
1. Introduction
The Atlantic Meridional Overturning Circulation (AMOC, Rahmstorf, 2006) is a large-scale ocean circulation 
that helps transport heat poleward moderating the climate of Europe and eastern North America (Cherchi, 2019). 
Direct observations of it only became available in 21st century, and show a noticeable weakening (Smeed 
et  al.,  2018) that is not captured in full by climate models (Weijer et  al.,  2020), potentially because it arises 
from natural variability. Despite this, the IPCC Assessment Report 6 projects a further weakening in AMOC 
strength with high confidence (Fox-Kemper et al., 2021), although the magnitude remains uncertain. Evaluating 
the response of models to past variations in boundary conditions (such as orbital configuration and greenhouse 
gases levels, ice sheet extent) against proxy-derived reconstructions of the AMOC can potentially help constrain 
the uncertainty in future projections (Kageyama et al., 2018).

The Holocene Epoch (roughly the past 12,000 years) saw gradual changes in the seasonal cycle of incoming solar 
radiation caused by changes in the orbital configuration (Braconnot et al., 2019; Otto-Bliesner et al., 2017). There 
were also decreasing greenhouse gases (GHG; CO2, CH4, and N2O) concentrations, followed by an increase that 
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is gradual until industrialization and very rapid afterward (He, 2011; Tian et al., 2022). The decaying ice-sheets 
released meltwater throughout the early Holocene (Argus et al., 2014; Peltier et al., 2015), with an abrupt release 
into the Labrador Sea during the 8.2 ka event (Aguiar et  al.,  2021). Reconstructions also show variations in 
anthropogenic land-use, total solar irradiance (Vieira et al., 2011), and volcanic activity (Kobashi et al., 2017) 
that was particularly strong at 8.6–8 and 7.5–7 ka BP.

A large amount of different proxies have been used to reconstruct AMOC during the Holocene. These have been 
assessed to show a relatively stable overall AMOC strength (excepting several abrupt events) until a weakening 
during the Industrial period (Gulev et al., 2021). It can often be unclear whether individual reconstructions are 
tracking the integrated flow throughout overturning circulation or just a particular, local component. Reconstruc-
tions from both vertical density gradient (Lynch-Stieglitz et al., 2009) or based on Pa/Th ratios (e.g., Hoffmann 
et  al.,  2018; Lippold et  al.,  2019; Ng et  al.,  2018) suggest little change in the overall AMOC strength since 
9,000 years ago. Data assimilation approaches similarly suggest little long-term AMOC change in the Holocene 
(Osman et al., 2021; Ritz et al., 2013). Higher temporal resolution reconstructions for the past 2,000 years also 
show little change in overall AMOC, but exhibit uncertainty about the timing and nature of the Industrial Era 
decline (Caesar et  al.,  2021; Thornalley et  al.,  2018; Valley et  al.,  2022). Reconstructions exist that propose 
different temporal behavior; combining all the existing records to provide a complete picture of all aspects of the 
AMOC remains an ongoing effort.

Snapshot equilibrium simulations for 6,000  years ago (6  ka) have been performed for the midHolocene 
experiment of the Palaeoclimate Modeling Intercomparsion Project (PMIP, Kageyama et  al.,  2018). Brierley 
et al. (2020) found that the AMOC strength in the midHolocene ensemble is not markedly different. These results 
are supported by associated simulations of the last interglacial (Jiang et al., 2023). There is known to be a resolu-
tion dependency (Shi & Lohmann, 2016; Shi et al., 2020), which itself could vary by model (Jackson et al., 2020).

Currently there is an effort in the community to undertake transient Holocene simulations, which focus on analyz-
ing the time-dependent interactions between different components in the Earth system and the long-term climate 
evolution. Here we collate the emerging set of Holocene transient simulations from different modeling groups to 
further investigate whether there is a consistent message from the ensemble about trends in (a) AMOC strength, 
(b) its spatial structure, and (c) its internal decadal variability since 6,000 years ago. Summary information about 
the different transient simulations is given in Section 2, along with an explanation of the analysis procedures. 
Further information about each of the individual simulations can be found in Supporting Information S1. The 
results of the AMOC trends in Holocene transient runs are presented in Section 3, followed by discussion and 
conclusions in the last section.

2. Data and Methods
We use nine transient model simulations from eight different coupled climate models (summarized in Table 1). 
All of the simulations are run continuously toward the present day from 6 ka or earlier. Not all of the models are 
truly independent: EC-Earth3-veg-LR, KCM, and IPSL-CM5 use NEMO ocean model at different resolutions 
(Crosta et  al.,  2018; Madec et  al.,  2008); AWI-ESM-2, MPI-ESM, and KCM have versions of the ECHAM 
atmosphere (Mauritsen et al., 2019; Roeckner et al., 2003; Shi et al., 2020; Sidorenko et al., 2019).

All simulations incorporate changes in the orbital configuration, and their associated changes in the seasonal 
distribution of incoming solar radiation across Earth (Otto-Bliesner et al., 2017). Also varying concentrations 
of well-mixed greenhouse gases are specified in every simulation using ice-core records, although the precise 
reconstructions used do differ. Those simulations that start in the early Holocene generally incorporate changes in 
ice-sheet topography and their associated changes in the land-sea mask (Hopcroft & Valdes, 2021; Otto-Bliesner 
et al., 2006; Tian et al., 2022). Only the simulations with CCSM3 impose meltwater fluxes implied by changes in 
ice-sheet topography. Reconstructions of volcanic forcing and variations in total solar irradiance introduce forced 
variability into the simulations, although this has only been done in a single simulation (Dallmeyer et al., 2021). 
Anthropogenic impacts on global vegetation started with the development of farming in the early Holocene, but 
became much more substantial approaching the industrial period (Smith & Zeder, 2013). These are incorporated 
by MPI-ESM using the reconstructions after Hurtt et al. (2011) and Lawrence et al. (2016), but only for the last 
millennium (850–1850 CE).

The zonal-averaged meridional overturning streamfunction in the Atlantic basin is computed for each decade. 
Given that the data are decadally averaged, calendar adjustments to account for variations in the month lengths 
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(Shi et al., 2022) should not matter. Therefore, they have not been applied. The strength of the AMOC is taken as 
the maximum streamfunction at 30°N below 500 m after Brierley et al. (2020). The computation of the standard 
deviation of the AMOC at 30°N below 500 m is based on a sliding 100-year time window, starting from at earliest 
7 ka BP.

3. Results
3.1. Trends in Maximum AMOC Strength

The evolution of maximum AMOC strength in each transient simulation is shown in Figure  1. Changes in 
AMOC since industrialization are not captured through a combination of the varying simulation end dates 
and the 100-year running mean used to smooth the time series. Absolute AMOC strength differs substantially 
between the models (Figure 1), which is mainly due to the model physics. Two simulations—AWI-ESM-2 (Shi 
et al., 2022) and CCSM3 (Otto-Bliesner et al., 2006)—show an overall increasing trend throughout their simula-
tion years, but they differ in timing: AWI-ESM-2 sees an enhancement of the AMOC by 10% during 6–4 ka BP, 
after which the AMOC remains relatively stable and a slight decreasing trend is shown in the late Holocene. The 
increasing trend in CCSM3 is dominated by the strengthening of AMOC in the early to mid-Holocene, with only 
a subtle trend from 6 ka BP onwards. Conversely three simulations show an overall decreasing AMOC trend for 
the maximum AMOC: IPSL-CM5 (∼2 Sv), EC-Earth3-veg-LR (∼1 Sv) and KCM. In KCM there is a decrease 
of approximately 10% in the early portion, but after roughly 6 ka it remains relatively stable with a marginal 
increase in the late Holocene (Segschneider et al., 2018). The other simulations do not show any obvious trends 
in the overall maximum AMOC strength at 30°N through the Holocene (MPI-ESM, HadCM3 and CESM1.2.1). 
Both transient runs with the MPI-ESM (SLO0043 and SLO0050) do display a slightly higher maximum AMOC 
strength at 8 to 6 ka BP compared to later periods in the Holocene. In HadCM3, the AMOC strength before and 
after the 8.2 ka event remain relatively stable at ∼19.5–21 Sv. CESM1.2.1 exhibits a step-change at 7.5 ka BP, 
but the AMOC is very stable afterward.

All the simulations that start in the early Holocene (CCSM3, HadCM3, KCM, and CESM1.2.1) show stronger 
changes in AMOC prior to 8 ka than afterward. The early Holocene saw the 8.2 ka event with a large amount of 
meltwater entering into the Labrador Sea (e.g., Barber et al., 1999; Matero et al., 2017) through three possible 
freshwater sources: the sudden discharge of Lake Agassiz, the altered route of the continental freshwater in the 
North America due to the Laurentide ice sheet melting, and the continuous retreat of Laurentide ice sheet and 
meltwater release from 9 to 6 ka BP (Aguiar et al., 2021). However, the different forcings imposed in the simula-
tions (Table 1) mean that only CCSM3 responds directly to a changed meltwater flux.

Table 1 
The Ensemble of Holocene Transient Simulations, Their Experimental Design and Primary Publication About the Individual Model Description

Model
Length of 

run (ka BP) Forcings Ocean resolution (horizontal, vertical) Reference

AWI-ESM-2 6–0 Orbital, GHG Multi-resolution (finest 25 km in polar), 46 
levels

Shi et al. (2022)

IPSL-CM5 a 6–0 Orbital, GHG Longitude 2°, latitude 0.5–2° (finer near 
equator), 31 levels

Braconnot et al. (2019)

MPI-ESM b 7.95–0.1 Orbital, GHG, land-use, ozone, with or without 
volcanic and solar

1.5° Horizontal grid, 41 levels Bader et al. (2020)

EC-Earth3-veg-LR 8–0 Orbital, GHG 1° Horizontal grid, 75 levels Zhang et al. (2021)

HadCM3-M2.1d c 10–0 Orbital, GHG, ice-sheets and sea-level 1.25° × 1.25°, 20 levels Hopcroft and Valdes (2021)

KCM 9.5–0 Orbital, GHG Longitude 2°, latitude 0.5–2° (finer near 
equator), 31 levels

Segschneider et al. (2018)

CCSM3 22–0 Orbital, GHG, land-ice, meltwater Longitude 3.6°, latitude varies (finer 0.9° near 
equator), 25 levels

Otto-Bliesner et al. (2006)

CESM1.2.1 11.5–0.1 Orbital, GHG, ice-sheets and topography 1° Horizontal grid, 60 levels Tian et al. (2022)

 aThis simulation is referred to as “TR5AS-Vlr01” in Braconnot et  al.  (2019).  bTwo simulations of MPI-ESM are used here: SLO50 is the main focus of Bader 
et al. (2020) and includes volcanic and solar forcing variations, SLO43 does not include them and is only considered as a sensitivity run in Bader et al. (2020).  cIn this 
study, we use the simplest of the HadCM3-M2.1d ensemble members, which is the “xokm” simulation.
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The early Holocene decline in KCM arises primarily from model drift (Segschneider et  al.,  2018), but may 
include an AMOC response to increasing Greenhouse gases (as the lack of a continued trend into the late Holo-
cene rules out an orbital influence). The sudden reduction in AMOC strength in HadCM3 around 8 ka BP arises 
from the opening of Hudson Bay, when the land sea mask is updated. This connected a large volume of freshwater 
to the Atlantic and weakened the AMOC for around 250 years. The run with CESM1.2.1 demonstrates an abrupt 
decrease in AMOC strength by 18% at 7.7–7.5 ka BP, after which the AMOC recovered and stabilized, but never 
returned to the same intensity as that in the early Holocene. The accumulated effect of the rapid retreat of the 

Figure 1. Evolution of the Atlantic Meridional Overturning Circulation (AMOC) in nine climate model simulations. The AMOC strength is tracked by the maximum 
meridional overturning streamfunction at 30°N below 500 m (at a decadal resolution, smoothed by a 100-year running mean). Note the different vertical scales.
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Laurentide ice sheet from 9 to 7 ka BP (Tian et al., 2022) could be the main cause for the abrupt weakening of 
AMOC at around 7.7 ka BP in this run.

In conclusion, the transient simulations do not show any AMOC changes over the past 6,000  years that are 
“consistent” (i.e., with a majority of models showing statistically significant changes in the same direction). They 
do not have a consistent message about the small changes in the overall AMOC strength, as they show trends in 
different directions (Table S1 in Supporting Information S1) that are roughly three orders of magnitude less than 
those projected over the coming century (Fox-Kemper et al., 2021; Weijer et al., 2020). Several models simulate 
changes of roughly ±10%, but these are not of the same sign across models, nor do they exhibit similar tempo-
ral behaviors. The few simulations that start in the early Holocene all exhibit stronger changes prior to 6 ka BP 
than afterward. This is likely related to the loss of the remnant glacial ice through either meltwater or sea-level 
changes.

3.2. Trends in Spatial Structure of Streamfunction

There could be robust changes in the spatial structure of the AMOC, even if the ensemble members show little 
change in its overall strength. We investigate this possibility by mapping the trend in overturning streamfunction 
at each grid box from 6 ka BP to present (Figure 2). Different forms of AMOC evolution emerge—some models 
show the whole circulation spinning up (or down) together, whilst others demonstrate more complex structure 
(such as a subsurface warming at 30°N with cooling on either side of it).

Four simulations show broadly coherent changes in streamfunction especially visible in the deep southward 
return flow at 30°–50°N, 1,700–3,000 m (Figures 2b, 2e, and 2g show coherent decreasing trends; Figure 2h 
shows coherent increasing trends). IPSL-CM5, EC-Earth3-veg-LR, and KCM show an opposite direction of 
trend compared to CCSM3, as might be expected given their opposite trends in maximum AMOC strength 
(Figure 1). A tripole pattern in the mid-latitudes, extending down to ∼1,200 m, is seen in the simulations by 
MPI-ESM, HadCM3 (Figures 2c, 2d, and 2f). Variations in the Mediterranean outflow could potentially be one 
of the causes lead to this pattern, given the latitude. Ivanovic et al. (2013) explore the impact of the Mediterranean 
outflow parameterization in one of the models used here, HadCM3, and demonstrate that it can create changes in 
AMOC of a similar spatial pattern (Ivanovic et al., 2014). Swingedouw et al. (2019) show the pattern of Medi-
terranean outflow changes are model dependent though. AWI-ESM-2 (Figure 2a) shows a pattern that combines 
both this upper-ocean mid-latitude tripole and a broad shift below 1,700 m. The CESM1.2.1 transient run has the 
weakest trend among all the simulations (Figure 2i), with almost no trend at any individual sites for the North 
Atlantic basin from 6 to 0.1 ka BP.

Taken as an ensemble, the simulations do not demonstrate a consistent trend in meridional streamfunction from 
6 to 0 ka BP at any individual locations. Rather they highlight a range of possible behavior—from coherent 
changes throughout the basin or more nuanced patterns showing both strengthening and weakening at different 
locations.

3.3. Trends in AMOC Variability

The key difference between the two MPI-ESM simulations is the inclusion of externally forced variability (Bader 
et al., 2020). This motivates us to explore the AMOC variability throughout the Holocene, which we assess using 
the standard deviation of the decadally averaged, maximum overturning streamfunction at 30°N calculated over a 
sliding 100-year time window (Figure 3). However, there is clearly a strong role for internal variability in AMOC, 
as MPI-ESM SLO0050 shows roughly the same standard deviations as SLO0043 despite the addition of volcanic 
and solar forcing.

The magnitude of the (internal) variability varies substantially between simulations (Figure 3). The run with 
CESM1.2.1 has the smallest magnitude of the internal variability and indicates its simulated AMOC is very 
stable since 7 ka BP. Meanwhile, the transient runs with CCSM3, IPSL and KCM model also demonstrate rela-
tively smaller magnitude compared to all other runs. Other simulations typically show a magnitude of the internal 
variability ranging from 1 to 1.5 Sv, with the strongest fluctuations in AWI-ESM2, IPSL, and EC-Earth3-veg-LR. 
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The CCSM3 simulation also demonstrates a millennium internal variability for the maximum AMOC at 30°N in 
the Holocene—this not seen in any other model (Figure 1), nor in other simulations with the same model (He & 
Clark, 2022).

None of the simulations show a large trend in the standard deviations (Figure 3). Over the past 6,000 years, only 
CCSM3 shows a small trend that is statistically significant (Table S1 in Supporting Information S1), and even 
that becomes insignificant if the analysis is extended back to 7 ka. Therefore, the ensemble as a whole shows no 
trend in the decadal variability of the maximum AMOC at 30°N (Figure 3; similarly for multi-decadal variabil-
ity, Figure S2 in Supporting Information S1). We conclude that the internal variability of the AMOC remained 
constant during mid- and late Holocene, at least in models.

Figure 2. Trend in the meridional streamfunction in the North Atlantic Ocean from 6 ka BP to present (Sv/kyr). The overlaid contours are the mean Atlantic 
Meridional Overturning Circulation spatial pattern at 6–0 ka BP in each model: (a) AWI-ESM-2, (b) IPSL-CM5A, (c) MPI-ESM_SLO0043, (d) MPI-ESM_SLO0050, 
(e) EC-Earth3-veg-LR, (f) HadCM3-M2.1d, (g) KCM, (h) CCSM3, and (i) CESM1.2.1.
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4. Discussion and Conclusions
Overall, there is little support from this ensemble of simulations for major changes in AMOC over the past 
6,000 years. This is true for long-term trends in overall AMOC strength: although individual models may show 
small trends, there is no consistency in the direction of their changes. It is also true for internal variability of the 
AMOC. The different experimental set-ups used in the simulations did not appear to play a large role in AMOC 
evolution since 6,000 years ago, but there were clear consequences from the choice of imposed forcings in the 
early Holocene. This conclusion fits well with results from PMIP, which performed snapshot simulations for 

Figure 3. Running standard deviations of the maximum Atlantic Meridional Overturning Circulation strength at 30°N below 500 m from 7 ka BP to present (based on 
a sliding 100-year time window).
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Figure 4.
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6,000 years ago. They also found no consistent changes in AMOC strength (Brierley et al., 2020). Combining 
those mid-Holocene snapshot simulations alongside last interglacial simulations suggests that variations in 
precession would not be expected to alter AMOC (Jiang et al., 2023).

Our interpretation of the ensemble of Holocene transient model simulations as indicating no changes in AMOC 
agrees with various reconstructions of the overall AMOC (Figure 4). These include Pa/Th reconstructions, which 
have the benefit of (at least potentially) recording the integrated strength of AMOC from a few key sites (Lippold 
et al., 2019). Multiple independent AMOC reconstructions based upon data assimilation are also now availa-
ble (Osman et al., 2021; Ritz et al., 2013). Additionally, the winter SST index of Caesar et al.  (2018) can be 
applied to Holocene reconstructions of temperature anomalies (in this instance from Erb et al., 2022) to recon-
struct past Holocene AMOC strength. Because this reconstruction represents annual mean temperature instead 
of November–May SST, the correlation to AMOC is likely slightly weakened and a direct conversion to abso-
lute AMOC changes is not appropriate. Nonetheless this SST fingerprint approach should retain the timing and 
directions of any AMOC deviations and trends. Collectively these reconstructions also show little change in the 
AMOC during the mid-to-late Holocene (Figure 4).

Although the IPCC assessment of reconstructions suggest little change in AMOC during most of the past 
6,000 years (Gulev et al., 2021), there are several proxy reconstructions that posit a late Holocene decline 
(Ayache et  al.,  2018; Valley et  al.,  2022). It may be that these reflect changes in individual components 
of the AMOC, such as Iceland-Scotland overflow water. Prior research suggests that strengthened deep 
water formation in the Labrador Sea could be compensated for by decreased deep water formation in the 
Nordic Seas, resulting in no change in overall AMOC (Renssen et al., 2005). All the data assimilation efforts 
(Figures 4b–4d) seem to show AMOC tail off toward the end of their respective records. These drops are not 
captured by the transient simulations, nor do proxy reconstructions show a strong long-term decrease over the 
last 2,000 years (Figure S1 in Supporting Information S1, Rahmstorf et al., 2015; Thornalley et al., 2018). 
Further work combining simulations and proxy reconstructions to explore possible compensation between 
different sub-components of the AMOC may provide useful additional information on future AMOC 
projections.

It has been suggested that the AMOC may play a role in Holocene centennial events, such as the 4.2  ka 
and 2.8  ka  BP events (e.g., Denton & Broecker,  2008; Jalali et  al.,  2019; Keigwin & Boyle,  2000; Oppo 
et al., 2003). None of the individual transient simulations capture an event around 4.2 or 2.8 ka (Figure 1), 
nor do the assimilation products (Figure 4, although it is questionable whether they have sufficient temporal 
resolution to detect them). Nonetheless the weakest two centennial-scale periods of ensemble mean AMOC 
occur at ∼4.2 and 2.8 ka (Figure 4a), which warrants further investigation. This is especially intriguing as 
explanations involving volcanic or solar forcing seem unlikely as the majority of simulations do not include 
these forcings.

In summary, this research implies that the overall AMOC maintained its strength over the past 6,000 years 
until the recent changes. The evidence for this conclusion comes from an ensemble of transient simulations 
using fully coupled general circulation models, supported by snapshot simulations and data assimilation prod-
ucts. Additionally, we find no consistent trend in the internal variability of the overall AMOC, as the amplitude 
of decadal variations does not change noticeably between 6 ka to present in any of the simulations. Neither 
did this research show any consistent support for zonal mean streamfunction trends at particular latitudes or 
depths. This suggests that AMOC changes are unlikely to contribute to long-term (multi-millennial) global 
trends since the mid-Holocene (Kaufman & Broadman,  2023). We emphasize that this does not rule out 
AMOC playing an important role in ongoing and future climate changes (Fox-Kemper et al., 2021; Weijer 
et al., 2020).

Figure 4. Comparison of Atlantic Meridional Overturning Circulation (AMOC) simulations with reconstructions. (a) Ensemble mean of the nine transient simulations' 
maximum AMOC at 30°N, after each simulation has been standardized by conversion to a z-score over the period 6–0 ka BP. (b) The AMOC reconstruction 
identified in the reanalysis of Osman et al. (2021). This reanalysis combines marine geochemical data with climate model experiment using proxy system models and 
data assimilation. Dark and lighter shading on the timeseries indicate ±1σ and 95% confidence intervals, respectively. (c) AMOC variations reconstructed by Ritz 
et al. (2013) using data assimilation with priors based on either LOVECLIM or Bern3D simulations. Gray dots are Pa/Th proxy data from Lippold et al. (2019), on the 
right axis. (d) AMOC variations resulting from applying an annualized SST index (after Caesar et al. (2018)) to the surface air temperature anomalies reconstructed by 
Erb et al. (2022) using data assimilation of the temperature 12k database (Kaufman et al., 2020).
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Data Availability Statement
The data from the transient runs that used for analyzing the AMOC evolution throughout the Holocene in this 
study are available at Github repository (https://github.com/ZhiyiJiang/Transient-Holocene-AMOC/tree/v3.2) 
and are permanently archived at Zenodo (https://doi.org/10.5281/zenodo.7799682).
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