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Holographic braneworlds are used to present a higher-dimensional origin of extended black hole
thermodynamics. In this framework, classical, asymptotically anti–de Sitter black holes map to quantum
black holes in one dimension less, with a conformal matter sector that backreacts on the brane geometry.
Varying the brane tension alone leads to a dynamical cosmological constant on the brane, and,
correspondingly, a variable pressure attributed to the brane black hole. Thus, standard thermodynamics
in the bulk, including a work term coming from the brane, induces extended thermodynamics on the brane,
exactly, to all orders in the backreaction. A microsopic interpretation of the extended thermodynamics of
specific quantum black holes is given via double holography.

DOI: 10.1103/PhysRevLett.130.161501

Introduction.—Black holes remain an important labora-
tory for testing ideas in quantum gravity. This is owed to the
discovery they behave as thermal systems with an entropy
proportional to their horizon area [1,2]. Though, black holes
are peculiar as their thermodynamic first law lacks a pressure-
volumework term. This is because there is no clear notion of
pressure or volume for a general black hole. For anti–deSitter
(AdS) black holes the viewpoint dramatically changes.
There, the cosmological constant Λ can be identified as
pressure, and its variation appears in a generalized first law
with a conjugate quantity dubbed the thermodynamicvolume
[3–5]. Thus, AdS black holes give rise to extended black hole
thermodynamics, offering a rich gravitational perspective on
everyday phenomena such as Van der Waals fluids [6,7],
polymers [8], and heat engines [9].
Despite numerous explorations into extended black hole

thermodynamics, there is criticism for identifying the
cosmological constant as a varying thermodynamic pres-
sure. A historical inspiration follows from treating Λ as a
dynamical parameter, leading to additional black hole
“hair” [10]. Further, for consistency, the Smarr relation
for AdS black holes requires a pressure-volume term, with
pressure proportional to Λ [3,11], however, this does not
imply that the pressure should be varied. Outside of these
considerations, introducing variations of Λ is not a priori
clear from a purely gravitational viewpoint.

In this Letter we provide a new motivation for a varying
cosmological constant using holographic braneworlds,
where a dynamical Λ on a brane naturally arises from
tuning the brane tension. In braneworld holography [12]
one couples a d-dimensional brane to a gravitational theory
in an asymptotically (dþ 1)-dimensional AdS background,
which has a dual interpretation as a conformal field theory
(CFT) living on the asymptotic AdS boundary. Upon
integrating out the ultraviolet (UV) degrees of freedom
of the CFT, a specific theory of gravity is induced on the
brane with an effective cosmological constant controlled by
the brane tension. From the higher-dimensional perspec-
tive, this tension is a physical tunable parameter, control-
ling both the coupling to the bulk gravity theory and the
position of the brane, leading to variations of the cosmo-
logical constant on the brane.
Specific braneworld models are also useful to investigate

the microscopic interpretation of extended thermodynam-
ics. To this end, one may consider AdS braneworlds with a
second holographic description in terms of a (d − 1)-
dimensional CFT. Via AdS=CFT, variations in Λ corre-
spond to variations in the number of degrees of freedom of
the dual theory, or the CFT central charge c [3,9,13–16].
While AdS=CFT duality is often discussed in the classical
c → ∞ limit, it is expected to hold even when all 1=c
quantum corrections are included. In fact, going beyond
infinite c could be worthwhile since in the classical limit all
extensive quantities scale with the number of degrees of
freedom [16,17] and, when properly organized, extended
black hole thermodynamics appears to be a “trivial”
modification of standard thermodynamics. It is only when
1=c corrections are included that true new physics could
arise, and we can access them via braneworld holography.
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In this setting, solving classical equations of a braneworld
in (dþ 1) dimensions amounts to solving semiclassical
gravitational equations in d dimensions, giving rise to so-
called “quantum” black holes on the brane [18]. Therefore,
braneworld holography provides a natural framework to
generalize extended thermodynamics of holographic CFTs
to all orders in 1=c.
Inducing a variation of the cosmological constant.—

Consider an asymptotically AdSdþ1 spacetime M of cur-
vature scale Ldþ1, with a dual description in terms of a
CFTd on the asymptotic boundary ∂M. The quantum
fluctuations of the CFT lead to UV divergences which
may be removed by adding appropriate counterterms
[19,20], leading to a holographically renormalized theory.
In braneworld holography [12] (see also [21,22]), one
replaces the regulator surface inside the bulk with a
d-dimensional brane B, as in the Randall-Sundrum brane-
world construction [23], which acts as a physical cutoff and
renders the UV divergences finite. Further, the metric on
the brane is dynamical, and is governed by a holograph-
ically induced higher curvature theory of gravity coupled to
a CFT with a UV cutoff.
Precisely, let the bulk be characterized by the action

Ibulk½M� þ IGHY½∂M� þ Ibrane½B�; ð1Þ
where

Ibulk ¼
1

16πGdþ1

Z
M

ddþ1x
ffiffiffiffiffiffi
−g

p ðR̂ − 2Λdþ1Þ; ð2Þ

IGHY ¼ 1

8πGdþ1

Z
∂M

ddx
ffiffiffiffiffiffi
−h

p
K; ð3Þ

Ibrane ¼ −τ
Z
B
ddx

ffiffiffiffiffiffi
−h

p
: ð4Þ

Here R̂ is the bulk Ricci scalar, Λdþ1 ¼ −dðd − 1Þ=2L2
dþ1

is the cosmological constant, in the Gibbons-Hawking-
York (GHY) term K is the trace of the extrinsic curvature of
∂M, and τ is the tension of the brane.
Integrating out the bulk between ∂M up to B (typically

taken to be near the boundary) amounts to removing CFT
degrees of freedom above the UV cutoff, leading to the
brane effective action I (see Fig. 1 for a depiction)

I ¼ IBgrav½B� þ ICFT½B�; ð5Þ

with the induced gravity theory on the brane

IBgrav ¼
1

16πGd

Z
B
ddx

ffiffiffiffiffiffi
−h

p �
R − 2Λd

þ L2
dþ1

ðd − 4Þðd − 2Þ ðR
2 termsÞ þ � � �

�
; ð6Þ

and two effective parameters endowed from the higher-
dimensional parent theory

Gd ¼
d − 2

2Ldþ1

Gdþ1; ð7Þ

1

L2
d

¼ 2

L2
dþ1

�
1 −

4πGdþ1Ldþ1

d − 1
τ

�
: ð8Þ

Here Ld is the AdS radius on the brane and the R2 þ � � �
terms refer to higher curvature contributions that may be
solved for perturbatively, in principle to any order. The
action ICFT arises from integrating out normalizable modes,
which accounts for the dual CFT state.
We can understand Eq. (1) as a theory of a finite (dþ 1)-

dimensional system with dynamics ruled by general
relativity and a brane. Alternatively, from the brane
perspective, one has a specific higher-curvature theory in
d spacetime dimensions coupled to a cutoff CFT which
backreacts on the brane metric. This means classical
solutions to the bulk Einstein equations correspond to
solutions to the semiclassical equations of motion on the
brane. Specifically, classical black holes map to quantum
black holes, accounting for all orders of backreaction [18].
From the bulk perspective, it is very natural to tune the

tension of the brane τ since it is a physical parameter of the
system. The tension determines the position of the brane via
Israel junction conditions, thence varying the tension
changes the position. Accordingly, by virtue of Eq. (8),
varying the tension alone (keeping the other bulk para-
meters Ldþ1 and Gdþ1 fixed) corresponds to varying the
cosmological constant on the brane Λd:

δτ ¼ δΛd

8πGd
: ð9Þ

Notably, this argument holds for general geometric setups
—we have not selected particular solutions in the bulk or
brane. However, in anticipation of what is to come, it is this
observation which leads to our central claim: classical black

FIG. 1. A Z2-symmetric, double-sided braneworld construc-
tion. The bulk region in white is excised down to the brane B
(blue line), and glued to another copy. A bulk black hole with
event horizon (red line) is attached to the brane, and induces a
horizon on the brane.
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hole thermodynamics in the bulk, including work done by
the brane, induces extended thermodynamics of quantum
black holes on the brane.
Quantum black holes on the brane.—For an explicit

realization of the map between classical and quantum black
holes, consider the setup of [24–26], with an AdS3 Karch-
Randall brane [27] in a bulk AdS4 C-metric

ds2 ¼ l2

ðlþ xrÞ2
�
−HðrÞdt2 þ dr2

HðrÞ

þ r2
�

dx2

GðxÞ þGðxÞdϕ2

��
; ð10Þ

with metric functions

HðrÞ ¼ κ þ r2

l2
3

−
μl
r
; GðxÞ ¼ 1 − κx2 − μx3: ð11Þ

Here κ ¼ �1, 0 corresponds to the types of slicings on
the brane, where κ ¼ −1 recovers a classical Banados-
Teitelboim-Zanelli (BTZ) black hole [28,29] on the brane,
but we will leave κ arbitrary corresponding to a family of
brane black holes. The positive parameter l is the inverse
acceleration associated with the accelerating black hole
interpretation of the C-metric and is related to the AdS4
length scale via L−1

4 ¼ ½ð1=l2Þ þ ð1=l2
3Þ�1=2, and τ by

τ ¼ 1

2πG4l
: ð12Þ

Further, l3 is a length scale related to the curvature scale L3

of the AdS3 brane via

1

L2
3

¼ 2

L2
4

�
1 −

L4

l

�
¼ 1

l2
3

�
1þ l2

4l2
3

þO
�
l4

l4
3

��
: ð13Þ

Note it is L3 which appears in the brane action but the
solutions are characterized by the AdS radius l3, as
standard in higher curvature gravities. Lastly, μ is a positive
parameter related to the mass of the black hole.
Holographically, excising the bulk region between the

AdS4 boundary and the brane (Fig. 1) is dual to integrating
out UV degrees of freedom of the CFT to a cutoff energy
1=l. This procedure induces a quantum BTZ (qBTZ) black
hole on the brane at x ¼ 0 [26],

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dϕ2;

fðrÞ ¼ r2

l2
3

− 8G3M −
lFðMÞ

r
; ð14Þ

where the largest root of fðrÞ yields the qBTZ horizon
r ¼ rþ. Here M is the black hole mass, G3 ¼
G3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðl=l3Þ2

p
is a “renormalized” Newton’s constant,

and FðMÞ a form function which can be explicitly
determined by solving the semiclassical gravitational equa-
tions on the brane. In fact, the renormalized stress tensor
of the coupled holographic CFT has the same radial

dependence and tensorial structure as the stress tensor of
a free massless scalar field conformally coupled to three-
dimensional Einstein gravity in the classical BTZ or conical
AdS3 backgrounds [30–32], differing only in FðMÞ.
Notably, the qBTZ black hole is guaranteed to be a solution
to the semiclassical theory to all orders in backreaction.
Thus, l controls the strength of backreaction from the

brane perspective. As such, one typically treats l ≪ l3,
such that induced quantum corrections are perturbatively
small compared to the leading order Einstein-Hilbert
contribution in the brane effective action. In the bulk this
is equivalent to taking the limit where the brane is close to
the AdS4 boundary. We emphasize, however, our con-
struction works equally well when l is nonzero and finite,
where, however, the gravity theory on the brane has a
massive graviton [27].
The parameter l also features into the coupling of the

gravity theory to the cutoff CFT on the brane. To see this,
note the dictionary for the central charge c3 of the holo-
graphic CFT3 is [26]

c3 ¼
L2
4

G4

¼ l

2G3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p ; ð15Þ

where we introduced the positive dimensionless parameter
ν≡ l=l3. Even without knowing the explicit form of ICFT,
its typical value is c3, while the typical value of the gravity
action is L3=G3, leading to the dimensionless effective
coupling geff ¼ G3c3=L3 [33]. The central charge is related
to the tension via τ ¼ 1=ð8πlG2

3c3Þ. Generically, variations
in τ induce changes in G3, c3, and l, though below we
restrict ourselves to a fixed c3 and G3 ensemble, since that
corresponds to keeping L4 and G4 fixed.
Inducing extended thermodynamics.—Despite the fact

that the C-metric may be interpreted as an accelerating
black hole, it nonetheless has a sensible thermodynamic
description. Indeed, the C-metric has a time-translation
Killing symmetry, which can be used to derive a thermo-
dynamic first law for the black hole horizon. There is no
acceleration horizon in our setup, since we are working in
the “small acceleration” regime l > L4 [34].
With the brane, the bulk black hole thermodynamics is

identified with the thermodynamics of the quantum black
hole. To see this, first consider the case when the tension is
fixed. It is convenient to introduce the dimensionless
parameter z ¼ l3=ðrþx1Þ ∈ ½0;∞Þ, where x1 is the only
positive root of GðxÞ remaining after excising the bulk
region at x ¼ 0. Then, the mass M, temperature T, and
entropy S of the classical bulk black hole are [25,26]

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

2G3

z2ð1 − νz3Þð1þ νzÞ
ð1þ 3z2 þ 2νz3Þ2 ; ð16Þ

T ¼ 1

2πl3

zð2þ 3νzþ νz3Þ
1þ 3z2 þ 2νz3

; ð17Þ
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S ¼ πl3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2

p

G3

z
1þ 3z2 þ 2νz3

: ð18Þ

Each of these expressions follows from the identification of
the free energy with the Euclidean action of the bulk
solution [35], and, for fixed ν, they obey the first law,
dM ¼ TdS. From the brane perspective, the classical
entropy is identified with the generalized entropy S≡
Sgen [26,36], and has the same temperature T. Thus, the
qBTZ first law, valid to all orders in backreaction, is

dM ¼ TdSgen: ð19Þ

A similar relation holds for black holes in semiclassical
two-dimensional dilaton gravity [37,38].
Let us now consider the case when the brane tension is

treated as a thermodynamic variable, similar to the surface
tension of liquids. The effect is that the brane will do work
on the black hole system, such that the bulk first law
becomes

dM ¼ TdSþ Aτdτ; ð20Þ

where Aτ ≡ ð∂M=∂τÞS is the variable conjugate to τ with
scaling dimension of bulk area. We note that the black hole
mass plays the role of enthalpy H ¼ Eþ τAτ, since
enthalpy in standard thermodynamics satisfies a first law
of the form Eq. (20), whereas the internal energy E satisfies
the usual first law dE ¼ TdS − τdAτ. Further, the thermo-
dynamic quantities obey a Smarr relation, which we derive
in the Supplemental Material [39] (generalizing [40])

M ¼ 2TS − 2P4V4 − τAτ: ð21Þ

This includes a τAτ term coming from the brane and the
standard P4V4 due to the bulk cosmological constant, with
“pressure” P4 ¼ −Λ4=ð8πG4Þ, and its conjugate “thermo-
dynamic volume” V4. The first law (20) corresponds to
working in a thermal ensemble of fixed pressure P4, such
that we fix the bulk scales L4 and G4. Our approach
contrasts previous work on (extended) thermodynamics of
accelerating black holes [41–45] as we include a brane and
work in an ensemble where P4 is fixed. These authors also
find a mechanical work term similar to ours, though the
tension corresponds to that of a cosmic string generating
the acceleration of the black hole.
As anticipated, dτ induces extended thermodynamics on

the brane. Particularly, the bulk first law (20) maps to the
brane first law

dM ¼ TdSgen þ V3dP3; ð22Þ

generalizing the quantum first law (19), where P3 ¼
−Λ3=ð8πG3Þ is the pressure of the qBTZ black hole
and V3 its thermodynamic volume. Moreover, the

corresponding Smarr relation of the qBTZ solution also
includes a contribution from the central charge c3

0 ¼ TSgen − 2P3V3 þ μ3c3; ð23Þ

where μ3 is the chemical potential conjugate variable to the
central charge with scaling dimension ½L�−1. Notably, the
mass term is absent from the three-dimensional semi-
classical Smarr relation (23), since G3M has vanishing
scaling dimension, consistent with the extended thermo-
dynamics of the classical BTZ black hole (ν → 0) [46,47].
Further, note that fixing L4 (and G4) in the bulk has
restricted us to the ensemble where c3 is kept fixed. The
crucial point here is that the variation of the pressure on the
brane follows directly from variation of the tension.
We derive exact expressions for the conjugate variables

V3 and μ3 in the Supplemental Material, however, for small
backreaction ν ≪ 1, we find

V3 ¼ VBTZ þ 8πl2
3

z3ð1þ z2Þ
ð1þ 3z2Þ3 νþ � � � ; ð24Þ

μ3 ¼
z3ð1− z2Þ

l3ð1þ 3z2Þ2−
z2ð3þ 9z2þ 8z4 −8z6Þ

2l3ð1þ 3z2Þ3 νþ �� � ; ð25Þ

where VBTZ is the thermodynamic volume of the classical
BTZ black hole, when ν ¼ 0. We see that backreaction
of the holographic CFT modifies the classical relation
between the volume and entropy, VBTZ ∼ S2BTZ, where SBTZ
is the classical BTZ entropy. The effect of this is that the
reverse isoperimetric inequality is obeyed [5],

R≡
�
V3

π

�
1=2

�
π

2Sgen

�
¼ 1þ zνþOðν2Þ ≥ 1: ð26Þ

Hence, in the limit of small backreaction, the qBTZ is said
to be “subentropic,” i.e., a black hole with volume V3

whose entropy is less than a classical BTZ black hole
(where R ¼ 1) of the same volume. This inequality is
violated, however, for general z and ν. In fact, the volume is
bounded above and below, with the lower bound taking a
negative value due to a large Casimir effect. A similar
feature appears in the mass of the qBTZ solution, which has
a finite range and eventually becomes negative as Casimir
effects dominate [25,26]. These new features are most
easily observed in a pressure-volume plot at constant
temperature [48].
Doubly holographic interpretation.—Since the brane

geometry is asymptotically AdS3, a third description of
the bulk-brane system emerges. Namely, we may replace
the induced gravity theory on the brane with a defect CFT2

coupled to the CFT3, hence, our construction exhibits
“double holography” [49]. Per the AdS3=CFT2 dictionary
[50], the defect CFT has central charge
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c2 ¼
3L3

2G3

: ð27Þ

For fixed L4 and G4, we see variations in the brane tension
cascade down to variations in c2 due to the proportionality
with L3. This is consistent with the standard micro-
scopic interpretation of a dynamical cosmological constant
[3,9,13–16].
We can now ascribe a dual field theory interpretation to

qBTZ thermodynamics. Following [17,51], we introduce a
conjugate variable to the central charge c2, namely, a
chemical potential μ2. We may then recast the brane
extended first law (20) in terms of CFT2 quantities

dE ¼ TdS2 − P2dV2 þ μ2dc2: ð28Þ

Here we identified the energy E and entropy S2 of the two-
dimensional field theory with M and Sgen, respectively.
Further, V2 ¼ 2πL3 and P2 ¼ M=V2 are the volume and
pressure in the CFT2. Unlike the brane first law, notice we
have a PdV and not VdP term. This suggests the mass M
should be understood in the dual CFT as internal energy
[17], not enthalpy, as is common in extended black hole
thermodynamics [3]. By comparing (22) and (28) and using
the Smarr relation (23) one finds that the chemical potential
is proportional to the grand canonical free energy W

μ2c2 ¼ M − TSgen − μ3c3 ≡W: ð29Þ

This can be interpreted as the Euler relation in the CFT2,

E ¼ TS2 þ μ2c2 þ μnn; ð30Þ

where the coupling g3 is dual to a chemical potential μn
associated to c3 ¼ n, the number of the light degrees of
freedom that are excited in the CFT2 (corresponding to the
cutoff CFTon the brane). Thus, we have found a consistent
thermodynamic field theory description of quantum black
holes, and generalized the Euler equation in holographic
CFTs to higher order in 1=c.
Discussion.—We have shown braneworld holography

offers a natural framework to explore extended black hole
thermodynamics: varying brane tension induces a variable
pressure of a quantum black hole on the brane to all orders
in 1=c. As proof of concept, we focused on a specific type
of black hole, the qBTZ, exhibiting markedly different
behavior from the classical BTZ. In particular, the qBTZ
system is subentropic, and the thermodynamic volume
attains a maximum value.
The investigation here opens up a plethora of future

directions. First, our analysis suggests the mass of the bulk
is interpreted as an enthalpy, consistent with the interpre-
tation of black hole mass on the brane. It would be
interesting to verify this using the on-shell Euclidean action
of the bulk black hole, along the lines of [35,45,52].

Further, our case study can be extended to other types
of quantum black holes, e.g., rotating and charged qBTZ
[26,53], and quantum de Sitter black holes [54,55]. Extra
work terms in these models are expected to enrich the
thermodynamic phase structure, for which one may build
doubly holographic and quantum heat engines, semi-
classical versions of [9,56], where universal features of
heat engine efficiency [57,58] will be modified due to
backreaction.
Another interesting extension would be to consider more

general braneworld models. In our analysis, we assumed a
simple brane action with only a tension term. Upon
integrating out UV degrees of freedom we thus arrive at
a theory where the gravitational strength on the brane and
the graviton mass are controlled by the same parameter τ.
This in turn imposes an interdependence on various scales
in the worldvolume theory, which control the strength of
the different (higher curvature) gravity couplings. More
generally one may consider situations with induced scale
separation. One could modify the brane action, for instance,
by additional matter fields or via a Dvali-Gabadadze-
Porrati (DGP) term [59], e.g.,

Ibrane ¼
Z
B
ddx

ffiffiffiffiffiffi
−h

p �
−τ þ 1

16πGB
R

�
: ð31Þ

The DGP term separates the graviton mass from the
gravitational strength on the brane, and has proven insight-
ful for calculations of semiclassical entropy [21,60].
Generally, the separation of scales will be induced because
the Einstein-Hilbert term will change the position of the
brane by altering the brane stress tensor and also modify
the effective brane cosmological constant. Alternately, by
tuning the tension such that the brane position is un-
changed, the Newton’s constant on the brane GB directly
influences the effective Newton’s constant via [21]

G−1
d ¼ 2Ldþ1=½ðd − 2ÞGdþ1� þG−1

B ; ð32Þ

such that δGB=G2
B ¼ δGd=G2

d. Thus, even if the gravita-
tional parameters are held fixed in the bulk, the DGP term
could allow for richer induced brane thermodynamics. The
DGP term induces a variation of Newton’s constant, which
in turn yields a variation of the central charge c3, kept fixed
in this Letter [16,17,61]. One may also consider including
topological gravitational terms, such as Gauss-Bonnet or
Lovelock densities, or theories coupled with matter, all of
which introduce additional tunable parameters. Adding
such DGP-like terms allows one to study extended first
laws of entanglement in the presence of additional central
charges, as in [14,62–64], but beyond their classical limits.
Lastly, while we have provided a higher-dimensional

origin of extended thermodynamics using a bottom-up
construction, it is desired to have a more fundamental string
theoretic underpinning. Doing so would grant us access to
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stringy corrections beyond the semiclassical regime con-
sidered here. Such a program has been initiated in [65]. It is
also worth constructing braneworld black holes in string or
M theory and studying their doubly holographic descrip-
tion, in the spirit of [66–70].
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