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Sepsis is a dysregulated host response to infection that results in life-threatening organ dys-
function. Virtually every body system can be affected by this syndrome to greater or lesser
extents. Gene transcription and downstream pathways are either up- or downregulated, al-
beit with considerable fluctuation over the course of the patient’s illness. This multi-system
complexity contributes to a pathophysiology that remains to be fully elucidated. Conse-
quentially, little progress has been made to date in developing new outcome-improving
therapeutics. Endocrine alterations are well characterised in sepsis with variations in cir-
culating blood levels and/or receptor resistance. However, little attention has been paid to
an integrated view of how these hormonal changes impact upon the development of or-
gan dysfunction and recovery. Here, we present a narrative review describing the impact of
the altered endocrine system on mitochondrial dysfunction and immune suppression, two
interlinked and key aspects of sepsis pathophysiology.

Sepsis – definitions, clinical features, and
pathophysiology
Sepsis is defined as a dysregulated host response to infection that leads to life-threatening organ dysfunc-
tion [1]. It can be triggered by a wide range of organisms, including bacterial, viral, fungal, parasitic or
atypical, and presents in many different guises. While the focus of infection usually becomes apparent
with disease progression, sepsis often presents with non-specific signs and symptoms that evolve into var-
ious combinations of organ dysfunction. This generally occurs over several days but, occasionally, within
hours of initial symptomaticity. Sepsis is one of the commonest causes of death worldwide with overall
mortality rates of approximately 15–20%. However, the risk of dying increases to over 40% in shocked pa-
tients [2]. The elderly, frail, and those with underlying comorbidities (e.g., cancer, immunosuppression,
chronic organ failure), malnourishment and social deprivation are at much greater risk of both developing
sepsis and dying as a consequence.

Most body organ systems are involved to greater or lesser degrees, including cardiovascular, respira-
tory, renal, hepatic, neurological, coagulation and immune systems. This can be variably manifest as dif-
fering clinical patterns – ‘subphenotypes’ [3] – with combinations of hypotension and poor peripheral
perfusion due to vasculopathy +− cardiomyopathy, impaired gas exchange (termed ‘acute lung injury’ and,
in its most severe form, ‘acute respiratory distress syndrome’), oligo-anuria and azotaemia (‘acute kid-
ney injury’), hyperbilirubinaemia and coagulopathy from deranged liver function, an altered conscious
state ranging from confusion through agitation, drowsiness and coma (septic encephalopathy), motor and
sensory disturbances (neuromyopathy), and coagulopathy related to both depressed production and in-
creased turnover of clotting factors and platelets. ‘Disseminated intravascular coagulation’ is often used
as a descriptor of the coagulopathy, but this is usually a misnomer as intravascular clots with downstream
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Figure 1. Appropriate (A) and inappropriate (B) host responses to an infectious insult resulting in either resolution of the

infection or progression to multiple organ dysfunction

Similar pathways are involved yet, for reasons still unclear, are dysregulated and exaggerated in the latter situation.

infarction are rarely visualised either by imaging studies or at post-mortem. As described in more detail below, dif-
ferent components of the immune system are both over-activated and depressed. This fluctuates over time and drives
both an exaggerated inflammatory response that triggers downstream organ dysfunction, as well as inducing im-
munosuppression that increases the patient’s susceptibility to secondary infections.

The inflammatory response
The pathophysiology of sepsis is still incompletely understood. There is a highly complex interaction between the
host inflammatory response, neuro-hormonal signalling, and modifications in behaviour, physiology, bioenergetics,
and metabolism. Similar pathways are involved in the appropriate host response to infection that enables the body to
deal with the infectious illness yet without incurring the unwanted downstream sequelae of multi-organ dysfunction
(Figure 1). Why some patients develop an inappropriate and dysregulated response is still unclear but likely involves
multiple factors including genetic, epigenetic, ageing, comorbidities, environmental, and iatrogenic.

The initiation of sepsis is related to identification by specialised host receptors of pathogen-associated molecular
patterns (PAMPs), i.e., pathogenic microorganisms or their constituents such as endotoxins, exotoxins and DNA.
These pattern recognition receptors (PRRs) are located on innate immune cells (e.g. macrophages, monocytes, neu-
trophils and dendritic cells), endothelial and epithelial cells. They are either membrane-bound (e.g. the Toll-like re-
ceptor (TLR) system) or cytoplasmic (e.g. NOD-like receptors). PRRs can also be activated by damage or injury to
host cells that release damage-associated molecular patterns (DAMPs) extracellularly and into the circulation. Ex-
amples of DAMPs include host DNA, RNA, mitochondria, and proteins such as heat shock proteins, HMGB1 and
S100.

Activation of PRRs induces gene transcription leading to increased production and release of a wide range of both
pro- and anti-inflammatory mediators including cytokines (e.g. tumour necrosis factors, interleukins, chemokines
and interferons), eicosanoids and nitric oxide. Of note, as many, if not more, gene transcripts are down-regulated by
the inflammatory process [4] and this varies both between organs and temporally [5]. There is a parallel activation
and depression of pathways within the different body systems that is a characteristic of sepsis. As highlighted later,
this equally applies to the endocrine system.

Organ dysfunction: a metabolic-bioenergetic shutdown?
The outpouring of mediators have either direct or indirect downstream actions on endothelium, epithelium and
organ-specific cells that modify organ function through changes in circulation and metabolism, including altered
utilisation of substrate or oxygen. The circulation is modified by increased capillary leak, decreased vascular tone,
heterogenous areas of vasodilatation and vasoconstriction within the microcirculation, and myocardial depression.
The net result of these changes is altered perfusion and delivery of substrate and oxygen to tissues.

In tandem, there are metabolic and bioenergetic alterations. Early on in the septic process there is an increase
in metabolic activity that is geared to fight the underlying infection. This energy expenditure needs to be fuelled
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by increased oxygen utilisation. However, with failure to promptly resolve the excessive inflammatory response and
illness progression, there is a bioenergetic/metabolic switch with a downturn of body processes including muscular
activity, anabolism and cell repair [6]. As discussed later, mitochondrial dysfunction appears to be a key player in
triggering this metabolic shutdown.

We have previously argued this metabolic shutdown may represent a protective phenomenon in an oxy-
gen/substrate limited environment [7]. This change in strategy shifts the focus towards cell survival which will en-
hance the possibility of ultimate recovery of the failed organs and the patient. Akin to hibernation or estivation,
membrane integrity and ionic pumps are maintained at the expense of sacrificing normal energy-dependent cellular
functions. This is manifest clinically and biochemically as organ dysfunction/failure. ‘Failure’ however carries a nega-
tive connotation. Organ shutdown may represent a temporary defensive tactic aimed at enabling subsequent renewal,
especially in organs with poor regenerative capacity. Support for this hypothesis comes from the repeated demonstra-
tion of minimal cell death in organs taken from patients dying of sepsis [8–10]. While organ hypoperfusion at macro-
and microcirculatory levels represents an important trigger of these downstream effects, this alone is insufficient to
explain organ dysfunction in the absence of structural damage.

Mitochondria are present in all cells except erythrocytes. Other than their role as the predominant ATP generator
in most cell types, they have important functions in regulating cell death and intracellular calcium, and are a major
site of heat production and hormone production (e.g. cortisol). Mitochondria are the main utilisers of oxygen and
producers of reactive oxygen species (ROS) within the body, and their activity and turnover (biogenesis) are influ-
enced by multiple hormones. Mitochondrial dysfunction is well described in sepsis [11] and is implicated in failure
affecting multiple organs including heart [12], kidney [13], liver [14] and brain [15]. The role in immune dysfunc-
tion is discussed below. Our group has previously described mitochondrial perturbations in patients [16,17], animal
models [18–21], and in cell and tissue models [22,23].

Immune (dys)regulation during sepsis: activation and
suppression
Activation of the immune system by PAMPs and DAMPs aims to neutralise the pathogen yet excessive activation can
result in tissue injury and can paradoxically render the host more vulnerable to subsequent infection, especially if the
inflammatory state is both severe and prolonged [4,24,25].

As the pro-inflammatory response is mounted, the body simultaneously initiates a counterbalancing
anti-inflammatory response, with the release of anti-inflammatory cytokines such as interleukin (IL)-1 receptor an-
tagonist and IL-10 [26,27]. Combined with immune cell anergy and exhaustion, decreased chemotaxis, and increased
apoptosis of peripheral blood mononuclear cells (PBMCs) and splenocytes [28], the net result is immunosuppression
affecting both innate and adaptive immune systems and a failure to return to normal homeostasis. Consequently, the
risk of secondary infection is enhanced by gut-derived Gram-negative organisms, opportunistic pathogens such as
fungi, and reactivation of viruses such as cytomegalovirus that would rarely compromise a healthy host.

Anergy and exhaustion are produced by different mechanisms. Neutrophils show delayed apoptosis and a deficit in
anti-microbial effector function, including oxidative burst capacity and chemotactic activity, while both neutrophils
and PBMCs have a diminished cytokine and phagocytic response to ex vivo stimulation [29,30]. There is marked
depletion of natural killer (NK) cells, CD4+ and CD8+ T-cells, and B-cells secondary to accelerated apoptosis [25,28],
suppressed CD4+ T-helper (Th)1, Th2, and Th17 cell function [25], lower pro-inflammatory cytokine production and
increased expression of checkpoint regulators such as programmed cell death-1 (PD-1). The density of cell surface
receptors on circulating monocytes, macrophages and dendritic cells such as HLA-DR that present peptide antigens to
the immune system are depleted. Dendritic cells also show increased apoptosis and IL-10 production [31]. Expansion
of myeloid-derived suppressor cells contributes to decreased monocyte function, while the proportion of circulating
immunosuppressive regulatory T-cells (Treg) also increases [32,33]. In the adaptive immune system B-lymphocytes
are also depleted with reduced production of immunoglobulins [28,34].

The sum total is immunosuppression that can persist for weeks or even months after critical illness with an
increased risk to the patient of secondary infection. This state of immunosuppression can contribute to poor
longer-term outcomes. Up to 60% of critically ill survivors require subsequent rehospitalisation in the year following
discharge, most often due to infection, and one-in-six die [35].

Although precise mechanisms underlying immune anergy, exhaustion and increased apoptosis remain to be elu-
cidated, mitochondrial dysfunction is heavily implicated. Mitochondria regulate immune cell function and survival
by influencing their bioenergetic supply [36]. Metabolic demands are met through ATP production by glycolysis, the
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Krebs’ cycle, and, predominantly, oxidative phosphorylation. The degree to which immune cells utilise these path-
ways depends on the cell type, their activation state, and on substrate availability [37]. At rest, most immune cell types,
with the notable exception of neutrophils, predominantly use oxidative phosphorylation to generate ATP necessary
to perform housekeeping activities. However, on activation, immune cells place much greater reliance upon aerobic
glycolysis (the Warburg effect), a process known as metabolic reprogramming. In addition to meeting bioenergetic
needs, increased metabolites of the Krebs’ cycle such as citrate and succinate play an important regulatory signalling
role within these cells [38].

Neutrophils are short-lived innate immune cells that possess few mitochondria. While their metabolic needs are
predominantly met by glycolysis, both in the sedentary and activated states, their effector functions include forma-
tion of neutrophil extracellular traps (NETs), phagocytosis and respiratory burst are under regulatory control by
mitochondria [37].

B- and T-lymphocytes undergo metabolic reprogramming which both direct their differentiation into specific cell
types and their functionality [39]. While glycolysis is generally upregulated, oxidative phosphorylation may be either
up- or down-regulated depending upon the cell type [39,40]. Treg cells require fatty acid oxidation-fuelled oxidative
phosphorylation for their effector functions [41–43]. These are discussed in more detail by Hortová-Kohoutková and
colleagues [44].

The stimuli activating mononuclear cells may, at least in part, determine the source of the ATP. For instance,
TLR-4 activation up-regulates glycolysis and reduces oxidative phosphorylation, while TLR-2 activation increases
both glycolysis and oxidative phosphorylation [45]. In sepsis, in the presence of low glucose availability, monocytes
up-regulate fatty acid oxidation and thus oxidative phosphorylation [46]. Macrophages and dendritic cells also re-
program their metabolism on activation though, again this depends upon specific cell type. Macrophages exist in two
main phenotypes: M1 pro-inflammatory cells which function by up-regulation of glycolysis, pentose phosphate path-
way and glutamine metabolism [47,48], and M2 anti-inflammatory cells that function via upregulation of oxidative
phosphorylation driven by fatty acid oxidation and glutamine metabolism [49].

Studies implicate mitochondrial dysfunction in sepsis-induced leukocyte and organ dysfunction [50]. Impairment
of electron transport chain complex production and activity, depolarisation of the mitochondrial membrane poten-
tial, increased ROS production and impaired biogenesis are described [51,52]. Although evidence underpinning mi-
tochondrial dysfunction is consistent, the exact nature is conflicting and relates to heterogeneity in terms of timing,
immune cell type, cell or animal model or patient and differing research methodologies [53,54]. Of note, functional
recovery of mitochondria in peripheral blood mononuclear cells correlate with improved outcomes in septic patients
[55].

Endocrine changes during sepsis
The normal stress response
An important driver of metabolism and bioenergetic activity is the endocrine system. In response to any psycho-
logical or physical (e.g., exercise, trauma, and infection) stressor, there is widespread neurohormonal activation to
adapt body behaviour and physiology to deal appropriately with the stressor. Production and secretion of stress hor-
mones increase to modulate behaviour, whole body and organ blood flow, metabolic activity, substrate utilisation,
and immune functionality (Figure 2).

The acute stress response initially involves rapid activation of the sympathetic-adreno-medullary system, with se-
cretion of noradrenaline from sympathetic nerves, and adrenaline and noradrenaline from the adrenal medulla. Ele-
vated catecholamine levels, acting through cell surface adrenergic receptors with downstream activation of the cyclic
AMP (cAMP) pathway, heightens brain function, increases blood flow, prioritises flow to motor-active organs such
as brain, heart and skeletal muscle, activates glycolysis and glycogenolysis to raise circulating glucose concentrations,
stimulates lipolysis to increase free fatty acid concentrations as an alternative energy substrate, and induces thermo-
genesis to generate a febrile response.

Activation of the hypothalamus–pituitary–adrenal (HPA) axis leads to increased secretion of cortisol which, in
turn, induces further catecholamine release, mobilizes energy stores through gluconeogenesis and glycogenolysis, and
modulates the immune-inflammatory response. A rise in circulating glucagon stimulates gluconeogenesis and raises
glycaemic levels to increase glucose availability. Vasopressin is released from the posterior pituitary gland, regulating
blood pressure, blood volume and plasma osmolality. The renin–angiotensin–aldosterone system is also activated,
encouraging salt and water retention.

The net effect of the stress response is an adaptation of behaviour towards increased arousal and focus, heightened
analgesia but suppression of appetite and the reproductive axis. The physiological adaptations mobilise substrate
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Figure 2. Modification of hormonal responses in early (A) and established (B) sepsis with downstream impact on immunity,

metabolism, and organ functionality

IGF-1 insulin growth factor-1; ATP adenosine triphosphate.

(e.g., glycogenolysis to replete circulating glucose levels, free fatty acid and ketone bodies from ß-oxidation of fat, and
lactate production by muscle), redirect oxygen and substrate towards stressed body locations, increase oxygen utili-
sation and detoxification processes, but inhibit digestion, growth, healing, and reproductive processes, and contain
the immune/inflammatory response.

The stress response in sepsis
The normal stress response is both adaptive and time-limited. However, severe and/or prolonged stress such as that
seen during sepsis can lead to a state of dyshomeostasis and maladaptation (Figure 2). Many studies have been per-
formed investigating specific hormonal perturbations such as critical illness-induced corticosteroid insufficiency,
insulin resistance and adrenergic hyporesponsiveness, all of which are associated with worse outcomes. However, the
endocrine system as a whole has been largely overlooked as a fundamental contributor to the integrated host response
to sepsis and the development of organ dysfunction and immunosuppression.

The endocrine response during sepsis follows a distinct biphasic pattern. Acute changes are as described above,
supporting the increased metabolic demands of the body [56], with a concurrent shutdown of less vital systems such
as gonadal function and the digestive system. Catabolic pathways are up-regulated to drive essential cellular processes
while anabolism is inhibited, most obviously witnessed clinically as insulin resistance [56], but also affecting other
anabolic hormones such as growth hormone, insulin growth factor-1 and testosterone. In the later phase, after an
undefined and variable period of critical illness ranging from hours to days, the hormonal profile alters substantially
with loss of circadian rhythms, inappropriately low levels of vasopressin, adrenergic receptor downregulation, de-
velopment of the ‘sick euthyroid syndrome’, and reduced adrenal responsiveness to adrenocorticotrophic hormone
(ACTH), often despite high circulating cortisol levels [56–58]. The magnitude of these alterations, several of which
will be discussed in more detail below, carry major prognostic implications [59,60].

Hypercortisolaemia results from both increased secretion of cortisol by proinflammatory cytokines, endothelin and
other mediators [61], but also impaired clearance [62]. Normal diurnal variation is also lost [61]. Pro-inflammatory
cytokines may also affect the number and binding affinity of glucocorticoid receptors [63,64]. The magnitude of rise
and the response to ACTH reflect both severity of illness and prognosis [59].

The degree of rise in plasma catecholamine levels is also associated with increased mortality [65]. This may be a
reflection of a greater stress response in more severely ill patients. However, persistently high levels of catecholamines
have multiple potentially deleterious effects including altered splanchnic perfusion and impaired gut immunity, a
marked increase in prothrombotic tendency, substrate modification towards fatty acid utilisation, stimulation of bac-
terial growth and virulence, and immune suppression [66]. There is also a concurrent down-regulation of adrenergic
receptors and the adrenergic signalling pathway affecting vascular tone, myocardial contractility and immune func-
tionality.
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Insulin levels transiently fall during sepsis due to increased clearance rather than decreased secretion, increasing
energy substrate availability [67]. However, the marked and prolonged rise in antagonistic catabolic hormones, par-
ticularly catecholamines, glucagon and cortisol [56,68,69], as well as down-regulation of insulin receptors [70,71],
contribute to insulin resistance leading to hyperglycaemia and, eventually, hyperinsulinaemia [70,71]. The degree of
insulin resistance is also associated with mortality and organ dysfunction [72].

The thyroid axis is affected during sepsis with decreased pituitary release of thyroid stimulating hormone (TSH)
and inhibition of the peripheral conversion of thyroxine (T4) by 5-deiodinase to the much more metabolically ac-
tive triiodothyronine (T3). High cortisol levels also inhibit this enzymatic conversion. Circulating T3 levels decrease
while levels of the biologically inactive reverse T3 (rT3) increase; this phenomenon is known as the ‘sick euthyroid
syndrome’. Changes in thyroid hormone levels also correlate with severity of illness [73]. Other abnormal aspects
of the thyroid axis in sepsis include reduced concentrations of binding proteins, inhibition of hormone binding and
changes in transport [74,75]. While TSH levels quickly decrease to the normal, pulsatile TSH secretion becomes
suppressed. This correlates with suppressed TRH gene expression, implying a change in central regulation of the
hypothalamic–pituitary–thyroid axis. As thyroid hormones are major regulators of metabolic processes, the net ef-
fect of the changes seen in sepsis is a reduction in energy expenditure and metabolic rate.

Hormonal changes during sepsis also modify eating behaviour. Appetite-inhibitory hormones such as the
adipokine leptin and the gut hormone PYY initially rise in sepsis while ghrelin, an appetite-stimulatory peptide hor-
mone released from the stomach, falls [76–78]. Whereas PYY remains elevated and ghrelin levels depressed over
weeks [76], leptin levels subsequently fall [78,79]. The magnitude of the initial rise in leptin is associated with sep-
sis severity but, interestingly, survivors have higher levels than non-survivors [80,81]. This suggests that hyperlepti-
naemia may represent a host defence mechanism. Apart from appetite, leptin has multiple other roles, acting on
metabolism, other endocrine functions, innate and adaptive immunity, and reproduction. As with other stress hor-
mones, the situation is complicated further by the development of leptin resistance [77].

In addition to the endogenous stress response during both the acute and prolonged phases of sepsis, various stress
hormones are often administered exogenously to critically ill patients. Not infrequently, these synthetic hormones
are administered at supraphysiological doses. Examples include insulin to overcome insulin resistance and correct
hyperglycaemia, catecholamines (noradrenaline, adrenaline, dobutamine) +− vasopressin +− angiotensin as circulatory
support to increase blood pressure and/or cardiac output, and corticosteroids given for both their anti-inflammatory
effects and for reversal of resistant hypotension by restoring vascular hyporeactivity.

Impact of hormonal changes on mitochondrial function
Glucocorticoids and thyroid hormones regulate metabolism through modifying mitochondrial function and biogen-
esis. Their receptors interact with mitochondrial and nuclear response elements affecting transcription factors and
thus expression of nuclear- and mitochondrial-encoded genes [82]. These hormones also have rapid non-genomic
effects on mitochondria involving cytoplasmic kinase signaling pathways [83]. These pathways result in alterations in
the structure and function of key mitochondrial components including those of the electron transport chain (Table
1).

The combination of early rises in cortisol, catecholamines, and glucagon during sepsis in conjunction with an initial
decrease in insulin rapidly impacts upon bioenergetics and metabolic activity. This initially includes increased oxygen
and energy substrate availability as well as accelerated aerobic glycolysis to support increased tissue bioenergetic
demands [70,84]. Insulin resistance and hyporesponsiveness to glucocorticoids during the prolonged phase of sepsis
may, however, result in an inability to meet metabolic requirements. Although the classic thyroid hormones (T4 and
T3) have been widely studied, little is known about the effects on mitochondria of rT3. In chickens rT3 suppressed
levels of free fatty acids in response to stressors [85]. The conversion switch from free T3 to metabolically inactive or
even suppressive rT3 may serve as an adaptive coping mechanism to conserve energy.

Oxidative phosphorylation
In vivo and in vitro studies demonstrate that glucocorticoids affect mitochondrial function of kidney, brain, and
muscle in a biphasic manner [86]. Short-term and/or low levels appear protective, inducing calcium accumulation
and increasing both expression and activity of electron transport chain components. However, long-term exposure
and/or high concentrations cause mitochondrial dysfunction with inhibition of calcium influx and holding capacity
and decreased activity of the respiratory chain, ultimately resulting in decreased oxidative ATP production.
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Table 1 Endocrine-induced effects changes in mitochondrial function and immune cell function during the acute and
established phase of sepsis

Hormone Endocrine changes Mitochondrial changes Immune changes

Cortisol Acute: ↑ Acute: ↑O2 and energy substrate
availability; ↑aerobic glycolysis;
↑biogenesis; ↓apoptosis; ↓UCP-1 and
UCP-3 but ↑UCP-2.

Innate: ↑↓ immune function including cell
differentiation, phagocytosis and cytokine
release.

Established: ↑↓ with loss of diurnal
variation. Often ↓response to exogenous
stimulation.

Established: ↓biogenesis; ↑apoptosis;
↑ROS.

Adaptive: ↓lymphocyte activation but
↑apoptosis; ↓cytokines and chemokines;
↑Th2 and Treg cell expression over Th1 and
Th17 cells.

Catecholamines Acute: ↑ Acute: ↑O2 and energy substrate
availability; ↑aerobic glycolysis; ↑Ca2+

accumulation; ↑ETC expression and
activity; ↑biogenesis; ↑apoptosis; ↑ROS
in skeletal muscles but ↓ROS in immune
cells.

↓gut immunity; ↑bacterial growth and
virulence; ↑immune suppression.

Established: ↑↓ but increased
hypo-responsiveness.

Established: ↓Ca2+ influx; ↓ETC
function; ↓ O2 consumption and ↓
oxidative phosphorylation.

Innate: α-ARs activation ↑inflammation;
β2-AR activation ↓inflammation including
chemotaxis, phagocytosis and ROS for
respiratory burst.

Adaptive: β2-AR activation ↓T-cell
proliferation but ↑Th2 polarisation.

Thyroid hormones Acute: ↑ but soon after ↓TSH; ↓T4 to T3

conversion; ↓T3; ↑rT3 (sick euthyroid
syndrome).

Acute: ↑ETC expression and activity; T3

↑mitochondrial mass but ↓efficiency of
ATP production; ↑↓biogenesis;
↑↓apoptosis; ↑UCP; hypothyroidism
↓proton leak.

Innate: ↑↓ chemotaxis, phagocytosis and
respiratory burst. Sick euthyroid syndrome
↓immune function; ↑monocyte
differentiation to DCs rather than
macrophages.

Established: TSH normalises but loses
pulsatility; ↓TRH; ↓T3.

Established: ↑biogenesis Adaptive: ↑↓ lymphocyte proliferation and
apoptosis, and B-cell antibody production

Insulin Acute: ↓ Acute: ↑O2 and energy substrate
availability; ↑aerobic glycolysis;
↑biogenesis; ↑ROS

Innate: ↓respiratory burst and NET
formation in neutrophils; ↓ proinflammatory
cytokines.

Established: ↑ but also ↑insulin
resistance.

Established: ↑↓ETC function and ATP
production; ↓apoptosis.

Adaptive: ↑lymphoid cell lineage
expression; ↑T-cell proliferation,
differentiation, and effector functions.

Glucagon Acute: ↑ Acute: ↑O2 and energy substrate
availability; ↑aerobic glycolysis; ↑ETC
expression and activity and ↑ATP;
↓apoptosis.

Innate: ↓chemotaxis and respiratory burst;
↑↓ neutrophil numbers.

Established: ↑ Established: ↓biogenesis Adaptive: ↓T-cell proliferation,
differentiation, and effector functions.

Leptin Acute: ↑ Acute: ↓↑apoptosis; ↑ROS. Innate: ↑cytotoxicity of NK cells;
↑activation of granulocytes, DCs and
macrophages.

Established: ↓ Established: ↑biogenesis in BAT. Adaptive: ↓T-cell proliferation and
responsiveness; ↓Th cell differentiation;
↑Treg cell proliferation; ↓B-cell proliferation
but ↑apoptosis.

Abbreviations: AR, adrenergic receptor; ATP, adenosine triphosphate; BAT, brown adipose tissue; DC, dendritic cell; ETC, electron transport chain; NK,
natural killer cell; ROS, reactive oxygen species; Th, T-helper cell; Treg, regulatory T-cell; UCP, uncoupling protein.

Thyroid hormones rapidly enhance mitochondrial respiration and ATP generation associated with the expression
of electron transport chain components and accelerated translocation of ATP into the cytosol [87,88]. Liver mitochon-
dria isolated from hypothyroid rats had lower resting rates of oxygen consumption [89]. Studies in sepsis are however
limited. Septic mice had impaired diaphragm mitochondrial numbers and activity with a decrease in maximal res-
piration alongside a fall in serum T4 and a decrease in thyroid hormone signalling [90]. In this model, treatment
with thyroid hormones at the onset of sepsis protected mitochondrial parameters but did not impact on survival. By
contrast, T3 replacement in patients with established sepsis showed no improvement in respiratory muscle function
[91].
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Mitochondrial effects of catecholamines are variable and depend on cell type, timing and dose. In early sepsis,
adrenaline and noradrenaline will rapidly increase respiratory enzyme activity, aerobic respiration and ATP pro-
duction in liver [92–94], with reduced mitochondrial enzyme function following depletion of noradrenaline or re-
ceptor blockade [95,96]. On the other hand, reduced oxygen consumption and spare respiratory capacity (SRC)
was seen in both primary human monocytes and PBMCs upon direct exposure to noradrenaline and adrenaline
[97–99]. This may represent a functional metabolic switch in these immune cells. However, these noradrenaline- and
adrenaline-trained cells did show an increase in oxidative phosphorylation after 6 days. Conflicting results were found
by the same group in a porcine model of faecal peritonitis, with either no effect or enhancement of liver mitochondrial
respiration by noradrenaline [100,101].

A wide range of studies have shown stimulatory effects of glucagon on mitochondrial respiration, the protonmotive
force, electron chain complex function and a rise in ATP in liver, brain, and adipose tissue during a period of increased
energy demand [102–107]. Glucagon enhancement of mitochondrial function may relate to a rise in cAMP levels or
increase in mitochondrial calcium retention [108].

Mitochondrial dysfunction has been implicated as contributory towards insulin resistance [109], but the impor-
tance of insulin signalling for normal mitochondrial function has also been demonstrated in multiple tissues. Insulin
is pivotal for mitochondrial function and usually stimulates respiration, enzyme activity and ATP production is a
variety of tissues [110,111]. Both insulin deficiency and insulin resistance as seen during later phases of sepsis, have
been associated with decreased respiration and ATP production. A more recent study also indicated biphasic insulin
induced effects, with acute exposure leading to increased biogenesis and enzyme activity, while chronic exposure had
variable effects [112].

Mitochondrial biogenesis
Turnover of new mitochondria (biogenesis) is also influenced by hormonal changes. Low and/or short-term ex-
posure to corticosteroids increased mitochondrial biogenesis and mitochondrial DNA content [113]. Similar ef-
fects are reported with thyroid hormones, catecholamines, and insulin [87,92,110]. Corticosteroids and thyroid hor-
mones have direct and indirect effects on co-activators and transcription factors of biogenesis, affecting nuclear and
mitochondrial-encoded genes. Thyroid hormones also modulate chromatin structure of genes, thereby affecting gene
expression. However, the regulation of mitochondrial biogenesis by thyroid hormones appears to be tissue-specific as
no or opposing effects were observed in heart tissue [114]. Stimulation of β-adrenergic receptors by adrenaline and
noradrenaline promoted mitochondrial biogenesis and increased mitochondrial content non-genomically [115]. As
with thyroid hormones, catecholamine-driven stimulation of mitochondrial biogenesis via the transcription coacti-
vator, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) also appears to be tissue specific [116].
The insulin-mediated increase in mitochondrial function, with mTOR and FOXO acting as downstream effectors,
may be due to increased expression of electron transport chain complexes; insulin deficiency and resistance both
decrease mitochondrial biogenesis [110]. The subsequent increase in mitochondrial mass may be responsible for
elevations in resting metabolic rate [117].

By contrast, long-term or high dose exposure to corticosteroids results in abnormal regulation of mitochondrial
biogenesis, especially in skeletal muscle in vivo and in vitro [86]. In addition to its rapid-onset effects on mitochon-
dria, T3 is also a long-term regulator of mitochondrial biogenesis via PGC-1α, increasing mitochondrial mass [118].
Lower circulating levels of this hormone during sepsis could act as a counterbalance. Long-term glucagon exposure
also suppresses mitochondrial biogenesis via FOXO1 and regulation of sirtuins [107,119]. The effects of leptin on
mitochondrial biogenesis are conflicting, but stimulation via PGC-1α may occur in brown adipose tissue [120].

(Un)coupling and ROS
Glucocorticoids inhibited the activity of the uncoupling proteins UCP-1 and UCP-3 in brown adipose tissue [121]
thereby increasing mitochondrial membrane potential, but up-regulated UCP-2 in microvascular endothelial cells
[122]. No effects were seen in skeletal muscle [117]. Induction of uncoupling is regulated by both glucocorticoid- and
mineralocorticoid receptors, to which these hormones bind with varying affinity. Although uncoupling increases
oxygen consumption while decreasing mitochondrial membrane potential and energy substrate availability, it could
also be an adaptive mechanism to limit harmful production of mitochondrial ROS [122]. Chronic exposure to corti-
costeroids is, however, related to an increase in ROS production [86].

Despite increased respiration and ATP generation, T3 reduces the efficiency of these processes while hypothyroid
states reduce proton leak [89]. In brown adipose tissue, UCP-1 up-regulation appears responsible but lower basal
proton leak in mitochondria from hypothyroid rats in other tissues is not yet fully understood. Possible mechanisms
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include induction of UCP-2 or UCP-3, or changes in phospholipid composition of the mitochondrial membrane [87].
Overall, thyroid hormones are associated with increased ROS production and potential damage due to augmented
oxidative metabolism and decreased antioxidant protection; hypothyroid states on the other hand decrease ROS [123].

Catecholamines also increase ROS production and are associated with oxidative damage to liver [92,124], and
skeletal muscle [115]. Surprisingly, the increase in ROS in skeletal muscle occurred in conjunction with a reduction in
mitochondrial membrane potential. The respiratory control ratio (RCR) increased with noradrenaline and adrenaline
use in endotoxaemic models [93,101], yet respiratory efficiency was impaired [125]. Although mitochondria are not
the only source of ROS in phagocytic cells, noradrenaline reduced ROS production in stimulated primary monocytes
as well as in endotoxin-stimulated neutrophils but suppressed the respiratory burst in non-LPS challenged neutrophils
[97].

An important role for glucagon in the regulation of thermogenic regulation in brown fat has been shown by in-
duction of thermogenic genes and by increasing nucleotide binding (GDP) [126,127]. Glucagon treatment induced a
coupling defect in liver and skeletal muscle mitochondria [128], while the RCR did not change in brain mitochondria
[103]. Insulin deprivation and resistance are characterised by declined coupling efficiency concurrent with exces-
sive ROS and oxidative damage [110]. The lack of sufficient antioxidant defences normally enhanced by insulin, and
glucose-mediated ROS production may be contributory [129–131].

Leptin has also been shown to increase mitochondrial superoxide production by increasing fatty acid oxidation
[132].

Apoptosis
Although endocrine induced effects on apoptosis have been widely described, it must be noted that apoptosis is
regulated by both intrinsic mitochondrial pathways and extrinsic non-mitochondrial pathways. Glucocorticoids are
well-known regulators of apoptosis during lymphocyte maturation, but mixed effects have been found depending
again on duration of exposure and concentration. Acute and/or low doses of glucocorticoids protect mitochondria
and prevent programmed cell death, while chronic and/or long-term exposure increase apoptosis [86].

Thyroid hormones play a role in the initiation of apoptosis, eliminating unwanted cells, including T-lymphocytes.
This may be mediated in part by increasing cytosolic calcium content, opening of the mitochondrial permeability
transition pore (mPTP) and modulation of pro- an anti-apoptotic proteins, in addition to direct genomic effects [133].
By contrast, anti-apoptotic effects have also been described in cancer cell lines, neurons, fibroblasts and myocardial
cells, down-regulating p53, pro-apoptotic proteins, and caspases [134–137].

Intrinsic pro-apoptotic effects of catecholamines acting via the β-adrenergic receptor have been found in various
cell types. Noradrenaline may exert these effects via different pathways including ROS production, inhibition of the
PI3K/Akt survival pathway and caspase activation [138,139]. Generally similar effects have been found for adrenaline.

Knowledge of the impact of other hormones on the mitochondrial apoptotic pathway is more limited. Chronic
insulin exposure decreased cytochrome C expression, suggesting an antiapoptotic effect [112]. Glucagon delayed
the onset of mPTP opening, protecting cells from apoptosis after ischaemia-reperfusion, and potentially acts via the
cAMP/PKA pathway [140,141]. The effects of leptin are conflicting, with promotion of apoptosis in adipose tissue and
heart via calcium-induced mPTP opening [142,143], yet anti-apoptotic effects on the heart, immune and neuronal
cells [144–146].

Other mitochondrial changes
Other long-term glucocorticoid effects on mitochondria include structural abnormalities with mitochondrial dam-
age due to induced hyperglycaemia [147]. Strict glycaemic control with insulin therapy prevented ultrastructural and
functional abnormalities of liver mitochondria [131]. The increased cellular energy demands during stress with as-
sociated increases in mitochondrial ROS production can damage mitochondria when antioxidant defences are over-
whelmed. Mitophagy is a quality control mechanism that can be induced by T3 to limit ROS-induced damage [148].
Insulin deprivation increases markers of mitophagy [149]. In rats, isoprenaline, a synthetic catecholamine, promoted
cardiac mitochondrial dysfunction by opening the mPTP and increasing mitochondrial membrane swelling, while
noradrenaline protected skeletal muscle mitochondria from propofol-induced dysfunction [150]. This may be espe-
cially relevant to septic patients who are sedated. Mitochondria are protected by glucagon by changes in the disposition
of the inner mitochondrial membrane [151]. Mice lacking both insulin and IGF-1 receptors showed morphological
changes in cardiac tissue preceded by down-regulation of genes encoding for electron transport chain and fatty acid
β-oxidation pathways within mitochondria and altered expression of contractile proteins [152].
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Impact of hormonal changes on immune cell function
We should start with the important caveat that much of the current literature is based upon ex vivo or in vitro in-
cubation of isolated cells or cell lines with hormones, with or without stimulation by lipopolysaccharide, and often
at concentrations markedly higher than those measured in vivo in the septic patient [97]. Furthermore, the cells are
isolated from their in vivo milieu; influences from other immune cells, circulating mediators and other hormones
within plasma, and endothelial interactions are removed. As a consequence, the literature is often inconsistent and
direct translation to the in vivo situation in the septic patient is uncertain.

While stress hormones generally induce immune suppression [153] this is not straightforward. Even cortisol, gener-
ally considered the archetypal anti-inflammatory stress hormone, can be pro-inflammatory under certain conditions.
The type of immunomodulation depends not only on circulating levels and duration of elevation, but also the cell type
and the type of receptor being activated. Catecholamines, glucagon and insulin induce non-genomic signals, while
mechanisms underlying glucocorticoid and thyroid hormone activity also include genomic pathways regulating gene
transcription [82] (Table 1). An important question is whether the effects of these hormones on the immune system
are additive, or whether some of the signalling pathways become saturated or unresponsive.

Another important point to make is that the native host response is heavily modified by exogenous administration
of hormones that are frequently used in the management of septic patients, and often at supraphysiological doses.
Common examples include catecholamines, vasopressin or its analogues, corticosteroids and insulin. The stress re-
sponse and immune function are also modified by other routine interventions, for example the use of immunomod-
ulating sedative drugs [154] and a decrease in sympathetic activity due to the patient being asleep.

The innate immune system
Despite their generally anti-inflammatory effects, glucocorticoids appear to act in a biphasic manner. Low doses of
endogenous glucocorticoids, or exposure to this hormone without an additional inflammatory stimulus, can enhance
pathways involved in the innate immune response by up-regulating PRRs, cytokine receptors and complement factors.
This includes aiding differentiation of macrophages, promoting phagocytosis of apoptotic cells and debris by mono-
cytes and macrophages, and anti-inflammatory cytokine secretion [155]. Expression of pro- and anti-inflammatory
genes are regulated via NF-κB and AP-1 or by post-translational protein modification [155]. In contrast, glucocor-
ticoids exert anti-inflammatory effects by inhibiting expression and secretion of pro-inflammatory cytokines and
chemokines, impairing phagocytosis in macrophages, increasing apoptosis of neutrophils, basophils and eosinophils,
and decreasing antigen presentation and co-stimulation by dendritic cells which will ultimately affect the adaptive
immune system [155–157].

The effects of catecholamines on the immune system are also complex [158]. Catecholamines bind to α- and
β-adrenergic receptors with variable affinity depending on the dose and type of catecholamine; they also exert a range
of effects that depend on receptor subclass and location. Temporal changes in receptor density and downstream sig-
nalling are poorly characterised at present. α-adrenergic receptors have predominantly pro-inflammatory actions by
activating NF-κB and increasing pro-inflammatory cytokines in vitro. By contrast, β2-adrenergic receptor activation
via cAMP-PKA signal transduction inhibits NF-κB and reduces production of pro-inflammatory cytokines, while in-
creasing anti-inflammatory cytokines such as IL-10. β2-AR activation also inhibits chemotaxis, phagocytosis and the
respiratory burst in neutrophils, phagocytosis in macrophages in vitro and reduces NK-cell cytotoxicity.

Thyroid hormones play an essential role in the innate immune response at both genomic and non-genomic levels.
Both hyper- and hypothyroidism affect immune cell functionality, including chemotaxis, cytokine release, phagocy-
tosis, and bacterial killing. Potentially comparable to the ‘sick euthyroid syndrome’ seen during sepsis is hypothy-
roidism. This state is generally associated with a decreased immune response as evidenced by reduced migration and
chemotaxis ultimately affecting mortality [159]. Some of these innate immune functions were restored after supple-
mentation. However, evidence is conflicting as increased release of pro-inflammatory markers and mixed effects on
respiratory burst activity have also been reported [160]. Thyroid hormones decrease migration of neutrophils but
have also been shown to increase neutrophil cell numbers and bacterial killing by increasing respiratory burst activ-
ity [159]. Physiological levels of T3 are essential for NK-cell activity [159]. Thyroid hormones also favour monocyte
differentiation into dendritic cells rather than macrophages [161]. Increased phagocytosis and respiratory burst with
decreased M2 polarisation have been observed in macrophages [159,161,162]. In dendritic cells, T3 increased cell
maturation, activation, viability, migration, and antigen presenting cell (APC) function [161,163].

Insulin seems to favour the adaptive immune response, shifting differentiation of bone marrow progenitor cells
towards a lymphoid cell lineage [164]. Other anti-inflammatory effects of insulin include a reduction in respiratory
burst and NET formation in neutrophils and reduced pro-inflammatory cytokine production [165]. In patients with
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Type 2 diabetes, insulin reduced TLR transcription after LPS stimulation [166–168]. These effects are mediated by
multiple mechanisms, including glucose toxicity and related oxidative damage [169], inhibition of FOXO1 transcrip-
tion factor via activation of the P13K-Akt signalling pathway [167], indirect regulation of NRF2 [169], suppression
of NF-κB, and/or modulation of autophagy [170–172]. As insulin levels initially decrease during the early phase of
sepsis, immunomodulating effects may be mild.

Elevated levels of glucagon may also contribute to dysregulation of innate immune cells. Reduced bacterial killing
and adaptive immune activation were seen after exposure to high concentrations of glucagon, as evidenced by an
impaired respiratory burst, reduced chemotaxis and neutrophil accumulation [173], a shift in gene expression of
pro- and anti-inflammatory cytokines in monocytes [174], and reduced numbers and activity of NK-cells [175–177].
However, conflicting reports show increased superoxide production in neutrophils and improved cell survival after
blockade of the glucagon receptor [178].

Leptin increases cytotoxicity of NK cells and promotes activation of granulocytes, dendritic cells and macrophages
with release of proinflammatory cytokines. On the other hand, leptin deficiency, as seen during prolonged sepsis,
increases susceptibility to infections [77].

The adaptive immune system
Glucocorticoids regulate adaptive immunity by inhibiting lymphocyte activation and promoting lymphocyte apop-
tosis, events also observed in sepsis [156,157]. At high concentrations, B- and T-cell production is also inhibited
[157]. Glucocorticoids inhibit pro-inflammatory genes involved in adaptive immunity and also dampen signals down-
stream of PRRs, cytokine receptors and Fcε receptors. They inhibit expression of chemokines and adhesion molecules
that curtail inflammation and reduce leukocyte recruitment [179–182], directly suppress CD4+ T-cell activation and
favour differentiation of T-cells into Th2 and Treg cells over Th1 and Th17 cells.

Similar to the abovementioned anti-inflammatory effects of glucocorticoids, β2-adrenergic receptor activation by
catecholamines also affects the adaptive immune response by suppressing T-cell proliferation and shifting differen-
tiation of Th cells towards Th2 polarisation. This subsequently reduces the production of IFN-γ by Th1 cells and
the ability to fight intracellular bacterial infections [158]. As with their effects on innate immune cells, α-adrenergic
receptor activation increases the production of pro-inflammatory cytokines, while β2-adrenergic receptor activation
favours production of anti-inflammatory cytokines [158]. Of note, elevated levels of catecholamines have been re-
ported up to two years after critical illness [183]; this is associated with immunosuppressive effects that persist long
after hospital admission and increase susceptibility to secondary infection and risk of hospital re-admission.

Findings on thyroid hormone-induced effects on humoral and cell-mediated immune immunity are less well
known and conflicting, with studies both indicating an increase and decrease in lymphocyte proliferation and apop-
tosis and B-cell antibody production [160,184–187]. Hypothyroidism has mainly been associated with a decreased
immune response as indicated by decreased lymphocyte proliferation, but increased release of pro-inflammatory
markers. Supplementation subsequently reversed some of these effects. Effects on other aspects of the adaptive im-
mune system including antibody production are not consistent [160].

Although insulin favours the differentiation of progenitor cells towards the lymphoid cell lineage, it also increases
T-cell function by stimulating proliferation, differentiation and effector function. This is regulated by changes in
metabolism and activation of the P13K-Akt-mTOR pathway [188,189]. By contrast, insulin favoured polarisation of
lymphocytes into the Th2 anti-inflammatory phenotype [190]. Insulin did not however induce substantial changes in
B-cells [191]. Reduced accumulation, proliferation and function of T-cells has been reported with glucagon treatment
[192].

Leptin induces T-lymphocyte proliferation and responsiveness, increasing Th cell differentiation but decreasing
Treg cell proliferation. It also increases proliferation and has antiapoptotic effects on B-lymphocytes [77].

Conclusion
Sepsis is a complicated syndrome with various interlinked bodily systems that are affected in a time-dependent man-
ner, making it difficult to translate findings to a clinical setting. We do appreciate that the current review focuses on
a simplified selection of stress and metabolic hormones, making that the overall picture is even more complicated.
Despite this, it is evident that immune cell function depends on mitochondrial function, and that the hormones dis-
cussed affect both immune cell and mitochondrial function which could significantly contribute to mortality in sepsis
[59,60,193]. Supplementing endogenous changes with exogenous administration of, e.g., insulin, catecholamines, and
hydrocortisone [193] could therefore be detrimental for patients in the long run. However, other improved treatment
strategies are currently lacking. Additionally, there is still some controversy to be found in the literature and limited
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knowledge on underlying mechanisms. Variations might be largely due to differences in study methodologies. This
includes differences in tissues and cells studied, exposure duration and timing, septic source or stimulus, dose and
formulation of hormones used. Further studies are required to fully elucidate how each of these hormones may affect
the immune system and mitochondria, especially studies with clinically relevant concentrations in those cells of the
innate and adaptive immune system, and more importantly how these hormones work in unison to mediate some of
the commonly seen changes in sepsis.
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191 Jennbacken, K., Ståhlman, S., Grahnemo, L., Wiklund, O. and Fogelstrand, L. (2013) Glucose impairs B-1 cell function in diabetes. Clin. Exp. Immunol.
174, 129–138, https://doi.org/10.1111/cei.12148
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