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Abstract 
BACKGROUND: The Huntington’s Disease Integrated Staging System (HD-ISS) has four stages 
that characterize disease progression over an individual’s lifespan. Classification is based on 
CAG length as a marker of Huntington’s disease (Stage 0), striatum atrophy as a biomarker of 
pathogenesis (Stage 1), motor or cognitive deficits as HD signs and symptoms (Stage 2), and 
functional decline (Stage 3). One issue in the implementation of the HD-ISS is that existing 
prospective studies may not collect all the data required to classify participants. For example, 
the largest active observational study, Enroll-HD, does not collect imaging. A second 
consideration is that the HD-ISS stages characterize periods of disease progression that may 
span several years and there is benefit in defining progression subgroups within a stage. 

OBJECTIVES: Impute stages of the HD-ISS for Enroll-HD and other studies in which missing 
data precludes direct stage classification, and then define progression subgroups within stages.  

METHODS: A machine learning algorithm was used to impute stages using participant age and 
HD-ISS landmark variables. Agreement of the imputed stages with the observed stages was 
evaluated using a variety of methods, including graphing and propensity score matching. The 
distributions of the progression indices were examined by stage, and descriptive statistics were 
used to define progression subgroups. Optimal cut-point analysis was performed to find values 
that maximally separated the distributions.  

RESULTS: There was good overall agreement between the observed stages and the imputed 
stages. However, the algorithm tended to over-assign Stage 0 and under-assign Stage 1 for 
individuals who were early in progression. The medians of the progression indices increased 
with stage, but the distributions showed extensive overlap among stages.  

CONCLUSIONS: There is evidence that the imputed stages can be treated similarly to the 
observed stages for the types of large-scale analyses typically supported by Enroll-HD and 
other studies. When imaging data are not available, imputation can be avoided by collapsing the 
first two stages using the categories of Stage ≤ 1, Stage 2, and Stage 3. Progression subgroups 
defined within a stage can help to identify groups of more homogeneous individuals. These 
results will facilitate the use of the HD-ISS in Enroll-HD to aid in the planning of interventional 
studies in HD. 

Keywords: Huntington’s disease, integrated staging system, missing data imputation, disease 
progression, Enroll-HD 

Introduction 
The Huntington’s Disease Integrated Staging System (HD-ISS) [1] is an evidence-based 
framework intended to facilitate clinical research and interventional studies at points earlier in 
the disease course than previously considered. The HD-ISS characterizes disease progression 
from birth onward using four stages. In Stage 0, individuals have the Huntington’s disease 
genetic mutation (CAG ≥ 40) without any detectable pathological alterations. Stage 1 is marked 
by measurable underlying pathophysiology as indicated by striatal atrophy. Stage 2 indicates 
the appearance of HD signs and symptoms (motor or cognitive), and Stage 3 reflects functional 
decline. 
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Stage classification depends on the pattern of meeting threshold criteria for landmark 
variables. Each variable has a cut-off threshold; if either measured landmark variable surpasses 
the established cut-off threshold, then an individual meets the criteria for a stage. Final 
classification is based on the highest stage criteria reached, provided this is achieved in the 
order consistent with the HD-ISS (otherwise, classification is undefined).  

The landmark for Stage 0 is CAG length, with a threshold of 40 or greater, which is based on 
current penetrance evidence [1]. The landmarks for Stage 1 are caudate and putamen volume, 
corrected for total intra-cranial volume. The landmarks for Stage 2 are the UHDRS [2] Total 
Motor Score (TMS) and Symbol Digit Modalities Test (SDMT; education is factored into the 
SDMT thresholds). Finally, the landmarks for Stage 3 are Total Functional Capacity (TFC) and 
the Independence Scale (IS). 

For Stages 1-3, surpassing the threshold for either variable or both fulfills the criteria. These 
thresholds depend on age, but not on CAG length, having been derived from data of non-HD 
controls (CAG < 36). Tabled threshold values appear in the appendix of the original paper [1], 
and a web-based tool is available for staging based on user input (https://enroll-hd.org/HD-
ISS-Calculator/). 

The HD-ISS is intended to be applied cross-sectionally. The established landmark thresholds 
demarcate the extreme values derived from the non-HD control population, rather than 
signaling a within-person shift from previous visits. Therefore, stage criteria are based on the 
level of the landmark variables at a particular visit, and not based on change or the rate of 
change over visits.  

To aid the use of the HD-ISS in clinical research, we address two challenges of implementation. 
First, precise staging requires that all the landmark variables be available. The largest active 
natural history study of HD, Enroll-HD [3], does not collect imaging. Because Enroll-HD is 
widely used to study natural history and to plan clinical trials, it would be beneficial to apply 
the HD-ISS to Enroll-HD. 

Second, the HD-ISS defines stage boundaries, but it does not provide specific information 
regarding subgroups of progression within a stage. Individuals who recently entered a stage 
might be changing at a slower rate compared to individuals who will soon exit the stage. While 
the stages broadly categorize the phase of disease progression, identifying a progression 
subgroup within a stage can help researchers to define a more homogeneous subpopulation. 
This information can be used as the basis of prognostic enrichment strategies for improving 
interventional studies. 

Both challenges are addressed in this paper. We impute HD-ISS stages for study visits that have 
missing landmark variables (for example, imaging in Enroll-HD) or that have patterns of 
variables that are incongruent with the system. Then, we map the progression indices, such as 
the CAG-age product (CAP) [5] and the HD prognostic index normed (PIN)[6], to the HD-ISS and 
define subgroups of progression within stages. The results are discussed in the context of 
clinical trial planning with an emphasis on using Enroll-HD data. 

https://enroll-hd.org/HD-ISS-Calculator/
https://enroll-hd.org/HD-ISS-Calculator/
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Materials and Methods 
Participants. Four data sets were used in the analysis: Enroll-HD [3] (fifth periodic data set), 
IMAGE-HD [7], PREDICT-HD [8], and TRACK-HD/ON [9]. Study sites were required to obtain 
and uphold local ethics committee approvals and all participants gave written informed 
consent that included the distribution of coded data for research purposes. The Enroll-HD data 
set was obtained in December 2020, and the remaining data sets were obtained in February 
2020. The data sets are publicly available (https://www.enroll-hd.org/). 

Inclusion criteria for the analysis were CAG 40-50 and age 18 or older at the first visit. This 
resulted in a total sample size of 𝑁𝑁 = 15338 with 41194 repeated visits. The number of 
participants (and visits) per study was 14190 (37513) for Enroll-HD, 70 (183) for IMAGE-HD, 
915 (2353) for PREDICT-HD, and 273 (1145) for TRACK-HD/ON. The mean follow-up time was 
3.62 years (SD = 1.68), with 31% of the overall sample having only one visit and 69% having 2-
10 visits. 

Measures. Imaging was performed in all the studies except Enroll-HD. Caudate and putamen 
volumes were obtained from segmentation using the recon-all pipeline of FreeSurfer version 6 
(see the HD-ISS paper supplementary appendix [1] for more details). The volume of each 
structure was divided by total intra-cranial volume (ICV) to adjust for head size. In addition to 
the UHDRS variables of TMS, SDMT, TFC, and IS, the Diagnostic Confidence Level (DCL) and the 
Stroop Word Test (SWR) were used. DCL = 4 (the highest rating) is defined as clinical motor 
diagnosis in research contexts [10]. TFC and IS were not collected in IMAGE-HD. Education was 
treated as binary, with “low” being the UNESCO ISCED 1997 classification 0-3 and “high” being 
4-6 [11]. 

Progression indices included the two versions of CAP from the HD literature. The first version 
[5] was computed as CAP = age × (CAG − 33.66). To provide context, CAP = 413 was associated 
with a 50% probability of clinical motor diagnosis (DCL = 4) for the data considered in this 
study (results not presented). The second version [12] was computed as CAP100 = age × (CAG − 
30) ÷ 6.49. CAP100 is named as such because the expected age of clinical HD diagnosis as 
reported in Enroll-HD (hddiagn) is associated with a score of 100. We also considered PIN [6], 
computed as a weighted combination of TMS, SDMT, and CAP, PIN = (51 × TMS − 34 × SDMT +
7 × age × (CAG − 34) − 883) ÷ 1044. PIN = 0 indicates that if a hypothetical HD cohort started 
with this value at baseline, then 50% would be predicted to reach a rating of DCL = 4 within 10 
years. PIN < 0 indicates it would take longer than 10 years (the cohort is farther from clinical 
motor diagnosis), and PIN > 0 indicates it would take less than 10 years (the cohort is closer to 
clinical motor diagnosis). For participants who had repeated visits, the progression scores were 
time-varying. 

Statistical analysis. Missing data for each visit was singly imputed using the machine learning 
algorithm MissForest [13], which uses random forest [14] with chained equations [15]. 
Consistent with the cross-sectional nature of the HD-ISS, all visits were used to build the 
imputation model, and there was no explicit modeling of the repeated measurements nested 
within participants. MissForest imputes on a variable-by-variable basis with each 
incomplete variable acting as the outcome and using all other variables in the imputation model 
as predictors. Additional details are provided in the supplementary materials. 

https://www.enroll-hd.org/
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The stages compatible with the HD-ISS in PREDICT-HD and TRACK-HD/ON were not imputed, 
but rather treated as “ground truth” for training of the algorithm. Imputation was based on the 
landmark variables and education, age, DCL, SWR, and sex (though the last three had negligible 
predictive power). Because MissForest cycles through each incomplete variable, imputation 
was performed for all variables with missing values, not just the HD-ISS stage. 

Graphical procedures were used to examine the imputation results, with an emphasis on the 
extent of agreement among the observed and imputed values [16,17]. In order to depict HD 
participants with a range of CAG lengths in the same graph, we mimicked previous approaches 
[8,18] in using CAP100 as the time metric for most graphing, which can be thought of as age-
adjusted for CAG expansion. 

To account for the pre-existing differences among the studies, a participant from PREDICT-HD 
or TRACK-HD/ON who had an observed stage was matched to a participant from Enroll-HD 
who had an imputed stage (1:1 matching). The goal was to balance several of the observed 
variables (with no missingness) common among the studies and then compare the observed 
and imputed stages among the matched samples. All the variables from the imputation analysis 
with complete data were used for the matching, which excluded the imaging variables. SWR 
was also excluded because of a relatively high rate of missingness. Exact matching was used for 
CAG length, and propensity score matching [19] was used for age, TMS, SDMT, TFC, DCL, 
education, and sex. A caliper was applied for age and TMS to help ensure similar means and 
variances among the groups. To evaluate the (dis)agreement of the observed and imputed 
stages, we arbitrarily created 100 bins of CAP100 and computed the proportion of individuals in 
a stage for each bin.  

Finally, to define progression subgroups, the distributions of the progression indices (PIN, 
CAP100, CAP) were examined by stage for the combined sample (observed and imputed data). 
To address the overlap of these distributions among stages, optimal cut-point analysis was 
conducted. A non-parametric method [20] was used to determine the optimal cut-point of the 
progression index that best separated two adjacent stages in terms of maximizing the product 
of sensitivity and specificity [21]. The area under the receiver-operator characteristic curve 
(AUC) was computed as an index of the optimal cut-point classification performance. (The 
optimal cut-points computed here should not be confused with the landmark cut-off thresholds 
for the HD-ISS conditions.) 

The analysis was performed with the R computing platform [22] (version 4.1.3). The ggplot2 
[23] package was used for graphing, missRanger [24] for MissForest data imputation, 
MatchIt [25] for propensity score matching, cutpointr [20] for cut-point estimation, and 
graph smoothers were generalized additive (mixed) models (GAMs or GAMMs) estimated with 
mgcv [26]. 

Results 
Table 1 shows baseline (first visit) descriptive statistics for key variables by study. The table 
indicates that on average, Enroll-HD had the oldest and most progressed HD participants, 
whereas PREDICT-HD had the youngest and least progressed. For example, Enroll-HD had 
PIN = 2.23 and PREDICT-HD had PIN = −0.01, with IMAGE-HD and TRACK-HD/ON in the 
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middle, both with PIN = 0.93. In addition, the PIN range was much wider for Enroll-HD (-2.68 
to 9.86) than PREDICT-HD (-2.15 to 3.40), indicating more phenotypic diversity in Enroll-HD. 

Table 2 shows the imputation results. Columns C0-C3 are indicators of whether the criteria for 
Stage 0-3 were met (1 if met, 0 otherwise). For example, the pattern 1, 1, 1, 0 indicates that the 
stage criteria up to and including Stage 2 were met (resulting in a Stage 2 classification). Counts 
in the table are for visits, and the patterns of the C0-C3 criteria indicators in each section are 
sorted by mean CAP100. Stage Count and Stage Proportion show how the algorithm assigned the 
stage for each Stage Criteria pattern, with the following exception: patterns 1-4 are the 
observed indicator patterns that were compatible with the HD-ISS and therefore not imputed.  

All the stages for patterns 5-25 were imputed. Patterns 5-8 were incompatible with the HD-ISS 
because one or more stage criteria were met out of order. Patterns 9-25 had inconclusive 
classification because one or more landmark variables was missing (indicated by a dot). 
Patterns 17-19 were the most frequent in Enroll-HD and could be consistent with staging (if the 
imaging criteria were met).  

Figure 1 shows observed and imputed scores of four landmark variables as a function of CAP100 
and imputation status (observed: 1882 visits, imputed: 39312 visits – with stage and caudate 
volume imputed for all visits, but only missing values imputed for the other variables). 
Putamen and IS were omitted because their results were very similar to caudate and TFC, 
respectively. The configuration of the imputed stages was similar to that of the observed stages 
in the sense that the stages tended to occur at similar CAP100 (e.g., Stage 0 was associated with 
small CAP100, and Stage 3 was associated with large CAP100). The imputed database had a wide 
range of progression and the GAM curves for the imputed data tended to decelerate (or 
plateau) for larger CAP100. Overall, the imputed caudate volume (Panel A) was larger than the 
observed volume, which is illustrated by the GAM curves having different initial values. Both 
groups showed relatively orderly transitions from Stage 0 (left-most) through Stage 3 (right-
most). 

Propensity score matching resulted in the studies being much better balanced than without 
matching in terms of similarity of means and variances (see Table S1 in the supplementary 
material). However, slight differences remained, the largest being a mean difference in TMS. 
Figure 2 shows stage proportion as a function of CAP100 bin midpoint for the observed data and 
the matched imputed data. The GAM curves indicate very similar proportions in the range of 
CAP100 ≥ 80 for all stages. However, there were sizable discrepancies for the range of CAP100 < 
80 with Stage 0 and 1. Panels in the upper row show that the MissForest algorithm tended to 
over-assign Stage 0 and under assign Stage 1 early in progression. The lower row indicates 
relatively minor under-assignment of Stage 2 early in progression and excellent 
correspondence with the observed data for all progression levels of Stage 3.  

Figure 3 shows the longitudinal trends of key variables for Enroll-HD with baseline HD-ISS 
stage. The sample size (number of visits) for starting in Stage 0 to 3 was respectively, 2199 
(22652), 1013 (10776), 1678 (17700), and 9292 (98824). The first column indicates that when 
starting in Stage 0, there tended to be progression through the stages over time. The last 
column shows that when starting in Stage 3, some regression to earlier stages did occur, but the 
vast majority persisted in Stage 3. The middle two panels show there was stage progression 
over time for a large majority, but some did regress.  
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Figure 4 shows the distributions of the progression indices for the combined data (all observed 
and imputed data). For all indices, the median increased with stage, but there was extensive 
overlap of distributions between stages. The overlap indicates that visits could be differently 
ordered by the HD-ISS and the progression indices. For example, the PIN distribution for Stage 
2 shows that the lowest quarter of scores (below the bottom box edge) were smaller than the 
highest quarter of Stage 1 (above the upper box edge). 

Table 3 shows key descriptive statistics for the progression indices by stage for the combined 
data. The overlap of the distributions reflected in the descriptive statistics motivated the 
optimal cut-point analysis to demarcate non-overlapping segments for each stage based on the 
progression indices. Results of the optimal cut-point analysis are shown in the last three 
columns of Table 3 (visualization is provided in Figure S1 of the supplementary material). By 
definition, Lwr and Upr provided limits that did not overlap among stages. The CAP100 cut-
point was best at separating Stage 0 and 1 (AUC = 0.88), but PIN and CAP were close behind 
(AUCs = 0.86). The PIN cut-point was best at separating Stage 1 and 2 (AUC = 0.82), and the CAP 
scores had relatively poor performance (maximum AUC = 0.65). PIN performed well at 
separating Stage 2 and 3 (AUC = 0.88), and the CAPs performed less well (AUC ≈ 0.80). 

Discussion 
Our results show that by using a machine learning algorithm, the HD-ISS stage can be imputed 
when some of the landmark variables are missing. This finding is especially pertinent with 
Enroll-HD, for which imaging data are not currently collected. Imputation of all four stages is 
possible with Enroll-HD, but our results did show some discrepancies between imputed and 
observed values for early progression. The discrepancies might be accounted for by the pre-
existing progression differences among the observed and imputed databases. There is evidence 
that the imputed stages can be treated similarly to the observed stages for the types of large-
scale analysis supported by Enroll-HD, especially when the focus is on HD-ISS Stage > 1. 

There are several practical implications for the application of the HD-ISS with the Enroll-HD 
database. First, the imputation results imply an alternative classification system that need not 
rely on imputation. Two of the most frequently occurring stage criteria indicator patterns of 
Enroll-HD had high consistency of stage assignment (Table 2 Pattern 18 and 19). When criteria 
for Stage 0 and 2 were met, but not Stage 3, the algorithm regularly assigned Stage 2 (84% of 
the time). When the criteria for Stage 0, 2, and 3 were met, the algorithm always assigned Stage 
3 (100% within rounding). Therefore, for these observed patterns, if we were to assume that 
the Stage 1 criteria for brain atrophy were also met, we would often agree with the algorithm 
assignment. On the other hand, when the criteria for Stage 0 was met but was not for Stage 2 
and 3 (Pattern 17), the algorithm assigned Stage 0 or 1 97% of the time. These results lead to 
the suggestion that if we are willing to collapse Stage 0 and 1, then the HD-ISS thresholds can be 
directly used to classify into the less precise categories of Stage ≤ 1, Stage 2, and Stage 3 
without imputation. More simply stated: when Stage 1 criteria are missing, if the criteria for 
Stage 0, 2 and 3 are met, we classify in Stage 3; if the criteria for only Stage 0 and 2 are met, we 
classify in Stage 2; if the criterion for only Stage 0 is met, we classify in Stage ≤ 1. This approach 
grounds the classification in observed data, and it might suffice for much HD research that is 
currently focused on HD-ISS Stage 2 and 3. This also addresses the potential weakness of the 
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imputation algorithm, which showed the greatest discrepancies in assigning Stage 0 and 1 for 
early progression.  

A second practical advantage of our results is the definition of progression subgroups. The 
subgroups can help define treatment subpopulations to plan trials consistent with the HD-ISS. 
Subgroups based on PIN are most applicable to Stage 2, as the PIN combination contains the 
landmark variables for the stage. For Stage 3, subgroups might be defined by traditional TFC 
staging [34]. For example, early Stage 3 might be defined as TFC > 10, and early-to-mid Stage 3 
defined as TFC > 6. Enrichment for Stage 1 (or Stage ≤ 1) is particularly challenging, as it is best 
to define subgroups using a biomarker. Imaging for enrichment is resource-intensive, and fluid 
biomarkers, such as neurofilament light chain, could possibly provide an alternative in the 
future. 

An approach to clinical trial planning might involve the following steps. First, based on 
scientific considerations, the HD-ISS stage for participant recruitment is identified. Second, 
enrichment is used to define a more homogeneous subgroup within a stage. Third, the database 
is interrogated to estimate the untreated rate of change for a continuous endpoint (e.g., TMS), 
or the rate for a time-to-event endpoint (e.g., transition to Stage 3). 

As an example of clinical trial planning for a continuous outcome, let us say the goal of a trial is 
to examine the effect of a treatment on TMS, that is, to slow its progression. Assume the 
treatment population is defined to be in Stage 2 at the start of the study and the goal is to 
exclude individuals who have recently entered the stage or are soon to exit. In this case, 
enrichment might focus on the middle of the Stage 2 PIN distribution, 0.47 < PIN < 1.84. By 
applying the selection criteria to Enroll-HD and computing the relevant statistics, analytic 
formulas can be used to estimate the required sample size [27,28]. 

A similar strategy can be used for a time-to-event analysis in which a treatment is expected to, 
for example, delay the transition into Stage 3. In this design, suppose we want to recruit 
individuals whose first visit is in Stage 2, and follow them until they transition into Stage 3 or to 
the end of the study. The endpoint is time to any drop in the TFC or IS or both (i.e., entry into 
Stage 3). If we want to ensure that there is time for a measurable drug effect, the first visit 
should not be too close to Stage 3, and therefore selection might be below the median PIN in 
Stage 2, PIN < 1.09. After applying the selection criteria and computing statistics, equations for 
time-to-event (or survival) analysis can be used to estimate the required sample size [29,30]. 

A caveat for these trial planning scenarios is that Enroll-HD is not a treatment study, which 
means a placebo effect cannot be estimated. Placebo effects are caused by many factors [31], 
and there is evidence that they can be relatively strong in HD trials [32]. Data from completed 
HD trials can be used in planning to help account for placebo effects [33]. 

The above scenarios are just two examples, as enrichment can be used whenever there is a 
need to identify more homogeneous progression subgroups than are afforded by the HD-ISS 
stages themselves. Furthermore, subgroups need not be defined based on descriptive statistics 
as we have done in our analysis. Rather, different PIN or CAP100 ranges can be considered to 
optimize to the problem at hand.  

It is best to use the progression indices within a single stage, as they may not properly indicate 
inter-stage progression. The HD-ISS stages provide classification into groups by disease status 
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(no detectable pathology, displays of neurodegeneration, HD signs and symptoms, and 
functional deficits). Although the progression indices are powerful tools and are predictive of 
progression, they do not always agree with the HD-ISS regarding an individual’s global clinical 
status. This is illustrated by the extensive overlap of the between-stage distributions. A sizable 
proportion of participants in Stage 3 (for example) have CAP100 (and PIN) values that are 
smaller than participants in Stage 2. The scenario is not unexpected because while over 50% of 
the variation in disease progression is accounted for by age and CAG, these variables are not the 
only determinant factors in explaining disease severity. The landmarks for Stage 3 that signal 
functional loss are not accounted for by CAP100 (or PIN). Therefore, the power of using these 
methods is in their combination. The overlap indicates that mixing the progression indices with 
the HD-ISS could result in individuals not being properly ordered in one sense or the other and 
is why we recommend use of PIN (or CAP100) only within an individual stage. If compelled to 
consider the progression indices for use across stages, then proper ordering on both 
dimensions will be facilitated if we select the inner 50% of the distributions for each stage. This 
refinement will help to define progression groups that are ordered similarly for both the HD-
ISS and the progression index at the group level.  

There are a few caveats that deserve comment. The discrepancy between the imputed and 
observed brain volume is difficult to definitively resolve because of the progression differences 
among the databases. The training databases (PREDICT-HD, TRACK-HD/ON) for the imputation 
were different than the database on which the imputation was mainly applied (Enroll-HD for 
the most part). The study differences may not have been completely accounted for in the 
propensity score matching, which is never perfect. The slowing in the rate of loss for the 
imputed volume late in progression is biologically feasible (see Figure 1). It is logical that at 
some point, striatal loss becomes exhausted, leading to a slowing down in the rate of 
deterioration. A more sophisticated imaging processing approach using higher quality scans 
from PREDICT-HD did reveal the late slowing that was not apparent from our FreeSurfer 
version 6 results [35]. The Enroll-HD database had a much higher density of advanced 
progression visits than the observed database, which perhaps enables us to get a glimpse of the 
nature of striatal loss very late in the disease. However, the imputation is a type of 
extrapolation beyond the progression bounds of the observed volumes, thus the accuracy is 
unknown. 

The MissForest algorithm is stochastic, meaning that when it is re-run with the same data 
the results will change. We did repeat the imputation (results not reported) and found that the 
overall stage classification proportions changed very little, by a maximum of approximately 
0.1%. The imputed HD-ISS stage for each Enroll-HD visit is included in the recent Enroll-HD 
periodic data set (PDS6, released December 2022). Because of the stochastic stage assignment, 
each participant visit also has associated variables for the probability of assignment for each 
HD-ISS stage. This will help researchers understand the reliability of the imputed stage 
designations for proper applications. 

The imputation algorithm treated visits from the same participant as independent, thus 
ignoring the nested nature of the data. Since the majority of participants in the analysis had 
repeated visits (69%), an argument can be made for using a longitudinal multiple imputation 
approach [36]. However, the HD-ISS is fundamentally a cross-sectional system and our intent 
was to be consistent with this design. If our approach needs to be defended, we would say that 
the HD-ISS stages will probably not be used as a primary outcome to be modeled longitudinally 



 10 

over time. Rather, we anticipate that the HD-ISS will be used as in our examples above, to 
anchor individuals within a stage based on a single visit, or to fix a stage transition event for a 
time-to-event analysis. The evidence from our analysis is that the stage imputation is adequate 
for these types of uses. 

Single imputation was implemented rather than the multiple imputation that is recommended 
for general applied data analysis [37]. The MissForest algorithm does impute multiple 
values internally, but there is a final single value that is chosen by a type of popular vote among 
the random forests [13]. The primary reason for using single imputation in our study was to 
assess whether MissForest might be a successful approach. In the first trial analysis scenario 
discussed above, the single imputation might be sufficient because the HD-ISS was considered 
for selection of participants and not for use in the data to be collected over the trial. It is unclear 
if the added complexity of multiple imputation would improve the accuracy of the imputed HD-
ISS stages for this preliminary step; additional research is needed. Should one want to use the 
HD-ISS in an analysis model, then the MissForest algorithm can be run several times to 
generate multiple imputed data sets. The analysis model can be fitted to the data sets and 
results combined using standard methods [37]. 

Finally, there are many machine learning methods that can be used for imputation [38]. The 
chained equations approach used here has been shown to provide good performance in a wide 
variety of scenarios [15], and random forest is known to provide good all-around prediction 
performance [14]. Whether there are benefits of using alternative machine learning approaches 
with or without chained equations is a topic for future research.   

In summary, we have shown that despite missing brain imaging variables, observational 
studies such as Enroll-HD can be staged according to the HD-ISS, perhaps most reliably with a 
three-category staging scenario. Progression subgroups within a stage can be defined to hone 
the definition of treatment populations. Our hope is that this information will facilitate the use 
of the HD-ISS to aid in the planning of interventional studies in HD. 
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Tables 
Table 1: Baseline (first-visit) descriptive statistics of key variables by study. 

Variable Study Missing 
Count 

Proportion 
Complete Mean SD Min Q1 Q2 Q3 Max 

Age Enroll-HD 0 1.00 49.23 13.49 18.03 39.32 49.51 58.97 91.57 
Age IMAGE-HD 0 1.00 46.59 10.81 23.93 39.05 45.95 53.77 70.84 
Age PREDICT-HD 0 1.00 40.00 10.16 18.64 31.66 39.74 47.20 67.90 
Age TRACK-HD/ON 0 1.00 43.73 9.95 18.60 36.90 42.70 50.70 64.10 
CAG Enroll-HD 0 1.00 43.24 2.42 40.00 41.00 43.00 45.00 50.00 
CAG IMAGE-HD 0 1.00 42.86 2.18 40.00 41.00 42.50 44.00 50.00 
CAG PREDICT-HD 0 1.00 42.64 2.11 40.00 41.00 42.00 44.00 50.00 
CAG TRACK-HD/ON 0 1.00 43.37 2.26 40.00 42.00 43.00 45.00 50.00 

Female Enroll-HD 0 1.00 0.54 0.50 0.00 0.00 1.00 1.00 1.00 
Female IMAGE-HD 0 1.00 0.50 0.50 0.00 0.00 0.50 1.00 1.00 
Female PREDICT-HD 0 1.00 0.64 0.48 0.00 0.00 1.00 1.00 1.00 
Female TRACK-HD/ON 0 1.00 0.55 0.50 0.00 0.00 1.00 1.00 1.00 

TMS Enroll-HD 101 0.99 26.92 24.00 0.00 5.00 23.00 42.00 124.00 
TMS IMAGE-HD 0 1.00 10.46 12.87 0.00 0.25 6.00 16.75 60.00 
TMS PREDICT-HD 82 0.91 5.33 5.95 0.00 1.00 3.00 8.00 40.00 
TMS TRACK-HD/ON 0 1.00 11.61 12.51 0.00 2.00 5.00 21.00 52.00 

SDMT Enroll-HD 867 0.94 31.44 17.64 0.00 18.00 29.00 45.00 101.00 
SDMT IMAGE-HD 0 1.00 43.59 13.12 18.00 34.00 45.50 51.75 74.00 
SDMT PREDICT-HD 86 0.91 50.72 11.58 16.00 44.00 50.00 58.00 92.00 
SDMT TRACK-HD/ON 0 1.00 44.32 13.49 12.00 35.00 44.00 53.00 80.00 

PIN Enroll-HD 940 0.93 2.23 2.19 -2.68 0.35 2.31 3.78 9.86 
PIN IMAGE-HD 0 1.00 0.93 1.41 -1.63 -0.20 0.51 2.02 4.45 
PIN PREDICT-HD 93 0.90 -0.01 0.93 -2.15 -0.67 -0.07 0.54 3.40 
PIN TRACK-HD/ON 0 1.00 0.93 1.37 -1.39 -0.17 0.52 1.97 4.60 

CAP100 Enroll-HD 0 1.00 97.98 23.11 28.74 82.81 101.92 114.37 190.22 
CAP100 IMAGE-HD 0 1.00 90.33 17.15 40.57 79.49 90.66 103.75 129.11 
CAP100 PREDICT-HD 0 1.00 76.26 16.39 34.84 64.61 76.44 87.68 147.06 
CAP100 TRACK-HD/ON 0 1.00 87.80 14.90 53.81 78.12 85.61 97.69 128.74 
CAP Enroll-HD 0 1.00 455.71 115.78 118.24 379.01 469.48 533.96 952.15 
CAP IMAGE-HD 0 1.00 415.71 87.66 175.68 355.46 413.83 481.15 632.88 
CAP PREDICT-HD 0 1.00 348.55 80.65 149.81 294.14 351.07 401.04 721.56 
CAP TRACK-HD/ON 0 1.00 409.77 75.48 242.69 352.50 400.36 461.52 638.89 

Note. SD = standard deviation, Min = minimum, Q1 = first quartile (25th percentile), Q2 = second quartile (50th percentile), 
  Q3 = third quartile (75th percentile), Max = maximum 
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Table 2: Results of the imputation. Patterns 1-4 have observed HD-ISS stages, whereas 5-25 have imputed HD-ISS stages. Missing data is indicated by a dot 
(.). 

 Stage Criteria Study Visit Count Stage Count Stage Proportion Mean 
Pattern C0a C1b C2c C3d Total Enroll IMAGE PREDICT TRACK S0 S1 S2 S3 P0 P1 P2 P3 CAP100 PIN 

1 1 0 0 0 442 0 0 244 198 442 0 0 0 1 0 0 0 73.41 -0.52 
2 1 1 0 0 534 0 0 356 178 0 534 0 0 0 1 0 0 82.31 -0.04 
3 1 1 1 0 506 0 0 306 200 0 0 506 0 0 0 1 0 87.81 0.92 
4 1 1 1 1 400 0 0 125 275 0 0 0 400 0 0 0 1 99.68 2.36 
5 1 0 1 0 139 0 0 93 46 36 0 102 1 0.26 0 0.73 0.01 75.73 0.14 
6 1 0 1 1 37 0 0 15 22 1 0 0 36 0.03 0 0 0.97 83.53 0.69 
7 1 0 0 1 33 0 0 10 23 14 1 0 18 0.42 0.03 0 0.55 83.91 -0.03 
8 1 1 0 1 49 0 0 32 17 0 6 0 43 0 0.12 0 0.88 85.38 0.11 
9 1 0 . 0 2 0 0 2 0 2 0 0 0 1 0 0 0 58.97 -0.86 

10 1 0 0 . 176 0 0 176 0 168 8 0 0 0.95 0.05 0 0 69.86 -0.57 
11 1 0 . . 115 0 42 73 0 89 4 20 2 0.77 0.03 0.17 0.02 71.63 -0.33 
12 1 0 1 . 83 0 6 77 0 15 1 65 2 0.18 0.01 0.78 0.02 75.21 0.27 
13 1 1 0 . 164 0 0 164 0 7 151 6 0 0.04 0.92 0.04 0 82.00 -0.06 
14 1 1 . 0 5 0 0 3 2 0 4 1 0 0 0.80 0.20 0 85.68 0.35 
15 1 1 . . 186 0 47 137 2 2 67 88 29 0.01 0.36 0.47 0.16 89.58 0.92 
16 1 1 1 . 368 0 85 283 0 0 6 272 90 0 0.02 0.74 0.24 96.20 1.70 
17 1 . 0 0 7,408 7,298 0 46 64 4,682 2,539 145 42 0.63 0.34 0.02 0.01 72.24 -0.45 
18 1 . 1 0 4,143 4,062 0 25 56 237 145 3,494 267 0.06 0.03 0.84 0.06 91.27 1.28 
19 1 . 1 1 24,818 24,750 0 12 56 7 0 1 24,810 0 0 0 1 111.22 3.93 
20 1 . 0 . 90 18 0 72 0 59 29 2 0 0.66 0.32 0.02 0 75.84 -0.46 
21 1 . . 0 92 92 0 0 0 54 26 11 1 0.59 0.28 0.12 0.01 76.03 -0.16 
22 1 . 0 1 1,066 1,058 0 2 6 141 32 0 893 0.13 0.03 0 0.84 84.87 0.19 
23 1 . . . 67 39 0 28 0 18 4 26 19 0.27 0.06 0.39 0.28 88.68 1.16 
24 1 . 1 . 113 38 3 72 0 3 2 80 28 0.03 0.02 0.71 0.25 93.72 1.59 
25 1 . . 1 158 158 0 0 0 3 0 0 155 0.02 0 0 0.98 113.79 4.03 

aC0 = 1 if CAG ≥ 40 and 0 otherwise (dot indicates missing; all participants had 40 ≤ CAG ≤ 50) 
bC1 = 1 if either putamen or caudate or both are below threshold 
cC2 = 1 if either TMS or SDMT or both are beyond threshold 
dC3 = 1 if either TFC or IS or both are below threshold 
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Table 3: Descriptive statistics and optimal cut-point analysis results of the progression indices for 
the HD-ISS stages. Results are based on the combined data (observed and imputed). 

Variable Stage Mean SD Min Q1 Q2 Q3 Max Lwr Upr AUC 
PIN 0 -0.76 0.58 -2.91 -1.14 -0.74 -0.37 2.51 Min -0.34 - 
PIN 1 0.12 0.58 -2.07 -0.28 0.13 0.50 3.19 -0.34 0.60 0.86 
PIN 2 1.20 1.02 -1.76 0.47 1.09 1.84 5.60 0.60 2.31 0.82 
PIN 3 3.75 1.89 -1.75 2.47 3.66 5.00 10.21 2.31 Max 0.88 

CAP100 0 64.61 13.06 28.74 55.73 64.58 73.34 147.06 Min 74.27 - 
CAP100 1 85.20 11.84 43.64 77.19 85.03 92.85 153.87 74.27 89.52 0.88 
CAP100 2 91.02 15.72 33.00 80.94 91.43 101.89 171.18 89.52 102.34 0.62 
CAP100 3 110.23 16.45 30.14 100.66 110.89 120.49 200.88 102.34 Max 0.81 
CAP 0 294.53 64.74 118.24 249.88 294.82 336.35 721.56 Min 337.61 - 
CAP 1 386.31 58.72 183.04 347.44 383.51 422.51 806.27 337.61 410.75 0.86 
CAP 2 421.66 78.47 140.37 370.24 422.94 474.86 871.77 410.75 470.64 0.65 
CAP 3 514.35 88.47 124.01 460.03 513.94 567.21 1005.46 470.64 Max 0.79 

Note. SD = standard deviation, Min = minimum, Q1 = first quartile (25th percentile), Q2 = second quartile (50th 
percentile), Q3 = third quartile (75th percentile), Max = maximum; Lwr = lower stage limit based on the cut-point 
analysis, Upr = upper stage limit based on the cut-point analysis, AUC is the area under the receiver-operator curve 
for the previous stage versus the current stage 
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Figures 

 

Figure 1. Observed and imputed scores of key variables by CAP100, HD-ISS stage (color), and 
paneled by imputation status. Smooth curves are based on generalized additive models. Stage 
and caudate volume were fully imputed, but for the other variables only scores that were 
missing were imputed. ICV is total intra-cranial volume.   
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Figure 2. Propensity score matching results. Proportion of HD-ISS stage by CAP100 and 
imputation status (observed, imputed). CAP100 is the midpoint of a bin range (100 bins total), 
and the smooth curves are based on generalized additive models. 
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Figure 3. Enroll-HD longitudinal data of four variables (rows) for different HD-ISS starting stages (columns) with CAP100 as the time metric (CAG-adjusted 
age). Stage and caudate volume (ICV = intracranial volume) were completely imputed, whereas other variables had partial imputation. Repeated visits of 

the same participant are connected by a thin line, and the smooth curves are based on group-level generalized additive mixed models.  
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Figure 4. Distributions of progression indices as a function of HD-ISS stage for the combined data (observed and imputed). Jittered values (points) are 
shown with boxplots wrapped by violin plots. Panel A is for PIN, B depicts CAP100, and C shows CAP. 
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Supplementary Material 

Overview of the MissForest algorithm 
HD-ISS stage imputation was performed with the MissForest[13] algorithm that uses 
random forest[14] with chained equations[15]. Because Enroll-HD does not collect imaging 
variables, a database from studies that did collect imaging (PREDICT-HD and TRACK-HD/ON) 
was used to train the algorithm. Chained equations constitute a conditional specification 
approach to imputation. The imputation is performed on a variable-by-variable basis with each 
incomplete variable acting as the outcome and using all other variables in the imputation model 
as predictors. Each conditional imputation model is variable-specific, using the appropriate 
methods for the data type of the variable, whether it be continuous, binary, multi-category, etc. 
Thus, in our application all variables with missing data were imputed, not just the HD-ISS 
stages. The chained equation approach has been shown to work well in simulation studies[15]. 
The main advantage of the method is that a specification of the joint multivariate distribution 
for all the variables is not required. The multivariate distribution may be difficult or impossible 
to specify when the variables are a mix of types, as we have in Enroll-HD. 

The MissForest algorithm proceeds as follows. Suppose we have variable vectors 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 
each with dimension 𝑛𝑛 × 1. Assume the first two variables have missing data, and say that 𝑥𝑥1 
has less missing than 𝑥𝑥2. We start with 𝑥𝑥1, and set it to be the outcome variable, 𝑦𝑦, which will be 
predicted by 𝑥𝑥2 and 𝑥𝑥3. Note that for each row of 𝑦𝑦 that has missing data, 𝑥𝑥2 might also have 
missing data or not. The algorithm initiates by making a naive guess for the missing data in 𝑥𝑥2, 
using the mean or mode (depending on the predictor variable type). Then a random forest is 
grown, consisting of a large number of random regression trees[14] (1000 trees were used in 
our case). The RF is trained for the observed portion of 𝑦𝑦, and then the forest is used to predict 
the missing portion of 𝑦𝑦. Those rows of 𝑥𝑥2 and 𝑥𝑥3 that correspond to the missing rows in 𝑦𝑦 are 
“dropped down” the RF to compute predictions. After missing values on 𝑥𝑥1 are imputed, we 
move on to setting 𝑥𝑥2 to 𝑦𝑦, and a RF is similarly used to predict the non-missing values using 
the newly imputed 𝑥𝑥1 and the (non-imputed) 𝑥𝑥3. The newly trained RF is used to impute the 𝑥𝑥2 
missing values. The process is repeated, and each time the imputed values are updated until a 
convergence criterion is reached. 

  



 24 

Results of Propensity Score Matching 
Balance before and after 1:1 matching of PREDICT-HD and TRACK-HD/ON to Enroll-HD is 
shown in Table S1. 

Table S1: Balance statistics before and after propensity score matching. 

Matching Variable Mean 
Observed 

Mean 
Imputed 

Standardized 
Mean 

Difference 
Variance 

Ratio 

Before Distance 0.1041 0.0497 1.0711 1.0190 
Before Age 43.7616 49.8036 -0.6274 0.5342 
Before CAG 42.9172 43.1415 -0.1023 0.8475 
Before TMS 9.8115 26.0703 -1.4082 0.2630 
Before SDMT 48.2360 31.5853 1.1952 0.5782 
Before TFC 12.3769 9.6763 1.7556 0.1925 
Before IS 97.2611 84.3836 1.8275 0.1779 
Before Educ 0.6668 0.5114 0.3297    NA 
Before Female 0.5830 0.5351 0.0972    NA 
Before DCL 1.7031 2.9310 -0.8086 0.8772 
Before CAP100 85.3139 98.4606 -0.8428 0.4889 
After Distance 0.1041 0.1031 0.0191 1.0849 
After Age 43.7616 43.7023 0.0062 0.9967 
After CAG 42.9172 42.9172 0.0000 1.0000 
After TMS 9.8115 8.9845 0.0716 0.9677 
After SDMT 48.2360 48.0737 0.0117 0.9206 
After TFC 12.3769 12.4106 -0.0219 1.1274 
After IS 97.2611 97.2931 -0.0045 1.0644 
After Educ 0.6668 0.6700 -0.0068    NA 
After Female 0.5830 0.5659 0.0347    NA 
After DCL 1.7031 1.6957 0.0049 0.8062 
After CAP100 85.3139 85.1962 0.0075 0.9965 

 

Optimal Cut-Point Analysis 
Related to Table 3 in the text, Figure S1 shows the densities of the progression indices by HD-
ISS stage with the optimal cut-points indicated by vertical dashed lines. 
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Figure S1. HD-ISS stages: densities and optimal cut-points for CAP, CAP100, and PIN. Observed and 
imputed stages are combined.  
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