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A B S T R A C T   

Objective: Disease comorbidity is a major challenge in healthcare affecting the patient’s quality of life and costs. 
AI-based prediction of comorbidities can overcome this issue by improving precision medicine and providing 
holistic care. The objective of this systematic literature review was to identify and summarise existing machine 
learning (ML) methods for comorbidity prediction and evaluate the interpretability and explainability of the 
models. 
Materials and methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
framework was used to identify articles in three databases: Ovid Medline, Web of Science and PubMed. The 
literature search covered a broad range of terms for the prediction of disease comorbidity and ML, including 
traditional predictive modelling. 
Results: Of 829 unique articles, 58 full-text papers were assessed for eligibility. A final set of 22 articles with 61 
ML models was included in this review. Of the identified ML models, 33 models achieved relatively high accuracy 
(80–95%) and AUC (0.80–0.89). Overall, 72% of studies had high or unclear concerns regarding the risk of bias. 
Discussion: This systematic review is the first to examine the use of ML and explainable artificial intelligence 
(XAI) methods for comorbidity prediction. The chosen studies focused on a limited scope of comorbidities 
ranging from 1 to 34 (mean = 6), and no novel comorbidities were found due to limited phenotypic and genetic 
data. The lack of standard evaluation for XAI hinders fair comparisons. 
Conclusion: A broad range of ML methods has been used to predict the comorbidities of various disorders. With 
further development of explainable ML capacity in the field of comorbidity prediction, there is a significant 
possibility of identifying unmet health needs by highlighting comorbidities in patient groups that were not 
previously recognised to be at risk for particular comorbidities.   

1. Introduction 

Disease comorbidity occurs when an individual experiences two or 
more illnesses simultaneously, which can include physical and/or 
mental medical conditions [1]. The prevalence of comorbidity is ex-
pected to increase significantly in the coming years, with 17% of the UK 
population projected to have four or more chronic conditions by 2035, 
nearly double the prevalence of 9.8% in 2015. Moreover, around 67% of 
those with multiple chronic conditions are expected to have mental 
illnesses such as dementia, depression, or cognitive impairment [2]. 

The cost of treating people with multiple long-term conditions is 

substantial, and it is estimated to rise to over £47 billion by 2035 in the 
UK alone [3]. Additionally, comorbid patients have a higher mortality 
rate and poorer quality of life compared to those without comorbidities, 
making it one of the most pressing issues in healthcare worldwide [4,5]. 
Also, due to the increased life expectancy, healthcare systems worldwide 
are facing the challenge of managing the growing incidence of comor-
bidities [1,6–10]. 

One potential solution to this challenge is machine learning (ML), a 
subfield of artificial intelligence (AI). ML models can be trained on large 
datasets, such as electronic health records (EHRs), to predict the likeli-
hood of a patient developing a particular comorbid condition based on 
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their past medical history, demographics, and other relevant features 
[11]. ML can also aid in predicting comorbidities by analysing patterns 
in large datasets of patient data to identify common factors associated 
with the development of certain comorbid conditions. This can help 
identify potential risk factors for these conditions, which can then be 
targeted for prevention or treatment. 

However, for ML to be widely adopted in healthcare, it is important 
to make the models explainable. The use of explainable AI (XAI) 
methods can help produce an interpretable ML model for disease co-
morbidity prediction, increasing the transparency of ML [12]. Explain-
able ML models will allow clinicians to not only forecast future diseases 
but also understand why an increased risk is predicted. This trans-
parency will be essential for the adoption of ML in healthcare. 

There is great potential to improve precision medicine and provide 
holistic-based care by leveraging ML methods for predicting disease 
comorbidities. Early and accurate prediction of potential comorbidities 
can facilitate more efficient treatments and better preventive strategies, 
resulting in significant cost savings and better health outcomes [13,14]. 
According to a report by NHS England, providing the same treatment for 
individuals with the same diseases (one-treatment-for-all) may only be 
30–60% effective, and even less effective for people with genetic dis-
eases [15]. By leveraging clinical and genetic data and applying ML with 
explainable AI methods, healthcare providers can offer more personal-
ised and effective care to patients with comorbidities, ultimately 
improving treatment and health outcomes [16–18]. 

2. Significance of study 

To the best of our knowledge, there are currently no systematic re-
views exploring the literature on the prediction of disease comorbidity 
using ML methods. Thus, conducting a systematic review on this topic is 
important as it provides a comprehensive overview of the existing 
literature in this field. Also, this systematic review allows us to identify 
gaps in current research, compare the performance of different ML 
models, and provide a basis for future research. Furthermore, it can 
facilitate the development of more robust models for disease comor-
bidity prediction, leading to improved patient outcomes. 

This systematic review aimed to identify and summarise existing ML 
and predictive methods used to predict comorbidities. This study also 
examined the interpretability and explainability, including XAI 
methods, of the predictive models where available. 

3. Materials and methods 

3.1. Case definition for disease comorbidity and predictive modelling 

In this systematic review, we have included all papers that contained 
any of the terms pertaining to comorbidities, such as multimorbidity, 
comorbid conditions, and multiple conditions, with no restrictions on 
the type of disease (e.g. rare, genetic and chronic), while maintaining 
our inclusion and exclusion criteria. This review focused on the various 
types of ML algorithms and general statistical techniques used in the 
literature for disease comorbidity prediction. We defined all predictive 
modelling approaches as ML in this study. 

3.2. Search strategy 

A systematic literature review was conducted and included all rele-
vant papers prior to March 04, 2023, to examine the use of ML and XAI 
methods for comorbidity prediction. Three databases (Ovid Medline, 
Web of Science, and PubMed) were searched using keywords related to 
explainable AI and ML techniques and comorbidity predictions. We 
validated our search query by manually identifying relevant publica-
tions from PubMed and retrieving them using the search query. To 
reduce bias and ensure data quality, two reviewers independently 
screened titles and abstracts and full texts for final inclusion and data 

extraction. Discrepancies were resolved by consulting a third reviewer 
and reaching a consensus agreement. The review protocol was regis-
tered in PROSPERO (registration number CRD42022332597) to pro-
mote transparency and prevent duplication. 

The literature search included the following search terms: (“machine 
learning” OR “artificial intelligence” OR “explainable artificial intelli-
gence” OR “XAI” OR “explainable machine learning” OR “deep learning” 
OR “data mining” OR “neural network*” OR “association rule mining” 
OR “pattern analysis” OR “pattern recognition” OR “ensemble learning” 
OR “statistical learning” OR “support vector machine*” OR “logical 
learning” OR “Naïve Bayes” OR “Bayesian network*” OR “Gaussian 
process*”) AND (“predict*” OR “prognosis” OR “prognostic” OR “pre-
diction model*” OR “predictive model*”) AND (“comorbid condition*” 
OR “comorbidity*” OR “multimorbidity” OR “multi-morbidity” OR 
“multimorbid condition*” OR “multi-morbid condition*”). 

3.3. Inclusion and exclusion criteria 

The Population, Intervention, Comparison and Outcome (PICO) 
framework was used to guide paper selection and develop research 
questions. The population studied was patients of all ages with comor-
bidities, the intervention was ML methods for predicting comorbidity, 
the comparison was different ML algorithms, and the outcome was the 
type and performance of the ML model and challenges in current 
research. 

“During the title/abstract screening stage, we conducted an inde-
pendent screening of all identified articles to assess the suitability of the 
aim and methods of each paper. Specifically, we assessed the aim of the 
paper by determining whether it addressed the use of machine learning/ 
artificial intelligence in predicting or modelling comorbidity/multi-
morbidity. We also assessed the methods of the paper by evaluating the 
use of machine learning/artificial intelligence techniques and the in-
clusion of relevant statistical analyses. Additionally, we considered the 
presence of our main keywords: machine learning/artificial intelligence, 
comorbidity/multimorbidity, and prediction/predictive modelling. 

During the title/abstract screening stage, an independent screening 
of all identified articles was conducted based on their eligibility for in-
clusion in this review. This was determined by assessing whether the aim 
and methods in the abstracts fell within the scope of this review and by 
considering the presence of the main keywords: machine learning/ 
artificial intelligence, comorbidity/multimorbidity, and prediction/ 
predictive modelling in the title and abstract. 

Specifically, English-language, peer-reviewed papers recruiting pa-
tients with a certain disease to predict comorbid condition(s) of the 
disease being studied, with no publication year restrictions were 
included. Studies without sample size or key sample characteristics, 
those that predicted mortality, readmission or drug side effects without 
predicting comorbidity, and those without information on ML model 
performance metrics were excluded, along with review and overview 
studies. 

3.4. Extraction and analysis 

The Preferred Reporting Items for Systematic Reviews and Meta- 
Analyses (PRISMA) framework was used to report the findings of the 
systematic review (Fig. 1 and Supplementary Table 1) [19]. To increase 
comprehensiveness, the literature search included manual searches of 
references and citations in the selected studies and related articles in 
Google Scholar. Two reviewers extracted information from the selected 
articles, considering study and sample characteristics, source of data, 
primary disease being studied, comorbidities predicted, ML algorithms 
used, model interpretation and explainability, and key findings limita-
tions. The findings were synthesised using a narrative approach with 
plots, figures, and tables summarising the results. 
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3.5. Risk of bias and quality assessment 

The Prediction model study Risk of Bias Assessment Tool (PROBAST) 
was used to assess the Risk of Bias (ROB) and applicability of the best- 
performing ML model in the selected articles [20]. PROBAST contains 
20 questions divided into 4 domains (participants, predictors, outcome, 
analysis), with each domain scored as low, unclear or high risk of bias. It 
also assesses the study’s applicability to the target population, pre-
dictors, and outcomes. Assessment of the PROBAST questions was done 
by one reviewer for all the selected articles. The authors’ main model 
was considered for assessment and comparison, or if not specified, the 
model with the highest accuracy and/or highest AUC value was chosen. 
This approach facilitated a more direct ROB assessment and comparison 
of the ML models across the identified studies, particularly between 
studies with multiple trained models and those with only one model. The 
ROB assessment considered: 1) Participants’ data sources and selection, 
2) Predictors’ definition and availability, 3) Outcome definition and 4) 
Analysis: participants, predictors, missing data and model performance. 

4. Results 

4.1. Main findings 

A total of 2001 articles were found across searches in Ovid Medline, 

Web of Science and PubMed, including articles found through manual 
searches by looking into the references of identified key papers. After 
removing duplicates, 829 studies were assessed for inclusion. Of 829 
articles, 58 full-text articles were assessed to determine eligibility. A 
total of 22 articles met the inclusion criteria and were included in this 
review (Fig. 1). The most frequent exclusion criteria were: (1) comor-
bidity data was used to predict mortality and/or disease severity, rather 
than comorbidity; and (2) the studies lacked information on model 
development or population characteristics. The identified studies were 
published between 2009 and 2023 (median = 2020) focusing on a va-
riety of diseases to predict their associated comorbidities using ML al-
gorithms. Most of the studies were conducted in the USA (n = 8), 
followed by Australia (n = 6). Across the 22 studies, a wide variety of ML 
algorithms (n = 61) were used for disease comorbidity predictions (see 
Supplementary Table 2 for more details on each study). 

4.2. Studies and disease comorbidity 

Most of the studies (n = 14) focused on predicting comorbidities of 
chronic conditions, such as diabetes, heart disease, and hypertension. A 
few studies (n = 5) aimed to predict comorbidities of neurological and 
mental health conditions, such as epilepsy, bipolar disorder and 
depression. Only one study investigated the comorbidities of a geneti-
cally rare condition (tuberous sclerosis complex) [21]. The authors 

Fig. 1. PRISMA flow diagram for the systematic review. PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analysis.  
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incorporated genetic data by identifying which patients had genetic 
mutations in genes TSC1 and TSC2 [21]. The comorbidities that these 
studies predicted were diverse due to the primary “recruitment” diseases 
and characteristics of the participants [14,22–27]. 

Across the 22 studies, over 30 unique comorbidities were analysed 
and predicted for multiple medical conditions ranging from 1 to 34 with 
an average value of 6. We observed that diabetes and depression were 
among the top targeted comorbidities to be predicted (Table 1). Iden-
tifying such comorbid conditions facilitated the authors to build a dis-
ease network that could enhance the understanding of the diseases’ 
mechanisms and their relationships [25,18,28,29,30]. Several studies 
analysed the comorbidities in individuals with multiple chronic condi-
tions, focusing on the connections between diseases and the ability of 
ML to predict the comorbidities [23,29,30]. 

4.3. Data sample size and types 

The sample sizes for the 22 studies varied (mean = 52,724, median 
= 6,883), with the lowest sample size being 77 participants and the 
highest sample size being 257,633 [21,23]. The majority of the studies 
(n = 19)—all retrospective cohort and/or case-control studies—used 
data from databases, such as EHRs, registries and corporate databases, 
while three studies used data obtained from interviews and question-
naires [27,31,32]. Of the 19 studies, 7 studies used administrative and 
claim-based datasets (five of them shared the same data source; the 
Commonwealth Bank Health Society (CBHS) in Australia) to forecast 
comorbid conditions using ICD-10-based diagnoses [25,29,30,14,28]. 

4.4. ML methods and features 

The most used ML algorithms for predicting comorbidities in the 
reviewed studies were logistic regression (n = 11) and random forest (n 
= 10), followed by support vector machines (n = 5) and Decision Trees 
(n = 4). Various deep learning algorithms such as neural networks, wide 
& deep learning, multi-layer perceptron and convolutional neural net-
works were used in 5 studies [14,26–30,33], while 2 probabilistic ML 
algorithms (Bayesian networks and Naive Bayes) were applied 
[29,34,25,23]. Three different regression techniques were observed, 
Poisson regression, rigid logistic regression and multinomial logistic 
regression [35,36,37]. Some authors took an unsupervised learning 
approach to identify clusters and relationships of diseases, which were 
then used to build a disease comorbidity network [25,30,23,38]. 

The selected studies analysed various features from various sources. 

The most common features across all studies were: (a) demographic 
information such as age, gender, race, and marital status; (b) clinical 
information such as diagnosis codes, genes involved, and family history 
and (c) health registry information such as hospital diagnoses, drug 
prescriptions, body mass index (BMI) and smoking status. These features 
were used to create predictive models to predict comorbidities. The 
number of features varied between studies, ranging from 6 to 22. 
Additionally, the study also considered network features, such as cen-
trality measures and clustering coefficient, in some studies [29,30,25]. 
The Python programming language was used in 46% of the studies, 
followed by R (41%) and MATLAB (13%). Each study employed 
different modelling techniques and predictors. 

4.5. Risk of bias 

An overall assessment of ROB for each study’s best-performing 
model was performed based on the four domains of PROBAST: partici-
pants, predictors, analysis, and outcomes domains. The participants 
domain had the highest number of studies showing a high ROB (n = 8) 
due to the use of questionnaires/interviews and bias in participants se-
lection (e.g. study design and the inclusion/exclusion criteria), which 
might result in a study population that is not unrepresentative of the 
target population [27,31,32]. The Analysis domain had unclear ROB (n 
= 8) due to a lack of information on missing data handling and predictor 
selection. The predictors domain was second most highly rated as having 
a high ROB (n = 7), due to their unavailability at the time the model was 
used, while the outcome was defined and measured differently for the 
cases and controls, indicating either a high and/or unclear ROB (n = 8). 
Overall, 72% of the studies exhibited high and/or unclear concerns 
regarding their risk of bias. 

With regards to the applicability, 45% of the studies showed a high 
and/or unclear concern. While our systematic review aimed to evaluate 
relevant studies on ML predictions of comorbidity regardless of the type 
of data, it was observed that the included studies utilised a variety of 
data sources and recruitment methods, which may affect potential bias 
and the general applicability of these studies. Studies using interviews 
and questionnaires to recruit participants may have limited applicability 
to the broader population due to potential biases and limitations related 
to self-reporting or recruitment of specific subsets [27,31,32]. Overall, a 
total of 55% of the studies demonstrated a low concern regarding their 
applicability (Fig. 2 & Supplementary Table 4). 

Table 1 
Most predicted comorbidities found in the studies.  

Study Comorbidity 

Diabetes Depression Heart disease Hypertension Anxiety 

Faruqui et al. (2018)  ✓    
Wang et al. (2021)  ✓    
Lu and Uddin (2022) ✓ ✓ ✓ ✓  
Jin et al. (2015) *  ✓    
Tennenhouse et al. (2020)  ✓   ✓ 
Glauser et al. (2020)  ✓   ✓ 
Jin et al. (2015) *  ✓    
Linden et al. (2021) ✓    ✓ 
Farran et al. (2013) ✓   ✓  
Ojeme & Mboghoet (2016) ✓  ✓ ✓  
Abdalrada et al. (2022) ✓  ✓   
Uddin et al. (2022) ✓  ✓   
Dworzynski et al. (2020)   ✓   
Nikolaou et al. (2021)    ✓  
Lu and Uddin (2023) ✓ ✓ ✓ ✓  
Chari et al. (2023) ✓     
Khan et al. (2019) ✓     
Frequency 9 8 6 5 3 
All comorbidities can be found in Supplementary Table 2. 

* Different studies. Refer to the references for the title and full author details.     
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4.6. Model performance and validation 

The majority of the studies (n = 15) used AUC to evaluate the per-
formance of the developed ML models, while 7 studies did not report 
AUC but instead reported accuracy and the Hamming score 
[31,29,35,39,28,40,41]. The best-performing models in the studies 
achieved an acceptable to high-performance score (80–95%). Neural 
networks (NN) and Poisson regression (PR) algorithms had the highest 
AUC score, followed by the decision tree algorithm, compared to the 
others (0.89, 0.89 and 0.88, respectively) (Fig. 3) [27,36,38]. 

The XGBoost algorithm achieved the highest accuracy score 
(95.05%), followed by CART (94.09%) and convolutional neural 
network (91.7%) in the studies reporting accuracy [29,35,39]. Across all 
studies, only one study used the Hamming score to evaluate the per-
formance of the model (Hamming score = 0.91) (see Supplementary 
Table 3 for all ML models’ performances). Most studies used k-fold cross- 
validation (n = 16) as a validation technique, while others used external 
validation (n = 3) [14,35,34], a validation set of the original dataset (n 
= 4) [21,30,33,22] and baseline models in the literature (n = 2) [23,26]. 
Some used multiple validation methods. 

4.7. Evaluation of interpretability and explainability of models 

Out of the 22 studies analysed, only five utilised explainability 
techniques to render their ML models interpretable. These methods 
included neural networks, XGBoost (used twice), multi-layer perceptron 
and random forest, which achieved AUC scores ranging from 0.73 to 
0.83 and accuracy levels between 90% and 95% [14,29,28,22]. Two 
studies employed an explainability approach for XGBoost to predict 
comorbid conditions of chronic diseases such as heart disease and dia-
betes, using the built-in feature importance attribute in the algorithm 
that estimates feature importance based on weight, gain, and coverage 
[28,29]. Uddin et al. (2022) identified the number of episodes, alcohol 
and network features such as degree centrality, transitivity and Pag-
eRank score as the most important features, with F1 feature importance 
gain scores higher than 10 [29]. Meanwhile, Lu and Uddin (2023) 
highlighted network features such as degree centrality and Jaccard co-
efficient as significantly impacting XGBoost performance, with feature 
importance greater than 0.1 [28]. Zhang-James et al. (2020) followed a 
similar approach but used a different model (i.e. random forest) to 
identify the most critical features for predicting substance use disorder 
among children with attention-deficit/hyperactivity disorder. The top 
important features in the RF model included teenage criminal records 
(from onset age 15 up to age 17), childhood (age 2–12) ADHD diagnosis, 

Fig. 2. Study’s best-performing model ROB and applicability assessed by PROBAST. Green Indicates a low ROB/low concern for applicability, red a high ROB/high 
concern for applicability and yellow an unclear ROB/unclear concern for applicability. ROB = risk of bias; PROBAST = Prediction model study Risk of Bias 
Assessment Tool. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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stimulant treatment before the age of 18 and diagnosis of anxiety dis-
order [22]. 

Two other studies used neural network and multi-layer perceptron 
models, respectively, to predict the comorbidities of epilepsy and dia-
betes, employing an XAI method called Shapley Additive Explanations 
(SHAP)—based on the contribution and relevance of each feature to the 
prediction—to make their models explainable [14,33]. The most rele-
vant features in the neural network model included age, gender, drug 
prescriptions (e.g., topiramate) and hypertension diagnosis [14], while 
the multi-layer perceptron model identified age at onset and conditions 
related to circulatory, musculoskeletal and respiratory systems as the 
most important features [33]. 

5. Discussion 

To the best of our knowledge, this systematic review is the first to 
examine the use of ML and XAI for predicting comorbidities. Such 
technologies can help mitigate the risk and burden of comorbidities by 
predicting them, thus improving quality of life and care [39,30,42]. 
Most comorbidities predicted were already listed in existing comorbid-
ity indices such as Elixhauser Comorbidity Index [43]. Studies have 
shown that diabetes, hypertension and depression are among the ten 
most prevalent comorbidities associated with morbidity [44,45,46]. The 
results of this review have also shown that these conditions were the 
most commonly analysed and predicted comorbidities across the iden-
tified papers. 

The ability to predict comorbidities may vary based on the primary 
disease being studied [23,25]. Some diseases may have more complex 
relationships with comorbidities than others, and patients with these 
conditions could have different demographic and clinical profiles [8,4]. 
Additionally, some comorbidities may be more strongly associated with 
the primary disease, while others may be more variable across patient 
populations. This will impact the ability and performance of ML 

algorithms. 
The different methods used to capture phenotypes play a significant 

role in the ability to predict comorbidities. For example, ICD10 codes are 
commonly used in clinical settings but may not capture all relevant in-
formation, while phenotyping algorithms (e.g. the CALIBER and HDR- 
UK Phenotype Library) and clinical trial definitions may be more spe-
cific but require additional validation [49,50]. The potential biases 
associated with different methods of phenotype capture may be difficult 
to evaluate and compare between studies with variable approaches. For 
example, some methods may be more likely to capture certain types of 
patients or exclude others, which could affect the ability of the ML 
models [51,52]. Thus it may be necessary to develop specialised models 
or to use additional clinical and genetic information to improve pre-
dictions. Further delineation of the impact of phenotyping methods on 
prediction could be an interesting subject for further studies. 

It was observed that the association between sample size and model 
performance appeared to be positive, indicating that increasing the 
sample size improves the performance of the model. In general, having a 
larger sample size can lead to better model performance because it 
provides more data for the model to learn from, which can help to in-
crease the model’s performance and lead to better generalisation and a 
decrease in overfitting [47,48]. However, it is important to note that this 
relationship is not always straightforward, as other factors such as the 
quality of the data, the complexity of the model, and the presence of 
outliers can also affect model performance. 

The ML algorithms identified in this review showed the capability of 
processing vast amounts of data from various sources, such as EHRs, to 
identify patterns and associations by building comorbidity networks 
that may not be evident to human experts [29,25,30]. This can lead to 
more accurate and personalised predictions of comorbidities, which can 
help clinicians in making informed decisions about patient care. How-
ever, there are also some limitations to using ML algorithms in pre-
dicting comorbid conditions. ML algorithms are only as good as the data 

Fig. 3. Comparison of the best-performing ML algorithms found in the studies by AUC and sample size. This scatterplot shows each data point represented by a dot, 
with the dot colour corresponding to the algorithm used, and the study name and year as a label close to the dot. A trendline (in a dashed black line) fitted to the data 
using linear regression. The y-axis is transformed using log10. The legend shows the ML algorithm names with their corresponding dot colours. SVM support vector 
machines, NN neural network, CNN convolutional neural network, DT decision tree, RF random forest, GCMC graph convolutional matrix completion, LR logistic 
regression, BN Bayesian network, PR Poisson regression, LSTM long-short term memory. 
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they are trained on, so if the data used to train the algorithm is biased or 
incomplete, the algorithm may make inaccurate predictions [35,27]. 
Additionally, ML algorithms can be complex and difficult to interpret, 
which can make it challenging for clinicians to understand how the al-
gorithm arrived at its predictions [31]. Therefore, it is essential to ensure 
that ML algorithms are validated and transparently communicated to 
healthcare providers to avoid the potential for incorrect or misleading 
predictions. To assist future studies in identifying the best-performing 
models published to date, we have highlighted the best-performing 
model in each study with bold text and an asterisk in the Supplemen-
tary Table 2. 

The AUC and accuracy are common metrics for evaluating a pre-
dictive model. Most studies used AUC (n = 15), as AUC calculates True 
Positive Rate (TPR), False Positive Rate (FPR), sensitivity, and speci-
ficity, making it less biased than accuracy, which only calculates correct 
predictions. Neither the majority class nor the minority class is subject to 
bias when using AUC. Thus, AUC can be a better indicator of model 
performance, especially when dealing with imbalanced data, as it avoids 
bias towards both the majority and minority classes [53–55]. To address 
the class imbalance, one study used up- and down-sampling to increase 
the accuracy of random forest [35]. 

The authors in the selected papers focused on applying ML to predict 
comorbidities, using pre-existing lists of comorbidities, with a limited 
scope of comorbidities studied (mean = 6). These findings suggest that 
no studies are coming close to a high level of inclusion. The lack of 
genetic data and phenotyping methods hindered their ability to uncover 
novel findings. The complexity of identifying comorbidity vs. primary 
disease and the overlap of symptoms and signs among diseases were also 
challenges faced by the authors [56,57]. 

The research on comorbidity analysis has seen an increase in activ-
ities in recent years, with most of the chosen studies (n = 15) being 
carried out between 2020 and 2023. This indicates a growing interest in 
the application of ML in predicting comorbidities for improving patient 
care and treatment outcomes. The studies also highlight the need to 
move away from a single-disease approach towards a more holistic 
approach to patient care [58]. While most studies focused on common 
diseases and their associated comorbidities, one study explored 
comorbidities in a rare medical condition, tuberous sclerosis complex, 
using both EHR and genetic data [21]. Incorporating genetic data in the 
analysis of comorbidities can reveal new insights into disease mecha-
nisms by identifying genotype-phenotype associations. This approach 
can help in understanding the comorbidities in carriers of pathogenic 
mutations and is strongly encouraged [59,60]. 

In this review, the interpretability and explainability of ML models 
were explored. The interpretability was mainly achieved by estimating 
the feature importance, but there was no standard evaluation method for 
explainable ML models, hindering a fair comparison. These findings 
highlight the need for a standard evaluation method and the limitations 
of current XAI methods in aiding understanding and comparability 
across domains. Although there is a trade-off between model explain-
ability and performance, the explainable ML identified in this review 
achieved an acceptable to high performance [14,29,28]. Since XAI is 
regarded as an emerging field in AI, increased interdisciplinary collab-
oration between various professionals, including clinicians and engi-
neers, is necessary so that more robust, trustworthy and explainable AI 
models are built. However, the effectiveness of explainability mostly 
depends on how human users understand the ML model [61]. Although 
explainable models may achieve comparable performance to non- 
explainable models, it is vital to consider factors such as the number 
and type of variables, and the target class accuracy to accurately eval-
uate the performance of explainable models, as these factors may impact 
the performance of explainable ML, as well as non-explainable ML 
models making direct comparisons difficult [62]. 

While our analysis of the included studies demonstrated promising 
results in the use of machine learning models for predicting comorbidity, 
it is important to note that certain confounding variables, such as age or 

socio-economic status, may not have been fully controlled in the 
selected studies. Additionally, a lack of diversity in the study pop-
ulations was noted, with the majority of participants being of a similar 
race/ethnicity or geographic location. This lack of diversity, combined 
with a lack of external validation, could impact the generalizability and 
performance of the machine learning models. 

There is a gap in the literature on how ML and explainability tech-
niques could be used to simultaneously identify comorbidities of dis-
eases using both genetic and EHR data. Regarding methodological 
limitations and gaps, a lack of genetic data such as genetic mutations 
and a comprehensive list of comorbidities was identified. This could be 
due to a lack of access to databases containing both genetic and EHR 
data. Thus, there is a need for a more comprehensive list of comorbid-
ities and more explainable ML models that exploit both genetic and EHR 
data. 

Based on the knowledge obtained from this review, we believe that 
clinicians and researchers developing ML models for the prediction of 
comorbidity in medical care can take several steps to enhance their 
impact. These include; (a) incorporating clinical expertise and stake-
holder input throughout all stages of model development and validation, 
(b) standardising approaches to data collection, curation, phenotyping 
and model validation to allow for replication and informed comparison 
between studies, (c) building transparent and explainable predictive 
models to enhance clinical usability and evaluation of bias, (d) inte-
grating other types of data such as genetic to enhance performance, and 
lastly (e) promoting open data sharing and collaboration and consid-
ering ethical and legal implications of newly developed models [63,64]. 
These steps can ensure that ML predictions of comorbidity are more 
clinically relevant and address the needs of patients and healthcare 
providers, while also maintaining patient privacy and avoiding exacer-
bating health disparities [65]. We believe that these suggestions could 
help to advance the field of ML predictions of comorbidity and ulti-
mately improve patient outcomes. 

5.1. Limitations and future work 

This study had several limitations. First, although some studies re-
ported precision, recall, sensitivity and F1, only AUC and accuracy 
scores were considered for reporting model performance. Although AUC 
and accuracy are commonly used metrics for evaluating machine 
learning models, their suitability depends on the specific predictive task 
at hand. Other metrics such as precision, recall, sensitivity, specificity, 
and F1-score may be more appropriate in some cases. Therefore, re-
searchers should choose evaluation metrics based on the specific context 
and goals of their study to ensure the most accurate assessment of model 
performance. 

Second, even though the AUC provides a valid approach for the ML 
model comparison, not all studies reported AUC values. It is therefore 
difficult to fairly compare the ML models using two different perfor-
mance evaluation metrics (i.e. AUC and accuracy). Also, we did not 
specifically investigate whether the included studies used other metrics 
to ensure appropriate prediction of comorbidity prevalence. While we 
acknowledge that this is an important issue, it was beyond the scope of 
our review. Therefore, future research could explore the use of addi-
tional metrics to improve the accuracy of comorbidity prediction. 

Another limitation of our systematic review is that not all studies 
reported AUC values, which can make it difficult to compare the per-
formance of machine learning models fairly when using different eval-
uation metrics, such as AUC and accuracy. In addition, we did not 
investigate whether the included studies used other metrics to ensure 
appropriate prediction of comorbidity prevalence, which could be 
relevant to explore in future research. Since most of the included studies 
had developed multiple ML models, we only compared the best- 
performing ML model identified in each study. As a result, we only 
assessed those ML models in terms of the ROB. 

Although our search query was validated by manually identifying 
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and retrieving relevant publications from PubMed, other relevant 
studies predicting comorbidities in patients may have been missed due 
to variations in search terms (i.e. relevant papers may not have been 
captured by the keywords used in the literature search) or ambiguity in 
the studies’ titles, aims and methods. Future research could broaden the 
search criteria to include additional studies that may have been missed 
in our review. 

Based on this study outcome, we highly recommend studies to 
analyse the variations in model accuracy among various subgroups in 
the sample, taking into account their unique characteristics, such as age, 
gender, ethnicity and socioeconomic status. Future studies should also 
aim to include more diverse study populations and control for potential 
confounding variables, to ensure the accuracy and applicability of the 
developed models in a broader range of settings. Moreover, to further 
expand the scope of the investigation, we suggest exploring the effects of 
integrating additional factors, such as social determinants of health and 
genetic traits, on the accuracy of the predictions in future reviews. 

Future studies should prioritise the development and validation of 
these models on larger and more diverse populations, as this can 
enhance the generalizability and applicability of ML models for co-
morbidity prediction. Additionally, it is recommended that future 
research take a disease-agnostic approach and consider a broader range 
of conditions beyond the specialty of the disease under examination. 
With the aid of EHRs and genetic data, along with validated phenotype 
libraries such as CALIBER and HDR-UK Phenotype Library [49,50], the 
future of comorbidity analysis holds promise in identifying and ana-
lysing hundreds, if not thousands, of diseases. 

6. Conclusion 

In conclusion, the use of AI methods has shown great potential in 
improving the quality and cost-effectiveness of healthcare, as demon-
strated by its use in predicting comorbidities in individual patients. 
While a wide range of ML algorithms was identified, only a few were 
made explainable, highlighting the need for further development in this 
area. With continued research, there is a significant possibility of 
boosting precision medicine by identifying unmet health needs in pa-
tient populations not previously known to be at risk for specific 
comorbidities. Furthermore, the integration of additional variables such 
as social determinants of health and genetic characteristics could lead to 
even more accurate and personalised predictions. Overall, the trans-
parent and explainable nature of AI has the potential to revolutionise the 
way we approach disease prevention and treatment, ultimately leading 
to improved patient outcomes and better healthcare for all. 
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