

to compute when there are multiple unknown parameters to learn. Several papers (Nilim and

El Ghaoui 2005; Kalyanasundaram et al. 2002; Nilim and El Ghaoui 2004) consider robust control

problems for Markov decision processes with unknown and stationary transition matrices. Our

estimation, on the other hand, is based on MLE and uses the first-order conditions. Our method

is amenable to the case where there are multiple unknown parameters. In fact, the main results

of our paper hold when the firm does not know the market size, the adoption innovation rate, the

imitation rate, and the price sensitivity function. We contribute to the literature on learning and

controls of CTMCs by proposing a maximum likelihood approach to a Markov decision process

where transition rates evolve as more adoptions occur.
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1.2. Preliminaries

In the paper, we use the big O notation where, by definition, f(x) =O(g(x)) for positive real-valued

functions f and g if there exists an r ∈R such that f(x)< rg(x). Similarly, if f(x) = Ω(g(x)), then

f(x)> rg(x). When f(x) =O(g(x)) and f(x) = Ω(g(x)), it is represented by f(x) = Θ(g(x)).

2. The model

We first discuss the stochastic demand model of new production adoption. Then, we formally state

the seller’s pricing-and-learning problem.

2.1. The stochastic demand model

Bass (1969) proposed a model for the timing of adoptions of a new product, where the adoption

rate increases with the number of past adoptions. There have since been numerous extensions of

this model. One notable extension relevant to our work is the generalized Bass model (Bass et al.

1994; Krishnan et al. 1999) where price influences adoptions. We first review the generalized Bass

model and establish model constructs for the adoption model we will use in the paper.

The generalized Bass model represents adoption timings of a new product by a market of cus-

tomers under a known price path. Let r= {rt, t≥ 0} denote the price sequence where rt represents

the price at time t, where rt ∈ (−∞,∞).1 Given this price path, let F r
t be the proportion of the

market that has adopted the product by time t, where F r
t ∈ [0,1]. In the case where F r

t is continu-

ously differentiable in t, then f rt = dF rt
dt

is the marginal rate of adoption and f rt /(1−F r
t ) is its failure

rate. The generalized Bass model assumes that the time t failure rate (i.e., the marginal rate of

adoptions among the remaining customers at time t) is equal to (p0 + q0F
r
t )x(rt), where x(·) is a

marketing effort function that reflects the effect of price. Here, p0 (where p0 > 0) is called the coef-

ficient of innovation and it represents the rate at which consumers adopt the product on their own

initiative. On the other hand, q0 (where q0 > 0) represents the imitation coefficient, representing

the rate at which consumers imitate earlier adopters (through word-of-mouth effect or a network

effect). Note that the firm can influence the adoption process by setting the price sequence r.

The cumulative adoption proportion F r
t satisfies the following differential equation:

dF r
t

dt
= (1−F r

t )(p0 + q0F
r
t )x(rt). (2.1)

We can compute its solution as

F r
t :=

1− e−(p0+q0)
∫ t
0 x(rs)ds

1 + q0
p0
e−(p0+q0)

∫ t
0 x(rs)ds

. (2.2)

1 In the new product pricing literature, price is allowed to be zero or negative. This is because it might be beneficial
for the seller to offer the product for free or even compensate early adopters in order to increase the future adoption.
See Kalish (1983) and Krishnan et al. (1999) for examples.
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The generalized Bass model (2.1) assumes that the adoptions are deterministic with an adoption

function F r
t . While deterministic models are useful in understanding the trajectory of expected

adoption over time under a given price path, they fail to model random choices of individual

customers and their impact on overall adoptions. A few papers propose stochastic adoption models

(Raman and Chatterjee 1995; Kamrad et al. 2005), yet these papers use Brownian models that fail

to enforce that the cumulative adoption is a non-decreasing process. We follow a different approach

by assuming that the time between two successive adoptions is random. The result is a counting

process which we refer to as the Markovian Bass model because, inspired by the Bass model, it

obeys the Markov property.

We define (Ω,F ,P,{F}t≥0) as a filtered probability space endowed with a cumulative adoption

process D = {Dt, t ≥ 0} where Dt is the cumulative adoptions by time t. Let m0 be a positive

integer that denotes the market size of potential customers. Hence, Dt : Ω 7→ {0,1, . . . ,m0}. Since

adoptions can only occur in unit increments, D is a counting process. Let {Ft, t≥ 0} be the history

or filtration associated with the process of prices and adoptions, with Ft = σ((rs,Ds), s∈ [0, t]). We

say that π is a non-anticipating pricing policy if the price rπt offered by π at time t is Ft-measurable.

If customers are price-sensitive, a price change results in a change in the adoption rate. To explicitly

state the dependence in price, we will henceforth refer to the cumulative adoption as Dπ instead

of D. Without loss of generality, we assume that Dπ
0 = 0 for any π, thus none of the consumers has

purchased before time t= 0.

As in the Bass model, the adoption rate in the Markovian Bass model is also dependent on a

coefficient of innovation, p0, and a coefficient of imitation, q0. We denote the parameters of the

Markovian Bass model as θ0 := (p0, q0,m0), where p0, q0 > 0. If at time t, the cumulative number

of adoptions is j and the seller sets price rt, then under the Markovian Bass model the transition

rate to the next (j+ 1)-st adoption is

λ(j, rt) := ξ(j) ·x(rt), for j = 0,1, . . . ,m0, (2.3)

where

ξ(j) := (m0− j)
(
p0 + q0 ·

j

m0

)
. (2.4)

Note that ξ(j) is the portion of the adoption rate unaffected by price. From (2.4), we see that each

of the m0− j potential adopters are homogeneously affected by their own will to adopt the product

(reflected in term p0) and by the influence from previous adopters (reflected in term q0
j
m0

). We will

sometimes write ξ(j;θ0) or λ(j, rt;θ0) to emphasize the dependence of these values on θ0. Given the
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pricing policy π, the adoption process is a nonhomogeneous, continuous-time Markov chain with

the following transition probabilities. For a small time interval of size h,

Pθ0
(
Dπ
t+h = j+ k |Dπ

t = j
)

=


1−λ(j, rπt )h+ o(h), if k= 0,

λ(j, rπt )h+ o(h), if k= 1,

o(h), if k≥ 2,

(2.5)

where o(h) is a term such that limh→0 o(h)/h= 0. The subscript θ0 on Pθ0 is to denote the depen-

dence of the probability on the parameter vector θ0. Note that the Markovian Bass model guarantees

that the cumulative adoption is always non-decreasing.

Conditional on Ft, the expected demand rate is

Eθ0 [dDπ
t | Ft] = λ(Dπ

t , r
π
t )dt= (m0−Dπ

t )

(
p0 + q0 ·

Dπ
t

m0

)
x(rπt )dt. (2.6)

Hence, the Markovian Bass model captures the demand dynamics in the generalized Bass

model (2.1). First, the expected demand rate is increasing in the remaining market size, m0 − j,

and decreasing in price, rt. Second, adoptions occur naturally or imitatively. As in the generalized

Bass model, the rate of adoption also depends on the proportion of customers who have adopted,

Dπ
t /m0. By including a price effect, the Markovian Bass model generalizes the stochastic Bass

model proposed by Niu (2002, 2006). Since the price process rπ is endogenous, this seemingly

innocuous extension has implications on the convergence results and their proofs.

We state a property of the evolution of Markovian Bass model that is consistent with the gen-

eralized Bass model studied in Bass et al. (1994) and Krishnan et al. (1999).

Lemma 1. The increase in the adoption speed decreases as more people have adopted the product.

In other words, for a given price r, λ(d, r) = (m0− d)(p0 + q0
d
m0

)x(r) is concave in d.

Next, we show that the Markovian Bass model is consistent with its deterministic counterpart

under a deterministic price process r. Let {Dr,m0 , m0 ≥ 1} be the family of Markovian Bass models

indexed by market size m0. As m0 increases, we show that the proportion of customers who have

purchased by time t converges to the deterministic Bass curve.

Proposition 1. For a given price sample path r= {rt, t≥ 0}, if {Dr,m0
t , t≥ 0} is the cumulative

adoption process with market potential m0, then the following holds for any t≥ 0:

Dr,m0
t

m0

→ F r
t almost surely as m0→∞, (2.7)

where F r
t is given by (2.2), and Varθ0

(
D
r,m0
t
m0

)
decreases in the order of O(m0

−1).
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Figure 1 Convergence of expectation and variance of Dπ,m0
t /m0 as m0 increases.

Proposition 1 states that the variance of
D
r,m0
t
m0

diminishes to zero at the rate that is inversely

proportional to m0. Additionally, we have Lemma 2 below, which shows that the expectation

converges to F r
t at a rate inversely proportional to

√
m0. These results are helpful in understanding

the behavior of a Markovian Bass model in an asymptotic regime.

Lemma 2. For a given price sample path r = {rt, t ≥ 0}, if {Dr,m0
t , t ≥ 0} is the cumulative

adoption process with market size m0, then

Eθ0

∣∣∣∣Dr,m0
t

m0

−F r
t

∣∣∣∣=O( 1
√
m0

)
for all t > 0. (2.8)

Figure 1 illustrates Lemma 2 and Proposition 1 by showing how the proportion of adopters by

time t,
D
r,m0
t
m0

behaves. Panel (a) shows how the difference of the expected proportion from F r
t

changes with increasing m0. Panel (b) shows how the variance of the adoption fraction changes

with increasing m0. We compute the expectation and variance by simulating 103 sample paths

of the adoption process with p0 = 0.1, q0 = 0.3, rt = 0.1 + t
100

, and x(r) = e−r. We observe that

the expected difference between the Markovian Bass adoption,
D
r,m0
t
m0

, and the deterministic Bass

adoption, F r
t , decreases in the order of 1√

m0
and the variance decreases in the order of 1

m0
.

2.2. Seller’s pricing-and-learning problem

We consider the dynamic pricing and learning problem of a monopolist launching a new product

over a finite selling horizon [0, T ] where T > 0. In this setting, the demand for the new product

is described by the Markovian Bass model with parameters θ0 = (p0, q0,m0), but the seller does

not know the parameters of the underlying demand model. However, the seller can accumulate

market information, represented in Ft, by continuously monitoring its prices and sales throughout
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the selling horizon. The seller can use the data to infer the unknown demand parameters. Without

knowing θ0, the seller needs to choose a pricing policy π that is Ft-adapted.

Our goal is to understand how a firm can use the price and sales data after a product launch

to learn the true characteristics of the underlying demand model. Price rπt plays two roles in this

setting. The first role is to affect the revenue and demand at time t. Note that in the Markovian

Bass model, the demand at time t has a compounding effect since it influences the probability

of future purchases through the imitation effect. The second role is to affect the price and sales

information that will be used for demand inference in future periods.

To evaluate a pricing policy π, we will use a performance measure called the regret :

Regret(π) :=R∗−R(π) :=R∗−Eθ0

[∫ T

0

rπt dDπ
t

]
(2.9)

where R∗ is the optimal expected cumulative revenue if the seller knows the true value of θ0, and

R(π) is the expected cumulative revenue of the pricing policy π. The expectation is taken with

respect to the Markovian Bass model with parameter vector θ0.

The Bass diffusion model has a long tradition in the marketing literature of being used to derive

optimal dynamic pricing policies, starting from Robinson and Lakhani (1975). Some early examples

of dynamic pricing under the Bass model include Dolan and Jeuland (1981); Bass and Bultez

(1982); Kalish (1983); Horsky (1990); Raman and Chatterjee (1995); Krishnan et al. (1999). More

recent examples in the operations literature are Kamrad et al. (2005); Li and Huh (2012); Shen

et al. (2013); Li (2020). In this paper, we continue this tradition by studying how learning affects

the pricing decisions under a stochastic version of the generalized Bass model.

Throughout the paper, we assume that the marketing effort function x(·) satisfies certain regu-

larity properties.

Assumption 1. The marketing effort function x :R→R+ has the following properties:

i. (Smoothness and bounded derivative.) x is twice differentiable, and there exists M > 0 such

that |x′(r)| ≤M, for all −∞< r <∞;

ii. (Non-negativity.) There exist non-negative constants x̄u, x̄l, such that x̄lt≤
∫ t

0
x(rs)ds≤ x̄ut,

for all r= (rs, s≥ 0) where −∞< rs <∞ for all s≥ 0;

iii. (Decreasing in price.) x′(r)< 0 for all −∞< r <∞;

iv. (Monotone hazard rate.) r+ x(r)

x′(r) +C is strictly monotone increasing in r with a finite root

for any finite C, and for all −∞< r <∞, there exists a constant Cd > 0, such that 2x′(r)2−

x(r)x′′(r)≥Cd > 0;

v. (Boundedness of revenue.) There exist constants Cx,Cxx such that, for f(r) := rx(r), |f(r)| ≤

Cx, and |f ′′(r)| ≤Cxx for all −∞< r <∞.
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Assumption 1(i)–(iii) are innocuous as they guarantee that the market effort function is decreas-

ing in price and is sufficiently smooth. Assumption 1(iv) is a standard assumption to ensure that the

revenue function is well-behaved and has a unique optimal price for a given state. Assumption 1(v)

implies the revenue function is bounded. The bounded second-order derivative is an assumption

used in many papers (Broder and Rusmevichientong 2012; Wang et al. 2014). These properties are

satisfied by many functional forms including multiplicative (e.g., x(r) = ea−br), and additive (e.g.,

x(r) = a− br) relationships.

In the following sections, we will propose pricing policies when the Markovian Bass model has an

unknown parameter vector θ0. To analyze their regret, we first should study the optimal expected

revenue when θ0 is known. This is the objective of the next section.

3. Optimal pricing policy with complete information

If the firm knows the demand model parameter vector θ0, it can maximize its expected revenue by

solving the following optimal control problem:

R∗ := sup
π∈Π

Eθ0

[∫ T

0

rπt dDπ
t

]
= sup

π∈Π

Eθ0

[∫ T

0

Eθ0 [rπt dDπ
t | Ft]

∣∣∣F0

]
, (3.1)

where the optimal expected revenue is R∗. Here, the equality follows from the tower property of

conditional expectation.

To solve the optimal control problem (3.1), we define V (d, t) to be the optimal value-to-go

function where t is the time remaining until the end of the horizon T , and d is the cumulative

number of adoptions after T − t time has elapsed. Hence,

V (d, t) := maximize
π∈Π

Eθ0

[∫ T

T−t
rπs dDπ

s

]
subject to Dπ

T−t = d.

Note that V (0, T ) is the optimal expected revenue of the pricing problem (3.1).

We will sometimes write V (d,T ;θ0) to emphasize that the value function depends on the demand

parameters θ0. This will prove useful in later sections when θ0 could be replaced by a data-driven

estimator. From (2.4), we know θ0 = (p0, q0,m0) affects the optimal expected revenue through its

effect on the adoption rate. Therefore, increasing p0, q0 or m0 results in a higher adoption rate,

and consequently, a higher expected revenue. This is formally stated in Lemma EC.1(iii).

We can write V (d, t) by enumerating the outcomes after δt time units, resulting in

V (d, t) = max
rt

{
(rt +V (d+ 1, t− δt)) ·λ(d, rt)δt+V (d, t− δt) · (1−λ(d, rt)δt) + o(δt)

}
,

where λ is the adoption rate defined in (2.3), so λ(d, rt)δt is the probability of an adoption if d is

the cumulative adoption and rt is the price. We use this to derive the Hamilton-Jacobi-Bellman
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(HJB) equation and characterize the first-order condition for the optimal value function. We refer

to the optimal pricing policy π∗ under a Markovian Bass model as the Markovian Bass pricing

(MBP) policy. The following theorem states a relationship between π∗ and the value function.

Theorem 1 (Markovian Bass pricing policy, MBP). Let r∗(d, t) be the price offered under

the optimal policy π∗ to the Markovian Bass pricing problem (3.1) when the d∈ {0,1, . . . ,m0− 1}

is the total past sales and t∈ [0, T ] is the time remaining in the sales horizon. Then r∗(d, t) is the

unique solution to the equation

r=− x(r)

x′(r)
−V (d+ 1, t) +V (d, t) , (3.2)

where V (·, ·) is a function that solves the HJB differential equation

∂V

∂t
+ (m0− d)

(
p0 +

d

m0

q0

)
x(r∗(d, t))2

x′(r∗(d, t))
= 0, (3.3)

with boundary conditions V (m0, t) = 0, for all t∈ [0, T ], and V (d,0) = 0, for all d∈ {0,1,2, ...,m0}.

The term ∆dV (d, t) := V (d + 1, t) − V (d, t) that appears in (3.2) is the marginal gain in the

expected revenue due to an adoption at time t. A myopic seller will choose to maximize the current

period expected revenue rate by solving maxr Eθ0 [rdDt | Ft] in each period. The myopic price

satisfies the first order condition r=− x(r)

x′(r) . Comparing this condition with (3.2), we observe that

the sign of ∆dV (d, t) informs whether it is optimal to price above or below the myopic seller facing

the same conditions. This is the same observation made in the classic paper by Kalish (1983) that

studies dynamic pricing under the deterministic Bass model (2.1). In our notation, Kalish (1983)

shows (in eq. (9c) of their paper) that the optimal pricing sequence r∗ = (r∗t , t≥ 0) satisfies

r∗t =− x(r∗t )

x′(r∗t )
− dV B

dF r
t

. (3.4)

Here, dF r
t is the marginal adoption at time t and V B is the optimal expected revenue under the

deterministic Bass model. The term dV B

dFt
is referred to as the shadow price λ(t) in Kalish (1983).

Note the similarity of condition (3.4) for the deterministic Bass model to the condition (3.2) for

the Markovian Bass model. Therefore, the insights from Kalish (1983) are also applicable to the

dynamic pricing policy under the Markovian Bass model. Specifically, if λ(t)> 0 or if ∆dV (d, t)> 0,

then there are future benefits of an additional adoption, so the price will be lower than myopic to

encourage adoption. Further, if λ(t)< 0 or if ∆dV (d, t)< 0, then an additional adoption results in

a future loss, so the price will be higher than the myopic price.

In both (3.2) and (3.4), the optimal price can even be negative if λ(t) and ∆dV (d, t) are very

large. This can occur under a strong imitation effect (i.e., q0� p0) when the market penetration

is still very low (e.g. right after product launch). In this case, temporarily setting a negative price
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(to encourage fast adoption) is offset by the high value of early adoption. In practice, a negative

price can be implemented by seeding early adopters through compensation or perks.2

We can also interpret (3.2) using the price elasticity as follows. Define the price elasticity of

market effort as ex := dx
x

/
dr
r

, where the elasticity evaluated at the optimal price r = r∗(d, t) is e∗x.

From the definition of e∗x, we have that x(r∗)
x′(r∗) = r∗

e∗x
. After substituting this into equation (3.2) and

rearranging terms, we have

r∗(d, t) +
e∗x

1 + e∗x
∆dV (d, t) = 0, (3.5)

where e∗x
1+e∗x

can be interpreted as the probability of purchasing at price r∗(d, t). Thus, the optimal

price r∗(d, t) is the price where the marginal increase in the revenue can offset the expected marginal

loss of an adoption.

For the special case of x(r) = e−r, we can show that the price elasticity changes proportionally

to r, hence the market will not be immediately saturated even if prices are low. For this special

case, we are able to derive an analytic expression for the value function V . This special case is

interesting since it is a stochastic version of the model considered by Robinson and Lakhani (1975).

In contrast to Robinson and Lakhani (1975), MBP depends on two state variables (instead of

one)—the cumulative adoptions and the remaining time until T .

Corollary 1. If x(r) = e−r, then

V (d, t) = ln

(
m0−d∑
j=1

∏d+j−1

i=d ξ(i)

j!

(
t

e

)j
+ 1

)
.

In general cases, however, the HJB equation cannot be solved analytically. Instead, we can

solve (3.3) numerically using finite differences, a conventional technique for solving partial differ-

ential equations numerically. We describe this method in the e-companion (Appendix EC.1).

4. Data-driven dynamic pricing with unknown parameters

In this section, we propose pricing policies under the setting where the seller does not know true

parameters of the Markovian Bass model, θ0 = (p0, q0,m0).

When the true parameter vector θ0 of the demand model is unknown, one could consider esti-

mating it using historical sales data of like products. This approach is difficult to implement if a like

2 For example, this is a strategy used by the CPG company Johnson & Johnson when it introduces new products
(www.jjfriendsandneighbors.com). There also exist many influencer programs used by companies such as Fiat, Ford,
L’Oreal, or Coca Cola—such as Toluna (www.toluna.com), Pinecone Research (www.pineconeresearch.com)—which
compensate early adopters of products through redeemable points or cash.

www.jjfriendsandneighbors.com
www.toluna.com
www.pineconeresearch.com
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product does not exist, or if the market environment has changed significantly. Other approaches

based on subjective expert opinion and on market research are prone to error. One interesting

question is: how much revenue does a firm loses when it uses the MBP pricing policy based on

wrong parameters? Theorem 3 later establishes that when wrong model parameters are initially

inferred and the data is not used to correct the wrong inference, the regret (relative to R∗) can

grow at least linearly in the true market size m0. This motivates our pricing policies that learn the

unknown parameters from the price and sales data.

4.1. Parameter estimation

Maximum likelihood estimation (MLE) is a method of estimating the unknown θ0 by choosing the

parameters which result in the highest likelihood of observing the data.

The likelihood function is convenient to calculate under the Markovian Bass model. We denote

the continuously observed sequence of prices and cumulative sales at time t as

Ût :=
{(
r̂s, D̂s

)
, 0≤ s≤ t

}
. (4.1)

Since the adoption process follows a continuous-time Markov chain, the inter-adoption times are

conditionally independent given the previous state information. Let ti be the time of the ith product

adoption, where i= 0,1,2, . . . That is, at time tk, the cumulative adoption is D̂tk = k. The likelihood

of Ût under a Markovian Bass model with parameters θ= (p, q,m) is

`t

(
Ût | θ

)
=

(
D̂t−1∏
i=0

λ(i, r̂ti+1
;θ)e

−
∫ ti+1
ti

λ(i,r̂s;θ)ds︸ ︷︷ ︸
fi(θ)

)
e
−
∫ t
t
D̂t

λ(D̂t,r̂s;θ)ds︸ ︷︷ ︸
f
D̂t

(θ)

,

where λ(i, r;θ) is the instantaneous adoption rate at state i when price is r, which was defined

in (2.3). Here, fi(θ) is the density function of the (i+ 1)-th inter-adoption time, which is math-

ematically equivalent to the density of inter-arrival times in a non-homogeneous Poisson process

with intensity function {λ(i, r̂t;θ), t≥ 0}.
Using expression (2.3) for λ(i, r;θ), we can rewrite fi(θ) as

fi(θ) :=


(m− i)

(
p+ i

m
q
)
x(r̂ti+1

) exp
(
−(m− i)

(
p+ i

m
q
)∫ ti+1

ti
x(r̂s)ds

)
, if i= 0,1, . . . , D̂t− 1,

exp

(
−(m− D̂t)

(
p+ D̂t

m
q
)∫ t

t
D̂t

x(r̂s)ds

)
, if i= D̂t.

(4.2)

This results in the following log-likelihood function

Lt(Ût | θ) =

D̂t−1∑
i=0

lnx(r̂ti+1
) +

D̂t−1∑
i=0

ln

[
(m− i)

(
p+

i

m
q

)]
−
D̂t−1∑
i=0

∫ ti+1

ti

(m− i)
(
p+

i

m
q

)
x(r̂s)ds

−
∫ t

t
D̂t

(m− D̂t)

(
p+

D̂t

m
q

)
x(r̂s)ds.

(4.3)
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The ML estimator θ̂t = (p̂t, q̂t, m̂t) maximizes the likelihood of observing the data sequence Ût.

That is, θ̂t solves the constrained problem maxθ≥0Lt(Ût | θ). It is difficult to show the joint con-

cavity of the log-likelihood function in θ. Hence, we perform the following variable transformation:

β1 :=mp, β2 := q− p, β3 :=− q

m
, (4.4)

introduced in Bass (1969).3 We define β0 := (β01, β02, β03) to be the transformation variables cor-

responding to the true Markovian Bass model parameters θ0 = (p0, q0,m0).

The log-likelihood function under the transformed variables β = (β1, β2, β3) simplifies to:

Lt(Ût | β) =

D̂t−1∑
i=0

lnx(r̂ti+1
) +

∫ t

0

ln
(
β1 +β2D̂s−+β3D̂

2
s−

)
dD̂s−

∫ t

0

(
β1 +β2D̂s +β3D̂

2
s

)
x(r̂s)ds.

(4.5)

The constraint θ≥ 0 implies that β1 ≥ 0 and β3 ≤ 0. Hence, the ML estimator β̂t = (β̂t1, β̂t2, β̂t2) is

the solution to the constrained problem maxβ:β1≥0,β3≤0Lt(Ût | β). We prove the following proposi-

tion that guarantees the tractability this problem.

Proposition 2. Lt(Ût | β) is strictly and jointly concave in β when D̂t ≥ 3.

Proposition 2 ensures that a standard convex optimization technique such as Newton’s method

can find the optimizer of Lt(Ût | β) efficiently. It also implies identifiability of the ML estimation

model of β0 because the Fisher information matrix is strictly positive definite. This result is useful

in establishing the convergence rate of the estimation error (Lemma 3). Since the log-likelihood

function Lt(Ût | β) is strictly concave in the transformation variables, it has a unique maximizer,

which we denote by β̂t = (β̂t1, β̂t2, β̂t3).

If β̂t1 > 0 and β̂t3 < 0, we can readily recover the variables θ̂t = (p̂t, q̂t, m̂t) which satisfy the

transformation (4.4). (Transforming (4.2) using (4.4), β̂t1 = 0 and β̂t3 = 0 will not happen since the

likelihood of this model is zero.) To see how θ̂t can be recovered, note that m̂t solves the equation

β̂t3m̂
2
t + β̂t2m̂t + β̂t1 = 0. Since β̂t3 < 0 and β̂t1 > 0, the equation has only one positive root, which

we set as m̂t. In this case, θ̂t is uniquely determined by the first-order conditions of Lt(Ût | β).

An attractive property of ML estimators is that the mean squared error converges to zero as the

sample size increases when the data is independent and identically distributed (i.i.d.). Note that,

however, inter-adoption times are not identically distributed under the Markovian Bass adoption

process. hence the standard argument of ML estimators cannot apply here. Bradley and Gart

(1962); Hoadley (1971) establish the asymptotic properties of ML estimators for independent but

3 We note that the transformation in Bass (1969) was done to perform least squares estimation, and not maximum
likelihood.
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not identically distributed samples. However, their conditions are difficult to use in our setting.

Roussas (1969) characterizes regularity conditions to ensure consistency for stationary Markov

chains, but the Markovian Bass model is non-stationary. Instead, we follow an approach similar to

Bickel et al. (2013) and Broder and Rusmevichientong (2012) using the concept of Kullback-Leibler

divergence from information theory to establish the following Lemma. The lemma characterizes

the convergence rate of the mean squared errors of the ML estimators of θ0.

Lemma 3. For any fixed time t > 0 and k≥ 3,

Eθ0

((
p̂t− p0

p0

)2

+

(
q̂t− q0

q0

)2

+

(
m̂t−m0

m0

)2

|Dπ
t = k

)
≤ αθ
k+ 1

,

for some αθ > 0 that is independent of m0, t and k.

The variance of q̂t grows as Dπ
t /m0 approaches zero. However, as we have shown in the proof of

Lemma 3, the bound on the variance of q̂t does not depend on m0, t or k if q̂t is estimated from

the ML model under the simple parameter transformation (p− q, q,m). The Lemma 3 bound on

the estimation error will be crucial in proving a performance bound of the pricing-and-learning

algorithms we propose later in this section.

4.2. Data-driven pricing policies

We next develop sensible data-driven dynamic pricing policies that (1) utilize data in a compu-

tationally efficient way, and (2) have performance guarantees on regret. The policies utilize the

Markovian Bass price function introduced in Section 3 where they replace the true (unknown)

parameters θ0 = (p0,m0, q0) with parameter estimates. Therefore, with slight abuse of notation,

we define r∗t (θ, d) as the Markovian Bass price function (Theorem 1) if t is the elapsed time since

introducing the product, d is the number of past adoptions, and θ is the demand parameter vector.

4.2.1. Pricing policy with continuous price changes. We first propose a policy referred

to as MBP-MLE (outlined in Algorithm 1). At time t, this policy offers the Markovian Bass price

of Section 3 except that when computing the price and the value function, it replaces the true

(unknown) parameter vector θ0 with the ML estimator θ̂t. Note that the Markovian Bass price

is optimal if there is no error in parameter estimation. Hence, the price offered by the MBP-MLE

policy exploits the current estimate and ignores the role of price in improving future inference.

Yet, our analysis in the next section shows that the regret of MBP-MLE grows sublinearly in the

market size at the rate of O(lnm0) (Theorem 4).

The policy starts with an initial price rt = 0 for t ∈ [0, t3], where t3 is the time of the third

adoption. When t∈ (t3, T ], the seller uses the accrued data to solve for the ML solution θ̂t and set

the price at rt = r∗t (θ̂t, D̂t). Since the ML model is only identifiable after time t3 (see Proposition 2),

the low initial price is chosen to lengthen the period, (t3, T ], during which the policy uses the ML

solution for pricing. However, any arbitrary initial price can be used.
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Algorithm 1 MBP-MLE algorithm

Require: Max horizon length T , subperiod length δ

1: s← 0, D̂0← 0, Û−1←∅ . Initialization

2: while s≤ T
δ

and D̂s <m0 do

3: if D̂s < 3 then

4: rs← 0 . Set price

5: else

6: θ̂s← arg max
θ
Lt
(
Ûs | θ

)
. Estimate parameter

7: rs← inf
{
r : r≥− x(r)

x′(r) −V (D̂s + 1, T − δs; θ̂s) +V (D̂s, T − δs; θ̂s)
}

. Set price

8: Ûs← Ûs−1 ∪{(rs, D̂s + as)}, where as is the new sales in [δs, δ(s+ 1))

9: s← s+ 1 . Proceed to next period

4.2.2. Pricing policy with limited price changes. In many situations, frequent price

changes can be difficult or impractical to implement due to cost, time and loss of goodwill associated

with price changes. This explains why many firms only change price a few times during the season.

We next propose the MBP-MLE-Limited policy in which the firm changes its price at most K

times. One way to model this is to include the number of price changes as a state variable. However,

doing so will further increase the complexity of the dynamic programming model. Instead, we

propose a simpler approach by assuming that price changes occur when the cumulative adoption

reaches certain thresholds (e.g, the 100th customer, the 1000th customer, etc). This approach of

using cumulative purchases as triggers for price changes has been used in selling new products by

the crowdfunding platforms KickStarter and IndieGoGo (Stonemaier Games 2013).

Consider a sequence of natural numbers C := {Ci, i = 0,1,2, . . . ,K}, where Ci ≥ 1 for any i.

Define C[−1] := 0 and C[i] :=
∑i

k=0Ck for all i = 0, . . . ,K. For the ith price cycle, our proposed

MBP-MLE-Limited policy sets the same price r(i) starting from when the C[i−1]-th adoption has

occurred until when the C[i]-th adoption happens. Hence, unless the end of the horizon is reached,

the per-unit revenue r(i) will be earned by the seller from exactly Ci adopters. For now, we will

assume that K and C are both given. Later in Section 5.3, we describe how K and C can be chosen,

even without knowing m0, so that the regret of MBP-MLE-Limited is O(lnm0) (Theorem 5).

We next describe how the policy determines the prices for each cycle. Suppose that the ith price

cycle has just been triggered at time t by the adoption of the C[i−1]-th customer. After updating

the ML estimator θ̂, MBP-MLE-Limited chooses a price r(i) for the next Ci adoptions. The idea is

that the total revenue under r(i) is set to match the expected revenue if MBP-MLE could be used

in the upcoming cycle (i.e., where each of the Ci customers is charged a different price). Note that
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Figure 2 Certainty equivalent MBP-MLE prices and adoption rates in one price cycle. The green arrow indicates

when the cycle starts. The gray arrows are the deterministic adoption times.

there are no actual price changes during the cycle after the initial price change. The MBP-MLE

prices are only used to construct the lookahead value to compute r(i).

The lookahead value is constructed using the certainty equivalent of the MBP-MLE prices and

the corresponding adoption rates for the ith cycle (see Figure 2). In the figure, vertical arrows

correspond to times of adoptions. The green solid arrow is the actual C[i−1]-th adoption that triggers

a price cycle. The gray, empty arrows are the predicted future adoption times using a deterministic

model. We denote d=C[i−1] for notational convenience. As illustrated in the figure, once the MBP-

MLE price rj is set (i.e., immediately after the (d+j−1)th customer purchases where j = 1, . . . ,Ci),

the adoption rate changes to λ(d+ j− 1, rj; θ̂) where λ is defined in (2.3). Hence, the expected

inter-adoption time between the (d+ j− 1)th and (d+ j)th adoption is

∆tj :=
1

λ(d+ j− 1, rj; θ̂)
=

1

ξ(d+ j− 1; θ̂)x(rj)
. (4.6)

This then determines the time of the next adoption d+ j under a deterministic model, assuming

that the previous inter-adoption times ∆t1,∆t2, . . . ,∆tj−1 have already been computed. Since the

MBP-MLE prices depend only on the elapsed time τ = t+
∑j

k=1 ∆tk and the cumulative adoptions

d + j, this allows us to compute the next price rj+1 := r∗τ (θ̂, d + j), which determines the next

inter-adoption time ∆tj+1. This proceeds until we have the complete deterministic sequence of

MBP-MLE prices for the ith cycle.

Given the MBP-MLE price sequence {r1, . . . , rCi} for the ith cycle, the MBP-MLE-Limited policy

then chooses the price r(i) to satisfy the following relation:

Ci∑
j=1

r(i)λ
(
d+ j− 1, r(i); θ̂

)
∆tj =

Ci∑
j=1

rjλ
(
d+ j− 1, rj; θ̂

)
∆tj.

The right-hand side is the certainty equivalent revenue of MBP-MLE in the ith cycle. Hence, the

MBP-MLE-Limited price is chosen such that its expected revenue matches the certainty equivalent
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revenue of MBP-MLE, assuming that the adoption times of the Ci customers are fixed. From

identity (4.6), r(i) is the solution to

r(i)x
(
r(i)
)

=

∑Ci
j=1 rj∑Ci

j=1 1/x(rj)
. (4.7)

For the first price cycle (i= 0), we assume that the policy starts with an initial price r(0) = 0.

We also assume that C0 ≥ 3 so that there exists an ML estimator when the first price change is

calculated. Similar to our reasoning with MBP-MLE, this low initial price is chosen to hasten the

time tC0
that the policy can start using the MLE solution for pricing. Algorithm 2 provides the

outline for the MBP-MLE-Limited algorithm.

Algorithm 2 MBP-MLE-Limited algorithm

Require: Max horizon length T , subperiod length δ, price change triggers {Ci, i = 0,1,2, ...,K}

where C0 ≥ 3

1: function Limited-Price(θ,C,d, t)

2: for j← 1,2, . . . ,C do

3: dV ← V (d+ j, t;θ)−V (d+ j− 1, t;θ)

4: rj← inf
{
r : r≥− x(r)

x′(r) − dV
}

. Calculate MBP-MLE for adoption d+ j− 1

5: ∆tj← 1
ξd+j−1(θ)x(rj)

. Approximate the inter-adoption time for d+ j

6: t← t−∆tj

7: r̄← inf

{
r : r ·x(r)≥

∑C
j=1 rj∑C

j=1 1/x(rj)

}
. Calculate the price for the C adoptions

8: return r̄

9: end function

10:

11: r0← 0, s← 1, i← 1, D̂0← 0, Û0←∅ . Initialization

12: while s≤ T
δ

and D̂s <m0 do

13: Ûs← Ûs−1 ∪{(rs, D̂s + as)}, where as is the new sales in [δ(s− 1), δs) . Update dataset

14: if as = 1 and D̂s + as =
∑i−1

k=0Ck then . Price change is triggered

15: θ̂s← arg max
θ
Lt
(
Ûs | θ

)
. Update parameter estimate

16: rs←Limited-Price(θ̂s,Ci, D̂s, T − δs) . Change price

17: i← i+ 1 . Increase number of price changes

18: else

19: rs← rs−1 . Do not change price

20: s← s+ 1 . Proceed to next period
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5. Analysis of pricing policies

We next characterize the performance of our proposed pricing-and-learning policies, MBP-MLE

and MBP-MLE-Limited. We do this by deriving analytic bounds on their regret, defined in (2.9).

Specifically, we will derive asymptotic bounds on the regret of our proposed policies as the market

size m0 grows. We will establish that the regret of our proposed policies grow at most sublinearly

with m0 at the rate O(lnm0).

The challenge in bounding the regret when demand follows a Markovian Bass model is that

pricing mistakes affect, not only the current revenue, but also the revenues in any future time

period. This is because adoption rates (hence, revenues) depend on the cumulative adoptions, which

in turn can be influenced by prices from any past period. Hence, the effects of pricing mistakes can

compound over time. To bound the regret, we then need to establish a non-stationary relationship

among regret, pricing errors and estimation errors.

Let D∗ = (D∗t , t≥ 0) and r∗ = (r∗t , t≥ 0) denote the cumulative adoption process and the price

process, respectively, under the oracle policy π∗. The following proposition states a general result

for any pricing policy in the set of Ft-adapted policies Π. The definitions of O,Ω, and Θ can be

found in Section 1.2. Particularly, we are interested in the limiting behavior as m0 goes to infinity.

Proposition 3. If π ∈Π and {rπt , t∈ [0, T ]} does not scale up with m0, then

Regret(π) =O
(
Eθ0

[∫ T

0

Dπ
t + 1

t+ t0
(rπt − r∗t )2dt

])
, (5.1)

where t0 = Θ(m0
−1).

This important proposition establishes that the regret of a policy π is bounded by a weighted

average of its squared pricing errors relative to the oracle policy π∗. Since any past pricing error

can linger and affect future adoptions, the weights represent the cumulative effect of the pricing

error on the regret.

The idea behind the proof of Proposition 3 is that we can decompose the regret into two parts:

Regret(π)≤Eθ0

[∫ T

0

|x(r∗t )r
∗
t −x(rπt )rπt | · ξ(D∗t )dt

]
+Eθ0

[∫ T

0

x(rπt )rπt · |ξ(Dπ
t )− ξ(D∗t )|dt

]
Note that at time t, the firm accrues revenue at the rate rπt ξ(D

π
t )x(rπt ), where the adoption rate

exhibits a price effect x(rπt ) and a word-of-mouth effect ξ(Dπ
t ). The first term in the decomposition

measures the regret in the current period only since it assumes that the word-of-mouth effect is the

same as the oracle policy. The second term captures the regret due to the compounded word-of-

mouth effects. We prove that, under Assumption 1, the first part grows in the order of the squared

price difference. As the mean difference in the proportions of adopters under π and π∗ vanishes at
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a fast rate (Lemma EC.2), the second part is dominated by the first part. The full proof can be

found in the appendix.

The implication of Proposition 3 is that, to bound the regret of a policy π, it suffices to bound

the squared price error between π and π∗. Our next result is important since it establishes such

a price error bound for policies that use the Markovian Bass pricing function with a parameter

sequence {θt, t≥ 0} (i.e., at time t, offer the price r∗t (θt,Dt) where Dt is the cumulative adoption).

Note that both MBP-MLE and MBP-MLE-Limited are policies of this type.

Lemma 4. Consider a parameter sequence {θ̄t = (p̄t, q̄t, m̄t), t ≥ 0} where θ̄t is an Ft-measurable

random vector, and p̄t, q̄t, m̄t are finite, p̄t+ q̄t > 0 and m̄t > 0 for all t≥ 0 almost surely. If π is the

policy that offers the Markovian Bass price with parameter θ̄t, i.e., rπt = r∗t (θ̄t,D
π
t ), then for any

t∈ (0, T ],

Eθ0
[
(r∗t − rπt )

2 | Ft
]

= Θ

(
Eθ0

[(
p̄t− p0

p0

)2

+

(
q̄t− q0

q0

)2

+

(
m̄t−m0

m0

)2

| Ft

])
+O

(
1

m0

)
. (5.2)

The proof is in the appendix. The proof decomposes the squared pricing error as follows:

Eθ0
[
(r∗t − rπt )

2
]

= Θ
(
Eθ0
[
(r∗t (θ0,D

∗
t )− r∗t (θt,D∗t ))

2
])

+ Θ
(
Eθ0
[
(r∗t (θt,D

∗
t )− r∗t (θt,Dπ

t ))
2
])

where both terms on the right-hand side are potentially affected by the market size m0. The first

term in the decomposition represents the pricing error originating from the parameter estimation

error, and the second term represents the pricing error originating from the difference in cumulative

adoptions (D∗t and Dπ
t ) as a result of price differences up to time t. This second term reflects the

fact that the deviation of rπt from r∗t is not only from estimation errors but also from differences

in the cumulative adoptions.

Lemma 4 and Proposition 3 together enable us to bound the regret by the parameter estimation

error. Hence, the regret of a data-driven pricing policy π can be analyzed by studying the dynamics

of parameter estimation errors under π.

Before proceeding with our analysis, we first derive a fundamental limit on the regret of data-

driven pricing policies. This is usually accomplished by constructing a special case of the problem

that satisfies Assumption 1, and showing that for any data-driven pricing policy, the worst-case

regret associated with that special case cannot be lower than the fundamental limit (see Broder

and Rusmevichientong 2012; Besbes et al. 2015). The following theorem states that Ω(lnm0) is the

fundamental limit under the special case of x(r) = e−r. (Note that this functional form satisfies

Assumption 1.) Hence, the fundamental limit Ω(lnm0) serves as a benchmark for the regret of

data-driven pricing policies in our problem setting.
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Theorem 2. Let x(r) = e−r with r ∈ [0,2). Then for any pricing-and-learning policy π ∈Π, there

exists a true value q0 ∈ [1/4,5/4] such that Regret(π) = Ω(lnm0).

The proof of Theorem 2 requires showing that the pricing error is lower-bounded by a rate

inversely proportional to the sample size. This is formalized in Claim EC.3 using the Bayesian

Cramer-Rao inequality (also known as van Trees’ inequality, see Lemma EC.4), which provides

a lower bound on the performance of sequential decision policies. We then use a tight version of

Proposition 3 (Claim EC.2) to connect the pricing error to regret.

In the remainder of this section, we will analyze the regret of several pricing-and-learning policies,

including our proposed policies MBP-MLE and MBP-MLE-Limited. In the analyses, we assume x(·)

is any function that satisfies Assumption 1. In fact, we will show that the regret of our proposed

policies are O (lnm0).

5.1. Regret without learning

Consider a pricing policy πs that offers the Markovian Bass prices based on an initial estimate

θ̂0 that is never updated even when data is available. In fact, relying on an initial estimate is the

approach suggested in many papers including Bass (1969); Bass et al. (1994) and Krishnan et al.

(1999). Theorem 3 below states that the regret of such a policy can be large and grows at least

linearly in m0. Establishing the result requires the following additional condition on x(·).

Assumption 2. The marketing effort function x : R→ R+ has the property that there exists a

constant C> 0 such that
∣∣∣ ∂2∂r2 (rx(r))

∣∣∣≥C for all −∞< r <∞.

Assumption 2 is not restrictive since it is easily satisfied as long as the instantaneous revenue

rate, rx(r), is strictly concave in r, a standard assumption in the revenue management literature.

Theorem 3. Given a parameter estimate θ̂0, let πs be the pricing policy that offers the price

r∗t (θ̂0,D
s
t ) at time t where Ds

t is the cumulative adoptions by time t. Under Assumption 2 and if E2

is the total estimation error such that (p̂0− p0)2/p0
2 + (q̂0− q0)2/q0

2 + (m̂0−m0)2/m0
2 = E2, then

Regret(πs) = Ω(E2m0).

5.2. Regret of MBP-MLE

We next establish an upper bound on the regret of MBP-MLE. Unlike the simple pricing policy

πs, the MBP-MLE policy πM continuously updates the parameters of the Markovian Bass price

function using the ML estimators.

The implication from Proposition 3 and Lemma 4 is that the regret of any pricing-and-learning

policy that uses the Markovian Bass price function with parameter estimates depends only on the

weighted mean squared error of those parameter estimates. We can therefore use our bound on the
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estimation error of MLE in a Markovian Bass model (Lemma 3) to obtain a performance guarantee

for the MBP-MLE policy. This is formally stated in the following theorem. The detailed proof is

provided in the e-companion.

Theorem 4. If πM is the MBP-MLE policy, then Regret(πM) =O (lnm0).

Note that Lemma 3, Lemma 4, and Proposition 3 are important results for establishing the

upper bound. Intuitively, we have a O (lnm0) bound since the estimation error at time t is inversely

proportional to Dt+1 (Lemma 3), which incidentally is also the weight applied to the pricing error

in (5.1). The detailed proof of the theorem is in the appendix.

Note that MBP-MLE fully exploits the current parameter estimate since the resulting MBP price

is not adjusted to improve the accuracy of parameter estimation. Despite not actively doing price

exploration, the regret of MBP-MLE, O(lnm0), matches the fundamental lower bound on the regret

of any data-driven pricing policy (Theorem 2). In Section 5.5, we will discuss why learning appears

to occur for free under MBP-MLE.

5.3. Regret of MBP-MLE-Limited

We now derive a performance bound for the MBP-MLE-Limited policy πM-Lim, a policy with limited

price changes. Recall that this policy requires a sequence {C0,C1, . . . ,CK} to determine the number

of adoptions between price changes. In our asymptotic analysis where the potential market size

m0 grows, it is reasonable that either the number of price changes, K, increases or the number of

adoptions between price changes increases. In either case, we assume that
∑K

i=1Ci = Θ(m0) and

that C0 = Θ(1).

The following result establishes an asymptotic bound on the regret of MBP-MLE-Limited.

Theorem 5. Let πM-Lim be the MBP-MLE-Limited pricing policy where {C0,C1, . . . ,CK} are the

number of adoptions between price changes with C0 ≥ 3. Then,

Regret
(
πM-Lim

)
=O

((
1 + max

i=1,2,...,K

Ci
Ci−1

)
· lnm0

)
.

Compared with MBP-MLE, the cumulative pricing error originating from inaccurate parameter

estimates is larger, since the estimates are only updated at the price change points. However, if

the firm chooses price change points such that the number of adoptions between price changes

grows exponentially large, the regret grows at most in logarithmic order. To see this, note that if

Ci = C0a
i for all i= 1, . . . ,K for some base a > 0, then Regret (πM-Lim) =O ((1 + a) lnm0). Hence,

the regret bound still remains in the same order as that of MBP-MLE. However, the number of

price changes is Θ(lnm0), while MBP-MLE implements continuous price changes.
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When Ci =C0a
i, most price changes occur during the early stages of adoption so that the firm

can collect enough information. At the later stages of adoption, the firm simply exploits this and

uses a relatively stable pricing strategy. Hence, price experimentation primarily occurs at the start

of the launch. Doing so can prevent significant regret overall. Note that using an exponentially

growing sequence for Ci resembles many learning-while-doing policies in the literature (e.g., Cheung

et al. 2017 and Qi et al. 2017).

On the other hand, the firm can have a regret that grows superlinearly when it chooses a non-

increasing sequence {Ci, i= 0,1,2, . . . ,K}, such as a decreasing or constant sequence. For example,

if C1 = . . .=CK = Θ(m0), then the regret can be as large as Θ(m0 lnm0). If the adoptions between

price changes is non-increasing over time, then to achieve O(lnm0) growth, the number of price

changes must be sufficiently large (at least in the order of m0). The reason is, with a non-increasing

sequence, since
∑K

i=0Ci = Θ(m0), this implies (K + 1)C0 ≥Θ(m0).

Finally, we also comment on our choice of using adoption numbers to trigger price changes. With

this method, the number of adoptions are known when the ML estimates are updated, so we can

utilize our previous result on ML estimation errors (Lemma 3) in proving the bound on regret.

One could also consider a pricing policy where a price changes are triggered by time (e.g., every

Monday at 8 a.m.). While the two policies do not differ much in terms of execution, characterizing

the estimation accuracy in the latter is harder to do because the cumulative number of adoptions

at each price change period is a random variable.

5.4. Extension to an unknown marketing effort function

The two algorithms (MBP-MLE and MBP-MLE-Limited) and their asymptotic analysis can be

extended to the case where the marketing effort function x(·) is unknown. This can be done if x is

a Bernstein polynomial with unknown parameters.

Let x(r;γ) =
∑n

i=0 γibi,n(r) where n is the order of the polynomial, bi,n(r) =
(
n
i

)
ri(1− r)n−i are

the Bernstein basis functions, and γ = (γ0, γ1, . . . , γn)∈Rn+1 is a parameter vector. (This requires

price to be normalized to [0,1]. This can be done without loss of generality for any price r defined

on [r, r] since we can transform our model by introducing a new variable (r−r)/(r−r).) Bernstein

polynomials are known to be able to approximate any continuous function defined on [0,1] (Lorentz

2013). It has been proven that the Bernstein polynomial approximation converges to the true

function uniformly at a rate of n−1/2 (Lorentz 2013). Thus, assuming the marketing effort function

is a Bernstein polynomial is quite general. For example, the commonly used (see Robinson and

Lakhani 1975 and Chow 1960) market effort function x(r) = a−br can be considered as a Bernstein

polynomial and x(r) = ea−br can be well approximated by Bernstein polynomials.
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We assume the seller knows that x(·) is a Bernstein polynomial of order n, but she does not know

the true parameter vector, which we denote as γ0 = (1, γ0,1, γ0,2 . . . , γ0,n). The seller uses maximum

likelihood to estimate the n+ 4 Markovian Bass model parameters (p0, q0,m0, γ0). Note that we

normalized the vector γ0 such that γ0,0 = 1. This can be done without loss of generality, and we

will later show that this makes the model identifiable under ML estimation.

Let µ = (β,γ), where β is the transformation defined in (4.4). The function Lt(Ût | µ) is not

necessarily jointly concave in µ. However, we will show that after a proper transformation of the

parameters, the log-likelihood function is strictly and jointly concave in the transformed parameters

when the data has an initial price exploration and there is a sufficient number of adoptions.

Specifically, consider the following transformation:

µ′ := (γjβ1, γjβ2, γjβ3, j = 0,1, . . . , n)>. (5.3)

Here, µ′ is a vector of size 3(n+ 1). By definition, µ′3j+` = γjβ` where j = 0,1, . . . , n and `= 1,2,3.

At time t, for each adoption i= 0,1, . . . , D̂t, we can construct the following 3(n+ 1)-dimensional

column vectors from the data Ût:

yi,s :=
(
bj,n(r̂s), bj,n(r̂s) · i, bj,n(r̂s) · i2, j = 0,1, . . . , n

)>
, for any s∈ [ti, ti+1]

Then, the log-likelihood function under the transformed parameters µ′ simplifies to:

Lt(Ût | µ′) =

D̂t−1∑
i=0

lnµ′
>
yi,ti+1 −

D̂t−1∑
i=0

∫ ti+1

ti

µ′
>
yi,sds−

∫ t

t
D̂t

µ′
>
yD̂t,sds. (5.4)

It is easy to check that Lt(Ût | µ′) is jointly concave in µ′. In fact, Proposition 4 next states that

it is strictly concave under some condition on the initial prices.

Proposition 4. If D̂t ≥ 3(n+ 1) and if the price sequence (r̂ti+1
, i= 0, . . . ,3n+ 2) is chosen such

that the matrix

Y :=
(
y0,t1 y1,t2 · · · y3n+2,t3n+3

)
∈R3(n+1)×3(n+1) (5.5)

has full rank, then the log-likelihood function Lt(Ût | µ′) is strictly and jointly concave in µ′.

Note that the condition that Y is full rank is a condition on price exploration. Intuitively, this

condition can be achieved if the prices offered to the first 3(n+1) adoptions are sufficiently different.

Hence, µ′ is identifiable under MLE if there is an initial price exploration phase.
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Example 1. If n= 1 then

Y =



1− r̂t1 1− r̂t2 1− r̂t3 1− r̂t4 1− r̂t5 1− r̂t6
0 1− r̂t2 2(1− r̂t3) 3(1− r̂t4) 4(1− r̂t5) 5(1− r̂t6)

0 1− r̂t2 4(1− r̂t3) 9(1− r̂t4) 16(1− r̂t5) 25(1− r̂t6)

r̂t1 r̂t2 r̂t3 r̂t4 r̂t5 r̂t6

0 r̂t2 2r̂t3 3r̂t4 4r̂t5 5r̂t6

0 r̂t2 4r̂t3 9r̂t4 16r̂t5 25r̂t6


.

If r̂t1 = . . .= r̂t6 , then Y is not full rank. However, prices do not have to be all distinct for Y to be

full rank. The price sequence, r̂t1 = 0.8 and r̂t2 = r̂t3 = . . .= r̂t6 = 0.9 is an example. In fact, many

initial price sequences result in a full rank matrix. For general n, since the Bernstein basis functions

are known, the initial price sequence that result in a full rank Y matrix can be determined off-line

(i.e., before time 0).

We next discuss how to recover µ from µ′. Due to our normalization γ0 = 1, we have β1 = µ′1, β2 =

µ′2, and β3 = µ′3. Furthermore, for any j = 1, . . . , n, we have γj = µ′3j+1/µ
′
1 = µ′3j+2/µ

′
2 = µ′3j+3/µ

′
3.

Given the data Ût, we can find the ML estimator of µ′ by solving:

max
µ′
Lt(Ût | µ′)

s.t. µ′1 ≥ 0, µ′3 ≤ 0

µ′3j+1/µ
′
1 = µ′3j+2/µ

′
2, j = 1, . . . , n

µ′3j+2/µ
′
2 = µ′3j+3/µ

′
3, j = 1, . . . , n

(5.6)

We denote the solution to (5.6) as µ̂′t. We can then construct µ̂t = (β̂t, γ̂t) from the solution µ̂′t.

Optimization model (5.6) has a strictly concave objective function (under the Proposition 4

condition) and a non-convex feasible set (due to nonlinear equality constraints). Hence, we cannot

use efficient techniques for convex optimization. Observe, however, that if (µ′1, µ
′
2, µ
′
3) is fixed, then

the problem has linear equality constraints, so the feasible set is convex. Therefore, a method for

solving (5.6) is to search for the largest log-likelihood value over the space (µ′1, µ
′
2, µ
′
3) where, at each

point in the space, a strictly concave function is maximized subject to linear equality constraints.

We next adapt the data-driven pricing policies MBP-MLE and MBP-MLE-Limited to the case

when x(·) is an unknown Bernstein polynomial. Whenever a parameter estimate is required in MBP-

MLE and MBP-MLE-Limited, we use the ML estimators of (p0, q0,m0, γ0). In fact, we can establish

the rate of convergence of ML estimators, similar to Lemma 3. This is because the log-likelihood

function Lt(Ût | µ) is continuously differentiable and element-wise concave in all parameters. As a

result, all arguments in the proof of Lemma 3 apply to ML estimators of µ0 = (β0, γ0). This gives

us the following Lemma 3′.
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Lemma 3′. For any fixed time t, if k≥ 3(n+ 1) and Y defined in (5.5) is full rank, then

Eµ0

((
p̂t− p0

p0

)2

+

(
q̂t− q0

q0

)2

+

(
m̂t−m0

m0

)2

| Dπ
t = k

)
≤ αθ
k+ 1

, and

Eµ0
(
‖γ̂t− γ0‖2 | Dπ

t = k
)
≤ αγ
k+ 1

,

where αθ, αγ are constants that are independent of m0, t and k.

The next step is to establish the relationship between the pricing errors and the estimation

errors, similar to Lemma 4. Let r∗t (µ,d) be the Markovian Bass price for parameters µ = (β,γ)

when the cumulative adoption is d and the elapsed time is t. Below is our next result.

Lemma 4′. Consider a parameter sequence {µ̄t = (p̄t, q̄t, m̄t, γ̄t,0, . . . , γ̄t,n), t≥ 0} where µ̄t is an Ft-

measurable random vector, and p̄t, q̄t, m̄t, γ̄t,j are finite, and p̄t+ q̄t > 0 and m̄t > 0 for all t≥ 0 and

j = 0, . . . , n almost surely. If π is the policy that offers the Markovian Bass price with parameter

µ̄t, i.e., rπt = r∗t (µ̄t,D
π
t ), then for any t∈ (0, T ],

Eµ0
[
|r∗t − rπt |2 | Ft

]
= Θ

(
Eµ0

[(
p̄t−p0
p0

)2

+
(
q̄t−q0
q0

)2

+
(
m̄t−m0
m0

)2

| Ft
])

+ Θ
(
Eµ0

[
‖γ̄t− γ0‖2 | Ft

])
+O

(
1

m0

)
.

Therefore, utilizing Lemma 3′, Lemma 4′ and Proposition 3, we derive similar results as Theo-

rem 4 and Theorem 5 under the extension to an unknown marketing effort function.

5.5. Discussion of why learning occurs for “free”

Recall that our bound O (lnm0) on MBP-MLE and MBP-MLE-Limited coincides with the fundamen-

tal lower bound on regret in Theorem 2. It also coincides with the lower bound derived in Broder

and Rusmevichientong (2012) for the class of well-separated problems. The well-separated condi-

tion means that any two distinct parameters would generate non-intersecting expected demand

curves. Although the model in our setting is past dependent, the O (lnm0) regret of MBP-MLE

and MBP-MLE-Limited still matches the fundamental lower bound.

When x(·) is known, it is surprising that the lower bound is achieved even if both policies do not

explicitly change price for the purpose of increasing learning accuracy (i.e., experiment with price).

In fact, both policies exploit the current information by using the ML estimates as if they are

the true parameters. We call this “learning-for-free.” However, “learning-for-free” does not always

happen when x(·) is unknown. As shown in Proposition 4, we need an initial price exploration

phase to ensure the model parameters can be uniquely identified. But, free learning occurs after

this initial price exploration phase.

We next discuss why learning occurs for free when x(·) is known and the parameters of the Marko-

vian Bass model are estimated using maximum likelihood. Note that the log-likelihood function
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(4.3) is changing continuously over time even when price is unchanged. Hence, the ML estimators

are continuously updated in time regardless of the price path. From Lemma 3, the accuracy of

the ML estimators increases as more people adopt. Indeed, the ML estimators will converge to the

true parameters under any pricing policy as time t increases. The parameters will also converge

under pricing that exploits the current parameter estimates. Hence, exploration and exploitation

can occur simultaneously when the parameters are estimated using the maximum likelihood.

MBP-MLE allows continuous price changes, so the benefit from the increasingly accurate ML

estimators is immediately realized through pricing that exploits the current estimates. This explains

why the regret isO(lnm0) even without changing prices for the explicit purpose of price exploration.

On the other hand, MBP-MLE-Limited has limited opportunities to change prices. Though the ML

estimators are continuously updated and will converge to the true parameters with more adoptions

(c.f. Lemma 3 and Lemma 3′), the changes in the estimators are only reflected onto the price at

the limited price change epochs. Therefore, a key to limiting the regret of MBP-MLE-Limited is to

judiciously set the intervals between price changes so that the information is exploited late enough

for an accurate estimator, but early enough for the price change to have an impact on the total

revenue. One possibility is to set the adoptions between price changes to increase exponentially.

Theorem 5 and the ensuing discussion show that such a choice achieves O(lnm0) regret. Note that

increasing the length of the exploitation periods over time is similar to other policies proposed in

the pricing-and-learning literature (see for example Broder and Rusmevichientong 2012; den Boer

2015a).

The same logic discussed above is also behind why free learning occurs after the initial price

exploration phase in the case of an unknown x(·) function.

6. Numerical Study

In numerical studies, we compare the regret of MBP-MLE, MBP-MLE-Limited, and a no-learning

pricing policy (i.e., MBP policy based on prior parameter values without updating). For MBP-MLE

and the no-learning pricing policy, the initial prices are the MBP prices solved from an initial

estimate θ̂ = (p̂, q̂, m̂). The prices of the two policies start deviating after three adoptions (i.e.,

after the MLE model is identifiable). The initial price for MBP-MLE-Limited (i.e., for the first C0

customers) is the result of function Limited-Price(θ̂,3,0, T ) defined in Algorithm 2. The price

change epochs are Ci = 3 · 2i for i= 0,1, . . .

Figure 3 shows how the revenues are changing with respect to the initial modeling error (i.e., by

how much θ̂ is different from θ0). In these experiments, we assume that the true parameters are

θ0 = (p0, q0,m0) = (0.4,0.6,100) and that T = 40. The horizontal axis is the percentage deviation

δpq where p̂= (1 + δpq)p0 and q̂ = (1 + δpq)q0. We vary the percentage deviation δpq from −90% to
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(a) Deviation of m̂=−50% (b) Deviation of m̂= 450%
Figure 3 Cumulative revenue of MBP-MLE, MBP-MLE-Limited, and no-learning relative to the upper bound

R∗ of the optimal pricing-and-learning revenue and 95% confidence intervals.

400% and plot the ratio R(π)/R∗ of the three policies. Figures 3 (a) and (b) display the plots for

different deviations δm =−50% and δm = 450%, where m̂= (1 + δm)m0.

While the revenue R∗ from the oracle policy can be explicitly computed, the revenues from

other policies are computed from a simulation with 102 trials. Along with the average revenue,

we show the 95% confidence intervals. The two panels of Figure 3 cover all scenarios, namely

(overestimate p0 + q0, overestimate m0), (overestimate p0 + q0, underestimate m0), (underestimate

p0 + q0, overestimate m0), and (underestimate p0 + q0, underestimate m0).

In all the scenarios, MBP-MLE and MBP-MLE-Limited give on average 30% more revenue com-

pared with MBP without learning. On the other hand, the performance of a policy that uses only

initial estimates degrades sharply as the error gets large. In some instances, such a policy can

lose more than 70% of the potential revenue. In contrast, a policy with at most six price changes

(MBP-MLE-Limited) based on the data can perform as well as the optimal policy and a policy

that requires continuous price changes (MBP-MLE) for most cases except when initial errors are

extremely large (around 400%). Even in these cases, MBP-MLE-Limited is significantly better than

the no-updating policy. This implies that, if the firm is able to make a few price adjustments after

a launch based on the demand data, it can reap substantially more revenue.

An insight from Figure 3 is that the regret of MBP-MLE and of MBP-MLE-Limited are smallest

when the initial estimate θ̂ is the smallest, which corresponds to a low initial price. Since the

learning accuracy of MLE is directly associated with number of cumulative adopters, a high initial

price leads to slower adoption and a larger regret for both MBP-MLE and MBP-MLE-Limited.

Hence, the best numerical performance of our policies result when the initial estimate θ̂ is small.
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Figure 4 Cumulative regret and percentage cumulative regret of MBP-MLE and MBP-MLE-Limited.

Figures 4 (a) and (b) illustrate how the algorithms perform as T becomes large while keeping

m0 fixed at a finite number. This is a setting that is not considered in our asymptotic regime. We

observe that the percentage regret of MBP-MLE and MBP-MLE-Limited, shown in Panels (c) and

(d), decrease rapidly. Each dot in the figure is the average regret from a simulation of 102 trials.

All cases assume that the true parameters are (p0, q0,m0) = (0.05,0.1,160) and initial parameters

are (p̂, q̂, m̂) = (0.4,0.6,280). We also assume that x(r) = e−r. From Figure 4, we clearly see that

the regret of policy MBP-MLE-Limited grows faster than that of MBP-MLE.

Note that MBP-MLE does not rely on a prior distribution of the unknown parameters. Therefore,

a natural question is: can the performance be improved by a Bayesian estimator that uses a prior

distribution? To answer this question, we conduct experiments on a data-driven pricing policy that

uses the maximum a posteriori (MAP) estimator. The MAP estimator is the parameter value with

the highest posterior probability value. Here, the posterior distribution is computed by updating

the prior distribution using Bayes’ rule after taking into consideration the observed data. We devise

a new policy where we use the MAP estimate in the MBP price (in Theorem 1). Accordingly, we

name this new policy MBP-MAP.

In the new experiments, we use MAP to estimate β = (β1, β2, β3), and assume a prior distribution

for β. Because β1 > 0 and β3 < 0, we assume the prior of β1 and −β3 follows a gamma distribution

with the shape parameter to be α = 8. Because the sign of β2 is free, we assume the prior of β2

follows a normal distribution N (µ,µ2/α). In the experiments, we test two cases: (a) the mean of

the Bayesian prior is the true value, (b) the mean of the Bayesian prior deviates from the true

value by −80%.
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Figure 5 The true values of the parameters are m0 = 150, p0 = 0.4, q0 = 0.6, T = 40. We run 100 experiments of

the price sample paths and plot the average with the 95% confidence interval.

Figure 5 plots the sample average of the price paths (in 100 samples) and 95% confidence

intervals under the oracle policy, MBP-MLE, and MBP-MAP. We can see that MBP-MLE (blue

curve) and MBP-MAP with an accurate prior (green curve) have average price paths that converge

to the optimal price (orange curve). In the short term when there is little data, MBP-MAP with

an accurate prior converges faster than MBP-MLE. However, if the prior distribution is inaccurate,

MBP-MAP (red curve) has an average price path that is significantly different than the optimal

price path. This highlights a weakness of a Bayesian approach in our setting where pricing mistakes

can have a lingering effect: that the performance can be very sensitive to the accuracy of the prior

when problem size m0 is relatively small. On the other hand, the quality of prior knowledge has

little impact on MBP-MLE.

7. Conclusion

This paper considers how the firm can incorporate learning into pricing decisions for a new product

when the demand model parameters are unknown but can be learned from data collected over time.

Since firms often do not have sufficient information about adoption behavior and future demand of

a new product, our paper shows that the ability to integrate real-time sales data into the pricing

decision can significantly increase revenue.

To develop the mathematical machinery that allows us to capture learning, we propose a new

stochastic adoption model, called the Markovian Bass model, that features all the factors affecting

state transitions as the generalized Bass model (Bass 1969; Bass et al. 1994). We then show that

our Markovian Bass model converges to the Bass model as the market size grows.
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We propose two computationally tractable pricing policies that utilize the ML estimator: MBP-

MLE when the retailer has full flexibility to change the price, and MBP-MLE-Limited when the

firm must limit the number of its price changes. We show that the regret of the MBP-MLE grows

sub-linearly in the market size. Through a theoretical analysis, we show that the MBP-MLE-Limited

achieves the same order of regret as long as the price change intervals are carefully chosen (i.e.,

the number of adopters between price changes is growing exponentially).

Our framework shows that one can use MLE to derive the optimal learning policy or to develop

simple data-driven algorithms with bounded regret when the underlying stochastic process is a

continuous time Markov chain. Our result can be applied to other stochastic optimization problems

(e.g., pricing, inventory) where the structure and evolution of MLE are well-behaved and leads to

state reductions or efficient algorithm development.
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EC.1. Algorithms

Algorithm 3 Numerically solve HJB equation (3.3) for V

Require: Step size dt, horizon length T =Ndt, model parameters (p0, q0,m0), x(·), termination

criteria ε, max iterations Niter

Ensure: Function V : {0,1, ...,m0}× [0, T ]→R+

1: V (m0, :)← 0, V (:,0)← 0 . Set boundary conditions

2: for all t∈ {dt,2dt, . . . ,Ndt} do

3: for all d∈ {m0− 1,m0− 2, . . . ,1} do

4: k← 0, ν0← V (d, t− dt) . ν is the estimate for V (d, t)

5: ν−1← ν0 + 2ε

6: while |νk− νk−1|> ε and k≤Niter do . Find ν using fixed point iteration

7: r← inf
{
r : r≥− x(r)

x′(r) −V (d+ 1, t) + νk

}
. Solve (3.2) for r∗

8: νk+1← V (d, t− dt) + dt(m0− d)(p+ q d
m0

)x(r)2

x′(r) . Numerically solve (3.3) for ν

9: k← k+ 1

10: V (d, t)← νk

EC.2. Proofs

EC.2.1. Proof of Proposition 1

Proof. We will use the arguments adapted from Chapter 11 (“Density dependent population

processes”) in the book Ethier and Kurtz (2005) to prove (2.7). We follow the proof idea used in

the book, but the results we cite are well established lemmas/theorems in the literature. We will

use the prefix EK to denote the sections and results in the Ethier and Kurtz (2005) book.

In the proof below, for any fixed t≥ 0,we decompose the difference
D
r,m0
t
m0
−F r

t into a martingale

divided by m0 and a term that diminishes as m0 grows. The martingale term converges to zero

almost surely by Doob’s martingale convergence theorem. In order to show the variance of
D
r,m0
t
m0

decreases in the order of 1/m0 as m0 increases, we use a continuous time diffusion process (contains

Brownian motion) to approximate the asymptotic distribution of
D
r,m0
t
m0

. Then we directly compute

the asymptotic variance using Itô’s isometry. The following is the detailed proof.

First, we introduce some notations. Let Zλ be an exponentially distributed r.v. with mean 1/λ.

Let Y := {Y (t), t≥ 0} be a standard Poisson process with intensity 1. Let Yj be the jth inter-arrival

time of Y . Note that Yj has the same distribution as Z1. We also define Ỹ := {Y (t)− t, t≥ 0}, which

is a “centered” Poisson process with mean zero. Let Zr,m0
j , 1≤ j ≤m0, be the jth inter-adoption

time in Dr,m0 = {Dr,m0
t , t≥ 0} and tj−1 be the time that cumulative adoption hits j− 1.

Define the function A(y) := (1−y)(p0 +q0y), y ∈ [0,1]. Note that ξ(j) =m0A(j/m0) is the portion

of the adoption rate unaffected by the price when the state of process Dr,m0 is j. We use the fact
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that we can write Zλ in terms of Z1 as Zλ = 1
λ
Z1. Hence, we can write {Dr,m0

t , t≥ 0} in terms of Y

by letting

Zr,m0
j , sup

{
t≥ 0 :

∫ t

0

m0A

(
j− 1

m0

)
x(rs+tj−1

)ds≤ Yj
}
.

Then, we know {Dr,m0
t , t≥ 0} can be constructed via the standard Poisson process Y with

Dr,m0
t = Y

(∫ t

0

m0A

(
Dr,m0
s

m0

)
x(rs)ds

)
.

The above transformation is commonly seen in the literature to construct martingales and it is

also shown in Theorem 4.1 of Chapter 6 in Ethier and Kurtz (2005).

Therefore, using the newly defined processes and function, for fixed t≥ 0, we have

Dr,m0
t

m0

=
1

m0

Y

(∫ t

0

m0A

(
Dr,m0
s

m0

)
x(rs)ds

)
−
∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds+

∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds

=
1

m0

Ỹ

(
m0

∫ t

0

A

(
Dr,m0
s

m0

)
x(πs)ds

)
+

∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds.

(B.1)

First, since p0 > 0 and q0 > 0 (from our model assumption), we have that the quadratic function

A(y) is bounded above by Ā := p0 + (q0−p0)2

4q0
for any y ∈ [0,1]. Therefore,∣∣∣∣ 1

m0

Ỹ

(
m0

∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds

)∣∣∣∣
≤
∣∣∣∣ 1

m0

sup
0≤u≤t

Ỹ

(
m0

∫ u

0

A

(
Dr,m0
s

m0

)
x(rs)ds

)∣∣∣∣≤ ∣∣∣∣ 1

m0

sup
u≤t

Ỹ

(
m0Ā

∫ u

0

x(rs)ds

)∣∣∣∣ , (B.2)

Sending m0 to infinity on both sides of (B.2), we have

lim
m0→∞

∣∣∣∣ 1

m0

Ỹ

(
m0

∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds

)∣∣∣∣≤ lim
m0→∞

∣∣∣∣ 1

m0

sup
u≤t

Ỹ

(
m0Ā

∫ u

0

x(rs)ds

)∣∣∣∣= 0. (B.3)

The right hand side of (B.3) is zero almost surely by Doob’s martingale convergence theorem.

Therefore, for any t≥ 0, by (B.1) and the definition of F r
t in (2.1), we have∣∣∣∣Dr,m0

t

m0

−F r
t

∣∣∣∣= ∣∣∣∣ 1

m0

Ỹ

(
m0

∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds

)
+

∫ t

0

[
A

(
Dr,m0
s

m0

)
−A (F r

s )

]
x(rs)ds

∣∣∣∣
≤
∣∣∣∣ 1

m0

Ỹ

(
m0

∫ t

0

A

(
Dr,m0
s

m0

)
x(rs)ds

)∣∣∣∣︸ ︷︷ ︸
∆1

+

∫ t

0

∣∣∣∣A(Dr,m0
s

m0

)
−A (F r

s )

∣∣∣∣x(rs)ds︸ ︷︷ ︸
∆2

.
(B.4)

To bound ∆2, note that A′(y) = q0− p0− 2yq0. Hence, we have

∆2 ≤ max
y∈[0,1]

|A′(y)| ×
∫ t

0

∣∣∣∣Dr,m0
s

m0

−F r
s

∣∣∣∣x(rs)ds≤ |q0 + p0|
∫ t

0

∣∣∣∣Dr,m0
s

m0

−F r
s

∣∣∣∣x(rs)ds. (B.5)

Thus, substituting (B.5) into (B.4) and let X(t) :=
∫ t

0
x(rs)ds, we have∣∣∣∣Dr,m0

t

m0

−F r
t

∣∣∣∣≤∆1 + |q0 + p0|
∫ t

0

∣∣∣∣Dr,m0
s

m0

−F r
s

∣∣∣∣dX(s).
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By Gronwall’s inequality, we have∣∣∣∣Dr,m0
t

m0

−F r
t

∣∣∣∣≤min
{

∆1e
|q0+p0|

∫ t
0 x(rs)ds,2

}
. (B.6)

According to (B.3), we have ∆1→ 0 almost surely as m0→∞. Taking m0 to infinity on both

sides of (B.6), we have

lim
m0→∞

∣∣∣∣Dr,m0
t

m0

−F r
t

∣∣∣∣= 0 almost surely,

proving the first part of the proposition.

We next analyze the convergence of the variance of Dr,m0 . To do this, we define the new stochastic

process V r,m0
t :=

√
m0

(
D
r,m0
t
m0
−F r

t

)
. We also define {V r

t , t≥ 0} to be stochastic process satisfying

the following stochastic differential equation:

dV r
t =A′(F r

t )x(rt)V
r
t dt+

√
A(F r

t )x(rt)dWt (B.7)

where {Wt, t≥ 0} is the standard Brownian motion (i.e., mean is zero, variance is t). Note that the

solution of (B.7) is

V r
t =

∫ t

0

e
∫ t
s A
′(F ru)x(ru)du

√
A(F r

s )x(rs)dWs. (B.8)

We can directly use EK Theorem 2.3 in Chapter 11 (p.458) (or e.g., Kurtz (1971) Theorem 3.1,

equation (1.5) in Norman et al. (1974)) to get the following result: For a given t, we have that

V r,m0
t converges to V r

t in distribution as m0→∞. Therefore, we can find the asymptotic variance

of V r,m0
t by Itô’s isometry, and it is equal to

Var (V r
t ) =

∫ t

0

(
e
∫ t
s A
′(F ru)x(ru)du

√
A(F r

s )x(rs)
)2

ds

= F r
t (1−F r

t )

+ (1−F r
t )

2q0/p0

[
(p0 + q0)

∫ t
0
x(rs)ds− 1 + e−(p0+q0)

∫ t
0 x(rs)ds

]
+ (q0/p0)2

(
1− e−(p0+q0)

∫ t
0 x(rs)ds

)2

(
1 + q0/p0e−(p0+q0)

∫ t
0 x(rs)ds

)3

+ e(p0+q0)
∫ t
0 x(rs)ds

≤ F r
t (1−F r

t ) + (1−F r
t )

2q0/p0

[
(p0 + q0)

∫ t
0
x(rs)ds− 1 + e−(p0+q0)

∫ t
0 x(rs)ds

]
+ (q0/p0)2

e(p0+q0)
∫ t
0 x(rs)ds

≤ F π
t (1−F r

t ) + (1−F r
t )α

(
t

et

)
(B.9)

for some α> 0 independent of m0. By the definition of V r,m0
t , we have Var (V r,m0

t ) =m0Var
(
D
r,m0
t
m0

)
.

Therefore, for any t ≥ 0, we conclude that the asymptotic variance of
D
r,m0
t
m0

decreases with rate

1/m0.

�
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EC.2.2. Proof of Lemma 2

Proof. We will drop the subscript θ0 from Eθ0 for simplicity of notation. Note that we have

E
∣∣∣∣Dr,m0

t

m0

−F r
t

∣∣∣∣≤E
∣∣∣∣Dr,m0

t

m0

−E
(
Dr,m0
t

m0

)∣∣∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣E(Dr,m0
t

m0

)
−F r

t

∣∣∣∣︸ ︷︷ ︸
(b)

.

To prove the lemma, we will prove that (a) has an upper bound that is O
(
1/
√
m0

)
, while (b) has

an upper bound that is O (1/m0).

We first bound (a). Fixing time t, we consider the adoption states at time t of each individual

within the population of size m0. We denote their adoption states as ζi(t) for i = 1,2, ...,m0. If

ζi(t) = 1, then individual i has adopted the product by time t, and ζi(t) = 0 otherwise. Hence,

Dr,m0
t =

∑m0

i=1 ζi(t), where Dr,m0
t is the number of adoptions by time t.

Since the population is homogeneous, then ζ1(t), ζ2(t), . . . , ζm0
(t) are a priori identically dis-

tributed. We next derive an expression for their mean. Let us define F r,m0
t := E

(
D
r,m0
t
m0

)
. Since

Dr,m0
t =

∑m0

i=1 ζi(t), we know that 1
m0

∑m0

i=1 E (ζi(t)) = E
(
D
r,m0
t
m0

)
= F r,m0

t . Since the population is

homogeneous, this means that E (ζi(t)) = Pr (ζi(t) = 1) = F r,m0
t for all i= 1, . . . ,m0.

Let X := {ζ1(t), . . . , ζm0
(t)} be the set of adoption states, which are identical Bernoulli random

variables with mean F r,m0
t . Note that 1

m0
Dr,m0
t = 1

m0

∑m0

i=1 ζi(t) is the sample average of a random

sample (with size m0) taken without replacement from X . Hoeffding inequality can be used to

bound the deviation of the sample average from its mean when sampling is done without replace-

ment (Bardenet et al. 2015). Therefore, we can use Hoeffding inequality to bound (a). Specifically,

for any ε > 0,

P
{∣∣∣∣Dr,m0

t

m0

−E
(
Dr,m0
t

m0

)∣∣∣∣> ε}= P

{∣∣∣∣∣ 1

m0

m0∑
i=1

ζi(t)−F r,m0
t

∣∣∣∣∣> ε
}
≤ 2exp

(
−2m0ε

2
)
.

Hence, we have

E
∣∣∣∣Dr,m0

t

m0

−E
(
Dr,m0
t

m0

)∣∣∣∣= ∫ ∞
0

P
{∣∣∣∣Dr,m0

t

m0

−E
(
Dr,m0
t

m0

)∣∣∣∣> ε}dε

≤
∫ ∞

0

2e−2m0ε
2

dε=
2√
2m0

√
π=O

(
1
√
m0

)
,

thus, proving the bound for (a).
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We next bound (b). Let us define f r,m0
t := d

dt
F r,m0
t = 1

m0

d
dt
E (Dr,m0

t ). Hence, recalling that λ(·, ·)

defined in (2.3) is the adoption rate function, we have

f r,m0
t =

1

m0

E [λ(Dr,m0
t , rt)] =E

[(
1− D

r,m0
t

m0

)(
p0 + q0

Dr,m0
t

m0

)
x(rt)

]
=

(
p0E

(
1− D

r,m0
t

m0

)
+ q0E

(
Dr,m0
t

m0

−
(
Dr,m0
t

m0

)2
))

x(rt)

=

(
p0 (1−F r,m0

t ) + q0

(
F r,m0
t −E

[(
Dr,m0
t

m0

)2
]))

x(rt)

=

(
p0 (1−F r,m0

t ) + q0

(
F r,m0
t − (F r,m0

t )
2−Var

(
Dr,m0
t

m0

)))
x(rt).

(B.10)

Dividing both sides of (B.10) by (1−F r,m0
t )(p0 + q0F

r,m0
t ), we have

f r,m0
t

(1−F r,m0
t )(p0 + q0F

r,m0
t )

= x(rt)

1−
q0Var

(
D
r,m0
t
m0

)
(1−F r,m0

t )(p0 + q0F
r,m0
t )


= x(rt)

[
1− q0

m0

F r,m0
t +O(1)

(
t
et

)
p0 + q0F

r,m0
t

]
,

(B.11)

where the last equality follows from (B.9).

The differential equation (B.11) is similar to the deterministic Bass model (2.1), except with a

modified market effort function. Hence, modifying (2.2) results in

E
(
Dr,m0
t

m0

)
= F r,m0

t =

1− exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

)
1 + q0

p0
exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

) . (B.12)

Then, from (2.2) and (B.12),

∣∣∣∣E(Dr,m0
t

m0

)
−F r

t

∣∣∣∣=
∣∣∣∣∣∣∣∣∣

1− e
−(p0+q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

1 + q0
p0
e
−(p0+q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m
s

)
x(rs)ds

− 1− e−(p0+q0)
∫ t
0 x(rs)ds

1 + q0
p0
e−(p0+q0)

∫ t
0 x(rs)ds

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ ∫ t

0 x(rs)ds∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 dX

∣∣∣∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt

(1)2

∣∣∣∣∣∣∣
∫ ∫ t

0 x(rs)ds∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

dX

∣∣∣∣∣∣∣ ,
where the last inequality follows from Assumption 1 (ii).
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Hence,∣∣∣∣E(Dr,m0
t

m0

)
−F r

t

∣∣∣∣≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt

(1)2

∣∣∣∣∣
∫

t

0

q0

m0

F r,m0
s +O(1)

(
s
es

)
p0 + q0F

r,m0
s

x(rs)ds

∣∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)

x̄ut

e(p0+q0)x̄lt

1

m0

=
t

et
O
(

1

m0

)
,

where the last inequality follows from
q0F

r,m0
s +q0O(1)( s

es )
p0+q0F

r,m0
s

= O(1) and Assumption 1 (ii), proving

that (b) has an upper bound that is O(1/m0).

�

EC.2.3. Proof of Theorem 1

Proof. We can write the value function V (d, t) by enumerating the outcomes after δt time units.

Hence, for any d∈ {0,1, . . . ,m0− 1} and t∈ (0, T ], we have

V (d, t) = max
r∈(−∞,∞)

{
(r+V (d+ 1, t− δt))λ(d, r)δt+V (d, t− δt) (1−λ(d, r)δt) + o(δt)

}
,

where λ(·, ·) is defined in (2.3). On both sides of the equation, we subtract V (d, t− δt), divide by

δt, then take the limit as δt approaches zero. This results in the HJB equation

∂V

∂t
= max

r∈(−∞,∞)
{rλ(d, r) + [V (d+ 1, t)−V (d, t)]λ(d, r)} . (B.13)

We will show existence of a unique solution V (·, ·) to (B.13) at the end of this proof.

We next derive the optimal solution r∗(d, t) to the right-hand side of (B.13). Denote the objective

function of the right-hand side of (B.13) by J(r, d, t). Since λ(d, r) = ξ(d)x(r), then

∂J

∂r
= λ(d, r)x′(r)

(
r+

x(r)

x′(r)
+V (d+ 1, t)−V (d, t)

)
. (B.14)

Note that x′(r)< 0 (Assumption 1(iii)) and since d≤m0 − 1, we have λ(d, r)> 0. Therefore, the

first order condition ∂J
∂r

= 0 is satisfied by r = r∗(d, t), where r∗(d, t) is defined in the theorem as

the solution to (3.2). Note that (3.2) has a unique solution. This is because, rearranging (3.2) as

0 =−r− x(r)

x′(r)
−V (d+ 1, t) +V (d, t), (B.15)

the right-hand side is strictly decreasing in r (Assumption 1(iv)), implying that there is a unique

root to the equation (B.15).

We next show that r∗(d, t) is the unique maximizer of J(r, d, t) for any (d, t). Using the fact that

V (d+ 1, t)−V (d, t) =−r∗− x(r∗)
x′(r∗) , we have

∂2J

∂r2

∣∣∣
r=r∗

=
ξ(d)

x′(r)

[
2x′(r)2−x(r)x′′(r)

]
. (B.16)
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Since 2x′(r)2 − x(r)x′′(r) ≥ 0 (Assumption 1(iv)), and x′(r) < 0 (Assumption 1(iii)), it follows

that ∂2J
∂r2

∣∣
r=r∗
≤ 0. Hence r∗(d, t) is the unique maximizer of the right-hand side of the HJB equa-

tion (B.13) and is therefore the unique optimal price given state (d, t). Finally we can use the

equation ∂J
∂r

= 0 where r= r∗(d, t), to reformulate (B.13) as (3.3).

To complete the proof, we will show that there exists a unique solution V to the HJB equation

(B.13). By Theorem VII.T3 (page 208) in Brémaud (1981), a unique solution exists if we can

replace max
r∈(−∞,∞)

in (B.13) with max
r∈Ut

where Ut is a compact set, and if rλ(d, r) and λ(d, r) are

continuous and uniformly bounded in r and d. To show the first condition, note that (3.2) implies

that

|r∗(d, t)| ≤
∣∣∣∣ x(r∗(d, t))

x′(r∗(d, t))

∣∣∣∣+ |V (d+ 1, t)−V (d, t)| .

Note that λc(r) =m0(p0 + q0)x(r) is an upper bound for the adoption rate in our system at any

state (d, t) and price r. Therefore, |V (d+ 1, t)− V (d, t)| can be loosely bounded by the optimal

T -period expected revenue in a system where the adoption rate is λc(r). By Gallego and Van Ryzin

(1994), this expected revenue has a deterministic upper bound JD = Tm0(p0 + q0) sup
r∈(−∞,∞)

rx(r).

By Assumption 1(v), rx(r) is bounded by a finite Cx, so JD is finite. Furthermore, Assumption

1(iv) implies that |x(r)/x′(r)| is bounded for any r. Hence,

u := sup
r∈(−∞,∞)

∣∣∣∣ x(r)

x′(r)

∣∣∣∣+JD.

is a finite value that bounds the magnitude of r∗(d, t). Hence, we can replace the maximization in

(B.13) with max
r∈Ut

where Ut = [−u,u]. This fulfills the first condition.

To satisfy the remaining conditions, we need to show that rλ(d, r) and λ(d, r) in (B.13) are

continuous and uniformly bounded in r, d.

First, note that λ(d, r) = x(r)ξ(d), where ξ(d) = (m0 − d)(p0 + d
m0
q0). By a change of variables

y= d/m0, we can write ξ(y) =m0(1− y)(p0 + q0y) which attains a maximum value of m0
4q0

(p0 + q0)2

when y = 1
2
− p0

2q0
. Therefore, ξ(d)≤ m0

4q0
(p0 + q0)2 for any d. Furthermore, from Assumption 1(ii),

we have λ(d, r)≤ x̄u m0
4q0

(p0 + q0)2.

To check whether rλ(d, r) = rx(r)ξ(d) is uniformly bounded, note that from Assumption 1(iv),

there exists a unique maximizer of rx(r). We define it as r#. Therefore, we know that rλ(d, r) is

continuous and uniformly bounded by r#x(r#)m0
4q0

(p0 + q0)2 for any r, d.

Thus, there exists a unique solution to the HJB equation (B.13).

�
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EC.2.4. Lemma EC.1 and proof

The following lemma provides monotonicity properties of the value function V with respect to the

state variables (d, t) and the demand model parameters θ0 = (p0, q0,m0).

Lemma EC.1. The value function V (d, t;θ0) has the following properties:

(i) V (d, t;θ0) is monotone increasing in t∈ [0, T ],

(ii) V (d, t;θ0) is monotone decreasing in d for d>m0

(
1
2
− p0

2q0

)
(iii) V (d, t;θ0) is monotone increasing in p0, q0 and m0 for any (d, t)∈ {0,1, . . . ,m0}× [0, T ].

Proof. We prove the three parts of the lemma below.

1. From (3.3), ∂
∂t
V (d, t) is nonnegative due to the assumption that x′(r)< 0 for all r (Assump-

tion 1 (iii)). Therefore, for all d∈ {0,1,2, ...,m0}, V (d, t) is monotone increasing in t∈ [0, T ].

2. To prove the monotonicity of V with respect to d, we temporarily treat d as a continuous

variable. Then by (B.13), since ∂V (d,t)

∂t
= J(r, d, t)

∣∣
r=r∗(d,t)

, we have that

∂2V (d, t)

∂d∂t
=
∂J(r, d, t)

∂r

∂r

∂d

∣∣∣
r=r∗(d,t)

+
∂J(r, d, t)

∂d

∣∣∣
r=r∗(d,t)

(B.17)

Note that the first term in the RHS is zero, hence

∂2V (d, t)

∂d∂t
=
∂λ(d, r)

∂d
[r+V (d+ 1, t)−V (d, t)]

∣∣∣
r=r∗(d,t)

+λ(d, r)
∂[V (d+ 1, t)−V (d, t)]

∂d

∣∣∣
r=r∗(d,t)

=−x(r∗(d, t))
2

x′(r∗(d, t))

(
q0− p0− 2q0

d

m0

)
+
∂[V (d+ 1, t)−V (d, t)]

∂d
(m0− d)

(
p0 + q0

d

m0

)
x(r∗(d, t)),

where the second equality follows from (3.2) and from the definition of λ(·, ·).

If we define g(d, t) := ∂V (d,t)

∂d
, then g(d,0) = 0 and

∂g

∂t
+

[
(m0− d)

(
p0 + q0

d

m0

)
x(r∗(d, t))

]
g

=−x(r∗(d, t))
2

x′(r∗(d, t))

(
q0− p0− 2q0

d

m0

)
+
∂V (d+ 1, t)

∂d
(m0− d)

(
p0 + q0

d

m0

)
x(r∗(d, t)),

(B.18)

which is a linear differential equation. Solving this differential equation using standard tech-

niques, results in

∂V (d, t)

∂d
e
(m0−d)(p0+ d

m0
q0)(h1(t)+z1)︸ ︷︷ ︸

(1)

=

∫ t

0

e
(m0−d)(p0+ d

m0
q0)(h1(s)+z1)︸ ︷︷ ︸

(2)

−x(r∗)
2

x′(r∗)

(
q0− p0− 2q0

d

m0

)
︸ ︷︷ ︸

(3)

+ (m0− d)

(
p0 +

d

m0

q0

)
x(r∗)

∂V (d+ 1, s)

∂d︸ ︷︷ ︸
(4)

ds,

(B.19)
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For all d>m0

(
1
2
− p0

2q0

)
, we show ∂V (d,t)

∂d
≤ 0 by induction. When d=m0−1, (4) is zero. The

sign of ∂V
∂d

depends on (1), (2), (3). (1), (2) are always nonnegative, and (3) is negative when

d>m0

(
1
2
− p

2q0

)
. Suppose ∂V (k,t)

∂k
≤ 0 for all m0

(
1
2
− p0

2q0

)
<k= d+1, . . . ,m0−2. We will then

show ∂V (d,t)

∂d
≤ 0. According to (B.19), ∂V (d,t)

∂d
≤ 0 because all (1), (2), (3), (4)≤ 0.

3. Taking the partial integral of (3.2) w.r.t r∗ and rearranging the terms, we have that

∂r∗(d, t)

∂ [V (d, t)−V (d+ 1, t)]

[
2x′(r∗)

2−x(r∗)x′′(r∗)

x′(r∗)
2

]
= 1. (B.20)

Hence, taking the partial derivative of (3.3) w.r.t. p0 and using (B.20), we have

∂2V (d, t)

∂p0∂t
=−x(r∗)

2

x′(r∗)
(m0− d)

− (m0− d)

(
p0 +

d

m0

q0

)
2x′(r)

2
x(r)−x(r)2x′′(r)

x′(r)
2

∣∣∣
r=r∗

∂r∗(d, t)

∂ [V (d, t)−V (d+ 1, t)]

∂[V (d, t)−V (d+ 1, t)]

∂p0
.

Defining g(d, t) := ∂V (d,t)

∂p0
, we have g(d,0) = 0 and

∂g

∂t
+(m0−d)

(
p0 +

d

m0

q0

)
x(r∗)g=−x(r∗)

2

x′(r∗)
(m0−d)+(m0−d)

(
p0 +

d

m0

q0

)
x(r∗)

∂V (d+ 1, t)

∂p0

,

(B.21)

which we solve using the same techniques as (B.18), resulting in

∂V (d, t)

∂p0

e(m0−d)(p0+ d
m0

q0)(h1(t)+z1)︸ ︷︷ ︸
(1)

=

∫ t

0

e(m0−d)(p0+ d
m0

q0)(h1(s)+z1)︸ ︷︷ ︸
(2)

−x(r∗)
2

x′(r∗)
(m0− d)︸ ︷︷ ︸

(3)

+(m0− d)

(
p0 +

d

m0

q0

)
x(r∗)

∂V (d+ 1, s)

∂p︸ ︷︷ ︸
(4)

ds.

As we know ∂V (m0,t)

∂p0
= 0 for all t ∈ [0, T ], then ∂V (m0−1,t)

∂p0
≥ 0 for all t ∈ [0, T ]

because (1), (2), (3) above are always positive and (4) = 0. Similarly, we can deduce that
∂V (m0−2,t)

∂p0
, ∂V (m0−3,t)

∂p0
, . . . , ∂V (0,t)

∂p0
are all nonnegative for all t because (4) in these cases become

nonnegative. This proves that V (d, t) is monotone increasing in p0.

We can use the same technique to prove monotonicity of the value function in q0 and in m0.

Defining g1 := ∂V (d,t)

∂q0
and g2 := ∂V (d,t)

∂m0
(here we treat m0 as a continuous parameter) results in

the following corresponding ordinary differential equations:

∂g1
∂t

+ (m0− d)(p0 +
d

m0

q0)x(r∗)g1 =−x(r∗)
2

x′(r∗)
(m0− d)

d

m0︸ ︷︷ ︸
(5)

+(m0− d)(p0 +
d

m0

q0)x(r∗)
∂V (d+ 1, t)

∂q0
,

∂g2
∂t

+ (m0− d)(p0 +
d

m0

q0)x(r∗)g2 =−x(r∗)
2

x′(r∗)
(p0 +

d2

m0
2
q0)︸ ︷︷ ︸

(6)

+(m0− d)(p0 +
d

m0

q0)x(r∗)
∂V (d+ 1, t)

∂m0

.
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Note that the difference between the two ODEs are from (5) and (6), which are both positive,

so can be analyzed in the same way that we did for (B.21). Therefore, V (d, t) is partially

monotone increasing in p0, q0,m0.

�

EC.2.5. Proof of Corollary 1

Proof. For the case where x(r) = e−r, (3.2) results in r∗(d, t) = 1−V (d+ 1, t) +V (d, t). Hence,

condition (3.3) becomes

∂

∂t
V (d, t) = (m0− d)

(
p0 +

d

m0

q0

)
e−2r∗(d,t)

e−r∗(d,t)
= ξ(d)eV (d+1,t)−V (d,t)−1. (B.22)

Given the boundary conditions of (3.3), we can solve the system backwards:

• From (B.22) when d=m0− 1, and since V (m0, t) = 0 for all t≥ 0, we know that

∂

∂t
V (m0− 1, t) = ξ(m0− 1)e−1−V (m0−1,t).

This partial differential equation is solved by V (m0− 1, t) = ln
(
ξ(m0−1)

e
t+ 1

)
, hence

∂V (m0− 1, t)

∂t
=

(
ξ(m0− 1)

e

)/(ξ(m0− 1)

e
t+ 1

)
(B.23)

• From (B.22), and (B.23), we know

∂V (m0− 1, t)

∂t

∂V (m0− 2, t)

∂t
=
ξ(m0− 2)

e

(
ξ(m0− 1)

e
t+ 1

)
e−V (m0−2,t)−2.

This is solved by V (m0− 2, t) = ln
(
ξ(m0−1)ξ(m0−2)

2e2
t2 + ξ(m0−2)

e
t+ 1

)
. Hence,

∂V (m0− 2, t)

∂t
=

(
ξ(m0− 1)ξ(m0− 2)

e2
t+

ξ(m0− 2)

e

)/(ξ(m0− 1)ξ(m0− 2)

2e2
t2 +

ξ(m0− 2)

e
t+ 1

)
.

(B.24)

• From (B.22), we know ∂V (m0−1,t)

∂t

∂V (m0−2,t)

∂t

∂V (m0−3,t)

∂t
= ξ(m0− 1)ξ(m0− 2)ξ(m0− 3)e−V (m0−3,t)−3.

Substituting (B.23)–(B.24), this reduces to a partial differential equation whose solution is

V (m0− 3, t) = ln

(
ξ(m0− 1)ξ(m0− 2)ξ(m0− 3)

3!e3
t3 +

ξ(m0− 2)ξ(m0− 3)

2!e2
t2 +

ξ(m0− 3)

e
t+ 1

)
.

This then provides us with ∂V (m0− 3, t)/∂t.

• We can continue to solve for V (0, t):

V (0, t) = ln

(
ξ(m0− 1)ξ(m0− 2)...ξ(0)

m0!

(
t

e

)m0

+
ξ(m0− 2)ξ(m0− 3)...ξ(0)

(m0− 1)!

(
t

e

)m0−1

+ ...+ 1

)

= ln

(
m0∑
j=1

∏j−1

i=0 ξ(i)

j!

(
t

e

)j
+ 1

)
.

�
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EC.2.6. Proof of Proposition 2

Proof. It suffices to show the Hessian matrix of
∑D̂t−

i=0 lnfi(β) with respect to β is negative

definite. Note that for i= 0,1,2,3, ..., D̂t−− 1,

∇2
β lnfi(β) =

−1

(β1 +β2i+β3i2)2
·

1 i i2

i i2 i3

i2 i3 i4

 ,

and ∇2
β lnfi(β) = 0 for i= D̂t−. Hence, for any z = (z1, z2, z3)>,

z>∇2
β

D̂t−∑
i=0

lnfi(β)

z =−
D̂t−−1∑
i=0

(z1 + iz2 + i2z3)2

(β1 +β2i+β3i2)2
≤ 0

Hence, the Hessian matrix is negative semidefinite.

To show that the Hessian matrix is negative definite, we need the additional condition that

D̂t− ≥ 3. Under this condition, for any z 6= 0,

z>∇2
β

D̂t−∑
i=0

lnfi(β)

z =− z
2
1

β2
1

− (z1 + z2 + z3)2

(β1 +β2 +β3)2
− (z1 + 2z2 + 4z3)2

(β1 + 2β2 + 4β3)2
−
D̂t−−1∑
i=3

(z1 + iz2 + i2z3)2

(β1 +β2i+β3i2)2
.

Note that z1 = 0, z1 + z2 + z3 = 0 and z1 + 2z2 + 4z3 = 0 can only occur simultaneously if z = 0.

Hence, − z21
β21
− (z1+z2+z3)2

(β1+β2+β3)2
− (z1+2z2+4z3)2

(β1+2β2+4β3)2
is strictly less than zero for any z 6= 0. This means that

we need the condition that D̂t− ≥ 3 for ∇2
β(
∑D̂t−

i=0 lnfi(β))≺ 0. Since Lt(Ût| β) =
∑D̂t−

i=0 lnfi(β), we

can conclude that ∇2
βLt(Ût| β)≺ 0 when D̂t− ≥ 3.

�

EC.2.7. Proof of Lemma 3

Proof. All the expectations in this proof are conditioning on Dπ
t = k where k≥ 3. For simplicity

of notation, we will use Dt instead of Dπ
t to denote the cumulative adoptions at time t. Since

Dt ≥ 3, we know that the ML estimator θ̂t is unique.

The ML estimators are finite since, from (4.2), if either p̂t = +∞ or q̂t = +∞ or m̂t = +∞, then

the likelihood function is 0. Hence, there exist finite δ̄1, δ̄2, δ̄3 such that p̂t ≤ p0(1+ δ̄1), q̂t ≤ q0(1+ δ̄2)

and m̂t ≤m0(1 + δ̄3). Note that the ML estimator θ̂t = (p̂t, q̂t, m̂t) can be written as

θ̂t = arg max
θ≥0
Lt(Ût;θ) = θ0 + arg min

u≥−θ0
−

Dt∑
i=0

ln
fi(θ0 +u)

fi(θ0)
,

where u= (up, uq, um), θ0 = (p0, q0,m0), and fi(θ) is defined in (4.2). If we denote the optimizer of

the right-hand side as û= (ûp, ûq, ûm), then θ̂t = θ0 + û.
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We analyze the estimation error |p̂t−p0|. Suppose |p̂t−p0|> δ for some δ̄1p0 ≥ δ > 0. This implies

that ûp lies outside [−δ, δ]. Since the objective function on the right-hand-side is 0 when u= 0, and

since the log-likelihood function is continuous and element-wise concave in p, then either

−
Dt∑
i=0

ln
fi(θ0 + δe1)

fi(θ0)
≤ 0 or −

Dt∑
i=0

ln
fi(θ0− δe1)

fi(θ0)
≤ 0,

where e1 := (1,0,0). Note that under the Markovian Bass model, the value fi(θ) for any θ is

stochastic since its value depends on ti and ti+1, which are random adoption times. Here, ti denotes

the time of the i-th adoption, where i= 0, . . . ,Dt.

Let Pθ0(·) denote the probability under a demand process that follows a Markovian Bass model

with parameter vector θ0 = (p0, q0,m0). Therefore,

Pθ0 {|p̂t− p0|> δ}

≤ Pθ0

{
−

Dt∑
i=0

ln
fi(θ0 + δe1)

fi(θ0)
≤ 0

}
+Pθ0

{
−

Dt∑
i=0

ln
fi(θ0− δe1)

fi(θ0)
≤ 0

}

≤ 2Pθ0

{
−

Dt∑
i=0

ln
fi(θ0 + δe1)

fi(θ0)
≤ 0

}
= 2Pθ0

{
Dt∏
i=0

fi(θ0 + δe1)

fi(θ0)
≥ 1

}

= 2Pθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
≥ 1

≤ 2Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)


= 2Eθ0

Eθ0

· · ·Eθ0
Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−1

 | FtDt−2

 · · · | Ft1
 | F0

 . (B.25)

The second inequality is because fi is an increasing function in p. The last equality is due to the

law of iterated expectations.

We next analyze (B.25) starting from the innermost conditional expectation. We have

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−1

=

√√√√Dt−1∏
i=0

fi(θ0 + δe1)

fi(θ0)
Eθ0

(√
fDt(θ0 + δe1)

fDt(θ0)
| FtDt−1

)

=

√√√√Dt−1∏
i=0

fi(θ0 + δe1)

fi(θ0)

(∫ ∞
tDt−1

√
fDt(θ0 + δe1)

fDt(θ0)
fDt(θ0)dtDt

)

=

√√√√Dt−1∏
i=0

fi(θ0 + δe1)

fi(θ0)

(∫ ∞
tDt−1

√
fDt(θ0 + δe1)

√
fDt(θ0)dtDt

)
.

(B.26)

The first equality is because {fi(θ), i= 0, . . . ,Dt−1} are all FtDt−1
-measurable. The second equality

is because, given the information set FtDt−1
, fDt(θ0) is the conditional probability distribution of

the adoption time tDt under a Markovian Bass model with parameter θ0. Hence, we next want to

derive a bound on
∫∞
tDt−1

√
fDt(θ0 + δe1)

√
fDt(θ0)dtDt .
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Note that

1

2

∫ ∞
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt

=
1

2

∫ ∞
tDt−1

(
fDt(θ0 + δe1) + fDt(θ0)− 2

√
fDt(θ0 + δe1)fDt(θ0)

)
dtDt

= 1−
∫ ∞
tDt−1

√
fDt(θ0 + δe1)fDt(θ0)dtDt ,

where the last equality is because the integral of the probability density function
∫∞
tDt−1

fDt(θ)dtDt

is equal to 1 for any θ. Therefore,∫ ∞
tDt−1

√
fDt(θ0 + δe1)fDt(θ0)dtDt = 1− 1

2

∫ ∞
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt . (B.27)

The integral on the right-hand side is the Hellinger distance between fDt(θ0 + δe1) and fDt(θ0),

which are probability densities of the adoption time tDt .

Note that the Hellinger distance can be lower bounded by the K-L divergence (corollary 4.9 in

Taneja and Kumar 2004) provided the following condition holds. Specifically,

1

2

∫ ∞
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt ≥
1

4
√
R
Eθ0

(
ln

fDt(θ0)

fDt(θ0 + δe1)
| FtDt−1

)
, (B.28)

where R is a constant such that R≥maxδ∈[0,δ̄1p0],tDt

1
fDt (θ0+δe1)

. Here, we can choose R= 1/p0 since

maxδ∈[0,δ̄1p0],tDt

1
fDt (θ0+δe1)

≤ 1/(m0p0)≤ 1/p0. Hence, with this choice, R is independent of m0 and

of t. We will next bound the right-hand side of (B.28).

Define CI := (p0(1 + δ̄1) + q0)2. Note that

∂2

∂δ2
ln

fDt(θ0)

fDt(θ0 + δe1)
=

1

(p0 + δ+ Dt
m0
q0)2
≥ 1

(p0(1 + δ̄1) + q0)2
=

1

CI
,

where the inequality is because p0 + δ≤ p0(1 + δ̄1).

Furthermore, since the expectation of the Fisher score under the true parameter is zero, we have

Eθ0

(
∂

∂δ
ln

fDt(θ0)

fDt(θ0 + δe1)

∣∣∣∣∣
δ=0

| FtDt−1

)
= 0.

Hence, we have

Eθ0

(
ln

fDt(θ0)

fDt(θ0 + δe1)
| FtDt−1

)
=Eθ0

(∫ δ

0

∂

∂z
ln

fDt(θ0)

fDt(θ0 + ze1)
dz | FtDt−1

)
=Eθ0

(∫ δ

0

(
∂

∂z
ln

fDt(θ0)

fDt(θ0 + ze1)
− ∂

∂z
ln

fDt(θ0)

fDt(θ0 + ze1)

∣∣∣
z=0

)
dz | FtDt−1

)
=Eθ0

(∫ δ

0

∫ z

0

∂2

∂z′2
ln

fDt(θ0)

fDt(θ0 + z′e1)
dz′ | FtDt−1

)
≥ 1

2CI
δ2.
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Therefore, (B.28) reduces to

1

4
√
RCI

δ2 ≤
∫ ∞
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt . (B.29)

Hence, from (B.27), we have∫ ∞
tDt−1

√
fDt(θ0 + δe1)fDt(θ0)dtDt = 1− 1

2

∫ ∞
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt

≤ exp

(
−1

2

∫ ∞
tDt−1

(√
fDt(θ0 + δe1)−

√
fDt(θ0)

)2

dtDt

)
≤ exp

(
− 1

8
√
RCI

δ2

)
,

where the first inequality is because e−x ≥ 1− x for all x. The second inequality is from (B.29).

Hence, from (B.26), we have

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−1

≤
√√√√Dt−1∏

i=0

fi(θ0 + δe1)

fi(θ0)
· exp

(
− 1

8
√
RCI

δ2

)
. (B.30)

This provides a bound for the innermost conditional expectation in (B.25).

Observe that all the terms in the bound (B.30) are FtDt−2
-measurable, except for the term√

fDt−1(θ0 + δe1)/fDt−1(θ0). Taking the conditional expectation of both sides in (B.30) given

FtDt−2
, and using the same logic as the above arguments to bound the right-hand side, we have

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
| FtDt−2

≤
√√√√Dt−2∏

i=0

fi(θ0 + δe1)

fi(θ0)
· exp

(
− 2

8
√
RCI

δ2

)

We can proceed iteratively to evaluate (B.25) as we take conditional expectations given FtDt−3,

FtDt−4, F0, resulting in

Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)

≤Eθ0

(
exp

(
− Dt + 1

8
√
RCI

δ2

))

Hence, we have that

Pθ0{|p̂t− p0|> δ |Dt = k} ≤ 2Eθ0


√√√√ Dt∏

i=0

fi(θ0 + δe1)

fi(θ0)
|Dt = k

≤ 2exp

(
− k+ 1

8
√
RCI

δ2

)

if δ≤ δ̄1p0 and otherwise, Pθ0{|p̂t− p0|> δ |Dt = k}= 0. This implies that

Eθ0
[
(p̂t− p0)2 |Dt = k

]
=

∫ ∞
0

Pθ0
{

(p̂t− p0)2 > δ |Dt = k
}

dδ=

∫ ∞
0

Pθ0
{
|p̂t− p0|2 >

√
δ |Dt = k

}
dδ

≤
∫ ∞

0

2exp

(
− k+ 1

16
√
RCI

δ

)
dδ=

8
√
RCI

k+ 1
=

8(p0(1 + δ̄1) + q0)2

√
p0

1

k+ 1
.
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Thus, we have that Eθ0 [(p̂t− p0)2/p0
2 |Dt = k]≤ αp

k+1
where αp := 8

√
R
(
1 + δ̄1 + q0/p0

)2
is indepen-

dent of m0 and of t.

Hence, to prove the lemma, we only need to show a similar bound for m̂t, q̂t. Similar bounds can

be obtained for m̂t, q̂t following the same steps with the only difference on the definition of CI .

For q̂t, the estimation variance of q̂t grows as Dt/m0 approaches zero. To avoid this issue when

Dt/m0 is small, we perform a transformation on the parameters of the likelihood function. Specif-

ically, we let p′ = p− q. Thus, MLE estimates the model parameters θ′ = (p′, q,m) of a Markovian

Bass model where the adoption rate is λ(j, r;θ′) = (m− j)
(
p′+ q

(
1 + j

m

))
x(r). Note that the anal-

ysis of the estimation error for p̂′t is the same as that for p̂t. With the transformation, we can safely

write the second order derivative of the log-likelihood function with respect to q. We have

Eθ′0

[
∂2

∂δ2
ln

fDt(θ
′
0)

fDt(θ
′
0 + δe2)

| FtDt−1

]
=Eθ′0


(

1 + Dt
m0

)2

(
p0
′+
(

1 + Dt
m0

)
(q0 + δ)

)2 | FtDt−1


≥Eθ′0


(

1 + Dt
m0

)2

(
p0
′+
(

1 + Dt
m0

)
(q0(1 + δ̄2))

)2 | FtDt−1

 ,
where the inequality is because q0 + δ≤ q0(1 + δ̄2). Defining CI :=

(
p0 + q0(1 + δ̄2)

)2
, we have that

Eθ′0


(

1 + Dt
m0

)2

(
p0 +

(
1 + Dt

m0

)
(q0 + δ̄2)

)2 | FtDt−1

≥ 1(
p0 + q0(1 + δ̄2)

)2 =
1

CI
.

Following the same steps in bounding the estimation error of p̂t, we know

Pθ0{|q̂t− q0|> δ |Dt = k} ≤ 2Eθ0


√√√√ Dt∏

i=1

fi(θ0 + δe2)

fi(θ0)
|Dt = k

≤ 2exp

(
− k+ 1

8
√
RCI

δ2

)
.

This implies that

Eθ0
[
(q̂t− q0)2 |Dt = k

]
=

∫ ∞
0

Pθ0
{

(q̂t− q0)2 > δ |Dt = k
}

dδ=

∫ ∞
0

Pθ0
{
|q̂t− q0|2 >

√
δ |Dt = k

}
dδ

≤
∫ ∞

0

2exp

(
− k+ 1

16
√
RCI

δ

)
dδ=

8
√
RCI

k+ 1
=

8
√
R
(
p0 + q0(1 + δ̄2)

)2

k+ 1
.

Thus, we have that Eθ0 [(q̂t− q0)2/q0
2 |Dt = k]≤ αq

k+1
where αq := 8

√
R(p0/q0 + 1 + δ̄2)2 is indepen-

dent of m0 and of t.

For m̂t, if we define CI := (m0δ̄3)2/p0
2, we have

∂2

∂δ2
ln

fDt(θ0)

fDt(θ0 + δe3)
≥ p0

2

(m0 + δ−Dt)2
≥ p0

2

(m0δ̄3)2
=

1

CI
.
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Following the same steps for bounding the mean squared estimation error of q̂t and p̂t, we know

Eθ0 [(m̂t−m0)2/m0
2 |Dt = k]≤ αm

k+1
where αm := 8

√
R(δ̄3)2/p0

2 is independent of m0 and t.

Hence, we prove the lemma with αθ := 24
√
Rmax

{
(1 + δ̄1 + q0/p0)2, (p0/q0 + 1 + δ̄2)2,

(
δ̄3/p0

)2
}

,

and R= 1/p0. Note that αθ does not depend on t and m0. �

EC.2.8. Lemma EC.2 and proof

We next state a result that is useful for the proofs of Lemma EC.3 and Lemma 4.

Lemma EC.2. Given any two pricing sample paths r = (rt, t≥ 0) and r′ = (r′t, t≥ 0) that do not

scale up with m0, if Dr,m0 = (Dr,m0
t , t ≥ 0) and Dr′,m0 = (Dr′,m0

t , t ≥ 0), respectively, denote the

cumulative adoption process with market potential m0, then for any t≥ 0,

Eθ0

∣∣∣∣∣Dr,m0
t

m0

− D
r′,m0
t

m0

∣∣∣∣∣= α1

t

et
|rt− r′t|+O

(
1
√
m0

)
, (B.31)∣∣∣∣∣Eθ0

(
Dr,m0
t

m0

− D
r′,m0
t

m0

)∣∣∣∣∣= α2

t

et
|rt− r′t| (B.32)

for some α1 > 0, α2 > 0 independent of m0, t, rt and r′t.

Observe from Lemma EC.2 that the expectation of the absolute difference is greater than the

absolute value of the expected difference by O
(
1/
√
m0

)
. This is because the uncertainty of the

Markovian Bass model, Var (Dr,m0
t /m0), decreases in the order of O(1/m0) (Proposition 1).

Proof. We first define for any t≥ 0,

F r
t =

1− e−(p0+q0)
∫ t
0 x(rs)ds

1 + q0/p0e−(p0+q0)
∫ t
0 x(rs)ds

,

F r′

t =
1− e−(p0+q0)

∫ t
0 x(r′s)ds

1 + q0/p0e−(p0+q0)
∫ t
0 x(r′s)ds

,

which are the deterministic Bass functions under price processes r and r′. We have

∣∣∣F r
t −F r′

t

∣∣∣=∫ ∫ t
0 x(r′s)ds

∫ t
0 x(rs)ds

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 dX

≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)
∫ t
0 x(r

ξ
u)du(

1 + q0/p0e−(p0+q0)
∫ t
0 x(r

ξ
u)du

)2

∣∣∣∣∫ t

0

x(rs)ds−
∫ t

0

x(r′s)ds

∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt

∣∣∣∣∫ t

0

x(rs)ds−
∫ t

0

x(r′s)ds

∣∣∣∣= t

et
O (|rt− r′t|) ,

where
∫ t

0
x(rξs)ds is in the between of

∫ t
0
x(rs)ds and

∫ t
0
x(r′s)ds. Here the second inequality comes

from Assumption 1 (ii).
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Note that for any t≥ 0,

Eθ0

∣∣∣∣∣Dr,m0
t

m0

− D
r′,m0
t

m0

∣∣∣∣∣≤ ∣∣∣F r
t −F r′

t

∣∣∣+Eθ0

∣∣∣∣Dr,m0
t

m0

−F r
t

∣∣∣∣+Eθ0

∣∣∣∣∣Dr′,m0
t

m0

−F r′
t

∣∣∣∣∣= ∣∣∣F r
t −F r′

t

∣∣∣+O( 1
√
m0

)
.

where the last relationship follows from Lemma 2. Using the bound on |F r
t −F r′

t | proves (B.31).

We next prove (B.32). For any t≥ 0, define

F r,m0
t :=Eθ0

(
Dr,m0
t

m0

)
, F r′,m0

t :=Eθ0

(
Dr′,m0
t

m0

)
.

Following the proof in Lemma 2 in deriving (B.12), both F r,m0
t and F r′,m0

t can be expressed in the

following form:

F r,m0
t =

1− exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

)
1 + q0

p0
exp

(
−(p0 + q0)

∫
t

0

(
1− q0

m0

F
r,m0
s +O(1)( s

es )
p0+q0F

r,m0
s

)
x(rs)ds

) .
Note that

d

dX

(
1− e−(p0+q0)X

1 + q0
p0
e−(p0+q0)X

)
=

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 .

Therefore,∣∣∣∣∣Eθ0
(
Dr,m0
t

m0

− D
r′,m0
t

m0

)∣∣∣∣∣= |F r,m0
t −F r′,m0

t |

=

∫ ∫ t

0

1− 1
m0

q0F
r′,m0
s

p0+q0F
r′,m0
s

x(r′s)ds∫
t

0

(
1− 1

m0

q0F
r,m0
s

p0+q0F
r,m0
s

)
x(rs)ds

(1 + q0/p0)(p0 + q0)e−(p0+q0)X

(1 + q0/p0e−(p0+q0)X)
2 dX

≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt(1− 1/m0)

(1)
2

∣∣∣∣∫ t

0

x(rs)ds−
∫ t

0

x(r′s)ds

∣∣∣∣
≤ (1 + q0/p0)(p0 + q0)e−(p0+q0)x̄lt(1− 1/m0)

∣∣∣∣∫ t

0

x(rs)ds−
∫ t

0

x(r′s)ds

∣∣∣∣= t

et
O (|rt− r′t|) ,

where the first inequality is from Assumption 1 (iii). This proves (B.32). �

EC.2.9. Lemma EC.3 and proof

We next state a result that is also useful for the proof of Proposition 3 and Claim EC.2.

Lemma EC.3. Given any two price sample paths r = (rt, t ≥ 0) and r′ = (rt, t ≥ 0) that do not

scale up with m0, if Dr,m0 = (Dr,m0
t , t ≥ 0) and Dr′,m0 = (Dr′,m0

t , t ≥ 0), respectively, denote the

cumulative adoption process with market potential m0, then for any t≥ 0,∣∣∣∣∣Eθ0
(
ξ(Dr,m0

t )

m0

− ξ(D
r′,m0
t )

m0

)∣∣∣∣∣≤ (p0 + q0)α1

t

et
|rt− r′t|, (B.33)
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and ∣∣∣∣∣Eθ0
(
ξ(Dr,m0

t )

ξ(Dr′,m0
t )

)∣∣∣∣∣= 1 +α2

t

et
|rt− r′t| (B.34)

for some α1 > 0, α2 > 0 independent of m0, t, rt and r′t.

Proof. Using the definition of ξ(·) in (2.4), we can write

ξ(d)

m0

=
(m0− d)

m0

(
p0 + q0

d

m0

)
= p0 + (q0− p0)

(
d

m0

)
− q0

(
d

m0

)2

.

From this, and using the fact that d
dy

(p0 + (q0− p0)y− q0y
2) = q0− p0− 2q0y, we have∣∣∣∣∣Eθ0

(
ξ(Dr,m0

t )

m0

− ξ(D
r′,m0
t )

m0

)∣∣∣∣∣=
∣∣∣∣∣Eθ0

(∫ D
r,m0
t /m0

D
r′,m0
t /m0

(q0− p0− 2q0y)dy

)∣∣∣∣∣
≤

∣∣∣∣∣Eθ0
(

sup
y∈[0,1)

(q0− p0− 2q0y)

∫ D
r,m0
t /m0

D
r′,m0
t /m0

dy

)∣∣∣∣∣
≤ (p0 + q0)

∣∣∣∣∣Eθ0
(
Dr,m0
t

m0

− D
r′,m0
t

m0

)∣∣∣∣∣ .
Then, (B.33) follows from Lemma EC.2.

To prove (B.34), note that

d

dy
(ln ξ(y)) =

q0− p0− 2q0y/m0

(m0− y)(p0 + q0y/m0)
.

Therefore, we have∣∣∣∣∣Eθ0
(
ξ(Dr,m0

t )

ξ(Dr′,m0
t )

)∣∣∣∣∣=
∣∣∣∣Eθ0 (eln ξ(Dr,m0

t )−ln ξ(D
r′,m0
t )

)∣∣∣∣
=

∣∣∣∣∣∣Eθ0
exp


∫ D

r′,m0
t

D
r,m0
t

q0− p0− 2q0y/m0

(m0− y)(p0 + q0y/m0)
dy


∣∣∣∣∣∣

≤

∣∣∣∣∣∣Eθ0
exp

 sup
0≤y≤m0−1

q0− p0− 2q0y/m0

(m0− y)(p0 + q0y/m0)

∫ D
r′,m0
t

D
r,m0
t

dy


∣∣∣∣∣∣

=

∣∣∣∣∣Eθ0
(

exp

{
sup

0≤y≤m0−1

(q0− p0)m0− 2q0y

(m0− y)(p0 + q0y/m0)

(
Dr,m0
t

m0

− D
r′,m0
t

m0

)})∣∣∣∣∣
≤

∣∣∣∣∣Eθ0
(

exp

{
sup

0≤y≤m0−1

max{q0− p0,2q0}(m0− y)

(m0− y)(p0 + q0y/m0)

(
Dr,m0
t

m0

− D
r′,m0
t

m0

)})∣∣∣∣∣
≤

∣∣∣∣∣Eθ0
(

exp

{
max{q0− p0,2q0}

p0

(
Dr,m0
t

m0

− D
r′,m0
t

m0

)})∣∣∣∣∣= 1 +
t

et
O (|rt− r′t|) ,

where the second inequality follows from the fact that when x > y ≥ 0 and max{c1, c2} ≥ 0, c1x−
c2y ≤ max{c1, c2}(x − y), and the last equality is from Lemma EC.2 and exp

(
t
et
O (|rt− r′t|)

)
=

1 + t
et
O (|rt− r′t|). �
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EC.2.10. Proof of Proposition 3

Proof. Recall that θ0 = (p0, q0,m0) denotes the true parameter set. To prove the result, we

discretize [0, T ] into N small intervals with length δt, where δt is arbitrarily small. Let v(d,nδt,Ft)
denote the expected revenue-to-go function under policy π when current cumulative demand is d,

where d ∈ {0,1, . . . ,m0}, the remaining time is nδt, where n ∈ {1,2, . . . ,N}, and the information

set is Ft. Note that this expectation is taken with respect to the true parameter set θ0.

We denote by rπ(d,nδt,Ft) the price offered under policy π given the state (d,nδt,Ft). To

simplify notation, we will drop Ft as an argument in v and rπ, but emphasize that the policy π

relies on the information set. For any d≤m0− 1, we can write the expected revenue-to-go as

v(d,nδt) = rπ(d,nδt) · ξ(d)x(rπ(d,nδt))δt

+ [v(d+ 1, (n− 1)δt)− v(d, (n− 1)δt)] · ξ(d)x(rπ(d,nδt))δt+ v(d, (n− 1)δt)+o(δt),
(B.35)

where the adoption probability ξ(d)x(r)δt is under a Markovian Bass demand model with param-

eter vector θ0 and o(δt) is a term such that limδt→0 o(δt)/δt= 0. Note that v(m0, nδt) = 0 for any

n, since all customers have already adopted.

Given the state (d,nδt), where d ∈ {0, . . . ,m0} and n ∈ {1, . . . ,N}, let V (d,nδt) be the optimal

expected revenue-to function of the oracle policy π∗ which knows the true value θ0. For any d≤
m0− 1, V (d,nδt) can be expressed as

V (d,nδt) = r∗(d,nδt) · ξ(d)x(r∗(d,nδt))δt

+ [V (d+ 1, (n− 1)δt)−V (d, (n− 1)δt)] · ξ(d)x(r∗(d,nδt))δt+V (d, (n− 1)δt)+o(δt),
(B.36)

where r∗(d, t) is the optimal price offered under the optimal policy π∗ given state (d, t), defined in

Theorem 1. Note that V (m0, nδt) = 0 for any n.

Let Dπ = (Dπ
t , t≥ 0) and D∗ = (D∗t , t≥ 0) be the cumulative demand process under π and π∗,

respectively. Let (rπt , t≥ 0) and (r∗t , t≥ 0) denote the price process under π and π∗, respectively.

For any n= 0,1, . . . ,N − 1, we define

Ψn :=Eθ0 (|V (D∗nδt, T −nδt)− v(Dπ
nδt, T −nδt)| | Fnδt)

=Eθ0

(∣∣∣∣∣
N−1∑
s=n

r∗sδtD
∗
sδtδt−

N−1∑
s=n

rπsδtD
π
sδtδt

∣∣∣∣∣ | Fnδt
)

as the conditional expectation of the difference in the revenue-to-go between π∗ and π, starting

from time nδt on the discretized grid, and given the information available at time nδt. To prove

the proposition, we will use induction to prove for any n= 0,1, . . . ,N − 1,

Ψn =O

(
Eθ0

[
N−1∑
s=n

Dπ
sδt + 1

sδt+ t0
(rπsδt− r∗sδt)2δt | Fnδt

]
+(N −n) · o(δt)

)
. (B.37)
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Here, O describes the limiting behavior as m0 grows, and the terms inside O are potentially affected

by m0. Proposition 3 is an implication of this result since R∗−R(π) = Ψ0.

To aid in our induction analysis, we next introduce some notation. For a fixed sample path ω,

we denote the realization of Dπ and D∗ as (dπω,t, t≥ 0) and (d∗ω,t, t≥ 0), respectively. For a fixed

sample size ω, we denote the realization of the price process under π and π∗ as (ρπω,t, t≥ 0) and

(ρ∗ω,t, t≥ 0), respectively.

Base case: To prove (B.37), we first check the base step at n = N − 1. In this case, time is

(N − 1)δt= T − δt, and there is δt time remaining. For a fixed sample size ω, note that

V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt) = ρ∗ω,T−δtξ(d
∗
ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt+o(δt)

= ρ∗ω,T−δtξ(d
∗
ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt

+ ρπω,T−δtξ(d
∗
ω,T−δt)x(ρπω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt︸ ︷︷ ︸

(A’)

+o(δt).

(B.38)

Note that

(A’) =
ρπω,T−δtx(ρπω,T−δt)

ρ∗ω,T−δtx(ρ∗ω,T−δt)
V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)

≤
ρπω,T−δtx(ρπω,T−δt)

ρ∗ω,T−δtx(ρ∗ω,T−δt)
V (d∗ω,T−δt, δt)−

ρπω,T−δtx(ρπω,T−δt)

ρ∗ω,T−δtx(ρ∗ω,T−δt)
v(dπω,T−δt, δt)

=
ρπω,T−δtx(ρπω,T−δt)

ρ∗ω,T−δtx(ρ∗ω,T−δt)

(
V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)

)
where the inequality comes from 0<

ρπω,T−δtx(ρπω,T−δt)

ρ∗
ω,T−δtx(ρ∗

ω,T−δt)
≤ 1. Therefore, we can bound (B.38) as follows:

(B.38)≤ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt

+
ρπω,T−δtx(ρπω,T−δt)

ρ∗ω,T−δtx(ρ∗ω,T−δt)

(
V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)

)
+o(δt),

which implies

V (d∗ω,T−δt, δt)−v(dπω,T−δt, δt)≤
1

1− ρπ
ω,T−δtx(ρ

π
ω,T−δt)

ρ∗
ω,T−δtx(ρ

∗
ω,T−δt)

∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt
∣∣︸ ︷︷ ︸

(A)

+o(δt).

We examine (A) as follows.

• Bounding (A): Recall that we have proved in Theorem 1 that the optimal policy maximizes

the revenue-to-go for any given state, and satisfies the first order condition for any given state.

Therefore, given the state (d∗ω,T−δt, δt), we have

∂[rξ(d∗ω,T−δt)x(r)δt]

∂r

∣∣∣
r=ρ∗

ω,T−δt

= 0. (B.39)
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Then, we can derive the upper bound of (A) as follows:

(A) =

∣∣∣∣∣
∫ ρ∗ω,T−δt

ρπ
ω,T−δt

∂[rξ(d∗ω,T−δt)x(r)δt]

∂r
dr

∣∣∣∣∣=
∣∣∣∣∣
∫ ρ∗ω,T−δt

ρπ
ω,T−δt

(
∂[rξ(d∗ω,T−δt)x(r)δt]

∂r
− 0

)
dr

∣∣∣∣∣
=

∣∣∣∣∣
∫ ρ∗ω,T−δt

ρπ
ω,T−δt

(
∂[rξ(d∗ω,T−δt)x(r)δt]

∂r
−
∂[rξ(d∗ω,T−δt)x(r)δt]

∂r

∣∣∣
r=ρ∗

ω,T−δt

)
dr

∣∣∣∣∣ (B.40)

=

∣∣∣∣∣
∫ ρ∗ω,T−δt

ρπ
ω,T−δt

∫ r

ρ∗
ω,T−δt

∂2[zξ(d∗ω,T−δt)x(z)δt]

∂z2
dzdr

∣∣∣∣∣
≤ ξ(d∗ω,T−δt)δt · sup

z∈(−∞,∞)

∣∣∣∣ ∂2

∂z2
(zx(z))

∣∣∣∣ ·
∣∣∣∣∣
∫ ρ∗ω,T−δt

ρπ
ω,T−δt

∫ r

ρ∗
ω,T−δt

dzdr

∣∣∣∣∣
≤ 1

2
Cxxξ(d

∗
ω,T−δt)(ρ

π
ω,T−δt− ρ∗ω,T−δt)2δt. (B.41)

Here, (B.40) comes from (B.39), while (B.41) comes from Assumption 1(v).

We replace ξ(d∗ω,T−δt) in (B.41) by
ξ(d∗ω,T−δt)

ξ(dπ
ω,T−δt)

ξ(dπω,T−δt). Then, according to Lemma EC.3,

(B.41) is bounded above by

1

2
Cxx

(
1 +

T − δt
eT−δt

O
(∣∣ρπω,T−δt− ρ∗ω,T−δt∣∣)) ξ(dπω,T−δt)(ρπω,T−δt− ρ∗ω,T−δt)2δt

=
1

2
Cxx

(
1 +

1

(T − δt)3
o
(∣∣ρπω,T−δt− ρ∗ω,T−δt∣∣)) ξ(dπω,T−δt)(ρπω,T−δt− ρ∗ω,T−δt)2δt. (B.42)

Note that the bound on (A) relies on the term ξ(dπω,T−δt). Therefore, to proceed with the proof,

we need the following claim.

Claim EC.1. If at time t, the cumulative demand under π is Dπ
t , the following holds:

E(ξ(Dπ
t ) | Ft)≤ α1

E
[∫ t+t0

0
ξ(Dπ

s )x(rπs )ds | Ft
]

t+ t0

= α2

(
Dπ
t + 1

t+ t0

)
(B.43)

for some α1 > 0, α2 > 0 independent of m0.

To prove the claim, we first notice that for all j = 0,1, . . . ,m0− 1 and any 0< h≤ 1/m0, we have

p0 ≤ ξ(j)≤m0
(p0+q0)2

4q0
, which implies ξ(Dπ

t )≤Θ(m0) almost surely.

Since ξ(d) = (m0−d)
(
p0 + q0

d
m0

)
is a concave function in d, then we have that, for any 0≤ s≤ t,

ξ(Dπ
s )≥min{ξ(0), ξ(Dπ

t )}= min{m0p0, ξ(D
π
t )}.

Therefore,∫ t

0

ξ(Dπ
s )x(rπs )ds≥min{m0p0, ξ(D

π
t )}
∫ t

0

x(rπs )ds≥ α3(ξ(Dπ
t ))

∫ t

0

x(rπs )ds≥ α4(ξ(Dπ
t )t)



ec24 e-companion to Zhang, Ahn, and Uichanco: Pricing for New Products

for some α3 > 0, α4 > 0 independent of m0. Here the last inequality comes from Assumption 1(ii).

Then we can take E(· | Ft) on both sides and yields

E(ξ(Dπ
t ) | Ft)≤ α1

E
[∫ t

0
ξ(Dπ

s )x(rπs )ds | Ft
]

t


with α1 = 1/α4, which gives us (B.43). Note that we use Dπ

t + 1 and t+ t0 in the final bound to

avoid meaningless fractions. This concludes the claim.

Now we are ready to prove the base case. Taking the conditional expectation of (B.42) given

FT−δt and given the fact that ρπω,T−δt, ρ
∗
ω,T−δt are prices that do not scale up with m0, we have

ΨN−1 =O
(
E
(
ξ(Dπ

T−δt) | FT−δt
) (
ρπω,T−δt− ρ∗ω,T−δt

)2
δt
)

+o(δt)

≤O
(
Dπ
T−δt + 1

T − δt+ t0

(
ρπω,T−δt− ρ∗ω,T−δt

)2
δt

)
+o(δt).

The last relation is due to Claim EC.1. Here, t0 = Ω(m0
−1), which can be interpreted as the inter-

arrival time to have one more adoption. It is at least in the order of m0
−1 because the expected

adoption rate is linear in ξ(j), j = 0,1, . . . ,m0 − 1, and ξ(j) is always less than m0
(p0+q0)2

4q0
. This

finishes our base step.

Inductive step: We assume that the result (B.37) holds for n+ 1. Specifically,

Ψn+1 :=E
(∣∣V (D∗(n+1)δt, T − (n+ 1)δt)− v(Dπ

(n+1)δt, T − (n+ 1)δt)
∣∣ | F(n+1)δt

)
=O

(
Eθ0

[
N−1∑
s=n+1

Dπ
sδt + 1

sδt+ t0
(ρπω,sδt− ρ∗ω,sδt)2δt | F(n+1)δt

]
+(N −n− 1) · o(δt)

)
(B.44)

where the O represents the limiting effect of increasing m0. We will prove that this implies that it

also holds for n.

For a fixed sample ω, we have that

V
(
d∗ω,nδt, T −nδt

)
− v

(
dπω,nδt, T −nδt

)
= ρ∗ω,nδtξ(d

∗
ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt

+V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)+o(δt)

≤ (A) + (B) + (C)+o(δt) (B.45)

where (C) = V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt),

(A) = ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(d∗ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt
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and

(B) = ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt.

We let

V ′ := ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt+

[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt.

Then, we have

(B) =
V ′

V
(
d∗ω,nδt, T −nδt

)V (d∗ω,nδt, T −nδt)− v (dπω,nδt, T −nδt)
≤ V ′

V
(
d∗ω,nδt, T −nδt

) (V (d∗ω,nδt, T −nδt)− v (dπω,nδt, T −nδt)) (B.46)

where the inequality comes from the fact that 0< V ′

V (d∗ω,nδt,T−nδt)
≤ 1. Taking (B.46) into (B.45),

we know

V
(
d∗ω,nδt, T −nδt

)
− v

(
dπω,nδt, T −nδt

)
≤ 1

1− V ′

V (d∗ω,nδt,T−nδt)

(|(A)|+ |(C)|)+o(δt). (B.47)

We will bound |(A)|, and |(C)| separately.

• Bounding |(A)|: Note that |(A)|= |(A1)− (A2)| where

(A1) = ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

(A2) = ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

The only difference between (A1) and (A2) is ρ∗ω,nδt and ρπω,nδt. Recall from Theorem 1 that

ρ∗ω,nδt = r∗(d∗ω,nδt, T − nδt) satisfies the first order condition of the revenue-to-go function for

the state (d∗ω,nδt, T −nδt). Therefore, following similar steps to when we proved bound (B.41),

we can show that (A) is upper bounded by

1

2
C̄xxξ(d

∗
ω,nδt)(ρ

∗
ω,nδt− ρπω,nδt)2δt

where

C̄xx := sup
r

∣∣∣∣∂2[rx(r)]

∂r2
+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
x′′(r)

∣∣∣∣
≤Cxx +

∣∣∣∣ x(r̄)

x′(r̄)
+ r̄

∣∣∣∣ · sup
r
|x′′(r)| ,
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where r̄ is the price that optimizes the expected revenue-to-go given state (d∗ω,nδt, T−(n+1)δt).

The inequality follows from V (d∗ω,nδt + 1, T − (n+ 1)δt)− V (d∗ω,nδt, T − (n+ 1)δt) =− x(r̄)

x′(r̄) − r̄
(Theorem 1) and from Assumption 1(v). Note that from Assumption 1(iv), x(r)

x′(r) + r is finite

since r is finite.

Hence, |(A)| is upper bounded by

O
(
ξ(d∗ω,nδt)(ρ

∗
ω,nδt− ρπω,nδt)2δt

)
=O

(
ξ(dπω,nδt)(ρ

∗
ω,nδt− ρπω,nδt)2δt

)
. (B.48)

Here the equality comes from the same argument as when we bounded (B.41) with (B.42).

From (B.47), and from the bound (B.48), the following constraint must hold almost surely:

|V (D∗nδt, T − (n+ 1)δt)− v(Dπ
nδt, T − (n+ 1)δt)|

≤O
(
ξ(Dπ

nδt)(ρ
∗
ω,nδt− ρπω,nδt)2δt

)
+O (|V (D∗nδt, T − (n+ 1)δt)− v(Dπ

nδt, T − (n+ 1)δt)|)+o(δt).

Therefore, taking the conditional expectation of the above bound given Fnδt,

Ψn ≤O
(
E [ξ(Dπ

nδt) | Fnδt] (r∗nδt− rπnδt)
2
δt
)

+E [Ψn+1 | Fnδt]+o(δt)

≤O
(
Dπ
nδt + 1

nδt+ t0

(
ρ∗ω,nδt− ρπω,nδt

)2
δt

)
+E [Ψn+1 | Fnδt]+o(δt)

=O

(
E

[
N−1∑
s=n

Dπ
sδt + 1

sδt+ t0

(
ρπω,sδt− ρ∗ω,sδt

)2
δt | Fnδt

]
+(N −n) · o(δt)

)
(B.49)

Here, the second inequality is due to Claim EC.1. The last step is due to the inductive assumption.

This finishes the induction proof, thus proving (B.37).

Note that (B.37) is true for any δt > 0 and for any n ∈ {0,1, . . . ,N − 1}. Hence, setting n = 0

and taking the limit on both sides of (B.37) as δt goes to zero, we have:

lim
δt→0

Ψ0 = lim
δt→0
O

(
E

[
N−1∑
s=0

Dπ
sδt + 1

sδt+ t0

(
ρπω,sδt− ρ∗ω,sδt

)2
δt | F0

]
+Nδt · o(δt)

δt

)

=O
(
E
[∫ T

t=0

Dπ
t + 1

t+ t0

(
ρπω,t− ρ∗ω,t

)2
dt | F0

])
,

where the last relation follows because Nδt= T and since limδt→0 o(δt)/δt= 0. �

EC.2.11. Claim EC.2 and proof

The claim below is useful for proving Theorem 2 and Theorem 3.

Claim EC.2. Under Assumption 2, the upper bound in Proposition 3 is tight. Specifically,

R∗−R(π) = Ω

(
E
[∫ T

0

ξ(D∗t )(r
π
t − r∗t )2dt

])
.
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Proof of Claim EC.2 Using similar logic as the proof of Proposition 3, we use induction to

prove the more general result on a discretized time horizon:

Ψn = Ω

(
E

[
N−1∑
s=n

ξ(D∗sδt)(r
π
sδt− r∗sδt)2δt | Fnδt

])
. (B.50)

for all n= 0,1, . . . ,N − 1. Note that Ψ0 =R∗−R(π). We need to revise the proof of Proposition 3

in several steps to show (B.50). Following the logic of the proof of Proposition 3, we first consider

the base step n=N − 1 with δt time remaining. Recall from (B.38) that

|V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)|=
∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt

∣∣
≤
∣∣ρ∗ω,T−δtξ(d∗ω,T−δt)x(ρ∗ω,T−δt)δt− ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt

∣∣︸ ︷︷ ︸
(A)

+
∣∣ρπω,T−δtξ(d∗ω,T−δt)x(ρπω,T−δt)δt− ρπω,T−δtξ(dπω,T−δt)x(ρπω,T−δt)δt

∣∣︸ ︷︷ ︸
(B)

.

Let us denote (A’) and (B’) as the terms inside the absolute values in (A) and (B), respectively.

Therefore, we have

|V (d∗ω,T−δt, δt)− v(dπω,T−δt, δt)|= |(A’) + (B’)| ≥ |(A’)| − |(B’)|= (A)− (B),

where the inequality is due to the triangle inequality: |x+ y| ≥ |x| − |y|. Note that

(A) =

∣∣∣∣∣
∫ ρ∗ω,T−δt

ρπ
ω,T−δt

∫ r

ρ∗
ω,T−δt

∂2[zξ(d∗ω,T−δt)x(z)δt]

∂z2
dzdr

∣∣∣∣∣
≥ 1

2
Cξ(d∗ω,T−δt)(ρ

π
ω,T−δt− ρ∗ω,T−δt)2δt= Θ

(
ξ(d∗ω,T−δt)(ρ

π
ω,T−δt− ρ∗ω,T−δt)2δt

)
.

(B.51)

The equality follows from the arguments in (B.41), and the inequality follows from Assumption 2.

Also, from Lemma EC.3, we know that

(B)≤Cx
∣∣∣∣(1 +

1

(T − δt)3
o
(∣∣ρπω,T−δt− ρ∗ω,T−δt∣∣)) T − δteT−δt

O
(
ξ(dπω,T−δt)

)
δt

∣∣∣∣ ,
which diminishes fast.

Therefore, combining the arguments above, we have

ΨN−1 =E
[∣∣V (D∗T−δt, δt)− v(Dπ

T−δt, δt)
∣∣]≥E [(A)]−E [(B)]

≥Ω
(
E
[
ξ(D∗T−δt)(r

π
T−δt− r∗T−δt)2δt

])
− T − δt
eT−δt

· O(E
[
ξ(Dπ

T−δt)
]
)δt

= Ω
(
E
[
ξ(D∗T−δt)(r

π
T−δt− r∗T−δt)2δt

])
.

This finishes the base step.

For the inductive step, we assume that the result holds for n+ 1. Specifically,

Ψn+1 = Ω

(
E

[
N−1∑
s=n+1

ξ(D∗sδt)(r
π
sδt− r∗sδt)2δt | F(n+1)δt

])
. (B.52)
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We need to show that this implies the result holding for n.

We revise the proof of Proposition 3 as follows. First, recall from (B.47), we have

|V
(
d∗ω,nδt, T −nδt

)
− v

(
dπω,nδt, T −nδt

)
|

=
∣∣∣ρ∗ω,nδtξ(d∗ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt

+V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)
∣∣∣.

We let (C”) := V (d∗ω,nδt, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt),

(A”) := ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt− ρπω,nδtξ(d∗ω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

−
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

and

(B”) := ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt− ρπω,nδtξ(dπω,nδt)x(ρπω,nδt)δt

+
[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt

−
[
v(dπω,nδt + 1, T − (n+ 1)δt)− v(dπω,nδt, T − (n+ 1)δt)

]
ξ(dπω,nδt)x(ρπω,nδt)δt.

Then, because of the triangle inequality |x+ y| ≥ |x| − |y|, we know

|V (d∗ω,nδt, T −nδt)− v(dπω,nδt, T −nδt)|= |(C”) + (A”) + (B”)| ≥ |(C”) + (A”)| − |(B”)| . (B.53)

Note that (A”) ≥ 0 and (C”) ≥ 0 because (A”) is the difference between the expected revenue

during δt under optimal price ρ∗ω,nδt

ρ∗ω,nδtξ(d
∗
ω,nδt)x(ρ∗ω,nδt)δt+

[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρ∗ω,nδt)δt

and the expected revenue under the suboptimal price ρπω,nδt

ρπω,nδtξ(d
∗
ω,nδt)x(ρπω,nδt)δt+

[
V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)

]
ξ(d∗ω,nδt)x(ρπω,nδt)δt,

and (C”) is the optimal expected revenue minus the expected revenue given the sub-optimal price

path. Hence, we know the right hand side of (B.53) equals to (C”) + (A”)− |(B”)|.
We know the following holds from the definition of π∗:

|(A”)|= ξ(d∗ω,nδt)δt ·

∣∣∣∣∣
∫ ρ∗ω,nδt

ρπ
ω,nδt

∫ r

ρ∗
ω,nδt

(
∂2zx(z)

∂z2
+ [V (d∗ω,nδt + 1, T − (n+ 1)δt)−V (d∗ω,nδt, T − (n+ 1)δt)]x′′(z)

)
dzdr

∣∣∣∣∣
≥ ξ(d∗ω,nδt)δt · inf

z

∣∣∣∣ ∂2

∂z2
(zx(z))−

(
x(r̄)

x′(r̄)
+ r̄

)
x′′(z)

∣∣∣∣ ·∫ ρ∗ω,nδt

ρπ
ω,nδt

∫ r

ρ∗
ω,nδt

dzdr,
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where r̄ is the price that optimizes the expected revenue-to-go given state (d∗ω,nδt, T − (n+ 1)δt).

Hence, according to Assumption 1 and Assumption 2, we know

|(A”)|= Θ
(
ξ(d∗ω,nδt)(ρ

∗
ω,nδt− ρπω,nδt)2δt

)
(B.54)

Therefore, together with (B.52) and (B.54), we know from taking the conditional expectation of

(B.53) given Fnδt that:

Ψn = Ω
(
E
[
|V (D∗nδt, T − (n+ 1)δt)− v(Dπ

nδt, T − (n+ 1)δt)|+ ξ(D∗nδt) (r∗nδt− rπnδt)
2
δt | Fnδt

])
= Ω

(
E

[
N−1∑
s=n

ξ(D∗sδt) (rπsδt− r∗sδt) δt | Fnδt

])
,

where the last equation follows from the inductive hypothesis.

end proof of Claim EC.2 �

EC.2.12. Proof of Lemma 4

Proof. Consider any t∈ (0, T ]. Recall that r∗t (θ, d) denotes the Markovian Bass price if t is the

elapsed time, d is the cumulative adoptions, and θ is the parameter set. Note that θ0 = (p0, q0,m0)

is the true parameter set, and θ̄t = (p̄t, q̄t, m̄t) is the parameter set used in policy π as an input to

r∗t (·, ·) to determine the price at time t. The following holds almost surely:

(
r∗t (θ̄t,D

π
t )− r∗t (θ0,D

∗
t )
)2

= Θ

[r∗t (θ̄t,Dπ
t )− r∗t (θ0,D

π
t )
]2︸ ︷︷ ︸

(A)

+ Θ

[r∗t (θ0,D
π
t )− r∗t (θ0,D

∗
t )]

2︸ ︷︷ ︸
(B)

 .

Note that Θ is the limiting effect on (A) and (B) as m0 grows.

Bounding (A): The difference of the two prices in the (A) is due to the parameter difference. We

first examine (A). Define p̄ := max{p0, p̄t} and p := min{p0, p̄t}. Since p0, p̄t are positive and finite

values, then so are p̄, p. We similarly define q̄, q, m̄,m. Let P := [p, p̄]× [q, q̄]× [m,m̄].

From the property that |x− y|> (infz∇h(z))≤ h(x)−h(y)≤ |x− y|> (supz∇h(z)), we have that

(A)≤Θ

( sup
(p,q,m)∈P

∣∣∣∣∂r∗t∂p
∣∣∣∣
)2

(p0− p̄t)2 +

(
sup

(p,q,m)∈P

∣∣∣∣∂r∗t∂q
∣∣∣∣
)2

(q0− q̄t)2 +

(
sup

(p,q,m)∈P

∣∣∣∣∂r∗t∂m

∣∣∣∣
)2

(m0− m̄t)
2

 ,
and

(A)≥Θ

[(
inf

(p,q,m)∈P

∣∣∣∣∂r∗t∂p
∣∣∣∣)2

(p0− p̄t)2 +

(
inf

(p,q,m)∈P

∣∣∣∣∂r∗t∂q
∣∣∣∣)2

(q0− q̄t)2 +

(
inf

(p,q,m)∈P

∣∣∣∣∂r∗t∂m

∣∣∣∣)2

(m0− m̄t)
2

]
,

Here we treat m as a continuous variable.
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We first analyze |∂r∗t /∂p|. Using the equation (3.2) satisfied by r∗t (θ, d), we differentiate r∗t with

respect to p and rearranging terms, we get that for any d,∣∣∣∣∂r∗t (θ, d)

∂p

∣∣∣∣= ∣∣∣∣ ∂∂p [V (d,T − t)−V (d+ 1, T − t)]
/(2x′(r∗t )

2−x(r∗t )x
′′(r∗t )

x′(r∗t )2

)∣∣∣∣ (B.55)

Note that if we rearrange (B.21), where g(d, t) = ∂V (d,t)

∂p
, we have

∂

∂p
[V (d,T − t)−V (d+ 1, T − t)]︸ ︷︷ ︸

(A1)

=
∂2V (d,T − t)

∂p∂t
· 1

(m− d)
(
p+ d

m
q
)
x(r∗t )︸ ︷︷ ︸

(A2)

− x(r∗t )

x′(r∗t )

1

p+ d
m
q
. (B.56)

We now examine (A2) on the right-hand side of (B.56). From the HJB equation (B.13), note that

∂
∂t
V (d,T − t) = J(r∗t (θ, d), d,T − t) where J(r, d, t) := rλ(d, r) + [V (d+ 1, t)−V (d, t)]λ(d, r). Hence,

using chain rule, we know

∂2V (d,T − t)
∂p∂t

=−∂J(r, d,T − t)
∂r

∣∣∣
r=r∗t

∂r∗t
∂p
− ∂J(r, d,T − t)

∂p

∣∣∣
r=r∗t

= 0− ∂J(r, d,T − t)
∂p

∣∣∣
r=r∗t

≤ 0.

Moreover, because the partial effect of p on the expected revenue rate cannot exceed the rate when

all the remaining population (m − d) directly adopt the product without being affected by the

current price r∗t , we know
∂2V (d,T − t)

∂p∂t
≥−(m− d)r∗tx(r∗t ).

Hence, from these lower and upper bounds that we derived for ∂2V (d,T−t)
∂p∂t

, (B.56) implies that

− r∗t
p+ d

m
q
− x(r∗t )

x′(r∗t )

1

p+ d
m
q
≤ (A1)≤− x(r∗t )

x′(r∗t )

1

p+ d
m
q
. (B.57)

Therefore, we substitute (B.57) into (B.55) to get

∣∣∣∣∂r∗t∂p
∣∣∣∣≤ ∣∣∣∣ x′(r∗t )

2

2x′(r∗t )2−x(r∗t )x′′(r
∗
t )

∣∣∣∣ ·(∣∣∣∣ x(r∗t )

x′(r∗t )

1

p+ d
m
q

∣∣∣∣+ ∣∣∣∣ r∗t
p+ d

m
q

∣∣∣∣)≤Θ

(
Mx̄u

Cd(p+ q)

)
,

where the last inequality follows from Assumption 1(i), (iv) and since r∗t does not scale up with

the market size m. The latter is because when m0 grows, the demand process converges to the

deterministic Bass model (Proposition 1). Hence, the optimal price r∗t should also converge to the

optimal price under the deterministic Bass model, which is not affected by the market size.

Using similar arguments as above, we have∣∣∣∣∂r∗t∂q
∣∣∣∣≤ ∣∣∣∣ x′(r∗t )

2

2x′(r∗t )2−x(r∗t )x′′(r
∗
t )

∣∣∣∣ ·(∣∣∣∣ x(r∗t )

x′(r∗t )

d
m

p+ d
m
q

∣∣∣∣+ ∣∣∣∣ r∗t
p+ d

m
q

∣∣∣∣)≤Θ

(
Mx̄u

Cd(p+ q)

)
,

and∣∣∣∣∂r∗t∂m

∣∣∣∣≤ ∣∣∣∣ x′(r∗t )
2

2x′(r∗t )
2−x(r∗t )x

′′(r∗t )

∣∣∣∣ ·
(∣∣∣∣∣ x(r∗t )

x′(r∗t )

p+ d2

m2 q

(m− d)(p+ d
m
q)

∣∣∣∣∣+
∣∣∣∣ r∗t
p+ d

m
q

∣∣∣∣
)
≤Θ

(
Mx̄u

Cd

p+ q

pm

)
≤Θ

(
Mx̄u

Cd

p+ q

pm0

)
.
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Hence, it follows that

(A) = Θ

((
p̄t− p0

p0

)2

+

(
q̄t− q0

q0

)2

+

(
m̄t−m0

m0

)2
)
.

Bounding (B): Note that the difference in the two prices in (B) is due to the difference in past

sales. Specifically, the model parameters are the same. For any d and θ0 = (p0, q0,m0), we define

fd := (1− d
m0

)
(
p0 + q0

d
m0

)
. From chain rule, we have

Eθ0 [|r∗t (θ0,D
∗
t )− r∗t (θ0,D

π
t )| | Ft]

≤Eθ0

[
sup

d∈[D∗t ∧D
π
t ,D

∗
t ∨D

π
t ]

∣∣∣∣∂r∗t (θ0, d)

∂fd

∣∣∣∣ · sup
d∈[D∗t ∧D

π
t ,D

∗
t ∨D

π
t ]

∣∣∣∣ ∂fd
∂(d/m0)

∣∣∣∣ · ∣∣∣∣Dπ
t

m0

− D
∗
t

m0

∣∣∣∣ | Ft
]
.

(B.58)

Note that supd∈[0,m0] |∂fd/∂(d/m0)|= (p0 + q0). Hence, to bound (B.58), we need to evaluate the

bound of |∂r∗t /∂fd|.

From (2.2), F r
t < 1 for all t≤ T and any deterministic price sequence r. Hence, there exists δ > 0

such that 1−F r
t > δ for all t≤ T . One example of δ is 1−F r

T > 1− (p0 +q0)x̄uT if (p0 +q0)x̄uT < 1.

From (B.12), for any pricing sample path rω of policy π∗, E(Drω
t /m0) < F rω

t < 1− δ. Therefore,

E(1−D∗t /m0)> δ, implying that

Eθ0
[
fD∗t
]

=Eθ0

[(
1− D

∗
t

m0

)(
p0 + q0

D∗t
m0

)]
>γδ := δ× p0.

Also since E[D∗t /m0 | Ft] = E
[∫ t

0
(1− D∗s

m0
)(p0 + q0

D∗s
m0

)x(r∗s)ds | Ft
]

for all t and the integrand is

positive, we have E (1−D∗t /m0 | Ft)> δ as well, so

Eθ0
[
fD∗t | Ft

]
=Eθ0

[(
1− D

∗
t

m0

)(
p0 + q0

D∗t
m0

)
| Ft
]
>γδ. (B.59)

For any (d, t), we differentiate (3.3) by fd for both sides, which yields

∂2V (d,T − t)
∂fd∂t

/
m0 +

x(r∗t )
2

x′(r∗t )
+ fd

2x(r∗t )x
′(r∗t )

2−x(r∗t )
2x′′(r∗t )

x′(r∗t )2

∂r∗t
∂fd

= 0. (B.60)

Then,

γδ · inf
r

∣∣∣∣2x(r)x′(r)2−x(r)2x′′

x′(r)2

∣∣∣∣ ·Eθ0 (∣∣∣∣∂r∗t (θ0,D
∗
t )

∂fd

∣∣∣∣ | Ft) (B.61)

≤Eθ0

(
fD∗t ·

∣∣∣∣2x(r∗t )x
′(r∗t )

2−x(r∗t )
2x′′(r∗t )

x′(r∗t )2
· ∂r

∗
t (θ0,D

∗
t )

∂fd

∣∣∣∣ | Ft) (B.62)

=Eθ0

(∣∣∣∣∣∂2V (D∗t , T − t)
∂fd∂t

/m0 +
x(r∗t (θ0,D

∗
t ))

2

x′(r∗t (θ0,D∗t ))

∣∣∣∣∣ | Ft
)

(B.63)

=Eθ
(∣∣∣∣∂2V (D∗t , T − t)

∂fd∂t
/m0 +

∂V (D∗t , T − t)
∂t

/(fD∗tm0)

∣∣∣∣ | Ft) (B.64)

where (B.62) follows from (B.59), (B.63) follows from (B.60), (B.64) is from (3.3).
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Note that V (D∗t , T − t) =Eθ0
(∫ t

0
m0fD∗sx(r∗s(θ0,D

∗
s))r

∗
s(θ0,D

∗
s)ds | Ft

)
. Hence,

Eθ0

(
∂2V (D∗t , T − t)

∂fd∂t

/
m0 | Ft

)
= r∗t (θ0,D

∗
t )x(r∗t (θ0,D

∗
t )),

Eθ0

(
∂V (D∗t , T − t)

∂t

/
(fD∗tm0) | Ft

)
= r∗t (θ0,D

∗
t )x(r∗t (θ0,D

∗
t )),

so an upper bound for (B.61) is 2 supr |rx(r)| ≤ 2Cx from Assumption 1(v). Moreover, also from

Assumption 1, we can show that infr

∣∣∣ 2x(r)x′(r)2−x(r)2x′′(r)
x′(r)2

∣∣∣≥ Cdx̄
l

M2 , then

Eθ0

(∣∣∣∣∂r∗t (θ0,D
∗
t )

∂fd

∣∣∣∣ | Ft)≤ 2CxM
2

γδCdx̄l
. (B.65)

Using the same arguments, we can also get the same upper bound for d = Dπ
t , and also for any

d∈ [Dπ
t ∧D∗t , Dπ

t ∨D∗t ].

Hence, from (B.58) and (B.65), we have

Eθ0 [|r∗t (θ0,D
∗
t )− r∗t (θ0,D

π
t )| | Ft]≤

2CxM
2

γδCdx̄l
· (p0 + q0) ·Eθ0

[∣∣∣∣Dπ
t

m0

− D
∗
t

m0

∣∣∣∣ | Ft]
Therefore, it follows that

E
[
(r∗t (θ0,D

∗
t )− r∗t (θ0,D

π
t ))

2 | Ft
]

=O

(
Eθ0

[(
D∗t
m0

− D
π
t

m0

)2

| Ft

])

≤ α
(
t

et

)2

E
[
(r∗t (θ0,D

∗
t )− r∗t (θ0,D

π
t ))

2 | Ft
]

+O
(

1

m0

)
(B.66)

for some α> 0 independent of m0 and t, where the last relationship follows due to Lemma EC.2.

This concludes our bound on (B).

The first term in right-hand side of (B.66) does not scale up with the problem scale m0, so it is

dominated by O(1/m0). Thus, this proves the lemma. �

EC.2.13. Proof of Theorem 2

The Bayesian Cramer-Rao bound will be useful in our proof of Theorem 2. It states that, under

some regularity conditions, the distribution of an estimator of an absolutely continuous function g

of θ cannot have a variance less than the classical informational bound.

Lemma EC.4 (Bayesian Cramer-Rao bound.). Let {f(· | θ) : θ ∈Θ} be a family of probability

density functions on some sample space X , where the parameter space Θ is a closed interval on

the real line. Let µ(θ) be some probability density on θ ∈Θ. Suppose that µ and f(x | ·) are both

absolutely continuous, and that µ converges to zero at the endpoints of the interval Θ. If X is the
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random sample, let ĝ(X) denote an estimator of g(θ), where g : Θ 7→R is an absolutely continuous

function. Then,

Eθ
[
(ĝ(X)− g(θ))

2
]
≥

(
Eθ
[

d
dθ
g(θ)

])2

Eθ
[(

d
dθ

lnf(X | θ)
)2
]

+E
[(

d
dθ

lnµ(θ)
)2
]

where Eθ[·] denotes the expectation with respect to the joint distribution of f(X | θ) and µ(θ).

Proof of Theorem 2. To prove the lower bound, we only need to consider the case where one

parameter, say q0, is unknown. This is because more unknown and independent parameters can

only worsen the regret. Hence, we assume only θ0 = q0 is unknown.

First, using the Bayesian Cramer-Rao inequality (Lemma EC.4), we show the following claim

which is a lower bound on the pricing error for any pricing-and-learning policy π̃ ∈ Π. (In this

proof, we use the tilde notation to distinguish the policy π̃ from the mathematical constant π.)

Claim EC.3. Suppose x(r) = e−r for r ∈ [0,2). Let θ = q0 be a random variable taking values in

Θ =
[

1
4
, 5

4

]
with the density µ(θ) = 2[cos (π(θ− 3/4))]2. Then for any pricing-and-learning policy

π̃ ∈Π,

Eθ
[
(rπ̃t − r∗t )2 | Ft

]
≥ α

(
1

Dπ̃
t

)
(B.67)

for some α> 0 independent of m0.

Proof of Claim EC.3. For some t∈ (0, T ), let X denote the sample path at time t under policy

π̃. Specifically, X = (Ds, s∈ [0, t]), where we drop the superscript π̃ to simplify notation. Using the

notation of Lemma EC.4, the density function given Ft is

f(X | θ) =

Dt∏
i=0

fi(θ),

where fi(θ), i= 0,1, . . . ,Dt are defined in (4.2). With abuse of notation, we also set g(θ) = r∗t (θ)

and ĝ(X) = rπ̃t (X).

We will first bound Eθ
[

d
dθ
g(θ)

]
. Since x(r) = e−r for r ∈ [0,2), then according to Theorem 1, we

have that

r∗t (θ) = 1 + [V (D∗t , T − t;θ)−V (D∗t + 1, T − t;θ)],

where V (d, t;θ) has the closed-form expression given in (1). Therefore, if D∗t = d, we have

d

dθ
r∗t (θ) =

∂ [V (d,T − t)−V (d+ 1, T − t)]
∂θ

≥ α1

 ∂

∂q0

ln

1 +

Π
m0−1
i=d

(m0−i)q0m0−dtm0−d

(m0−d)!em0−d

1 +
∑m0−d−1

j=1 Πd+j−1
i=d (m0− i) q0

jtj

j!ej


= α2 ((m0− d) ln q0)≥ α2 ln q0
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for some α1 > 0, α2 > 0 independent of m0. Therefore, we know that(
Eθ
[

d

dθ
g(θ)

])2

=

(
Eθ
[

d

dθ
r∗t (θ)

])2

≥Ω(1). (B.68)

Also, we have

Eθ

[(
d

dθ
lnµ(θ)

)2
]

=Eθ
[
16π2 (cos(π(θ− 3/4)) sin(π(θ− 3/4)))

2
]
≤ 16π2. (B.69)

To bound Eθ
[(

d
dθ

lnf(X | θ)
)2
]
, we use the following standard result (Cover 1999):

Eθ

[(
d

dθ
lnf(X | θ)

)2

| Ft

]
=−Eθ

[
d2

dθ2
lnf(X | θ) | Ft

]
=−Eθ

[
d2

dθ2

Dt∑
i=0

lnfi(θ) | Ft

]

=

Dt∑
i=0

−Eθ
[

d2

dθ2
lnfi(θ) | Ft

]
.

Thus,

Eθ

[(
d

dθ
lnf(X | θ)

)2

| Ft

]
=

Dt∑
i=0

−Eθ
[

d2

dθ2
lnfi(θ) | Ft

]
≤

Dt∑
i=0

1

1 · q0
2

= (Dt + 1)/q0
2. (B.70)

Hence, taking (B.68),(B.69),(B.70) into Lemma EC.4, we have

Eθ
[
(rπ̃t − r∗t )2 | Ft

]
=Eθ

[
(ĝ(X)− g(θ))2 | Ft

]
≥ α3

(
1

Dt + 1 + 16π2

)
= α

(
1

Dt + 1

)
(B.71)

for some α> 0, α3 > 0 independent of m0.

end proof of Claim EC.3 �

Next, we want to apply Claim EC.2 to prove the lower bound on regret. Thus, we need to check

whether Assumption 2 and the condition of Proposition 3 hold. Notice that,
∣∣∣ ∂2∂r2 [re−r]

∣∣∣= (2−r)e−r,

so Assumption 2 holds. Also, from Claim EC.3, we know E [(rπ̃t − r∗t )2 | Ft]≥ α
(

1
Dπ̃t +1

)
. Since

E
(

1

Dπ̃
t + 1

| Ft
)

=
1∫ t

0
(m0−Dπ̃

s )
(
p0 + q0

Dπ̃s
m0

)
ds+ 1

≥ 1

x̄um0(p0 + q0)t
≥ α′te−t/m0,

for some α′ independent of t and m0. This implies that the condition of Proposition 3 is satisfied.

Hence, from Claim EC.2, we have

R∗−R(π̃) = Ω

(
E
[∫ T

0

ξ(D∗t )(r
π̃
t − r∗t )2dt

])
= Ω

(
E
[∫ T

0

ξ(Dπ̃
t )(rπ̃t − r∗t )2dt

])
(B.72)

= Ω

(
E
[∫ T

0

ξ(Dπ̃
t )

1

Dπ̃
t + 1

dt

])
(B.73)
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where (B.72) comes from the same analysis of (B.42) by replacing ξ(D∗t ) by ξ(D∗t )

ξ(Dπ̃t )
ξ(Dπ̃

t ), and (B.73)

comes from Claim EC.3.

Then, we finally prove the lower bound on regret. Since E(Dπ̃
t +1 | Ft)≤maxs≤t ξ(D

π̃
s ) ·1 ·(t+ t0)

with t0 = Θ
(
m−1

0

)
(we add t0 here to avoid meaningless cases where t= 0), we know

(B.73)≥ α
(
E
[∫ T

0

ξ(Dπ̃
t )

maxs≤t ξ(Dπ̃
s )

1

t+ t0
dt

])
≥ α

(
E
[∫ T

0

γδ

(p0 + q0)2/(4q0)

1

t+ t0
dt

])
= Ω(lnm0)

(B.74)

for some α> 0 independent of m0, where the second inequality comes from (B.59).

This concludes our proof. �

EC.2.14. Proof of Theorem 3

Proof. To simplify notation in this proof, we refer to θ̂0 as θ instead. Let Dπ = (Dπ
t , t ≥ 0)

denote the cumulative adoption process under policy π that offers the price r∗t (θ, d) when the state

is (d, t). Recall that r∗t (θ, d) is the Markovian Bass price (Theorem 1) under parameter set θ and

state (d, t).

Note that R∗−R(π) is the regret of mis-specifying the demand parameter as θ, when the true

parameter is θ0. Since Assumption 2 holds, then according to Claim EC.2, we have

R∗−R(π)≥Eθ0

[∫ T

0

ξ(D∗t )(r
π
t − r∗t )2dt

]
≥m0

[
min
F∈[0,1]

(1−F )(p0 + q0F )

]
·Eθ0

[∫ T

0

Eθ0
[
(rπt − r∗t )2 | Ft

]
dt

]
≥m0

[
min
F∈[0,1]

(1−F )(p0 + q0F )

]
·
∫ T

0

Θ

((
p− p0

p0

)2

+

(
q− q0

q0

)2

+

(
m−m0

m0

)2
)

dt

= E2TΩ(m0).

The second inequality is because by definition ξ(d) =m0

(
1− d

m0

)(
p0 + q0

d
m0

)
for any d. The third

inequality is because of Lemma 4. The equality is due to
(
p−p0
p0

)2

+
(
q−q0
q0

)2

+
(
m−m0
m0

)2

= E2.

�

EC.2.15. Proof of Theorem 4

Proof. Recall that θ0 = (p0, q0,m0) denotes the true parameter vector. For notational conve-

nience, we will use π to denote the MBP-MLE policy πM. Consequently, we will denote the price

process and the demand process under MBP-MLE as rπ = (rπt , t≥ 0) and Dπ = (Dπ
t , t≥ 0), respec-

tively. The price process under the oracle policy is r∗ = (r∗t , t≥ 0).

We will use Proposition 3 and Lemma 4 to prove the theorem. Therefore, we need to check

whether the conditions required in Proposition 3 and Lemma 4 are satisfied.
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The condition required in Lemma 4 is that p̂t, q̂t and m̂t are finite values, and that p̂t + q̂t > 0

and mt > 0. This can be observed from checking the likelihood function `t. Since the policy applies

MLE only when D̂t ≥ 3, we know that m̂t > D̂t − 1, because otherwise, the likelihood function is

either 0 or negative. If both p̂t and q̂t are zero, the likelihood function is 0. If either p̂t = +∞ or

q̂t = +∞ or m̂t = +∞, then the likelihood function is 0. Therefore, the ML estimates satisfy the

condition of Lemma 4.

Since the price for the first three customers is fixed, the regret in period [0, t3] is O(1). This is

because the expected time of the third adoption is E(t3) = Θ(3/m0). Following from Proposition 3,

the regret for the first three adoptions is upper bounded by O
(

3
m0

3+1
1/m0

)
=O(1). Hence, to prove

R∗−R(π) =O (lnm0), according to Proposition 3, it suffices to show that

E
[∫ T

t3

Dπ
t + 1

t+ t0
(rπt − r∗t )2dt

]
=O (lnm0) .

We know from Lemma 3 that, for any t∈ (t3, T ], the conditional expected estimation errors are

E

((
p̂t− p0

p0

)2

+

(
q̂t− q0

q0

)2

+

(
m̂t−m0

m0

)2

| Ft

)
=O

(
1

Dπ
t + 1

)
, (B.75)

Also, we know O (1/(Dπ
t + 1)) dominates O (1/m0) since Dπ

t ≤m0. Hence, by Lemma 4, it suffices

to show that

E

[∫ T

t3

Dπ
t + 1

t+ t0

[(
p0− p̂t
p0

)2

+

(
q0− q̂t
q0

)2

+

(
m0− m̂t

m0

)2
]

dt

]
=O (lnm0) .

By conditioning on Ft,

E

(
E

[∫ T

t3

Dπ
t + 1

t+ t0

∣∣∣∣ p̂t− p0

p0

∣∣∣∣2 dt | FT

])
+E

(
E

[∫ T

t3

Dπ
t + 1

t+ t0

∣∣∣∣ q̂t− q0

q0

∣∣∣∣2 dt | FT

])

+E

(
E

[∫ T

t3

Dπ
t + 1

t+ t0

∣∣∣∣m̂t−m0

m0

∣∣∣∣2 dt | FT

])
≤E

(∫ T

0

1

t+ t0
dt

)
=O(ln(m0)),

where the last inequality follows from (B.75). This proves the theorem. �

EC.2.16. Proof of Theorem 5

Proof. For convenience, we will use π to denote the MBP-MLE-Limited policy πM-Lim. Recall that

θ̂t = θ̂t(Ût) denotes the ML estimator of the parameter set, given data Ût. Note that θ̂t influences

the policy only if t is a price change epoch. We will denote θ̂π = (θ̂πt , t ≥ tC0
) as the parameter

process under MBP-MLE-Limited, where θ̂πt is equal to the ML estimator at the most recent price

change epoch. Given state (d, t), recall that r∗t (θ0, d) denotes the Markovian Bass price when the

demand parameter set is θ0. We will denote by rπt (θ̂πt , d) the price offered under MBP-MLE-Limited
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given state (d, t). We will denote the demand process under MBP-MLE-Limited as Dπ = (Dπ
t , t≥ 0).

The demand process under the oracle policy is D∗ = (D∗t , t≥ 0).

Since the price for the first C0 customers is fixed, and C0 is independent of m0, the regret in

period [0, tC0
] is O(1). Hence, according to Proposition 3, it suffices to examine the bound for

E

[
E

(∫ T

tC0

Dπ
t + 1

t+ t0
(r∗t − rπt )

2
dt | FT

)]
. (B.76)

With probability 1, we can decompose the pricing error at any t∈ (tC0
, T ] as follows:(

r∗t (θ0,D
∗
t )− rπt (θ̂πt ,D

π
t )
)2

=
(
r∗t (θ0,D

∗
t )− r∗t (θ0,D

π
t ) + r∗t (θ0,D

π
t )− rπt (θ0,D

π
t ) + rπt (θ0,D

π
t )− rπt (θ̂πt ,D

π
t )
)2

= Θ

|r∗t (θ0,D
∗
t )− r∗t (θ0,D

π
t )|2︸ ︷︷ ︸

(A)

+ Θ

|r∗t (θ0,D
π
t )− rπt (θ0,D

π
t )|2︸ ︷︷ ︸

(B)

+ Θ

∣∣∣rπt (θ0,D
π
t )− rπt (θ̂πt ,D

π
t )
∣∣∣2︸ ︷︷ ︸

(C)

 ,

because of the triangle inequality.

Similar to how we proved Lemma 4 (Section EC.2.12), specifically from (B.66), taking the expec-

tation of (A) conditioning on Ft is bounded by

1

m0

=O

(
E

[(
p0− p̂πt
p0

)2

+

(
q0− q̂πt
q0

)2

+

(
m0− m̂π

t

m0

)2

| Ft

])
,

where the equality is from Lemma 3. According to Lemma 4, (C) is also bounded by

O
(
E
[(

p0−p̂πt
p0

)2

+
(
q0−q̂πt
q0

)2

+
(
m0−m̂πt
m0

)2

|Ft
])

.

Let us consider the expected cumulative regret (during one price cycle) resulting from (B) when

the true parameter set θ0 is used by the policy π. Specifically, suppose that t is the start of a

price cycle whose length is the time until the next ct adoptions. Specifically, MBP-MLE-Limited

sets the price rπt for the entire price cycle, which it computes from the deterministic equivalent

of the optimal prices (r1, r2, . . . , rct) and inter-adoption times (∆t1,∆t2, . . . ,∆tct), as described in

Section 4.2.2. If the cycle’s inter-adoption times under π and π∗ are equal to (∆t1,∆t2, . . . ,∆tct),

then the regret only comes from π using a constant price during a price change epoch, instead of

using flexible prices by π∗. In this case, r∗t+τi−1
= ri where τi−1 :=

∑i−1

k=1 ∆tk is the time elapsed

after the (i− 1)th adoption in the cycle. Hence, the regret due to (B) is zero since

ct∑
i=1

r∗t+τi−1
ξ(Dπ

t + i− 1)x(r∗t+τi−1
)∆ti−

ct∑
i=1

rπt ξ(D
π
t + i− 1)x(rπt )∆ti

=

ct∑
i=1

riξ(D
π
t + i− 1)x(ri)∆ti−

(
ct∑
i=1

ξ(Dπ
t + i− 1)∆ti

)(∑ct
j=1 rjx(rj)ξ(D

π
t + j− 1)∆tj∑ct

j=1 ξ(D
π
t + j− 1)∆tj

)
= 0.
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where the first equality is from (4.7). However, regret will not be zero because of the error from

approximating the inter-adoption times. We use D̂π to denote the corresponding demand sequence

from the approximated inter-adoption times. Specifically, under process D̂π, we have D̂π
t =Dπ

t and

an additional adoption after ∆t1, after ∆t2, and so on. Hence, along with the analysis above, (B)

is bounded above in the order of
(
r∗t (θ0,D

π
t )− r∗t (θ0, D̂

π
t )
)2

, which is in the same order as (A).

Now, taking the bounds on (A), (B), and (C) into (B.76), to prove the theorem, it suffices to

bound

E

[∫ T

tC0

Dπ
t + 1

t+ t0

[
(p0− p̂πt )2 + (q0− q̂πt )2 +

1

m0
2
(m0− m̂π

t )2

]
dt
∣∣FT] . (B.77)

Define ti as the earliest time between T and the occurence of the ith adoption under policy π. Recall

that Ci is the number of adoptions in price cycle i under π, and C[i] :=
∑i

k=0Ci. Furthermore, the

ML estimator θ̂πt is only updated at the start of each price cycle. Hence, using Lemma 3, we know

that on any demand sample path, (B.77) can be bounded above by∫ tC[0]+1

tC[0]

C[0] + 1

t+ t0

1

C[0] + 1
dt+

∫ tC[0]+2

tC[0]+1

C[0] + 1 + 1

t+ t0

1

C[0] + 1
dt+ · · ·+

∫ tC[0]+C1

tC[0]+C1−1

C[0] +C1− 1 + 1

t+ t0

1

C[0] + 1
dt

+ · · ·

+

∫ tC[K−1]+1

tC[K−1]

C[K−1] + 1

t+ t0

1

C[K−1] + 1
dt+ · · ·+

∫ tC[K−1]+CK

tC[K−1]+CK−1

C[K−1] +CK − 1 + 1

t+ t0

1

C[K−1] + 1
dt

≤
∫ tC[1]

tC[0]

C[1]

t+ t0

1

C[0] + 1
dt+

∫ tC[2]

tC[1]

C[2]

t+ t0

1

C[1] + 1
dt+ . . .+

∫ tC[K]

tC[K−1]

C[K]

t+ t0

1

C[K−1] + 1
dt

≤
(

1 + max
i=1,2,...,K

Ci
Ci−1

)∫ T

0

1

t+ t0
dt=O

((
1 + max

i=1,2,...,K

Ci
Ci−1

)
ln(m0T )

)
,

since t0 = Θ(m0
−1). Here, the last inequality is because, for any i= 1,2, . . . ,K,

C[i]

C[i−1] + 1
=
C0 +C1 + . . .+Ci−1 +Ci
C0 +C1 + . . .+Ci−1 + 1

≤ 1 +
Ci

C0 + . . .+Ci−1 + 1
≤ 1 +

Ci
Ci−1

.

Therefore, we can conclude that

R∗−R(π) =O
((

1 + max
i=1,2,...,K

Ci
Ci−1

)
· lnm0

)
. �

EC.2.17. Proof of Proposition 4

Proof. We only need to analyze the concavity of the first term in (5.4), since the remaining

terms are linear in µ′. We denote the first term as φ(µ′) :=
∑D̂t−1

i=0 lnµ′>yi,ti+1 . In what follows, we

will show that φ(µ′) is strictly and jointly concave in µ′.

To show φ(µ′) is strictly concave in µ′, we need to show that its Hessian is negative definite. For

any k= 1,2, . . . ,3(n+ 1), `= 1,2, . . . ,3(n+ 1), we have

∂

∂µ′k
φ(µ′) =

D̂t−1∑
i=0

y
i,ti+1
k

µ′>yi,ti+1
,

∂2

∂µ′kµ
′
`

φ(µ′) =−
D̂t−1∑
i=0

y
i,ti+1
k y

i,ti+1
`

(µ′>yi,ti+1)2
.
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Therefore, for any vector z∈R3(n+1), we have

z>∇2
µ′φ(µ′)z =−

D̂t−1∑
i=0

(z>yi,ti+1)2

(µ′>yi,ti+1)2
≤ 0. (B.78)

Hence, φ(µ′) is jointly concave in µ′. We next show that it is strictly concave. Note that since

D̂t ≥ 3(n+ 1), we can write

z>∇2
µ′φ(µ′)z =−

3n+2∑
i=0

(z>yi,ti+1)2

(µ′>yi,ti+1)2
−

D̂t−1∑
i=3(n+1)

(z>yi,ti+1)2

(µ′>yi,ti+1)2
.

Since the columns of Y are linearly independent, then the first term in the right-hand side is strictly

negative for any z 6= 0. Therefore, z>∇2
µ′φ(µ′)z< 0 for all z 6= 0, hence φ(µ′) is strictly concave.

�

EC.2.18. Proof of Lemma 3′

Proof. For simplicity of notation, we will use Dt instead of Dπ
t to denote the cumulative adop-

tions at time t. Let µ= (β,γ) be the parameter vector where β = (β1, β2, β3) and γ = (γj)
n
j=0. From

our discussion in Section 5.4, note that the ML estimator µ̂t = (β̂t, γ̂t) is unique since Dt ≥ 3(n+1)

and Y is full rank. Note from (4.2) that if either γ̂j = +∞ or γ̂j =−∞, then the likelihood function

is 0 or negative. Then, we know there exist finite δ̄j, j = 0,1, · · · , n such that γ0− δ̄j ≤ γ̂j ≤ γ0 + δ̄j.

If µ0 = (β0, γ0) are the true parameters, note that µ̂t = (β̂t, γ̂t) can be written as:

µ̂t = arg max
µ:β1≥0,
β3≤0

Lt(Ût;µ) = µ0 + arg min
u:ub1≥−β01,
ub3≤−β03

−
Dt∑
i=0

ln
fi(µ0 +u)

fi(µ0)
,

where u= (ub1, ub2, ub3, (ugj)
n
j=0). Let us denote by û the solution of the minimization problem on

the right-hand side above. Hence, µ̂t = µ0 + û.

To complete the proof of Lemma 3′, we will need to establish that Eµ0 [|γ̂tj−γ0j|2 |Dt = k]≤ αγj
k+1

for all j = 0, . . . , n and for some αγj independent of m0.

We examine the estimation error |γ̂tj − γ0j| for some j = 0, . . . , n. Let us denote ej to be the

(n + 4)-dimensional binary vector, where the entry is equal to 1 only at the (j + 4)-th index.

Suppose that |γ̂tj−γ0j|> δ for some δ̄j ≥ δ > 0. This implies that ûgj lies outside the interval [−δ, δ].
Since the objective value is 0 when u= 0, and since the log-likelihood function is continuous and

element-wise concave in γj, then either

−
Dt∑
i=0

ln
fi(µ0 + δej)

fi(µ0)
≤ 0 or −

Dt∑
i=0

ln
fi(µ0− δej)
fi(µ0)

≤ 0.

Note that under the Markovian Bass model, the value fi(µ) for any µ= (β,γ) is stochastic since

its value depends on ti and ti+1, which are random adoption times. Here, ti denotes the time of

the i-th adoption, where i= 0, . . . ,Dt.
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Let Pµ0(·) denote the probability under a demand process that follows a Markovian Bass model

with parameter vector µ0. Therefore,

Pµ0{|γ̂tj − γ0j|> δ}

≤ Pµ0

{
−

Dt∑
i=0

ln
fi(µ0 + δej)

fi(µ0)
≤ 0

}
+Pµ0

{
−

Dt∑
i=0

ln
fi(µ0− δej)
fi(µ0)

≤ 0

}

= Pµ0

{
Dt∏
i=0

fi(µ0 + δej)

fi(µ0)
≥ 1

}
+Pµ0

{
Dt∏
i=0

fi(µ0− δej)
fi(µ0)

≥ 1

}

≤ Pµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
≥ 1

+Pµ0


√√√√ Dt∏

i=0

fi(µ0− δej)
fi(µ0)

≥ 1


≤Eµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)

+Eµ0


√√√√ Dt∏

i=0

fi(µ0− δej)
fi(µ0)

 . (B.79)

Hence, we need to bound the two terms in (B.79). We demonstrate how we can bound the first

term, since the second term can be bounded following similar arguments. By the law of iterated

expectations we know that the first term in (B.79) can be written as

Eµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)

=Eµ0

· · ·Eµ0
Eµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−1

 | FtDt−2

 · · · | F0

 .

(B.80)

We will analyze this expression, starting from the innermost conditional expectation.

Note that

Eθ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−1

=

√√√√Dt−1∏
i=0

fi(µ0 + δej)

fi(µ0)
Eµ0

(√
fDt(µ0 + δej)

fDt(µ0)
| FtDt−1

)

=

√√√√Dt−1∏
i=0

fi(µ0 + δej)

fi(µ0)

(∫ ∞
tDt−1

√
fDt(µ0 + δej)

fDt(µ0)
fDt(µ0)dtDt

)

=

√√√√Dt−1∏
i=0

fi(µ0 + δej)

fi(µ0)

(∫ ∞
tDt−1

√
fDt(µ0 + δej)

√
fDt(µ0)dtDt

)
.

(B.81)

Here, the first equality is because {fi(µ), i= 0, . . . ,Dt− 1} are all FtDt−1
-measurable. The second

equality is because, given the information set FtDt−1
, fDt(µ0) is the conditional probability density

function of the adoption time tDt under a Markovian Bass model with parameter vector µ0. Hence,

we will next derive a bound on
∫∞
tDt−1

√
fDt(µ0 + δej)

√
fDt(µ0)dtDt .



e-companion to Zhang, Ahn, and Uichanco: Pricing for New Products ec41

Note that

1

2

∫ ∞
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt

=
1

2

∫ ∞
tDt−1

(
fDt(µ0 + δej) + fDt(µ0)− 2

√
fDt(µ0 + δej)fDt(µ0)

)
dtDt

= 1−
∫ ∞
tDt−1

√
fDt(µ0 + δej)fDt(µ0)dtDt ,

where the last equality is because the integral of the probability density function
∫∞
tDt−1

fDt(µ)dtDt

is equal to 1 for any µ. Therefore,∫ ∞
tDt−1

√
fDt(µ0 + δej)fDt(µ0)dtDt = 1− 1

2

∫ ∞
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt . (B.82)

The integral on the right-hand side is the Hellinger distance between fDt(µ0 + δej) and fDt(µ0),

which are probability densities of the adoption time tDt .

Note that the Hellinger distance can be lower bounded by the K-L divergence (see corollary 4.9

in Taneja and Kumar 2004). Specifically,

1

2

∫ ∞
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

≥ 1

4
√
R
Eµ0

(
ln

fDt(µ0)

fDt(µ0 + δej)
| FtDt−1

)
, (B.83)

where R is a constant such that R≥minδ
1

fDt (µ0+δej)
≥ 1

m0p0x̄u
, where x̄u is defined in Assumption 1.

We will next derive a bound on the right-hand side.

Note that if we define CI := (x(r;γ0) + δ̄jbj,n(r))2/bj,n(r)2 for some r ∈ (0,1), we have

∂

∂δ
ln

fDt(µ0)

fDt(µ0 + δej)
=−

bj,n(rtDt )∑
i6=j γ0ibi,n(rtDt ) + (γ0j + δ)bj,n(rtDt )

,

and

∂2

∂δ2
ln

fDt(µ0)

fDt(µ0 + δej)
=

bj,n(rtDt )
2(∑

i 6=j γ0ibi,n(rtDt ) + (γ0j + δ)bj,n(rtDt )
)2 ≥

1

CI
.

Note that CI is independent of m0.

Furthermore, since the expectation of the Fisher score under the true parameter is zero, we have

Eµ0

(
∂

∂δ
ln

fDt(µ0)

fDt(µ0 + δej)

∣∣∣
δ=0
| FtDt−1

)
= 0.

Hence, a simple calculation yields

Eµ0

(
ln

fDt(θ0)

fDt(µ0 + δej)
| FtDt−1

)
=Eµ0

(∫ δ

0

∂

∂z
ln

fDt(µ0)

fDt(µ0 + zej)
dz | FtDt−1

)
=Eµ0

(∫ δ

0

(
∂

∂z
ln

fDt(µ0)

fDt(θ0 + zej)
− ∂

∂z
ln

fDt(µ0)

fDt(θ0 + zej)

∣∣∣
z=0

)
dz | FtDt−1

)
=Eµ0

(∫ δ

0

∫ z

0

∂2

∂z′2
ln

fDt(θ0)

fDt(µ0 + z′ej)
dz′ | FtDt−1

)
≥ 1

2CI
δ2.
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Then, (B.83) reduces to

1

4
√
RCI

δ2 ≤
∫ ∞
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt−1.

Hence, from (B.82), we have∫ ∞
tDt−1

√
fDt(µ0 + δej)fDt(µ0)dtDt = 1− 1

2

∫ ∞
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt

≤ exp

(
−1

2

∫ ∞
tDt−1

(√
fDt(µ0 + δej)−

√
fDt(µ0)

)2

dtDt

)
≤ exp

(
− 1

8
√
RCI

δ2

)
,

where the first inequality is because e−x ≥ 1−x for all x.

Hence, from (B.81), we have

Eθ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−1

≤
√√√√Dt−1∏

i=0

fi(µ0 + δej)

fi(µ0)
exp

(
− 1

8
√
RCI

δ2

)
. (B.84)

This provides a bound for the innermost conditional expectation in (B.80). Observe that all

of the terms in the right-hand side of (B.84) are FtDt−2
-measurable, except for the term√

fDt−1(µ0 + δej)/fDt−1(µ0). Hence, if we take the conditional expectation on both sides of (B.84)

given FtDt−2
, and use the same logic as our arguments above, we get

Eµ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)
| FtDt−2

≤
√√√√Dt−2∏

i=0

fi(µ0 + δej)

fi(µ0)
· exp

(
− 2

8
√
RCI

δ2

)
We can proceed iteratively to evaluate (B.81) as we take conditional expectations given FtDt−3,

FtDt−4, F0, resulting in

Eθ0


√√√√ Dt∏

i=0

fi(µ0 + δej)

fi(µ0)

≤Eµ0

(
exp

(
− Dt + 1

8
√
RCI

δ2

))
Using similar arguments, we can get the same bound for the second term in (B.79). Therefore, we

have

Pµ0{|γ̂tj − γ0j|> δ} ≤ 2Eµ0

(
exp

(
− Dt + 1

8
√
RCI

δ2

))
.

Hence,

Eµ0
[
(γ̂tj − γ0j)

2 |Dt = k
]

=

∫ ∞
0

Pµ0
{

(γ̂tj − γ0j)
2 > δ |Dt = k

}
dδ

=

∫ ∞
0

Pµ0
{
|γ̂tj − γ0j|2 >

√
δ |Dt = k

}
dδ

≤
∫ ∞

0

exp

(
− k+ 1

8
√
RCI

δ

)
dδ=

8
√
RCI

k+ 1
.
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EC.2.19. Proof of Lemma 4′

Proof. The proof of Lemma 4′ follows exactly the same steps as the proof of Lemma 4. The

only difference is to show
∣∣∣∂r∗t∂γi

∣∣∣ is bounded. Because x(r) is linear in every γi, we have γi to be in

the similar positions to p or q. Therefore, following the steps to bound
∣∣∣∂r∗t∂p ∣∣∣ or

∣∣∣∂r∗t∂q ∣∣∣ gives us the

desired result. We next discuss how to bound
∣∣∣∂r∗t∂γi

∣∣∣.
Using the equation (3.2) satisfied by r∗t (θ, d), we differentiate r∗t with respect to γi and rearranging

terms, we get that for any d,

∣∣∣∣∂r∗t (µ,d)

∂γi

∣∣∣∣=
∣∣∣∣∣∣∣∣∣
∂

∂γi
[V (d,T − t)−V (d+ 1, T − t)]−

bi,n(r∗t )x
′(r∗t )−x(r∗t )

(
n

i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

x′(r∗t )
2

2x′(r∗t )
2−x(r∗t )x

′′(r∗t )

x′(r∗t )
2

∣∣∣∣∣∣∣∣∣ .
(B.85)

Similar to (B.56), we have

∂

∂γi
[V (d,T − t)−V (d+ 1, T − t)]︸ ︷︷ ︸

(A1)

=
∂2V (d,T − t)

∂γi∂t
· 1

(m− d)
(
p+ d

m
q
)
x(r∗t )︸ ︷︷ ︸

(A2)

−
2x(r∗t )x

′(r∗t )bi,n(r∗t )−x(r∗t )
2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

x′(r∗t )2
.

(B.86)

We now examine the absolute value of (A2) on the right-hand side of (B.86). Because the partial

effect of γi on the expected revenue rate cannot exceed the rate when all the remaining population

(m− d) are directly affected by γi without being affected by the current price r∗t , we know∣∣∣∣∂2V (d,T − t)
∂γi∂t

∣∣∣∣≤ (m− d)(p+ qd/m)r∗t bi,n(r∗t ).

Hence, we can bound the absolute value of (A1) as follows:

|(A1)| ≤ r∗t bi,n(r∗t )

x(r∗t )
+

∣∣∣∣∣2x(r∗t )x
′(r∗t )bi,n(r∗t )−x(r∗t )

2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

x′(r∗t )2

∣∣∣∣∣ . (B.87)

Therefore, we substitute (B.87) into (B.85) to get∣∣∣∣∂r∗t (µ,d)

∂γi

∣∣∣∣≤ ∣∣∣∣ r∗t bi,n(r∗t )x
′(r∗t )

2

x(r∗t ) (2x′(r∗t )2−x(r∗t )x′′(r
∗
t ))

∣∣∣∣+
∣∣∣∣∣2x(r∗t )x

′(r∗t )bi,n(r∗t )−x(r∗t )
2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

2x′(r∗t )2−x(r∗t )x′′(r
∗
t )

∣∣∣∣∣
+

∣∣∣∣∣bi,n(r∗t )x
′(r∗t )−x(r∗t )

(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

2x′(r∗t )2−x(r∗t )x′′(r
∗
t )

∣∣∣∣∣
≤ M 2

x̄lCd
bi,n(r∗t ) +

2Mx̄u

Cd
bi,n(r∗t ) +

∣∣∣∣∣ x̄u2
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

Cd

∣∣∣∣∣+ M

Cd
bi,n(r∗t )

+

∣∣∣∣∣ x̄u
(
n
i

)
r∗t
i−1(1− r∗t )n−i−1 (i−nr∗t )

Cd

∣∣∣∣∣
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where the inequality follows from Assumption 1(i),(ii), (iv). Note that all terms on the RHS of the

inequality does not scale up with the market size m0 and is finite since r∗t does not scale up with

the market size m0 all γi are finite.
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