
Supplementary methods 1 

Behavioural modelling 2 

We constructed 32 models that each captured different potential strategies. We considered strategies 3 

in which participants performed mental arithmetic to compute the expected value of approaching 4 

versus avoiding (“path appraisal by calculation”; models 1 to 9). We considered that participants might 5 

forgo mental arithmetic and, instead, learn the overall value of each path from experience and use these 6 

cached values to compute expected value (“path appraisal by caching”; models 10 to 27).  We also 7 

considered strategies in which participants learnt the value of approaching versus avoiding from 8 

experience (“Q-learning”; models 38 to 31). Finally, we included a null model in which participants simply 9 

had an overall preference towards approaching or avoiding, irrespective of path values or probabilities 10 

(“null”; model 32). For strategies where paths were appraised (either by calculation or by caching 11 

learned values), each model differed according to whether both paths were considered (models 1, 10, 12 

and 19) or only one path was considered (path 1, path 2, a randomly selected path, or whichever path 13 

was perceived to be rewarding or punishing). Overall, this model space allowed us to determine whether 14 

participants prioritised mentalisation (i.e., a conscious simulation of the sequence) of one path more 15 

than another to ease computational burden, which could indicate a potential confound for any observed 16 

neural replay during planning.  17 

Rational choice model 18 

In each modelled strategy, a choice to approach or avoid depended on how the expected value of 19 

approaching was estimated. In the two-path calculation model (model 1), the expected value of 20 

approaching was determined by calculating the cumulative sum of each path (taking into account the 21 

odd rule) and weighting the sum by the respective path transition probability, and finally summing the 22 

weighted sum of each path: 23 

𝐸𝑉!"" = 𝑅#𝑃# + 𝑅$𝑃$ (4) 

This value was then compared to the expected value of avoiding, 𝐸𝑉!% , as defined by a threshold 24 

parameter, 𝛾: 25 

 26 

𝐸𝑉!% = 𝛾 (5) 

The probability of choosing to approach versus avoid was computed by a softmax function 27 

parameterised by inverse temperature, 𝜏, to incorporate an element of stochasticity: 28 



𝑃!"" = 𝑒&'!""⋅	*	/	(𝑒&'!""⋅	* + 𝑒+) (6) 

Overall, this model represents rational choice behaviour when parameterised with 𝛾 = 1 (as this was 29 

the value of choosing to avoid in all trials) and 𝜏 approaching ∞ so that choices were entirely guided by 30 

value. In our null model (model 28), participants made choices according to an overall preference 31 

towards approaching or avoiding, where 𝐸𝑉!"" = 𝛾 and 𝐸𝑉!% = 0. 32 

Single-path calculation models 33 

Models 2 to 9 differed in how 𝐸𝑉!"" was calculated, such that only one path was taken into account on 34 

each trial. This was either path 1 (models 3 and 6), path 2 (models 4 and 7), or a randomly selected 35 

path (models 2 and 5). We also varied these models by whether a single threshold parameter, 𝛾, was 36 

used on all trials (models 2 to 4) or whether different threshold parameters were used (models 5 to 7) 37 

depending on whether the calculated value of a path (𝐸𝑉!"") was positive (𝛾",-) or negative (𝛾./0). 38 

In models 8 and 9, participants only calculated the path they perceived to be rewarding (model 8) or 39 

punishing (model 9). As there was consistency across blocks as to which path was rewarding and 40 

which was punishing, participants may have learned this and used it as a strategy to reduce mental 41 

arithmetic. On each trial, the learnt value of each path (𝑉) is updated according to:  42 

𝑉(𝑖1) = 𝑉(𝑖12#) + 𝛼(𝑅3 − 𝑉(𝑖12#)), (7) 

where 𝑖 is path 1 or path 2, 𝑡 is the current trial, 𝛼 is the learning rate (0 ≤ 𝛼 ≤ 1), and 𝑅 is the observed 43 

outcome of transitioning to path 𝑖. Note that 𝑉 is set to 0 for all paths at the beginning of the experiment. 44 

Choosing to avoid precluded any value updating, as no path was experienced. 𝑉	was used to select 45 

which path to sequentially calculate, as given by 𝑉(𝑖1) > 0 in model 8 or 𝑉(𝑖1) < 0 in model 9. 46 

Learning path values from experience 47 

Our family of learning models were identical to those specified above, except that the value of paths 48 

was learnt from experience rather than by calculating the cumulative sum of points along each path, 49 

incorporating the odd rule. Path values were updated either via equation 8 (models 10 to 18), or by 50 

equation 9 below (models 19 to 27): 51 

𝑉(𝑖1 , 𝑗1) = 𝑉(𝑖12#, 𝑗12#) + 𝛼(𝑅(𝑖1 , 𝑗1) − 𝑉(𝑖12#, 𝑗12#)), (8) 

where 𝑖 is path 1 or path 2, 𝑗 is the state number the odd rule was applied to along path 𝑖, 𝑡 is the current 52 

trial, and 𝑅 is the observed outcome of a transition to path 𝑖 with odd rule position 𝑗. This was to 53 

accommodate a potential strategy in which participants cached specific values for each path 54 

depending on which state the odd rule was applied to (i.e., up to 3 values per path).  55 



Learning action values from experience 56 

Models 28 to 31 encapsulated a Q-learning approach, in which the value of making different actions 57 

(approach or avoid) in different states (here, the information presented on-screen about the odd rule 58 

positions and the path probabilities) is learned over time: 59 

𝑄(𝑠1 , 𝑎1) = 𝑄(𝑠12#, 𝑎12#) + 𝛼(𝑅1 − 𝑄(𝑠12#, 𝑎12#)), (9) 

where 𝑄 is the value of making action 𝑎 in state 𝑠 on trial 𝑡, and 𝑅 is the observed outcome (i.e., the 60 

number of points gained or lost on a trial). Note that 𝑄 was set to 0 for all states at the beginning of the 61 

experiment. Models differed by whether only one “state” was used, or whether there were different 62 

“states” for: i) each possible path transition probabilities that could be displayed on-screen (10-90%, 63 

30-70%, 50-50%, 70-30%, or 90-10%), ii) each possible combination of positions the odd rule could be 64 

applied to (32 = 9), or iii) a combination of (i) and (ii) giving 45 unique “states”.  65 

Parameter optimisation 66 

In all models, 𝛾 was bound between -12 and 12, as this was the maximum range of probability-weighted 67 

values of any path seen by all participants. Learning rate, 𝛼 was restricted to 0	 ≤ 	𝛼	 ≤ 	1. Inverse 68 

temperature, 𝜏, was restricted to 0	 < 	𝜏	. 69 

Parameter optimisation was conducted via the ‘patternsearch’ function in MATLAB without linear 70 

constraints, which looks for a minimum based on an adaptive mesh aligned with coordinate directions. 71 

To guard against local minima, we conducted parameter optimisation 3k times where 3 starting values 72 

per parameter were uniquely recombined, where 𝑘 is the number of parameters in a model. 73 

Model fit was evaluated by computing the negative log-likelihood, L, of each parameter-optimised 74 

model. Models were compared according to the Bayesian Information Criterion (BIC), as computed by: 75 

𝐵𝐼𝐶 = 	−2𝐿 + 𝑛" ⋅ 𝑙𝑜𝑔(𝑛1), (10) 

where 𝑛" was the number of free parameters in a model, and 𝑛1 was the number of trials for a 76 

participant. BIC scores were computed per participant so that the minimum BIC across models was 77 

subtracted from all models. For group-level model comparison, BIC scores were summed over 78 

participants. 79 



Results 80 

Model recovery 81 

We assessed the specificity of each model by simulating responses using each of the 32 models (100 82 

iterations each) with a range of different parameter values. We then fit each model to each simulated 83 

data set, where a high fit between a simulated data set and the model used to generate that simulated 84 

data indicates a true positive. 85 

We observed high accuracy (M = 96.01%, range = 84.10% to 96.92%) and high specificity (M = 0.97, 86 

range = 0.84 to 0.99), as well as moderate to high sensitivity (M = 0.70, range = 0.38 to 0.98). The lower 87 

sensitivity was driven by the null model, which was sometimes erroneously fit to data generated by 88 

other models (Extended data Fig. 5A). Importantly, these findings indicate we can be confident in our 89 

ability to distinguish between mental arithmetic and learning strategies, as well as between two-path 90 

and single-path evaluation strategies. 91 

Expected performance given each strategy 92 

We assessed the maximum performance that could be expected from each of the modelled strategies. 93 

To do this, we fit each model to rational choice behaviour — that is, only approaching when the expected 94 

value of approaching was greater than 1. We then computed the average accuracy of each model 95 

across each experimental protocol. 96 

Using the optimal two-path calculation model as a benchmark, we found that the next best strategy 97 

was to learn the value of each path depending on which state the odd rule was applied to (α = 0.92) and 98 

then only make decisions based on its probability-weighted value against a threshold of 0.91 (mean 99 

accuracy = 84.93%, BIC = 204, which is 162 above the next optimal model with BIC 42; Extended data 100 

Fig. 5B). Thus, the next best strategy after a rational two-path mental arithmetic approach was to learn 101 

the value of each path based on visual cues provided on each trial. 102 

A 2-path calculation strategy is the winning model 103 

Finally, we evaluated the fit between different strategy models and each subject’s behavioural data. At 104 

the group level, the winning model was the optimal two-path calculation model (BIC = 148, 239 less 105 

than next best model with BIC 387; Extended data Fig. 5C). Thus, participants were more likely overall 106 

to be implementing the intended evaluation process than a simpler heuristic. The next best model was 107 

a two-path evaluation model where path values were learned from experience according to the position 108 

of the odd rule in each path (i.e., caching three values per path in a given block). 109 

At the individual level, 15 of 26 participants were best explained by strategies involving mental 110 

arithmetic (Extended data Fig. 5D). 10 participants learned path values from experience (7 participants 111 

cached one value per path, and 3 participants cached up to three values per path — one per odd rule 112 

position). One participant was best explained by a null model, and this was one of the participants who 113 



was excluded from path-specific replay analyses due to low performance. If we group strategies 114 

according to whether one or two paths contributed to an expected value calculation, then 20 115 

participants used a strategy in which both paths were evaluated per trial, while the remaining 5 116 

participants (excluding the participant with a winning null model) used a strategy in which only one path 117 

was evaluated: just path 1 (2 participants) or just the path learned to be punishing (3 participants, one 118 

of whom was the second participant excluded from path-specific replay analyses due to poor 119 

performance).  120 

Supplementary tables 121 

Model 1: Choice ~ (Reward magnitude × Loss magnitude × Transition probability) + Certainty + 
RT + (1 | Subject) 

Fixed Effect ß SEM p  

(Intercept) 0.03 0.17 0.852  

Reward magnitude 0.11 0.02 3.220E-8 *** 

Loss magnitude 0.05 0.02 0.011 * 

Transition probability 6.46 0.25 1.187E-
145 

*** 

Certainty 0.32 0.07 1.682E-5 *** 

RT 0.01 0.01 0.477  

Reward magnitude × Loss magnitude 0.01 0.01 0.202  

Reward magnitude × Transition probability 0.50 0.09 2.717E-8 *** 

Loss magnitude × Transition probability -0.03 0.09 0.744  

Reward magnitude × Loss magnitude × Transition probability 0.02 0.03 0.464  

Variable inflation factor = 1.03 to 1.55, Durbin-Watson = 1.86, significance given by a two-tailed statistic using a 
Satterhwaite approximation 

 

 

Model 2: Sequenceness ~ (Replay type × Choice) + RT + (1 | Subject/Lag) 

Fixed Effect ß SEM p 
 

(Intercept) 0.01 0.00 0.009 ** 

Replay type 0.01 0.00 5.808E-7 *** 

Choice 0.00 0.00 0.309 
 

RT -0.00 0.00 0.008 ** 



Replay type × Choice -0.01 0.00 7.347E-6 *** 
Variable inflation factor = 1.01 to 3.46, Durbin-Watson = 1.76, significance given by a two-tailed statistic using a 
Satterhwaite approximation 

 

 

 

 

Model 3: Sequenceness ~ (Recency × Replay type × Transition probability) + RT + (1 | Subject/Lag) 

Fixed Effect ß SEM p  

(Intercept) 0.01 0.00 0.006 ** 

Recency -0.00 0.00 0.001 *** 

Replay type 0.00 0.00 0.009 ** 

Transition probability -0.00 0.00 0.049 * 

RT -0.00 0.00 0.01 ** 

Recency × Replay type 0.01 0.00 3.150E-9 *** 

Recency × Transition probability 0.01 0.00 0.155  

Replay type × Transition probability 0.00 0.00 0.74  

Recency × Replay type × Transition probability 0.01 0.01 0.01 ** 

Variable inflation factor = 1.02 to 2.05, Durbin-Watson = 1.76, significance given by a two-tailed statistic using a 
Satterhwaite approximation 

 

Model 4: Sequenceness ~ (Transition probability × Choice) + RT + (1 | Subject/Lag) 

Fixed Effect ß SEM p  

(Intercept) 0.01 0.00 0.001 *** 

Transition probability -0.00 0.00 0.83  

Choice -0.00 0.00 0.003 ** 

RT -0.00 0.00 0.008 ** 

Transition probability × Choice -0.00 0.00 0.19  

Variable inflation factor = 1.01 to 2.49, Durbin-Watson = 1.76, significance given by a two-tailed statistic using 
a Satterhwaite approximation 

 



 

Model 5: Choice ~ (Expected value × Differential replay) + Certainty + RT + (1 | Subject/Lag) 

Fixed Effect ß SEM p  

(Intercept) -0.04 0.10 0.735  

Expected value 0.43 0.01 0 *** 

Differential replay -0.71 0.13 9.336E-8 *** 

Certainty 0.27 0.02 3.304E-33 *** 

RT -0.00 0.00 0.646  

Expected value × Differential replay 0.13 0.05 0.008 ** 

Variable inflation factor = 1.02 to 1.05, Durbin-Watson = 1.87, significance given by a two-tailed statistic using a 
Satterhwaite approximation 
 

Model 6: Choice ~ (Expected value × Rewarding path replay) + (Expected value × Punishing path 
replay) + Certainty + RT + (1 | Subject/Lag) 

Fixed Effect ß SEM p  

(Intercept) -0.04 0.10 0.735  

Expected value 0.43 0.01 0 *** 

Rewarding path replay -1.23 0.19 3.557E-11 *** 

Punishing path replay 0.19 0.19 0.313  

Certainty 0.27 0.02 5.023E-33 *** 

RT -0.00 0.00 0.598  

Expected value × Rewarding path replay 0.12 0.07 0.09  

Expected value × Punishing path replay -0.15 0.07 0.031 * 

Variable inflation factor = 1.01 to 1.05, Durbin-Watson = 1.87 

 

 

Model 7: Choice ~ (Expected value × Differential replay × Risk-aversion) + (Expected value × Differential 
replay × Anxiety) + Certainty + (1 | Subject/Lag) 

Fixed Effect ß SEM p  

(Intercept) -0.03 0.10 0.745  

Expected value 0.43 0.01 0 *** 

Differential replay -0.62 0.14 6.569E-6 *** 



Risk-aversion 0.03 0.06 0.644  

Anxiety -0.07 0.07 0.284  

Certainty 0.27 0.02 4.754E-32 *** 

Expected value × Differential replay 0.11 0.05 0.028 * 

Expected value × Risk-aversion -0.01 0.00 0.048 * 

Differential replay × Risk-aversion 0.38 0.09 1.888E-5 *** 

Expected value × Anxiety 0.01 0.00 0.168  

Differential replay × Anxiety 0.31 0.11 0.003 ** 

Expected value × Differential replay × Risk-aversion 0.02 0.03 0.54  

Expected value × Differential replay × Anxiety -0.10 0.04 0.014 * 

Variable inflation factor = 1 to 1.12, Durbin-Watson = 1.87, significance given by a two-tailed statistic using a 
Satterhwaite approximation 
 

Model 8: Choice ~ (Expected value × Rewarding path replay × Risk-aversion) + (Expected value × 
Rewarding path replay × Anxiety) + (Expected value × Punishing path replay × Risk-aversion) + 
(Expected value × Punishing path replay × Anxiety) + Certainty + (1 | Subject/Lag) 

Fixed Effect ß SEM p  

(Intercept) -0.04 0.10 0.725  

Expected value 0.44 0.01 0 *** 

Rewarding path replay -1.14 0.19 1.556E-9 *** 

Risk-aversion 0.02 0.06 0.705  

Anxiety -0.08 0.07 0.245  

Punishing path replay 0.05 0.19 0.794  

Certainty 0.27 0.02 9.710E-32 *** 

Expected value × Rewarding path replay 0.12 0.07 0.102  

Expected value × Risk-aversion -0.01 0.00 0.116  

Rewarding path replay × Risk-aversion 0.22 0.13 0.084  

Expected value × Anxiety 0.01 0.00 0.134  

Rewarding path replay × Anxiety 0.20 0.15 0.189  

Expected value × Punishing path replay -0.11 0.07 0.13  

Risk-aversion × Punishing path replay -0.47 0.12 6.340E-5 *** 

Anxiety × Punishing path replay -0.45 0.15 0.003 ** 

Expected value × Rewarding path replay × Risk-aversion 0.13 0.05 0.004 ** 



Expected value × Rewarding path replay × Anxiety -0.01 0.06 0.85  

Expected value × Risk-aversion × Punishing path replay 0.08 0.04 0.059  

Expected value × Anxiety × Punishing path replay 0.20 0.05 2.133E-4 *** 

Variable inflation factor = 1 to 1.16, Durbin-Watson = 1.87, significance given by a two-tailed statistic using a 
Satterhwaite approximation 

 

Comparison of models containing risk-aversion and/or anxiety as predictors of choice 

Model definitions 

Model A Choice ~ (EV × Replay_differential) + Certainty + RT + (1 | Subject/Lag) 

Model B Choice ~ (EV × Replay_differential) + Risk aversion + Certainty + (1 | Subject/Lag) 

Model C Choice ~ (EV × Replay_differential) + Anxiety + Certainty + (1 | Subject/Lag) 

Model D Choice ~ (EV × Replay_differential) + Risk aversion + Anxiety + Certainty + (1 | Subject/Lag) 

Model E Choice ~ (EV × Replay_differential × Risk aversion) + Certainty + (1 | Subject/Lag) 

Model F Choice ~ (EV × Replay_differential × Anxiety) + Certainty + (1 | Subject/Lag) 

Model G Choice ~ (EV × Replay_differential × Risk aversion) + Anxiety + Certainty + (1 | Subject/Lag) 

Model H Choice ~ (EV × Replay_differential × Anxiety) + Risk aversion + Certainty +(1 | Subject/Lag) 

Model I Choice ~ (EV × Replay_differential × Risk aversion) + (EV × Replay_differential × Anxiety) + Certainty + (1 | 
Subject/Lag) 

Comparison χ2 p 

B vs A 0.122 1 

C vs B 0.900 1 

D vs C 0.352 0.553 

E vs D 19.249 6.610E-5 *** 

G vs E 0 1 

F vs G 3.172 0.075 

H vs F 0 1 

I vs H 22.031 6.426E-5 *** 

Significance given by an ANOVA comparing all model chi-squared values. 
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