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Abstract—A recently proposed unified precoding and pilot
design optimization (UPPiDO) framework offers a reduction
in both training and feedback overhead of acquiring channel
state information (CSI) and an enhancement in robustness (to
CSI uncertainties) at the expense of a more computationally
demanding precoding optimization. To address this increased
complexity, in this paper we first propose an unfolding-friendly
iterative algorithm, which can efficiently address a family of non-
convex and non-smooth problems. Then, we develop an efficient
approach to unfold the iterative algorithm designed. Besides
being applicable to important and typical iterative optimization
algorithms, a pivotal advantage of the proposed unfolding ap-
proach is that the trainable parameters are scalars (rather than
matrices). This, in turn, reduces the number of training samples
required and makes it suitable for rapidly fluctuating wireless
environments. We apply the algorithm unfolding (AU) techniques
developed to our UPPiDO-based symbol-level precoding and
block-level precoding. Our complexity analysis indicates that the
computational complexity is scalable both with the numbers of
served users and antennas. Our simulation results demonstrate
that the number of outer iterations (or layers) required is about
1/3 of that of the original iterative algorithms.

Index Terms—Algorithm unfolding, symbol-level precoding,
block-level precoding, MIMO communications, unified precoding
and pilot design optimization, complexity reduction.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) techniques
that employ a large number of antennas at the base station
(BS) to simultaneously serve multiple users have received
considerable attention in wireless communications, thanks to
their high spectrum and energy efficiency, while relying on
appealingly low-complexity signal processing techniques [1].
The most fundamental technique of reaping these benefits
is to maximize a performance metric of interest via solving
an optimization-based transmit precoding problem, which has
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been an active research area [2]. In the past twenty years, a
variety of precoding algorithms have been proposed to improve
the system performance [3]–[7], typically with the goal of
maximizing the system’s sum-rate.

Recently, the symbol-level precoding (SLP), an important
branch of precoding design, has received particular attention,
thanks to its prominent advantages, involving the constructive
utilization of interference for improving the energy efficiency.
In contrast to classical precoding methods, where interferences
are often regarded as a limitation and are suppressed, inter-
ferences in SLP are actively exploited from an instantaneous
point of view. In particular, the concept of constructive inter-
ference (CI) was exploited to improve system performance
in [8]–[12]. Noticeably, a low-complexity vector precoding
scheme was proposed in [12] for the limited-feedback multi-
user MISO downlink, which is the first work on optimization-
based CI precoding. This was followed by [13], proposing
explicit precoding optimization for the first time based on CI
with strict angle constraints, which was then extended in [14]
to a CSI-robust CI precoding relying on relaxed optimization.

Although the iterative precoding algorithms of [6]–[13],
[15], [16] achieve optimal performance, their increased trans-
mitter complexity impedes their application in real-time sys-
tems, especially for large-scale multi-antenna systems. The
reason for this is three-fold. First, commonly-used operations
such as the inversion and multiplication of matrices of large
dimension are very expensive, which is exacerbated through
numerous iterations within an iteration-based precoding algo-
rithm. Second, the number of optimization problems to be
solved may be excessive. For example, in SLP it depends
on the product of sizes of constellations of all served users.
Third, to exploit the specific features of the problems studied,
non-smooth regularization or penalty terms are incorporated,
which leads to increased computational complexity [17]–[20].
As an example, when UPPiDO [18] is incorporated into
precoding, the L1 penalty/regularization term is added into the
objective function to achieve the goal of pilot selection, which
increases the complexity. Thus, efficient algorithms having low
complexity are sought for precoding designs.

To address computation-intensive and time-sensitive prob-
lems in signal processing and wireless communications, ma-
chine learning based algorithms have been developed [21]–
[31]. Recently, an insightful taxonomy has been proposed in
[32], whose key is to identify the presence of a continuum
in terms of specificity and parameterization and view deep
learning [21]–[24] and model-based optimization [6]–[13] as
two ends of the continuous spectrum. Based on this perspec-
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tive, hybrid model and deep learning techniques with different
levels of specificity and parameterization lie in the middle
part of the spectrum. Compared to deep neural network based
black-box solutions, which typically require a huge number
of training samples and suffer from poor interpretability, the
model-based learning techniques can enjoy the advantages of
both model-based and learning-aided solutions while overcom-
ing their drawbacks. The hybrid model and (deep) learning
techniques fall into three categories [32], namely: 1) coined
learned optimizers [33], [34]; 2) deep unfolding, also referred
to as algorithm unfolding (AU) [25]–[31]; and 3) deep neural
network aided optimizers [35].

The model-based AU approach [25]–[31] has been shown
to lead to superior performance, which is thus the focus of
this paper. The key of AU unfolds the iterations of an existing
iterative algorithm into a neural-network-analogous layer-wise
structure and optimizes the relevant hyper-parameters via
gradient descent and back-propagation methods [25]. The AU
approach accommodates different strategies, and two typical
strategies are that hyper-parameters or per-iteration objective
parameters are chosen as the trainable parameters [32]. A
deep-unfolding algorithm has been recently proposed for the
popular weighted minimum mean-square error (WMMSE)
iterative precoding optimization algorithm [26]. In terms of
symbol detection, a data-driven model-based symbol detector,
referred to as ViterbiNet, was proposed in [27].

Although AU is a promising approach to reduce the compu-
tational complexity of optimization-based iterative precoding
design, only specific AU-based solutions have been developed
for specific iterative algorithms (e.g., the classical WMMSE
algorithm [26]). An efficient AU approach for general iterative
optimization-based precoding algorithms is still unavailable.
The reason is that many optimization-based precoding designs
(in particular, continuous convex optimization) depend on
interior-point methods (IPMs), e.g., the primal-dual interior-
point method. However, complicated and/or non-differentiable
operations (e.g., to solve systems of linear equations and
use line search tricks) within IPMs prevent the use of back-
propagation to train a network, which thus hinders the employ-
ment of AU in general IPM-based algorithms. Recently, an AU
method has been proposed in [38] for the family of proximal-
IPM algorithms, which, however, can only tackle very simple
constraints, i.e., affine, hyper-slab and bounded l2 norm con-
straints. When it comes to the class of algorithms conceived
for more sophisticated composite optimization problems (e.g.,
UPPiDO-based precoding), the issue of AU is even harder.

In this paper, we propose an efficient technique of un-
folding an iterative optimization algorithm tailored for fairly
general kind of non-convex and/or non-smooth optimization
problems, which includes UPPiDO-based precoding designs.
The novel contributions of this paper are contrasted to the
literature in Table-I. First, we propose an unfolding-friendly
iterative optimization algorithm for a family of non-convex
and non-smooth problems extensively harnessed both in signal
processing and machine learning. The proposed algorithm
is eminently suitable for exploiting the specific properties,
features and structures of the underlying problems. Then,
we unfold the iterative optimization algorithm obtained by

conceiving an efficient iterative algorithm for solving the
sub-problems (within the iterative algorithm derived) and for
treating the salient hyper-parameters as learnable parameters
to obtain a deep network. In view of the fact that almost
all iterative algorithms expect large step-size parameters at
the beginning and hope to decrease them gradually as the
iterations proceed [39], [40], the strategy that makes the
hyper-parameters learnable yields better generalization and
robustness at a reduced sampling complexity. We apply the
proposed AU techniques both to UPPiDO-based SLP and to
block-level precoding (BLP) problems. The main contributions
are summarized as follows:

• To enable and facilitate AU, by exploiting the popular
alternating optimization technique and the method of
multipliers we propose an efficient iterative optimization
algorithm for an important family of non-convex and non-
smooth problems (including the UPPiDO-based precod-
ing form as a special case).

• To accelerate convergence, we further unfold the iterative
optimization algorithm derived. In particular, we propose
to employ the Uzawa’s method [39] for solving the sub-
problems within the iterative algorithm obtained, based
on which a deep network accrues quite naturally.

• In addition to reducing the training and feedback over-
head of acquiring CSI, we highlight that the UPPiDO-
based precoding method also helps to enhance robustness
to CSI uncertainties. For the UPPiDO-based SLP/BLP
problems, we propose efficient iterative algorithms.

• Because the optimization objective of the UPPiDO-based
design involves a non-smooth term, which leads to in-
creased complexity, we harness the proposed AU tech-
niques for unfolding the iterative algorithms designed, so
as to achieve the desired complexity reduction.

Both our complexity analysis and our comprehensive sim-
ulation results confirm the superiority of the proposed algo-
rithms. In particular, the simulation results demonstrate that
improved robustness can be achieved at a much-reduced com-
plexity when incorporating both UPPiDO and AU techniques.
In terms of the complexity reduction, the number of iterations
required by our AU-based algorithms is about 1/3 of that of
the original iterative optimization algorithms.

The remainder of this paper is organized as follows. The
system models of the precoding designs with and without
UPPiDO are described in Section II and Section III, respective-
ly. Efficient iteration-based optimization algorithm and deep-
unfolding based solution are proposed for a set of challenging
problems in Section IV. Iterative algorithms and AU-based
solutions are proposed for SLP and BLP in Section V and
Section VI, respectively. The simulation results are provided
in Section VII, and the conclusion is offered in Section VIII.

Throughout the paper, we use the following notations. Bold
uppercase A and bold lowercase a denote matrices and column
vectors, respectively. Non-bold letters A, a represent scalars.
Caligraphic letters, such as A, stand for sets. E(·) and (·)H

denote the mathematical expectation and Hermitian operators,
respectively. I{·} and card(A) are the indicator function and
the cardinality of A, respectively. The notation (·)? denotes an
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Representative Algorithm [21] [26] [36] [37] This Work
Learnable Parameters Matrix Matrix Scalar Matrix Scalar
Sample Complexity High High Moderate Moderate Low
CSI Training/Feedback Overhead Large Large Large Scalable Scalable
Training Complexity High High Moderate Moderate Low
Factors Improving Robustness % % CI CI Joint CI and CSI Reduction
Solvable Problem (via AU) % Specific Specific Specific Fairly General
Type of Solvable Problem (via AU) % Smooth Convex Convex (Even) Non-smooth Non-convex

TABLE I
COMPARISONS OF REPRESENTATIVE LEARNING-BASED PRECODING ALGORITHMS

optimal quantity, e.g., an optimal solution. CN (m,R) stands
for a complex Gaussian random vector with mean m and
covariance matrix R. The notation � represents component-
wise greater than or equal operation.

II. SYSTEM MODEL

Consider the FDD downlink of a single BS equipped with
N transmit antennas for supporting U single-antenna users.
The set of U users is denoted by U = {1, · · · , U}. The users
are randomly and uniformly distributed in the coverage area
of the BS. A uniform linear array (ULA) is considered. It is
relatively straightforward to extend our designs to other types
of antenna array geometries (e.g., uniform planar array).

Under the assumption of ULA, the channel vector between
the BS and each user u can be expressed as [41], [42]

h̄u =

∫
θ∈Au

gu(θ)a(θ)dθ

=

∫ θ̄u+∆u

θ̄u−∆u

|gu(θ)|ejψu(θ)a(θ)dθ. (1)

Here,Au = [θ̄u−∆u, θ̄u+∆u] represents the angular spread of
user u with ∆u being the single-sided angular spread, |gu(θ)|
and ψu(θ) represent the attenuation (amplitude) and random
phase of the signal ray from θ, respectively, and a(·) represents
the array response vector

a(x) =
1√
N

[
1, ejx

2π
λ d, ejx

2π
λ 2d, · · · , ejx 2π

λ (N−1)d
]
,

where λ and d represent the signal wave-length and distance
between any two adjacent antennas, respectively. We consider
a pair of typical precoding schemes, namely the CI-constraint
based SLP and sum-rate maximization based BLP.

A. CI-Constraint based Symbol-Level Precoding

For notational simplicity, PSK modulation (with constella-
tion Su of size Bu for user u) is considered here. But, the
algorithms developed are also applicable to other modulations
[11]. Let su = ejξu ∈ Su be the intended information
symbol for user u (with ξu the argument of su) and v be
the transmitted signal. The signal received at each user u can
be written as

yu = h̄H
uv + wu,

where wu ∼ CN (0, σ2) denotes random noise.

To improve energy efficiency, the idea of CI is exploited.
For PSK modulation, the key of the CI design principle can
be captured by the following constraints (∀u ∈ U) [14]∣∣Im(h̄H

uve−jξu)
∣∣ ≤ (Re(h̄H

uve−jξu)− γu
)

tan(π/Ku), (2)

where γu quantifies the quality of received signal (QoRS) of
user u. The above design constraints enforce that the CI pushes
the received signal away from the decision boundaries of the
PSK constellation. The interested reader is referred to [14] for
more details and [43] for an extensive overview of SLP and
its application to other modulation formats. As an example,
we consider the power-minimization SLP problem, which can
be formulated as [14]

min
v

‖v‖2

s.t.
∣∣Im(h̄H

uve−jξu)
∣∣ ≤ (Re(h̄H

uve−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(3)

B. Sum-Rate Maximization based Block-Level Precoding

To demonstrate the generality of our AU approach, we
further consider a classical block-level precoding design. Let
vu ∈ CN×1 and su ∼ CN (0, 1) represent the precoding vector
and the data stream of user u ∈ U , respectively. Then, the
signal received by user u ∈ U is expressed as

yu = h̄H
uvusu +

∑
v 6=u

h̄H
uvvsv + wu.

The signal to interference-plus-noise ratio (SINR) γu of the
user u ∈ U is calculated as

γu =

∣∣h̄H
uvu

∣∣2∑
v 6=u

∣∣h̄H
uvv

∣∣2 + σ2
.

The optimization problem of the classical sum-rate maxi-
mization based BLP is formulated as

max
{vu}

∑
u∈U

log (1 + γu)

s.t.
∑
u∈U
‖vu‖2 ≤ Pb,

(4)

where Pb denotes the power budget of the BS.
Note that solving Problems (3) and (4) requires physical CSI

(pCSI) {h̄u}. However, it is difficult to obtain high-precision
pCSI for a FDD system, since the reciprocity between the
uplink and downlink channels cannot be exploited. Hence, the
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overhead of downlink training and uplink feedback may be
prohibitively high. Furthermore, the CSI feedback also suffers
from quantization noise and channel errors. To tackle this
issue, instead of pCSI, the UPPiDO is proposed to design
the precoders using modified CSI (mCSI), defined as {FHh̄u}
with F a matrix of appropriate dimension [18]. Next, we
briefly introduce UPPiDO for completeness.

III. PRINCIPLE, PROBLEM REFORMULATION AND
EXTENSION OF UNIFIED PRECODING AND PILOT DESIGN

OPTIMIZATION (UPPIDO)

In this section, we elaborate on applying UPPiDO to the
above pair of typical precoding designs. Due to space limita-
tion, the principle of UPPiDO can only be briefly introduced
here. We refer interested readers to [18] for details.

A. A Brief Introduction of UPPiDO

The UPPiDO framework incorporates two key support tech-
niques, i.e., mCSI based precoding and pilot design (mCSI-
PPD) as well as mCSI based intelligent sensing and selection
(mCSI-ISS). On the one hand, the key to reducing the overhead
of training and feedback is to exploit the channel’s sparsity. To
this end, mCSI-PPD jointly optimizes the pilot and precoding
in another domain, where the corresponding mCSI is sparse.
On the other hand, even though the mCSI is sparse, it may still
contain redundant and/or inaccurate information. Our mCSI-
ISS technique tackles this issue by identifying and selecting
significant mCSI. Specifically, automatic model selection via
L1 regularization (or other sparsity-induced regularizations) is
utilized to induce, identify and select significant mCSI.

Let vu ∈ CN denote the precoding vector of user u. The
set {h̄H

uvw} collects all terms that take the form of the inner
product between the channel vectors and precoding vectors,
i.e., {

h̄H
uvw

}
=
{
h̄H
uvw |u ∈ U , w ∈ U

}
. (5)

The problem of a typical precoding design (including Prob-
lems (3) and (4) as special cases) can be formulated as 1

min
{vw}

f
(
{h̄H

uvw}
)

s.t. gi
(
{h̄H

uvw}
)
≤ 0, (i ∈ I = {1, · · · , I}),

(6)

where {gi(·) ≤ 0} represent inequality constraints. Note that
in Problem (6), the physical channel vectors {h̄u} never
emerge alone. Instead, they always take the form of an inner
product with the precoding vectors. Since the only requirement
is that the optimization variables of interest and {h̄u} satisfy
the form of inner product, the form in (6) is very general and
contains many precoding designs of interest.

The theoretical foundation of the mCSI-PPD technique is
provided in Theorem 1.

1Because an equality constraint e(x) = 0 is equivalent to two inequality
constraints (i.e., e(x) ≤ 0 and e(x) ≥ 0), problem (6) has contained equality
constraints. But the form in (6) simplifies the description of our approach.

Theorem 1 ( [18]). Let F be a matrix such that the set of all
column vectors of F, denoted by F , spans the vector space
CN . Then, Problem (6) is equivalent to the following problem

min
{yw}

f
(
{h̄H

uFyw}
)

s.t. gi
(
{h̄H

uFyw}
)
≤ 0, (∀ i ∈ I).

(7)

Moreover, let the set {y?w} be an optimal solution of Problem
(7). Then, the set {v?w = Fy?w} is an optimal solution of
Problem (6).

Theorem 1 indicates that to solve Problem (6), it is sufficient
to solve the equivalent optimization problem in (7). Compared
to the original problem in (6), the advantage of the equivalent
problem in (7) is that there is no need to estimate pCSI {h̄u}.
2 Instead, if the mCSI, defined as {hu = FHh̄u}, is available,
an efficient precoder can still be obtained. More important-
ly, by appropriately designing F (or F), the acquisition of
{FHh̄u} may be much easier, e.g., lower training overhead.
For example, via appropriate design, {FHh̄u} may be sparse,
and thus the CSI acquisition results in low feedback.

Remark 3.1 To obtain the optimal performance, F should
also be optimized, which is, however, beyond the scope of this
paper. An efficient approach has been proposed in [37]. In view
of channel model (1) (e.g., with limited angular spread), F is
chosen to be the DFT codebook in Section VII.

As F plays the role of estimating mCSI, it can be reasonably
referred to as a pilot. However, F may provide redundant or
useless information and thus it is inefficient. The key to reduce
training and feedback overhead is to carefully choose a subset
from F , which is defined as intelligent pilot (IP) and denoted
by FIP. However, it is non-trivial to choose an optimal IP. The
mCSI-ISS addresses this issue by exploiting the property that
the L1 regularizer tends to induce a sparse solution, which
allows us to automatically identify and choose an IP. Then,
the problem in (7) can be further reformulated as

min
{yw}

f
(
{hH

uyw}
)

+ ρ
∑
w

‖yw‖1

s.t. gi
(
{hH

uyw}
)
≤ 0, (∀ i ∈ I),

(8)

where ρ > 0 is a regularization constant. Because of the term
ρ
∑
w ‖yw‖1, the optimal solution of Problem (8) is often

sparse, based on which an optimal IP can be identified.

B. UPPiDO-based Problem Reformulation

Based on the above discussion, it can be verified that the
SLP problem in (3) can be reformulated as

min
x

‖Fx‖2 + ρ‖x‖1

s.t.
∣∣Im(hH

uxe−jξu)
∣∣ ≤ (Re(hH

uxe−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(9)

2By regarding each column of F (or each element of F ) as a transmit beam
(with transmit symbol s = 1), the signal received at user u is given by

yu =
√
pFHh̄us+ w,

where p denotes transmit power and w ∼ CN (0, σ2I) is the received noise
vector. Then, yu/

√
p is, in fact, an effective estimate of hu.
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Similarly, the BLP problem in (4) can be reformulated as

max
{xu}

∑
u∈U

log

(
1 +

∣∣hH
uxu

∣∣2∑
v 6=u

∣∣hH
uxv

∣∣2 + σ2

)
− ρ

∑
u∈U
‖xu‖1

s.t.
∑
u∈U
‖Fxu‖2 ≤ Pb.

(10)

Remark 3.2 Besides the advantage of reducing training and
feedback overhead, another important advantage of UPPiDO-
based precoding design in (9) (or (10)) is that compared to
the original form in (3) (or (4)) and the mCSI-based problem
formulation, more robust performance can be achieved for
inaccurate pCSI or mCSI. Numerical results are provided in
Section VII to demonstrate this point, while the theoretical
analysis and proof are deferred to the future work.

Remark 3.3 Since Problem (9) (or (10)) is degenerated into
Problem (3) (or (4)) if F = I and ρ = 0, it is sufficient to
consider the more general Problem in (9) (or (10)). In fact, all
algorithms designed for Problem (9) (or (10)) trivially apply
to the specific problem in (3) (or (4)).

Although many appealing advantages can be achieved via
the UPPiDO-based composite optimization in (8), the reformu-
lated problems become much more complex than the original
problems. In particular, because the L1 regularization term
ρ‖x‖1 (or λ

∑
u∈U ‖xu‖1) is non-differentiable, Problem (9)

(or (10)) is non-smooth [40], which lowers the convergence
rate and thus increases the overall computational complexity.
In the next section, we will first develop an efficient iterative
optimization algorithm, and then unfold it for further reducing
the computational complexity.

For better describing the algorithm that solves Problem (8)
later, we compactly write it as

min
x

f(x) + ρR(x)

s.t. gi(x) ≤ 0, (∀ i ∈ I),
(11)

where x denotes the optimization variable of appropriate
dimension. We further stipulate the following assumptions:
• Each gi(·) can be written as the difference of two convex

functions, i.e., gi(·) = ci(·) − di(·) with ci and di both
convex (di may be zero function, i.e., di = 0). In fact,
gi(·) is often second-order differentiable in many wireless
communication designs, which guarantees that it can be
written as the difference of two convex functions [44].

• f(·) is differentiable and convex. Note that the assump-
tion of convexity is not restrictive. In fact, if f is
not convex, the objective function can be replaced by
t+ ρR(x) upon introducing the variable t and constraint
f(x) ≤ t. Then, the new problem satisfies form (11).

• R(·) is convex but non-differentiable. In most cases, R(·)
is introduced for capturing the specific structures of the
underlying problems. As an example, the L1 norm (i.e.,
R(·) = ‖·‖1) is used to induce a sparse solution and select
significant variables within a UPPiDO-based solution.

Under the above assumptions, Problem (11) is rewritten as

min
x

f(x) + ρR(x)

s.t. ci(x)− di(x) ≤ 0, (∀ i ∈ I).
(12)

Next, we concentrate on the optimization problem in (12).

IV. ITERATIVE ALGORITHM DESIGN AND EFFICIENT
UNFOLDING

In this section, we first propose an unfolding-friendly itera-
tive algorithm. Then, we further unfold the iterative algorithm
designed, so as to reduce the computational complexity.

A. Unfolding-friendly Iterative Algorithm

To obtain an unfolding-friendly iterative algorithm, it is
of pivotal importance to maintain the underlying structure of
R(·). For this purpose, we first introduce an auxiliary variable
z and equivalently write Problem (12) as

min
x,z

f(x) + ρR(z)

s.t. ci(x)− di(x) ≤ 0, (∀ i ∈ I)

x− z = 0.

(13)

To maintain and exploit the structure of R, we further employ
the popular alternative optimization method to address Prob-
lem (13). Specifically, by introducing the penalty parameter κ
and dual variable y for the constraint x−z = 0, Problem (13)
can be written as

min
x,z

f(x) + ρR(z) + yT(x− z) + κ‖x− z‖2/2

s.t. ci(x)− di(x) ≤ 0, (∀ i ∈ I).
(14)

Note, however, that the non-convex constraints in (14) still
prevent an efficient solution. To tackle this issue, we employ
the constrained convex concave procedure [44] to tackle these
constraints. Let xn represent the n-th iteration of x, the (n+1)-
st iteration of x can be obtained by solving

min
x,z

f(x) + ρR(z) + yT(x− z) + κ‖x− z‖2/2

s.t. ci(x)− di(xn)− Odi(xn)T(x− xn) ≤ 0, (∀ i ∈ I).
(15)

To solve Problem (15), it is sufficient to solve the following
two sub-problems alternately and update dual variable y.

1) The problem with respect to (w.r.t.) x: The variable x is
updated by solving the following problem

min
x

f(x) + yT(x− z) + κ‖x− z‖2/2

s.t. ci(x)− di(xn)− Odi(xn)T(x− xn) ≤ 0, (∀ i ∈ I).
(16)

Since Problem (16) is, in fact, convex, it can be solved via a
convex optimization toolbox.

2) The problem w.r.t. z: The auxiliary variable z can be
updated by solving the following optimization problem

min
z

ρR(z) + yT(x− z) + κ‖x− z‖2/2. (17)

Via algebraic operations, it can be verified that Problem (17)
can be equivalently written as

min
z

ρR(z) +
κ

2
‖x− z + y/κ‖2. (18)
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The optimal solution of Problem (18) can be represented by
proxρ/κR(x + y/κ), where prox(·) is the proximal operator.
For a convex function h, its proximal operator is defined as

proxh(x) = arg min
u∈domh

{
h(u) +

1

2
‖u− x‖2

}
.

In some cases, an analytic expression of proxρ/κR(x+y/κ)
is available. In particular, for the L1 norm used in this paper
(i.e., R(z) = ‖z‖1), proxρ/κR(x + y/κ) is calculated as

z? = sign(x + y/κ)�max{|x + y/κ| − ρ/κ, 0}, (19)

where sign(·) is the sign function (i.e., sign(z) = z/|z| for z 6=
0) 3, and � represents the Hardmard product (i.e., element-
wise product) of two vectors. Note that the operations sign(·),
max{·} and | · | in (19) act on their arguments in an element-
wise manner. The benefit is that thanks to the element-wise
representation, the update in (19) can be operated in parallel.

Finally, we consider the update of the dual variable y. In
the n-th iteration, the dual variable y is updated as

yn = yn−1 + κ(xn − zn), (20)

where zn represents the n-th iteration of z. To obtain better
convergence performance, the penalty parameter κ should also
be updated. The update expression can be chosen as

κn+1 =

{
βκn ‖xn − zn‖2 > γ‖xn−1 − zn−1‖2

κn otherwise,
(21)

where β > 1 and γ ∈ (0, 1) are real numbers introduced to
control the increasing rate of κ.

Algorithm 1: Iterative Algorithm for Problem (11) or (12)
1: initialize: dual variable y, auxiliary variable z, β and γ
2: repeat

(a) update primal variable x by solving (16)
(b) update auxiliary variable z by solving (18)
(c) update dual variable y according to (20)
(d) update penalty parameter κ according to (21)

3: until some convergence criterion is met
4: output: optimal solution x?

The complete iteration procedure is summarized in Algo-
rithm 1. The dual variable y and auxiliary variable z are first
initialized. In Step (a) and Step (b), x and z are updated
by solving Problem (16) and Problem (18), respectively. The
dual variable y is updated according to (20) in Step (c), and
the penalty parameter κ is updated in Step (d) as per (21).
The convergence criterion can be ‖xn − xn−1‖ ≤ ε and
‖zn−zn−1‖ ≤ ε, where ε (> 0) denotes a small real number.
Although the derivation of the proposed algorithm bears some
similarity to ADMM (e.g., [45]), which is mainly applicable
to convex problems, our algorithm is also applicable to more
challenging non-convex problems. This is attributed to the
comprehensive use of sophisticated techniques (e.g., splitting,
alternative optimization, local convexification and dual ascent).

3The real domain is considered here. For the complex domain, sign(·) is
replaced by the complex sign function sgn(·), i.e., sgn(z) = z/|z| for z 6= 0.

Thanks to these techniques, compared to the conventional
augmented Lagrangian method, our algorithm can fully exploit
problem structures (e.g., block or sparsity structure) and has
low complexity. Typically, closed-form solutions are available
and/or smooth optimization methods (with faster convergence
rate) can be applied for the sub-problems.

Note that the performance of the composite optimization al-
gorithm conceived heavily depends on the preassigned hyper-
parameters (e.g., the penalty parameter κ and step-size param-
eters used by the algorithm to solve Problem (16)). However, it
is a challenging task to choose them optimally. In fact, they are
often chosen heuristically. Moreover, computation-intensive
operations (e.g., matrix inversion) within an IPM when solving
(16) further exacerbate the issue of escalating computational
complexity. Next, we employ the AU techniques to address
these challenging issues for enhancing the performance of the
iterative algorithm constructed.

B. Network Architecture for Efficient Unfolding
The main difficulty of unfolding Algorithm 1 lies in solving

Problem (16). Although Problem (16) can be solved by IPM,
many complex operations caused by IPM hinder efficient
unfolding. In a nutshell, it is not the best option to unfold
an IPM-based iterative algorithm. Here, we tackle this issue
by developing an unfolding-oriented iterative algorithm. In
view that Problem (16) is convex and the strong duality the-
orem holds (under some constraint qualification, e.g., Slater’s
constraint qualification [40]), dual methods can be utilized to
address this problem. The Uzawa’s method [39] is chosen to
solve Problem (16), which can be equivalently written as

min
x

f(x) + κ‖x− z + y/κ‖2/2

s.t. ci(x)− di(xn)− Odi(xn)T(x− xn) ≤ 0, (∀ i ∈ I).
(22)

For convenience, let J(x) = f(x)+κ‖x−z+y/κ‖2/2 and
φi(x) = ci(x) − di(xn) − Odi(xn)T(x − xn). The Lagrange
dual function of Problem (22) is given by

G(µ) = inf
x
L(x,µ), (µ ∈ RI+, I = card(I)), (23)

where µ denotes the dual variable and L(x,µ) is the La-
grangian of Problem (22), i.e.,

L(x,µ) = J(x) +
∑
i∈I

µiφi(x). (24)

The projection-gradient method is applicable to the following
dual problem due to its convexity

min
µ∈RI+

G(µ). (25)

Uzawa’s method [39] is essentially the gradient method with
fixed step-size applied to the dual problem in (25), which is
also designed to yield a solution of the primal Problem (22).
Specifically, given an arbitrary initial dual vector µ1 ∈ RI+,
the sequences {µm} and {xm} are constructed, and with µm
available, xm and µm+1 are determined as follows:

xm = arg min
x

L(x,µm) (26)

µm+1,i = max
{
µm,i + αφi(xm), 0

}
, (i ∈ I), (27)
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where α denotes the step-size parameter (for the dual update)
and µm,i represents the i-th component of µ in the m-th
iteration. The procedure of solving Problem (22) is provided
in Algorithm 2. Similarly, the convergence criterion is that the
duality gap is sufficiently small.

Algorithm 2: Iterative Algorithm for Problem (22)
1: initialize dual variable µ1 ∈ RI+ (arbitrarily), let m = 1

2: repeat
(a) update primal variable x by minimizing L(x,µm)

(b) update dual variable µ according to (27)
(c) update counter m← m+ 1

3: until some convergence criterion is met
4: output: optimal (primal) solution x?n

Iteration 1





Algorithm 1

Various Solvers to 
Update Variable x 

Interior-Point 
Method

Algorithm 2 
Unfolding-Friendly

Iteration 2

Iteration n

Iteration N

0x

1 11, ( , )x z y

2 22 , ( , )x z y

, ), ( nn nx z y

, ),( NN Nx z y

optx

Update Variable x

Fig. 1. The relationship between Algorithm 1 and Algorithm 2.

For clarity, the relationship between Algorithms 1 and 2 is
illustrated in Fig. 1. As a general algorithm or framework,
Algorithm 1 accommodates various methods to update x,
among which Algorithm 2 is a particularly unfolding-friendly
one. It is also observed that we should first unfold Algorithm
2 (before unfolding Algorithm 1), because it is the basis
of unfolding the more complex Algorithm 1. It should be
noted that unfolding Algorithm 2 itself is very important,
e.g., when the regularization term ρR(·) is absent. Since the
update of µ in (27) is trivial, it is sufficient to consider (26).
The problem of minimizing L(x,µm) is an unconstrained
optimization problem. In some cases, a closed-form solution
may be available. So, we consider the case where a closed-
form solution is unavailable. In this case, gradient descent can
be used to address this problem:

xm,l+1 = xm,l − ηmOxL(xm,l,µm), (28)

where ηm is the step-size within the m-th iteration.
Because parameters α in (27) (for dual update) and η in

(28) (for primal update) play a key role, they are chosen as
the trainable parameters. In (27), parameter α is shared by
all components of µ. To obtain better performance, different
components may be updated by different step-sizes. To solve
the problem minx L(x,µm), the gradient descent operation
in (28) is repeated B times (i.e., l = 1, · · · , B) for each µm,
with different step-sizes (i.e., to use step-size ηm,l for the l-th

sub-iteration within the m-th iteration). The updates in (26)
and (27) are performed M times (i.e., m = 1, · · · ,M ). Then,
all trainable parameters are collected in set A, i.e.,

A = {αm,i, ηm,l |m = 1, · · · ,M,

i = 1, · · · , I, l = 1, · · · , B}.
(29)

The size of A is MI + MB. Given A and update formulas
in (27) and (28), a deep network via AU can be established
immediately, whose structure is shown in Fig. 2. Since this
network is designed to solve the primal problem in (16), it is
referred to as primal problem solving network (PPSN), which
is essentially a mapping denoted by P(·,A).

Iteration 1
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Fig. 2. The structure of the primal problem solving network (PPSN).

Based on PPSN, we can unfold the composite optimization
algorithm (i.e., Algorithm 1). For clarity, the structure of the
composite optimization algorithm induced deep-unfolding net-
work (COA-DUN) is provided in Fig. 3. COA-DUN consists
of K layers (i.e., outer iterations), and each layer consists of
three subnetworks/components, i.e., PPSN subnetworks, aux-
iliary variable update and dual variable update. The trainable
parameters of COA-DUN are summarized below:
• {An |n = 1, · · · ,K}: An contains all learnable param-

eters of the n-th PPSN subnetwork.
• {κn |n = 1, · · · ,K − 1}: κn denotes the penalty param-

eter corresponding to the n-th layer of COA-DUN.
All trainable parameters are collected in Θ = {An, κn}. The
mapping induced by COA-DUN is denoted by G(·,Θ).

C. Efficient Training Procedure

Now, we discuss how to train COA-DUN. Given a train-
ing dataset D = {(X1,Y1), (X2,Y2), · · · , (XT ,YT )} 4, the
trainable parameters are learned as follows. For each sample
(Xj ,Yj), the forward propagation yields a prediction output
G(Xj ,Θ). Then, the training loss is calculated as

L(Xj ,Yj) =
1

2

∥∥G(Xj ,Θ)− Yj
∥∥2
. (30)

Since the loss is available, the trainable parameters can be
updated via the back-propagation method. Because all mathe-
matical operations within the mapping G(·,Θ), e.g., (27) and
(28), are differentiable or differentiable almost everywhere, the

4The input X and label Y of COA-DUN depend on specific applications.
For SLP, the input includes mCSI and transmitted symbols of U users (i.e.,
X = {hu, ξu |u ∈ U}) and the label is the optimal transmit vector x? (i.e.,
Y = {x?}). The input and output for BLP can be similarly determined.
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Fig. 3. The structure of the designed composite optimization algorithm induced deep-unfolding network (COA-DUN).

gradients required can be obtained via the chain rules manually
or by the automatic differentiation methods supported by deep
learning libraries (e.g., Pytorch and TensorFlow). The standard
training procedure via mini-batch and first-order methods can
be used to train the network. To improve sample efficiency and
reduce sample complexity, it is recommended to choose the
layer-wise or hierarchical training scheme or other pretraining
methods. The method to train PPSN is similar.

Remark 4.1 In contrast to existing AU-based deep net-
works, which often require optimizing trainable matrix param-
eters, simple scalar parameters are optimized in this paper.
Therefore, only a small number of training samples are re-
quired, which makes the proposed method eminently suitable
for challenging rapidly fluctuating wireless environments. The
reason for obtaining these benefits is that important prior
knowledge (e.g., problem structures and algorithmic features)
is captured and exploited when designing the networks.

V. ALGORITHM UNFOLDING FOR SYMBOL-LEVEL
PRECODING

In this section, we employ the above techniques to tackle
the SLP optimization problem. For convenience, the UPPiDO-
based SLP optimization problem is rewritten as

min
x,z

‖Fx‖2 + ρ‖z‖1

s.t. x ∈ C, x− z = 0,
(31)

where C denotes the CI-constraint based feasible set, i.e.,

C =
{

x
∣∣∣ ∣∣Im(hH

uxe−jξu)
∣∣ ≤ (Re(hH

uxe−jξu)− γu
)
·

tan(π/Ku), ∀u ∈ U
}
.

The augmented Lagrange penalty problem is given by

min
x,z

‖Fx‖2 + ρ‖z‖1 +
κ

2
‖x− z + y/κ‖2

s.t. x ∈ C.
(32)

Based on Algorithm 1, we can obtain an iterative algorithm
immediately. In fact, the first sub-problem is given by

min
x

‖Fx‖2 +
κ

2
‖x− z + y/κ‖2

s.t.
∣∣Im(hH

uxe−jξu)
∣∣ ≤ (Re(hH

uxe−jξu)− γu
)
·

tan(π/Ku), (∀u ∈ U).

(33)

The problem in (33) is a quadratic program, which can be
solved via a convex optimization toolbox. The second sub-
problem (w.r.t. z) is given by

min
z

ρ‖z‖1 +
κ

2
‖x− z + y/κ‖2. (34)

The closed-form solution of Problem (34) is given by

z? = sgn(x + y/κ)�max{|x + y/κ| − ρ/κ, 0}. (35)

An iterative algorithm, based on (33), (35) and Algorithm 1,
is provided in Algorithm 3.

Algorithm 3: Iterative Algorithm for Problem (9)
1: input: estimated mCSI {ĥu}, data symbols {ξu},

QoRS {γu}, codebook F

2: initialize dual variable y, auxiliary variable z

and penalty parameter κ
3: repeat

(a) update primal variable x by solving (33)
(b) update auxiliary variable z as per (35)
(c) update dual variable y according to (20)
(d) update penalty parameter κ as per (21)

4: until some convergence criterion is met
5: output: optimal precoding vector x?

Next, we proceed to unfold the iterative algorithm derived,
whose task is to solve Problem (33). Because Re(·) and Im(·)
are not holomorphic, the gradient of CI constraint function in
(33) does not exist, and thus Algorithm 1 cannot be directly
employed (in the complex-valued form). To tackle this issue,
we explicitly convert Problem (33) into a real optimization
problem. The conversion process is provided in Appendix A,
and the problem obtained takes the form

min
x̄

1

2
x̄TPx̄ + qT

nx̄

s.t. Ax̄ � b,
(36)

where x̄ collects the real and imaginary parts of variable x.
See Appendix A for details of Problem (36).

The Lagrange dual function of Problem (36) is given by

L(x̄,µ) =
1

2
x̄TPx̄ + qT

nx̄ + µT(b−Ax̄). (37)
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According to (37), the primal-dual update formulas (within the
n-th iteration) are simplified to:

x̄m = P−1(ATµm − qn) (38)

µm+1 = max
{
µm + α(b−Ax̄m), 0

}
. (39)

Let x̄n,m and µn,m+1 denote the optimization variable and
dual variable of the m-th sub-iteration within the n-th iter-
ation, respectively. Let furthermore µn,m,i represent the i-th
component of µn,m. Then, the forward propagation formulas
are given by

x̄n,m = P−1(ATµn,m − qn) (40)

µn,m+1,i = max
{
µn,m,i + αn,m,i(bi − aT

i x̄n,m), 0
}
, (41)

where aT
i denotes the i-th row of matrix A.

With (40) and (41) available and based on Algorithm 2, an
efficient AU-aided deep network can be obtained immediately.
Note that because the optimal solution of minx̄ L(x̄,µm) in
this case has the closed-form expression, parameter B (within
PPSN) is equal to 1 (i.e., B = 1), which thus simplifies the
structure of COA-DUN. The trainable parameters are collected
in Θ = {αn,m,i, κn |n = 1, · · · ,K,m = 1, · · · ,M, i =
1, · · · , 2U}. The method of training Θ has been provided in
Algorithm 2, which is omitted to avoid repetition.

Remark 5.1 Since the CI-constraints in (33) are homoge-
neous (i.e., they are of the same type), if these constraints share
the same parameters, i.e., αn,m,1 = · · · = αn,m,I , (∀m), the
performance degeneration is negligible. However, the number
of trainable parameters required is further reduced.

Finally, we analyze the computational complexity of the
AU-based deep network, quantified by the number of multipli-
cations. The computational complexity of the above AU-based
deep network is on the order of O(8UG2 + 8UGMK). If the
regularization term ρR(·) is absent, it reduces to O(8UG2 +
8UGM). If the AU algorithm is directly applied to pCSI,
the computational complexity further reduces to O(8UNM),
which is scalable to both U (the number of served users) and
N (the number of antennas). Since only simple scalar trainable
parameters are learned and simple mathematical operations
(e.g., matrix-vector multiplication and max(·)) are involved
here, the resultant network has appealingly low computational
complexity. These appealing features also make it possible to
be implemented in real-time.

VI. ALGORITHM UNFOLDING FOR BLOCK-LEVEL
PRECODING

In this section, we employ the AU techniques developed in
Section IV to address the sum-rate maximization based BLP
problem, which is rewritten below for convenience

max
{xu,zu}

∑
u∈U

log

(
1 +

∣∣hH
uxu

∣∣2∑
v 6=u

∣∣hH
uxv

∣∣2 + σ2

)
− ρ

∑
u∈U
‖zu‖1

s.t. xu = zu, (∀u ∈ U),
∑
u∈U
‖Fxu‖2 ≤ Pb.

(42)

The augmented Lagrange penalty problem is given by

max
{xu,zu}

∑
u∈U

log

(
1 +

∣∣hH
uxu

∣∣2∑
v 6=u

∣∣hH
uxv

∣∣2 + σ2

)

− ρ
∑
u∈U
‖zu‖1 −

κ

2

∑
u∈U

∥∥∥xu − zu +
yu
κ

∥∥∥2

s.t.
∑
u∈U
‖Fxu‖2 ≤ Pb.

(43)

To solve Problem (43), we introduce 2U auxiliary variables
{pu, qu} and equivalently write Problem (43) as

max
V

∑
u∈U

(
log (1 + pu)− ρ‖zu‖1 −

κ

2

∥∥∥xu − zu +
yu
κ

∥∥∥2
)

s.t.
∑
u∈U
‖Fxu‖2 ≤ Pb,

∣∣hH
uxu

∣∣2
qu

≥ pu

σ2 +
∑
v 6=u

∣∣hH
uxv

∣∣2 ≤ qu, (∀u ∈ U),

(44)

where V = {xu, zu, pu, qu} is introduced for simplicity.
Let xu,n denote the n-th iteration of xu, and the notations

are defined similarly for other variables. Then, xu,n+1 can be
obtained by solving the convex optimization problem in (46)
(the top of next page). Note that the form in (46) has satisfied
the requirements of applying Algorithm 1 and can be solved
efficiently. Specifically, the first sub-problem is given by

max
{xu,pu,qu}

∑
u∈U

(
log (1 + pu)− κn

2

∥∥∥∥xu − zu +
yu
κn

∥∥∥∥2)
s.t.

∑
u∈U
‖Fxu‖2 ≤ Pb

2Re
(
xH
u,nhuh

H
uxu

)
qu,n

−
∣∣hH
uxu,n

∣∣2qu
q2
u,n

≥ pu

σ2 +
∑
v 6=u

∣∣hH
uxv

∣∣2 ≤ qu, (∀u ∈ U).

(45)

The problem in (45) is convex and can be efficiently solved.
The second sub-problem is given by

min
{zu}

∑
u∈U

(
ρ‖zu‖1 +

κn
2

∥∥∥∥xu − zu +
yu
κn

∥∥∥∥2)
. (50)

Note that the optimization problem in (50) is separable, and
the optimal solution is given by

z?u = sgn(xu+yu/κn)�max{|xu+yu/κn|−ρ/κn, 0}. (51)

According to (20), each dual variable yu is updated as

yu,n+1 = yu,n + κn(xu,n − zu,n), (52)

while the penalty parameter κ is updated as

κn+1 =


βκn

∑
u∈U ‖xu,n − zu,n‖2 >
γ
∑
u∈U ‖xu,n−1 − zu,n−1‖2

κn otherwise.
(53)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3271521

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on May 15,2023 at 20:12:24 UTC from IEEE Xplore.  Restrictions apply. 



10

max
V

∑
u∈U

(
log (1 + pu)− ρ‖zu‖1 −

κn
2

∥∥∥∥xu − zu +
yu
κn

∥∥∥∥2)

s.t.
∑
u∈U
‖Fxu‖2 ≤ Pb,

2Re
(
xH
u,nhuh

H
uxu

)
qu,n

−
∣∣hH
uxu,n

∣∣2qu
q2
u,n

≥ pu, (∀u ∈ U), σ2 +
∑
v 6=u

∣∣hH
uxv

∣∣2 ≤ qu, (∀u ∈ U).

(46)

L({xu, pu, qu}) =
∑
u∈U

(
− log (1 + pu) +

κn
2

∥∥∥∥xu − zu +
yu
κn

∥∥∥∥2)
+ λ

(
− Pb +

∑
u∈U
‖Fxu‖2

)

+
∑
u∈U

νu

(
σ2 − qu +

∑
v 6=u

∣∣hH
uxv

∣∣2)+
∑
u∈U

τu

(
pu −

2Re
(
xH
u,nhuh

H
uxu

)
qu,n

+

∣∣hH
uxu,n

∣∣2qu
q2
u,n

)
.

(47)

∂L

∂xH
u

=

(
κn
2

I + λFHF +
∑
v 6=u

νvhvh
H
v

)
xu −

τuhuh
H
uxu,n

qu,n
+
κn
2

(
yu
κn
− zu

)
,

∂L

∂pu
= τu −

1

1 + pu
,
∂L

∂qu
= −νu +

τu
∣∣hH
uxu,n

∣∣2
q2
u,n

.

(48)

xu,n,m,l =xu,n,m,l−1 − au,n,m,l
∂L

∂xH
u

∣∣∣∣
xu=xu,n,m,l−1

, pu,n,m = pu,n,m−1 − bu,n,m
∂L

∂pu

∣∣∣∣
pu=pu,n,m−1

qu,n,m =qu,n,m−1 − cu,n,m
∂L

∂qu
, λn,m+1 = max

{
λn,m + αn,m

(
− Pb +

∑
u∈U
‖Fxu,n,m,B‖2

)
, 0

}
νu,n,m+1 = max

{
νu,n,m + ζu,n,m

(
σ2 − qu,n,m +

∑
v 6=u

∣∣hH
uxv,n,m,B

∣∣2), 0}

τu,n,m+1 = max

{
τu,n,m + ξu,n,m

(
pu,n,m −

2Re
(
xH
u,n−1,M,Bhuh

H
uxu,n,m,B

)
qu,n−1,M

+

∣∣hH
uxu,n−1,M,B

∣∣2qu,n,m
q2
u,n−1,M

)
, 0

}
.

(49)

Algorithm 4: Iterative Algorithm for Problem (10)
1: input: estimated mCSI {ĥu}, codebook F, maximal

transmit power Pb

2: initialize dual variables {yu}, auxiliary variables {zu}
and penalty parameter κ

3: repeat
(a) update variables {xu, pu, qu} by solving (45)
(b) update auxiliary variables {zu} as per (51)
(c) update dual variables {yu} according to (52)
(d) update penalty parameter κ according to (53)

4: until some convergence criterion is met
5: output: optimal precoding vectors {x?u}

For clarity, the complete iterative procedure solving Problem
(10) is provided in Algorithm 4.

Now, we proceed to unfold the iterative algorithm obtained.
It may be readily shown that the key is to unfold the it-
erative algorithm that solves Problem (45). The Lagrangian
of Problem (45), denoted by L({xu, pu, qu}), is provided in
(47), where λ, νu and τu represent the dual variables for the

corresponding inequality constraints. Given λ, {νu} and {τu},
the partial derivatives of L({xu, pu, qu}) (w.r.t. xH

u , pu and qu)
are given in (48). With the partial derivatives (or gradients)
available, we can next design or construct the PPSN.

Let xu,n,m,l represent the optimization variable of user u of
the l-th sub-iteration of the m-th PPSN subnetwork of the n-
th outer layer or iteration, and the other notations are defined
similarly. Given (48), the forward propagation formulas (in
(49)) and thus the PPSN can be immediately obtained. The
trainable parameters of M PPSN subnetworks within the n-th
layer or iteration are collected in set Θn (1 ≤ n ≤ K), i.e.,

Θn = {au,n,m,l,bu,n,m, cu,n,m, αn,m, ξu,n,m, ζu,n,m |
1 ≤ u ≤ U, 1 ≤ m ≤M, 1 ≤ l ≤ B}.

In general, different primal or dual updates should use dif-
ferent (trainable) step-size parameters, so as to achieve better
convergence performance. But, if necessary, these primal or
dual updates can share a part of trainable step-size parameters
(e.g., {bu,n,m = cu,n,m} and {ξu,n,m = ζu,n,m}), which
can significantly reduce the scale of trainable parameters. The
trainable parameters are collected in Θ, i.e.,

Θ = {Θ1,Θ2, · · · ,ΘK , κ1, κ2, · · · , κK−1}. (54)
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Now, an efficient COA-DUN has been obtained, which can be
trained via various training procedures.

Finally, we analyze the computational complexity of the
COA-DUN obtained, still quantified by the number of multi-
plications. The computational complexity of each PPSN (e.g.,
when the regularization term ρR(·) is absent) is dominated
by O

[
(4NG2 + 8G2 + 8G)BMU + (4NG2 + 8G)MU

]
.

Then, the overall computational complexity of COA-DUN is
O
[
(4NG2 + 8G2 + 8G)BMUK + (4NG2 + 8G)MUK

]
.

To simplify the system design, B can often be set to 1 (i.e.,
B = 1). In this case, the computational complexity reduces to
O
(
(8NG2 + 8G2 + 16G)MUK

)
.

VII. SIMULATION RESULTS

In this section, simulation results are provided for char-
acterizing the performance and verifying the superiority of
the proposed algorithms. The codebooks are obtained by
uniformly sampling the beam space [−1, 1] [46]. Specifically,
a codebook of size G is constructed as follows:

F =
{
ai
∣∣ai = a

(
− 1 + 2i/G

)
, i = 0, · · · , G− 1

}
.

To ensure the positivity of the trainable step-size parameters,
the softplus function, i.e., ln[1+exp(·)], is chosen to reparame-
terize the learnable parameters introduced. During the process
of estimating mCSI or pCSI and feeding it back to the BS, it
is inevitable to incur estimation errors. The estimated mCSI
ĥu and accurate mCSI hu satisfy

hu = FHh̄u = ĥu + ∆hu, (55)

where ∆hu is distributed as ∆hu ∼ CN (0, σ2
hI) [14]. It takes

a similar form for pCSI.
The number of users communicating to the BS is assumed

to U = 3. For the channel model in (1), the power angular
spectrum function with the uniform distribution [41] is chosen
to evaluate different precoding algorithms. To evaluate the
generalization performance of our methods, we consider three
cases of angular spreads for the U users:

Case 1: [−33/64,−27/64], [−3/64, 3/64], [27/64, 33/64]

Case 2: [−20/64,−14/64], [−3/64, 3/64], [14/64, 20/64]

Case 3: [−24/64,−13/64], [−6/64, 6/64], [13/64, 24/64].

Unless otherwise specified, Case 1 is chosen to train the AU-
based precoding models, while the other two cases are used
for evaluating different precoding algorithms.

The benchmarks used to evaluate our algorithms, as well
as their basic characteristics are provided in Table II. For
convenience, the SLP algorithm based on the composite opti-
mization algorithm (i.e., Algorithm 1) is termed as COA-SLP.
For BLP, the WMMSE algorithm and its AU-based version
in [26] are chosen as benchmarks. The precoding algorithm
developed in this paper (based on UPPiDO and successive
convex approximation) is referred to as COA-SCAP. The BLP
algorithm without UPPiDO is referred to as SCAP. When the
AU techniques are applied to an algorithm, denoted by ALGO,
the AU-based algorithm obtained is referred to as ALGO-
AU. Unless otherwise specified, an abbreviation without “AU”
indicates that the algorithm is derived via IPM.

The normalized mean square error (NMSE), symbol error
rate (SER), average achievable sum-rate (AASR) and running
time are chosen as performance metrics to evaluate the differ-
ent algorithms. The NMSE is defined as

NMSE = 10 log
‖x̂− x?‖2

‖x?‖2
,

where x̂ and x? denote the predicted precoder and optimal
precoder, respectively. The NMSE characterizes the quality of
precoder recovered by a precoding algorithm, which directly
and intuitively characterizes its performance. As for SER and
AASR, they characterize the communication performance.
D denotes the training dataset, and D is the size of this set.

The SNR for BLP is defined by Pb/σ
2, with σ2 normalized

to 1. For SLP, the standard training procedure is utilized to
train the AU-based precoding network, i.e., all parameters
are updated simultaneously. For BLP, the layer-wise training
method is chosen to train the precoding network, e.g., the AU
network is optimized layer by layer with the same dataset. 5

A. Performance Evaluation for Symbol-Level Precoding
In this subsection, we evaluate the performance of different

CI-based SLP algorithms. An appealing advantage of AU is
that it has low computational complexity. To show this, we
evaluate the NMSE performance of FS+SLP and FS+SLP-AU,
as shown in Fig. 4. For fairness, here the primal-dual method
is used for solving the precoding problem from FS+SLP, and
“FS+SLP” is replaced by “FS+SLP-PDM” to avoid confu-
sion. It is observed that FS+SLP-AU outperforms FS+SLP-
PDM. Specifically, to achieve the same NMSE performance,
FS+SLP-AU requires about one third of the iterations. The
reason for this benefit is that FS+SLP-AU can adapt to the data
(and further the environment). It is also observed that although
the number of layers is relatively small (e.g., M = 6), good
NMSE performance can still be achieved.
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Fig. 4. The average test NMSE performance of FS+SLP-AU and FS+SLP-
PDM (i.e., the primal-dual method is chosen to solve the precoding optimiza-
tion problem): N = G = 64, QPSK modulation and Case 1.

Fig. 5 shows the SER performance of different SLP algo-
rithms. It is observed that COA-SLP outperforms both FD-SLP

5To promote reproducible research, the codes for generating the simulation
results in the paper (as well as the convergence analysis of our algorithms)
are made available on the github website, i.e., the TWC2023-DU branch.
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Type Abbreviation Full Name and Basic Characteristic Unfolded Solution ? CSI Required
FD-SLP (Classical) Fully-Digital SLP [14] No pCSI {h̄u}
FS+SLP Fully-Sweeping [46] + SLP No mCSI {FHh̄u}

SLP COA-SLP Composite Optimization (or UPPiDO) + SLP No mCSI {FHh̄u}
FS+SLP-AU Fully-Sweeping + SLP + AU Yes mCSI {FHh̄u}

COA-SLP-AU UPPiDO + SLP + AU Yes mCSI {FHh̄u}
WMMSE Weighted MMSE (Precoding) No pCSI {h̄u}

SCAP Successive Convex Approximation + BLP No mCSI {FHh̄u}
BLP COA-SCAP UPPiDO + SCA + BLP No mCSI {FHh̄u}

WMMSE-AU Weighted MMSE + AU [26] Yes pCSI {h̄u}
SCAP-AU SCA + BLP + AU Yes mCSI {FHh̄u}

COA-SCAP-AU UPPiDO + SCA + BLP + AU Yes mCSI {FHh̄u}

TABLE II
BASIC INFORMATION OF TYPICAL PRECODING ALGORITHMS FOR PERFORMANCE EVALUATION

and FS+SLP, which verifies the effectiveness of the UPPiDO-
based precoding framework (i.e., it helps to achieve more
robust performance for inaccurate mCSI). The reason for this
is two-fold. On the one hand, significant mCSI that is key
to designing precoders is identified and estimated. On the
other hand, insignificant inaccurate mCSI that may degrade the
precoder is discarded, which alleviates the noise amplification
effect. In addition to the good SER performance, another
important advantage of COA-SLP is that the overhead in terms
of training and feedback is much lower than that of FD-SLP
or FS+SLP [18]. For the basic principle of this advantage, we
refer interested readers to [18] for the details.
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Fig. 5. The SER performance of different SLP precoding algorithms: N =
G = 64, σh = 0.4, ρ = 5, QPSK modulation and Case 1.

It is also observed from Fig. 5 that with a relatively small
number of training samples (e.g., D = 800 for COA-SLP-
AU and D = 200 for FS+SLP-AU), the AU-based algo-
rithms can still achieve almost the same SER performance
as their optimization-based counterparts. For COA-SLP-AU,
good SER performance (and better than FS+SLP) can still be
achieved even when the size of the training dataset is as small
as D = 200. The reason for this is that the deep network
models obtained via the AU method in this paper maintain
and exploit prior information of the underlying optimization
problems and iterative algorithms (e.g., problem structures and
algorithmic features) as much as possible. As a result, the

trainable parameters are scalars (instead of matrices), which
alleviates the requirement of training samples. Note that in
practice it may be expensive to collect training samples, and
thus the proposed AU approach is appealing.
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Fig. 6. The generalization performance of the designed AU algorithm under
different channel environments: N = G = 64, σh = 0.4, ρ = 5 and QPSK.

In contrast to other machine learning applications, the chan-
nel environments of practical wireless communication systems
often change very fast, which increases the difficulties of
both collecting training samples and training learning models.
Therefore, it is hoped that the learning models have a good
generalization behavior. Fortunately, the learning models con-
structed via the proposed AU method naturally have good gen-
eralization performance, as shown in Fig. 6. It is observed that
although the learning models (i.e., the unfolded deep networks)
are trained based on the first kind of channel environments
(i.e., Case 1), they can achieve good SER performance in the
other two channel environments. The reason for this is that the
trainable parameters of the AU models obtained via our AU
approach are scalar step-size parameters, which mainly affect
the convergence rate of the iterative algorithm.

B. Performance Evaluation for Block-Level Precoding

In the second subsection, we evaluate the performance of
different (sum-rate maximization based) BLP algorithms. It is
widely recognized that the size of training dataset profoundly

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2023.3271521

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University College London. Downloaded on May 15,2023 at 20:12:24 UTC from IEEE Xplore.  Restrictions apply. 



13

�	 	� �	 ��� ��	 �	� ��	 ���
�-&� *�(!��*�$'$'"���&)% +

�




�

��

��

�
. 

*�
" 

��
�#

$ 
.�

�%
 �
�-

&
�*
�,
 �
��

$,+
�+�

�
/�

����������������
�	���
������������
�	���
�������������
�	���
����������������
�����
������������
�����
�������������
�����

Fig. 7. The AASR performance vs the number of training samples used to
train AU models: N = G = 64, σh = 0.4, ρ = 0.1 and Case 1.

affects the performance of an AI algorithm. Fortunately, an
important advantage of our AU approach is that good small-
sample performance can be achieved, as shown in Fig. 7. The
reason for this is two-fold. On the one hand, important prior
or domain specific knowledge of the iterative algorithm has
been incorporated when designing the algorithmic network. On
the other hand, the trainable parameters are all scalars, which
further reduces the number of samples required. It is observed
that COA-SCAP-AU and SCAP-AU outperform WMMSE-
AU, since the trainable parameters of WMMSE-AU contain
many matrices and thus it requires more samples.
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Fig. 8. The AASR performance of different BLP precoding algorithms:
N = G = 64, σh = 0.4, ρ = 0.1 and Case 1.

The AASR performance of different precoding algorithms
is shown in Fig. 8. Similar to the SLP case, it is observed
that the UPPiDO-based algorithms (including COA-SCAP and
COA-SCAP-AU) outperform the other precoding algorithms,
which further verifies the superiority of the UPPiDO-based
precoding framework. In addition to the good AASR per-
formance and low training as well as feedback overhead,
the low computational complexity of COA-SCAP-AU can be
obtained with a relatively small number of training samples.
The key reason is that important prior information/knowledge
has been retained when unfolding the iterative algorithms and
the trainable parameters are all scalar step-size parameters.

The benefit is that the size of the training dataset can be safely
reduced, which also reduces the training complexity.
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Fig. 9. The generalization performance of the designed AU algorithm under
different channel environments: N = G = 64 and σh = 0.4.

As we have mentioned before, another important advantage
of the proposed AU method is that the AU-based deep network
conceived has good natural generalization performance. Fig. 9
demonstrates the generalization performance of the proposed
AU-based algorithm under different channel environments. It
is seen that the AU-based deep networks trained on a specific
channel environment perform well on the other two. It is also
seen that COA-SCAP-AU outperforms WMMSE-AU.
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Fig. 10. The average elapsed time of different precoding algorithms (solving
one problem): N = G, σh = 0.4 and Case 1.

To intuitively demonstrate the advantage of the AU tech-
niques in terms of low computational complexity, the average
run-time of different precoding algorithms (to solve one prob-
lem) for the two precoding settings is shown in Fig. 10, which
is obtained by averaging over 5× 105 (for SLP) and 5× 103

(for BLP) channel realizations, respectively. It is seen that
the AU-based precoding algorithms (e.g., COA-SLP-AU and
COA-SCAP-AU) run much faster than their iteration-based
counterparts. More appealingly, as the number of transmit
antennas increases, this advantage becomes more pronounced.
The reason for this is that, as an example, the AU-based
precoding algorithm COA-SLP-AU has a complexity order
O(8UG2 + 8UGMK), rather than in excess of O(G3) as
required for the iteration-based counterpart COA-SLP.
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VIII. CONCLUSION

To reduce the computational complexity of the UPPiDO-
based designs proposed recently, in this paper we conceived
an efficient approach to unfold a tailored iterative optimiza-
tion algorithm for the family of UPPiDO-based optimization
problems. First, we proposed an unfolding-friendly iterative
optimization algorithm for a family of non-convex and non-
smooth problems extensively encountered both in signal pro-
cessing and machine learning. Then, we unfolded the iterative
optimization algorithm by conceiving an efficient iterative
algorithm for solving the sub-problems and treating important
hyper-parameters as learnable parameters to obtain a deep net-
work. As an example, we applied the proposed AU techniques
to the SLP and BLP optimization problems. Both complexity
analysis and simulation results were provided to confirm the
effectiveness and superiority of our proposals.

APPENDIX A
CONVERSION OF SLP WITH CI CONSTRAINTS INTO

QUADRATIC PROGRAM

To convert Problem (33) into a real-valued problem, we
define x = xR + jxI and ejξuhu = h̃R,u + jh̃I,u, where
xR (or xI) represents the real (or imaginary) part of the
optimization variable x and the real vectors h̃R,u and h̃I,u are
defined similarly. Furthermore, by letting cu = tan(π/Ku),
QR = 2Re(FHF) + κnI, QI = 2Im(FHF), qR

n = Re(yn−1 −
κnzn−1) and qI

n = Im(yn−1 − κnzn−1), Problem (33),
which is used for generating the n-th iteration of x can be
equivalently written as

min
xR,xI

1

2

[
xR
xI

]T [
QR −QI
QI QR

] [
xR
xI

]
+

[
qR
n

qI
n

]T [
xR
xI

]
s.t.

[
cuh̃

T
R,u + h̃T

I,u, cuh̃
T
I,u − h̃T

R,u

cuh̃
T
R,u − h̃T

I,u, cuh̃
T
I,u + h̃T

R,u

] [
xR
xI

]
�[

cuγu
cuγu

]
, (∀u ∈ U).

(56)

To facilitate our further discussion, we write Problem (56)
into a more compact form. Specifically, we define matrices P,
A, vectors qn, b and variable x̄ as follows:

b =[c1γ1, c1γ1, c2γ2, c2γ2, · · · , cUγU , cUγU ]T ∈ R2U ,

P =

[
QR −QI
QI QR

]
∈ R2G×2G, qn =

[
qR
n

qI
n

]
, x̄ =

[
xR
xI

]
,

A =

A1

...
AU

with Au =

[
cuh̃

T
R,u + h̃T

I,u, cuh̃
T
I,u − h̃T

R,u

cuh̃
T
R,u − h̃T

I,u, cuh̃
T
I,u + h̃T

R,u

]
.

Given the above notations, Problem (56) can be rewritten as

min
x̄

1

2
x̄TPx̄ + qT

nx̄

s.t. Ax̄ � b.
(57)
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