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ABSTRACT
◥

Tumor antigens can emerge through multiple mechanisms,
including translation of noncoding genomic regions. This non-
canonical category of tumor antigens has recently gained attention;
however, our understanding of how they recur within and between
cancer types is still in its infancy. Therefore, we developed a
proteogenomic pipeline based on deep learning de novo mass
spectrometry (MS) to enable the discovery of noncanonical MHC
class I–associated peptides (ncMAP) from noncoding regions.
Considering that the emergence of tumor antigens can also involve
posttranslational modifications (PTM), we included an open search
component in our pipeline. Leveraging the wealth of MS-based
immunopeptidomics, we analyzed data from 26 MHC class I

immunopeptidomic studies across 11 different cancer types. We
validated the de novo identified ncMAPs, along with the most
abundant PTMs, using spectral matching and controlled their FDR
to 1%. The noncanonical presentation appeared to be 5 times
enriched for the A03 HLA supertype, with a projected population
coverage of 55%. The data reveal an atlas of 8,601 ncMAPs with
varying levels of cancer selectivity and suggest 17 cancer-selective
ncMAPs as attractive therapeutic targets according to a stringent
cutoff. In summary, the combination of the open-source pipeline
and the atlas of ncMAPs reported herein could facilitate the
identification and screening of ncMAPs as targets for T-cell ther-
apies or vaccine development.

Introduction
The accelerated adoption of mass spectrometry (MS) for high-

throughput profiling of immunopeptidomes in cancer has led to
several discoveries. Leveraging these studies to improve cancer immu-
notherapy involves connecting the wealth of immunopeptidomic data
to immunogenomics, where the goal is to carefully choose effective
targets for T-cell therapies or vaccine development.

The discovery of cancer antigens has mainly focused on mutated
tumor-specific antigens (neoantigens) arising from patient-specific
somatic mutations. It has been shown that only a small percentage
of the numerous nonsynonymous mutations in a tumor actually
produce neoantigens (1, 2). The challenging task of identifying
those that can evoke a suitable tumor rejection was addressed by
Ebrahimi-Nik and colleagues (3). Using a combination of genomics,
shotgunMS immunopeptidomics, and targetedMS, they found that (i)
MS-identified neoepitopes are a rich source of tumor rejection–
mediating antigens, (ii) neoantigens derive from passenger mutations,
and (iii) binding affinity and CD8þ T-cell responses in tumor-bearing
hosts are poor predictors of antitumor activity in vivo. Although
neoantigens confer an advantage to patients undergoing immuno-
therapy (4), their patient-specific nature is a major bottleneck when
producing off-the-shelf treatments for a large number of individuals.
Alternatively, shared neoantigens (ref. 5; i.e., recurrent mutations in
cancer) could offer a new line of population-level immunotherapy.
However, high-throughput experimental profiling of such broadly
presented neoantigens across the human population is a long-term
goal with many milestones to be achieved.

Recently, tumor antigens that exceed the exome boundaries (i.e.,
noncanonical) have attracted attention as potential targets as a result of
their immunogenicity and recurrence among cancer patients (6).
These antigens find their way to the cell surface through rapid
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degradation (7) of “noncoding” translation products stemming from
novel open reading frames (nORF; ref. 8). In addition, “noncoding”
translation products can originate from other sources (9), including
intron retention (IR; ref. 10), ribosomal slippage (11), and frameshift
mutations (12). In 2016, Laumont and colleagues (13) demonstrated
their association with MHC molecules using a reductionist approach
based on 6-frame translation and subsequently their recurrence
between patients (14). Ribo-Seq has proven to be an immensely
valuable tool for identifying noncanonical MHC class I–associated
peptides (ncMAP) as it provides experimental evidence for their
noncanonical translation and MHC class I presentation when com-
bined with MS immunopeptidomics (6, 15, 16). Despite previous
efforts to study noncanonical immunopeptidomes, the requirements
of suchmulti-level experimental data (Ribo-seq and/or RNA sequenc-
ing) or computational struggles when dealing with large MS databases
have hindered their large-scale profiling in a harmonized manner
across multiple cancer types from hundreds of samples.

With these considerations in mind, we developed Closed Open
De novo – deep immunopeptidomics pipeline (COD-dipp), a
pipeline based on deep learning de novo MS to enable the discovery
of ncMAPs. Owing to the potential involvement of posttranslational
modifications (PTM) in this process (1), we added an open search
component for their discovery. We applied COD-dipp to a large-
scale dataset using immunopeptidome profiles of over 772 samples
from 26 (1, 2, 13, 14, 17–39) published studies and 11 cancer types.
We identified a range of PTMs of potential interest from a ther-
apeutic standpoint and tackled the noncanonical immunopepti-
dome. We validated the de novo identified ncMAPs and controlled
their FDR to 1% using a second-round search with tuned PTM
parameters, in addition to a series of quality-control steps. Our
large-scale analysis revealed 8,601 ncMAPs, accounting for 1.7% of
immunopeptidomes. These peptides had varying levels of tumor
selectivity, defined by their parent gene expression levels in normal
tissues. We suggest 17 ncMAPs as attractive therapeutic targets
using a stringent tumor-selectivity cutoff.

Materials and Methods
Dataset selection

Twenty-four studies were selected on the basis of a list of keywords
related to immunopeptidomics (Supplementary Method S1). Low-
resolution analyses were eliminated, andMHC class I–related datasets
conducted with at least one of the following instruments were kept: Q
Exactive, Q Exactive plus/HF/HFX, LTQ Orbitrap Velos, LTQ Orbi-
trap Elite, Orbitrap Fusion, and Orbitrap Fusion Lumos (Supplemen-
tary Table S1). An additional study was considered from the MassIVE
(RRID:SCR_013665) database, as it incorporates 95 HLA-A, -B, -C,
and -G mono-allelic cell lines (28, 39). An auxiliary immunopepti-
domic dataset (38) covering 30 healthy tissues from 21 healthy
individuals was also used to partly assess cancer selectivity.

Proteogenomic database generation
Canonical protein database for MS database search

A protein database was downloaded using ENSEMBL r94 BioMart
(RRID:SCR_002344); decoy sequences were appended by reversing
the target sequences, and 116 contaminant proteins were added (40).

Noncanonical protein database for alignment using BLAST-like
alignment tool

A pre-mRNA 3-frame translation (3FT) database was generated
from genes with a protein-coding biotype based on ENSEMBL r94

(RRID:SCR_002344) using the AnnotationHub and Biostrings (RRID:
SCR_016949) R packages.

COSMIC mutated protein database for BLAST-like alignment tool
alignment

COSMIC (RRID:SCR_002260) coding Mutants (41) VCF v95 was
downloaded along with ENSEMBL v94 CDS and GTF files. An in-
house Python (RRID:SCR_008394) package was used along with the
previously mentioned inputs to generate a FASTA file containing the
corresponding mutated protein sequences.

MS computational analysis
Algorithms representing three main philosophies of peptide-

spectrum matching including open search, de novo sequencing, and
closed search were used. The open search approach allowed the
identification of distantly related peptides and could identify PTMs
and single amino acid variations. The de novo sequencing approach
derived sequences from first-principle analysis of the MS2 spectra.
The closed search approach, used as a validation step, assumed a
specific set of reference protein sequences and allowed for limited
PTMs. Although each approach has its own limitations, our strategy
addressed them by combining a closed search with a de novo
sequencing approach and implementing multiple filtering steps for
accuracy control and quality control checkpoints (see Supplemen-
tary Fig. S1).

Data conversion
The proprietary RAW files acquired from the selected instru-

ments were converted to mzML and MGF formats using msconvert
(ProteoWizard version 3.0.19295. c8b8b470d, RRID:SCR_012056)
with the peak-picking and TPP compatibility filters.

Open search analysis
TheMSFragger (42) v2.2 search enginewas used to conduct an open

search analysis against the ENSEMBL r94 protein database in com-
bination with PTMiner (43) v1.1.2, to apply a transfer FDR and a false
localization rate of 1% (FLR, the rate of falsely localizing the site of
modification). Unspecific cleavage generating peptides 8 to 25 amino
acids long with no fixed/variable PTMs was considered. Further
analysis revealed that the frequent unexplained mass shifts observed
during the open-search annotations were caused by nonspecific
cleavage. To address this issue, an open-search postprocessing algo-
rithm, PTMiner, was employed to effectively corrects for mass shifts
introduced by in-source fragmentation, nonspecific digestion, or
missed cleavage, by adding or deleting amino acids from the peptide
N- or C-termini. For instance, a deviation of �128.1 to �128.08
Dalton on lysine residues was frequently detected on the first 2 or
last 2 amino acids of peptides. The deviation was caused by
nonspecific cleavage during the open search and resulted in an
incorrect assignment of a negative mass shift of a lysine due to the
presence of an additional lysine in the sequence. As these cases are
not biologically meaningful, unexplained mass shifts were removed
from the final results of the study.

De novo analysis
DeepNovoV2 (44) is a neural-network-based de novo peptide

sequencing model that integrates convolutional neural networks and
long short-term memory (LSTM) architectures. This deep-learning
design extracts features fromboth the spectrumand the language of the
presented peptides. DeepNovo has demonstrated improved perfor-
mance compared with the state-of-the-art de novo sequencing
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algorithms by large margins (44). The model can be tuned on a
restricted peptide space to improve its performance. The training,
testing, and validation sets were derived from MS-GFþ (v2019.04.18,
RRID:SCR_015646) database search results for each sample. The
search used the ENSEMBL v94 protein database and 8 to 25 amino
acid peptides with unspecific cleavage, no fixed/variable PTMs and an
FDR of 1% applied by Scavager (45). The trained models were used to
perform de novo (prediction) on the remaining unmatched spectra of
each sample (from MS-GFþ after 1% FDR control). Accuracy
was calculated by comparing the de novo predicted sequences and
MS-GFþ results on the validation set. A de novo score threshold that
controlled the accuracy at 90% within the validation set was applied to
the predicted sequence in a sample-specific manner.

De novo peptide annotation
De novo peptides from canonical human proteins were identified

using BLAST-like alignment tool (BLAT; ref. 46; RRID:SCR_011919)
alignment against the target-decoy protein database. Sequences per-
fectly matching any protein sequence were considered exonic (one
mismatch allowed for the isobaric amino acids leucine and isoleucine).
All remaining sequences unexplained by proteins were considered
potential noncanonical peptides and were aligned against the pre-
mRNA 3FT database. Stringently, peptides perfectly matching a 3FT
sequence without any mismatch were required to have at least three
mismatches with any known protein sequence before being considered
noncanonical. Because peptide-spectrum matches (PSM) can be
assigned without complete sequencing accuracy, requiring a 3 amino
acid difference alongside the 90% accuracy cutoff above increases the
confidence that the peptides assigned fall far outside the standard
human proteome. Remaining de novo peptides without any canonical
or noncanonical annotation were labeled as ‘unmapped peptides’ and
discarded.

Second-round search
A second-round search was performed using the FragPipe (40, 42)

headless pipeline, which includes MSFragger v3.4, MSBooster
(bioRxiv 2022.10.19.512904), and Philosopher (40). Noncanonical
peptides from all samples were concatenated with the ENSEMBL
v94 protein into a custom database. Only four of the most abundant
PTMs were considered to avoid a large search space complexity,
inflated FDR, and decreased sensitivity. The following variable
PTMs were included: methionine oxidation, N-terminal acetylation,
cysteinylation, and cysteine carbamidomethylation (for samples
treated with iodoacetamide). Unspecific cleavage generating pep-
tides 7 to 15 amino acids long was considered. The ion, PSM, and
peptide-level FDR were maintained at 1%.

Alignment of immunopeptides to the genome
Second-round search noncanonical peptide coordinates were

retrieved from the 3FT database FASTA headers and stored in BED
format.

Open reading frame analysis
Upstream genomic sequences of ncMAPs were scanned for start

codons up to the first encounter with a stop codon. Sequences were
centered around the detected start codons and stretches of 100
nucleotides from each side were extracted. Translation initiation site
(TIS) scores were predicted for each sequence using TITER (47), a
deep-learning-based framework for accurately predicting TIS on a
genome-wide scale based onQTI-seq data. ATIS score greater than 0.5
was considered a positive prediction.

IR analysis
For each intron in the UCSC hg38 KnownGene table (RRID:

SCR_005780), the first codon coordinates of the corresponding
upstream exon in-frame with the canonical translation were extracted
and stored in BED format (see Pseudocode 1). Intronic coordinates
from the generated BED file were intersected with the ncMAPs BED
file using pybedtools (ref. 48; RRID:SCR_021018). Intronic retention
events were considered possible when ncMAPswithin introns were in-
frame with their upstream exons (see Pseudocode 2).

// Pseudo-code 1: extracts the start coordinate of the first in-
frame codon for each exon (inframeCoordinate variable)

for each transcript
remainderValue ¼ θ
for each exon
if strand is positive
if downstream intron exists

leftoverBases ¼ remainder of (ExonEndCoordinate - remainder-
Value - ExonStart þ 1) / 3

if remainderValue is equal to θ
inframeCoordinate ¼ ExonStartCoordinate

else
inframeCoordinate ¼ ExonStartCoordinate – remainderValue

if leftoverBases is greater than θ
remainderValue ¼ 3 - leftoverBases

addToTable(transcript, chromosome, ExonStart, ExonEnd,
inframeCoordinate, IntronStart, IntronEnd)

if strand is negative
if downstream intron exists
leftoverBases¼ remainder of (ExonSart - ExonEndCoordinate

þ remainderValue þ 1) / 3
if remainderValue is equal to θ
inframeCoordinate ¼ ExonEndCoordinate

else
inframeCoordinate¼ExonEndCoordinateþ remainderValue

if leftoverBases is greater than θ
remainderValue ¼ 3 - leftoverBases

addToTable(transcript, chromosome, ExonStart, ExonEnd, infra-
meCoordinate, IntronStart, IntronEnd)

// Pseudo-code 2: checks if each intronic ncMAP is in-frame with
its upstream exon.

ncMAPIsInFrame ¼ False
if strand is positive

// firstCoordinate ¼ start coordinate of ncMAP
// secondCoordinate¼ start coordinate of the first inframe codon

from previous exon
coordinateDifference ¼ firstCoordinate – secondCoordinate
if remainder of (coordinateDifference / 3) is equal to θ
ncMAPIsInFrame ¼ True

else:
// firstCoordinate¼ start coordinate of first inframe codon from

previous exon
// secondCoordinate ¼ end coordinate of ncMAP
coordinateDifference ¼ firstCoordinate – secondCoordinate
if remainder of (coordinateDifference / 3) is equal to θ
ncMAPIsInFrame ¼ True

Frameshift mutation analysis
TheCOSMIC (41) v95 codingmutations (RRID:SCR_002260) VCF

file was downloaded and converted into a protein FASTA file using a
VCF-to-Proteogenomics toolkit (https://github.com/immuno-infor
matics/VCFtoProteogenomics) ncMAPs were then aligned to the
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resulting 16 GB FASTA using BLAT v35 (46). Only hits with exact
matches to sequences from frameshift mutations were considered.

Comparison of the identified ncMAP between studies
ncMAPs from 4 different studies (6, 13, 16, 49) were collected. First,

sequences were aligned to the human proteome (ENSEMBL v94) using
BLAT v35 (46). Sequences found in human proteins were discarded,
and the remaining sequences were aligned to the 3FT database with
one mismatch allowance for the isobaric amino acids leucine and
isoleucine, as allowed forCOD-dipp ncMAPs. Genomic coordinates of
the sequences found in the 3FT database were extracted and over-
lapped between studies using the ChIPpeakAnno (50) R package
(RRID:SCR_012828). A minimum overlap of 21 nucleotides (7 amino
acids) between two sequences was required.

Cancer selectivity of the ncMAP
Tumor specificity has been previously implied when peptide parent

genes are either completely absent or present in trace amounts in
healthy tissues (6, 14, 16) because MHC class I presentation is
preferentially derived fromhighly abundant transcripts (28, 30).While
tumor specificity implies the expression of an antigen solely in tumor
samples, the experimental design of this study cannot guarantee this
constraint. Instead, cancer-selective ncMAPs were conservatively
identified through three iterative steps:

Step 1: panel of normal immunopeptidomes
In addition to the 88 healthyMS samples from the initial set of the 25

considered studies, the HLA Ligand Atlas (38) was used to extend the
panel of normal immunopeptidomes and partly assess the cancer
selectivity of the 8,601 identified ncMAPs. The HLA Ligand Atlas is a
pan-tissue immunopeptidomic reference for 30 healthy tissue types
obtained from 21 human subjects. The resulting 334 healthy samples
(see Supplementary Table S1) were analyzed in the same manner as in
the second-round search (see Second-round search above). ncMAPs
identified in the panel of normal immunopeptidomes were labeled as
non-cancer selective.

Dimensionality reduction of the HLA-binding motif space: Binding
affinity prediction was employed to identify similarities and differ-
ences inHLA-bindingmotifs among the 65 healthy and 51 tumor-only
HLA alleles. NetMHCpan-4.1 was used to evaluate the binding of
1,000,000 random peptides to each allele, which resulted in a binding
matrix (BM) of 116 alleles and 1,000,000 peptides. A value of 1 was
assigned to strong binders (EL rank ≤ 0.5%) in the BM; otherwise, a
value of 0 was assigned. A pairwise cosine distance matrix (DM) was
then calculated to assess the similarity of binding between alleles. The
DM was then reduced using t-SNE to visualize the data in 2D with a
perplexity of 20 and 500 iterations.

Step 2: parental gene expression levels in healthy tissue
The gene expression levels of the identified ncMAPs were retrieved

from the GTEx v8 (51) dataset, consisting of 29 tissues from 948
healthy donors and 17,382 overall samples. Considering all indivi-
duals, the 90th percentile value of normalized expression was assigned
to each gene per tissue as a strict step to guarantee the upper-end gene
expression in healthy tissues. A stringent cutoff for cancer selectivity
was used to shortlist ncMAPs whose parent genes fell below a 1 TPM
expression cutoff (excluding the testis tissue given its immune-
privileged status). It is worth noting that this stringent threshold
removes 92% of protein-coding genes that show expression above 1
TPM in any tissue within the GTEx v8.

Step 3: protein expression levels in healthy tissue
The protein expression levels of ncMAPs passing the 1 TPM

cutoff were retrieved from the Human Protein Atlas V22.0 data-
base (52). ncMAPs without parent protein expression in healthy
tissues were labeled as cancer-selective (excluding the testis tissue
given its immune-privileged status).

Code availability
The COD-dipp code, intended for high-performance computing,

is available on the GitHub repository: https://github.com/immuno-
informatics/COD-dipp.

Data availability
The data analyzed in this study were obtained from PRIDE at

PXD004746, PXD014017, PXD012308, PXD011628, PXD012083,
PXD011766, PXD013057, PXD011723, PXD007203, PXD004233,
PXD003790, PXD001898, PXD007860, PXD011257, PXD007935,
PXD009749, PXD009753, PXD009750, PXD009751, PXD009752,
PXD009754, PXD009755, PXD004023, PXD007596, PXD009531,
PXD010808, PXD008937, PXD009738, PXD006939, PXD005231,
PXD000394, PXD004894, PXD019643 and from massIVE at
MSV000080527, MSV000084172, MSV000084442. The results of this
study are available within the article and its supplementary data files
and are accessible on the following figshare repository: https://doi.org/
10.6084/m9.figshare.16538097.

Results
Immunopeptidomic MS datasets

We selected 25 immunopeptidomicMS studies (see Supplementary
Table S1) to create a cancer-centered dataset of MHC class I presen-
tation. Data-dependent acquisition (DDA) studies covered eleven
cancer types distributed across the brain (Glioblastoma and Menin-
gioma), lung, skin, liver, blood (Leukemia and Lymphoma), colon,
ovaries, kidneys, and breast. Moreover, tumor and healthy samples
were derived from either cell lines or patient tissues (Fig. 1A and
Supplementary Method S1). We selected publicly available studies
with data generated using high-resolution MS instruments (LTQ
Orbitrap, Q Exactive Plus/HF/HFX, and Fusion Lumos) to minimize
the bias associated with older tandem MS instrumentation (Fig. 1B).
Within our dataset, themost commonly usedmonoclonal antibody for
HLA class I immunoprecipitation (IP) wasW6/32 in comparison with
the other antibodies (BB7.2 and G46–2.6; Fig. 1C, see Supplementary
Table S1). The selected studies covered five different HLA class I genes,
with HLA-A, B, and C being the most studied compared with HLA-E
and -G (Fig. 1D). Furthermore, the included MS samples covered 114
HLA alleles (Fig. 1E).

COD-dipp
We present COD-dipp, an open-source high-throughput pipeline

with novel postprocessing steps, to deeply interrogate immunopep-
tidomic datasets (Fig. 2). We used this pipeline to screen for ncMAPs
in datasets using DDA due to its widespread use. To identify post-
translationally modifiedMHC class I–associated peptides (ptmMAP),
we performed an open-search analysis with MSFragger (42) and
controlled both FDR and the FLR to 1% with PTMiner (43). To
identify ncMAPs, we used DeepNovoV2 (44) for de novo analysis. In
combination with the PSM level information of MS-GFþ (53), Deep-
NovoV2 was trained to interpret the raw MS data in a sample-specific
manner. The training step for such a deep learning approach is crucial
for learning the features of tandem mass spectra, fragment ions, and
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leveraging sequence patterns in the immunopeptidome to impute
missing MS2 fragments. All high-quality de novo peptides (90%
accuracy) were sequentially mapped (46) to the human reference
proteome to reveal the de novo-based canonical MHC class I–
associated peptides, and to a 3FT database to reveal the de novo-
based ncMAPs. Finally, an orthogonal validation step was per-
formed by a second-round search to control a 1% FDR for the de
novo identified ncMAPs while considering the most abundant

PTMs found by the open-search strategy. Applying the COD-
dipp pipeline across the dataset revealed the breadth of ptmMAPs
and ncMAPs.

ptmMAPs
The open search analysis reported 4.03% of the MS spectra

showing PTMs (Fig. 3A). Some identified PTMs were confirmatory,
representing chemical modifications from sample preparation

Figure 1.

Infographics of immunopeptidomic datasets included in this study.A,Different types of cancer considered in this studywith the number of samples and sample types
per cancer type.B, Proportions of different MS instruments used in this study.C,Antibodies used for IP.D,Overall count of HLA alleles per HLA gene. E,Overall count
of MS immunopeptidomic samples per HLA allele.
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Figure 2.

COD-dipp: A new high-throughput pipeline for a deep interrogation of immunopeptidomic datasets. Samples are first analyzed with an open search strategy to
detect the landscape of PTMs. An FLR for the PTMs and FDR of 1% are applied. Simultaneously, the samples are analyzed using a novel de novo approach to identify
noncanonical peptides. The de novo strategy trains a model per sample using quality-controlled PSMs from the MS-GFþ search engine to learn the direct
interpretation of sample-specific mass spectra. The MS-GFþ results are split into three groups: training and testing to tune the hyperparameters and account for
overfitting, and a validation group to approximate the accuracy per sample. De novo predicted peptides with an accuracy of at least 90% are sequentially mapped
against the Human proteome (HP) then a 3-frame translation (3FT) database of protein-coding genes (1 mismatch allowed between leucine/isoleucine, i.e., Xle).
Predicted de novo peptidesmatching any knownprotein are labeled “canonical”. Peptidesmapping to the 3FT databasewith at least 3 amino acidsmismatches from
anyknownprotein sequence are labeled “noncanonical”. Finally, a second-round search is performedas a validation approach. Four of themost abundantly identified
PTMs and a custom database consisting of ENSEMBL proteins and noncanonical peptides are considered. The resulting canonical and noncanonical peptides are
controlled to an FDR of 1% and aligned to the hg38 human genome.
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methods (cysteine carbamidomethylation) or common chemical
derivatives (methionine oxidation and di-oxidation). We also
observed PTMs that are extremely common in proteins, such as
protein N-terminal acetylation, affecting multiple properties such as
half-life time, folding, and interaction. On the other hand, some of
the identified PTMs have been reported previously to increase
immunogenicity against diseases (54) and protect against degrada-
tion [tri-oxidation of cysteine (55), cysteinylation (56), and N-term
serine acetylation, see Fig. 3B and Supplementary Table S2]. Fur-
thermore, 1.12% of spectra from open search showed unknown
mass shifts, as illustrated in Fig. 3A (green and red). This category
was partly populated by computational artifacts and was excluded
from the final results. To validate these findings, we performed an
independent post-search by crosschecking the identifications from
our open search with those of the original studies. The results
showed 96.1% agreement in PSMs, which are detailed in Supple-
mentary Method S2: Validation 1 and Supplementary Fig. S2.

ncMAPs
We explored the ncMAP landscape in cancer using our workflow

(Fig. 2) and identified 10,413 unique de novo–based ncMAPs from
intragenic noncoding regions (before the second-round search vali-
dation), which accounted for 3.7% of the identified de novo sequences.
We took two additional validation steps, including checking the
identification scores as well as the correlation between the experi-
mental and theoretical liquid chromatography retention times, to
guarantee the correctness of these identifications (see Supplementary
Method S2: Validation 2 and 3, and Supplementary Fig. S2). The
de novo noncanonical peptides showed strong evidence of high-quality
identification (i.e., correctly predicted complete peptide sequences).
Even with this strong evidence, it was possible that chromatic behavior
remained unchanged in certain instances where neighboring amino
acids were inflipped positions, or that a 90% accuracy rate still led to an
uncertain FDR percentage. Hence, we confirmed the identified 10,413
de novo–based ncMAPs by performing a second-round search for

Second-round search (1% FDR controlled non/canonical peptides)
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additional validation and controlling the FDR at 1%. Several PTMs
were also considered in the parameters from the a priori knowledge
provided by the open search strategy. Of the 516,382 uniquely iden-
tified peptides in the second-round search, 1.7% (8, 601) were non-
canonical (Fig. 3C and Supplementary Table S3). The PTM profiles
(Fig. 3D) of canonical (dark gray) and noncanonical (light gray)
peptides appeared to be similar, with M oxidation being the most
prevalent modification. The identified ncMAPs showed comparable
spectra from patients within the same studies and from different
studies (Supplementary Figs. S3, S4, and S5 provide examples of such
similarities). The binding affinities of all 8,601 ncMAPs resulting from
the second-round search were further investigated using NetMHCpan
4.1 (57). The binding prediction analysis showed a comparable binding
rate for both the canonical (90%) and noncanonical (93%) MAPs, as
depicted in Fig. 3E.We further took four additional independent post-
search validation steps, including checking retention time shifts
induced by PTMs, mass accuracy, and spectra comparison with those
of the original studies, guaranteeing the correctness of the ncMAPs
identified by the second-round search (see SupplementaryMethod S2:
Validation 4, 5, 6, and 7, and Supplementary Fig. S2).

Comparison of COD-dipp ncMAPs with the literature
To assess the performance of our COD-dippmethod, we conducted

a comparison with the results of peptide-PRISME by Erhard and
colleagues 2020 (49). Our comparison was based on three common
studies (1, 14, 34) and resulted in 3,453 at 1% FDR from COD-dipp
alongwith 4,576 ncMAPs at 10%FDR fromErhard and colleagues.We
first aligned Erhard and colleagues’ ncMAPs to the human proteome
and eliminated a small fraction (1.4%) that matched the canonical
protein sequences (Fig. 4A, left-hand side). Because the COD-dipp
ncMAPswere restricted to the 3FT of protein-coding genes, we aligned
the remaining ncMAPs from Erhard and colleagues to the same 3FT
database for comparison purposes. Fig. 4A (left-hand side) shows that
68.25% of ncMAPswere successfullymapped to the 3FT database. The
rest (30.35%) that did not align to any of the human proteome or the
3FT database are shown in yellow on Fig. 4A left-hand side. This
unmapped fraction consisted of ncMAPs from regions of the genome
not studied herein, such as intergenic regions, antisense translation,
etc. The successfully mapped fraction to the 3FT database (navy) of
3,123 ncMAPs along with 3,453 ncMAPs from COD-dipp were then
compared, as shown in Fig. 4A right-hand side (see Supplementary
Table S4). peptide-PRISME shared 38% (1,197) of its ncMAPs (inter-
section) with COD-dipp (Fig. 4A right-hand side) and showed
62% (1,926) of exclusive ones. Adjusting the higher FDR used by
peptide-PRISME from 10% to 1% increased the shared fraction to
48.9% (Fig. 4B), along with a �2.4-fold decrease in total ncMAPs
(from 4,576 to 1,916). At an FDR of 1%, COD-dipp identified
2.34 times more exclusive ncMAPs (2,298 vs. 979) from the 3FT of
protein-coding genes.

To contextualize our findings from COD-dipp within the existing
literature on ncMAPs, we compared our results with those of three
previous studies: (i) Laumont and colleagues 2016 (13), (ii) Chong and
colleagues 2020 (6), and (iii) Ouspenskaia and colleagues 2021 (16), as
shown in Fig. 4C. We used the same mapping procedure that was
applied to peptide-PRISME results. We eliminated a fraction of
sequences mapping to known proteins, which was 4%, 5%, and 3%
of sequences for Chong and colleagues 2020, Laumont and colleagues
2016, and Ouspenskaia and colleagues 2021, respectively (see Fig. 4C
left-hand side). Fig. 4C left-hand side shows in navy the fractions of
ncMAPS that were successfully mapped to the 3FT database, which
was 34.38% for Chong and colleagues 2020, 63.69% for Laumont and

colleagues 2016, and 72.74% forOuspenskaia and colleagues 2021. The
remaining ncMAPs that did not align (Fig. 4C left-hand side in yellow)
to any of the human proteome or the 3FT database originate from
sources not studied herein. For instance, Laumont and colleagues 2016
included 6-frame translation in their MS search database, which
accounts for intergenic regions, antisense translation, long noncoding
RNA, and retroelement sources. Both Chong and colleagues 2020 and
Ouspenskaia and colleagues 2021 added Ribo-Seq detected proteins to
their MS database searches, accounting for all possible nORFs, even
those outside of known genes. The fractions successfully mapped
to the 3FT database (navy) from these three studies, along with the
8,601 ncMAPs from COD-dipp, were then compared, as shown
in Fig. 4C right-hand side (Supplementary Table S4). Intersections
withCOD-dippwere 31.42% forChong and colleagues 2020, 38.3% for
Ouspenskaia and colleagues 2021, and 45.8% for Laumont and col-
leagues 2016, respectively. In contrast, intersections with all other
studies were 40% for Chong and colleagues 2020, 38.66% for Ous-
penskaia and colleagues 2021, and 65.93% for Laumont and colleagues
2016. Hence, COD-dipp ncMAPs alone accounted for 78.55% of
Chong and colleagues 2020’s intersection, 96.07% of Ouspenskaia
and colleagues 2021’s intersection, and 69.47% of Laumont and
colleagues 2016’s intersection. COD-dipp ncMAPs accounted, on
average, for 81.36% of the intersection when comparing three previ-
ously published ncMAP sets, thus validating our approach.With 2,168
ncMAPs (25%) shared with the literature and 6,433 new ncMAPs, we
have revealed an atlas of noncanonical MHC class I presentation.

Properties and origins of ncMAPs
We compared the sequence lengths of canonical and noncanonical

MAPs (Fig. 5A) and found them to be similar, with a slight skew of the
noncanonical category toward longer lengths. This could be due either
to an actual preference of ncMAPs toward longer sequence lengths or
simply the consequence of requiring 3 amino acid differences from any
known proteins favoring longer sequences. Next, we inspected
ncMAPs according to their relative positions within protein-coding
genes (Fig. 5B). Exonic regions translated in alternative frames were
the main source of ncMAPs (19.2%). These events could arise from
frameshift mutations, initiation codon readthrough (58), nORFs, or
ribosomal slippage (11) during translation (i.e., ribosome frameshift-
ing). Intronic regions were the second most abundant source of
ncMAPs (12.2%). These events can arise from frameshift mutations,
nORFs, or IR. Interestingly, 50-UTRs contributed to 10.2% of ncMAPs
and have been shown to produce translation products through
upstream ORFs along with a non-AUG start codon (59). Finally,
30-UTRs contributed the least toward ncMAPs (3.2%), potentially
through stop codon read-through (60). It is important to note that
these categorizations are not mutually exclusive and that an ncMAP
sequence may have multiple assignments due to the overlapping
nature of transcripts. We conducted three analyses to estimate how
well the nORFs (i), IR (ii), and frameshift mutations (iii) could explain
the detected ncMAPs. (i) ncMAPs with upstream start codons (AUG,
CUG, UUG, GUG, and ACG) accounted for 63.4%, and 41.5% were
predicted to be TIS using TITER (Fig. 5C, left-hand side; ref. 47). The
breakdown of the TIS start codon distribution (Fig. 5C, right-hand
side) showed CUG (L) as the most abundant nORF start codon, and
70% of the predicted TIS showed non-AUG start codons, in line with
previous findings (15). (ii) Translation frames of ncMAPs from
intronic regions were checked for compatibility with upstream exons,
and 49.4% were found in-frame with upstream exons, making IR
events a possible source (Fig. 5D). (iii) A total of 597 ncMAPs were
found in aberrant proteins from frameshift mutations in cancer
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(Fig. 5E and Supplementary Table S5; ref. 41). Eventually, 70.1% of
ncMAPs were explicable by novel ORFs, IR, or frameshift mutations
(Fig. 5F). ncMAPs were found to be presented by all 113 alleles in our
dataset, except for the HLA-C�07:17 allele, mostly because of low

sample coverage by MS for this allele (see Supplementary Fig. S6).
Furthermore, the average noncanonical presentation per HLA super-
type (61) was 1%, except for A03, which was 5% (see Supplementary
Fig. S6).

Figure 4.

Comparison of COD-dipp ncMAPs with other studies. Because the COD-dipp ncMAPs are restricted to the 3-frame translation (3FT) of protein-coding genes,
sequences from the literature were aligned to the same 3FT database for comparison purposes. The intersection is based on genomic coordinates to deal with
sequences that partiallymatch (i.e., longer, shorter, or partially overlapping). Because the Venn is generated by overlapping genomic coordinates of the ncMAPs, the
original counts for each study are listed from left to right (i.e., on the right-hand side of panel C, the notation 29/41 refers to 29 instances for Chong and colleagues
2020 and 41 for COD-dipp). A, Comparison with peptide-PRISM published ncMAPs at a 10% FDR. COD-dipp ncMAPs were restricted to 3 studies in common with
Erhard and colleagues 2020. B, Comparison with peptide-PRISM published ncMAPs at a 1% FDR. COD-dipp ncMAPs were restricted to 3 studies in common with
Erhard and colleagues 2020. C, Comparison of the atlas of ncMAPs revealed by COD-dipp to 3 previous studies.
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Cancer selectivity of ncMAPs
Of the 8,601 identified ncMAPs, 2,758 were detected in the panel of

normal healthy tissue by MS and were labeled as noncancer–selective.
The panel of normals originally consisted of healthy MS samples from
all considered studies, which we extended by adding the HLA Ligand

Atlas (38), a pan-tissue immunopeptidomic reference of 30 healthy
tissue types obtained from21human subjects.Fig. 6A shows the ability
of the extended panel of normals to capture several more ncMAPs
(12.85%) in healthy tissues that were not observed in our original panel
of normals (19.22%). We assessed the coverage of tumor-only HLA
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alleles in healthy samples using the panel of normal samples. The 334
healthy samples covered 53%of theHLAalleles expressed in the tumor
samples. Analysis of a subset of ncMAPs represented by the 57 shared
alleles (i.e., present in both healthy and tumor samples) revealed a
substantial overlap in HLA-binding motifs between the panel of
normal samples and other samples. This was demonstrated by the
majority of identified ncMAPs being retained (7,513 of 8,601) and a

comparable percentage of ncMAPs being detected in healthy samples
throughMS (36.46% with shared alleles versus 32% with all alleles; see
Supplementary Fig. S7). To better understand the similarity between
the HLA-binding motifs of the alleles represented in tumor-only
samples and those represented in healthy samples, we generated a
matrix of cosine distances of binding affinities and used t-SNE to
reduce the dimensionality and visualize the data. Our results indicated
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Cancer selectivity of ncMAPs.A,Percentage of ncMAPs thatwere solely in healthy and/or tumor samples byMS (blue) and ncMAPs undetected in healthy samples by
MS (red).B, Parent gene expression of ncMAPs in TPM in 29 healthy tissues from 17,382 samples (GTEx v8 dataset). ncMAPs are distributed over two groups: ncMAPs
detected in healthy samples byMS in blue, and ncMAPs undetected in healthy samples byMS in red.C, Parent gene expression of ncMAPs in TPM in 29 healthy tissues
from 17,382 samples (GTEx v8 dataset). A limit on the gene expression (y-axis) of 1.2 TPM was set to visualize cancer-selective ncMAPs in black.
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a high level of similarity between the two, further supporting the
notion that the 65 alleles in the panel of normal samples were
representative of the tumor-only alleles (Supplementary Fig. S7).

However, the lack of ncMAP detection in the panel of normals does
not confirm cancer selectivity owing to the sensitivity limitations of
MS. Proper cancer selectivity assessment should be performed at the
gene expression level in healthy tissues. Hence, we retrieved the parent
gene expression values (in TPM) of the remaining ncMAPs from the
Genotype-Tissue Expression project (GTEx v8; ref. 51). We first
compared the gene expression levels of the following two groups:
ncMAPs detected in the panel of normals byMS (blue), and remaining
ncMAPs without detection in the panel of normals (red). Fig. 6B
shows significantly higher gene expression for ncMAPs detected in
healthy tissues (blue) than for those that were left undetected (red).
Moreover, to ensure low toxicity levels in normal tissues, we filtered
ncMAPs to retain those with parent genes expressed below 1 TPM and
without evidence of protein expression in any healthy tissue except the
testis (immune-privileged site; Fig. 6C). By applying this stringent
filter, we identified 24 ncMAPs derived from genes not expressed or
expressed only in trace amounts in healthy tissues. Of these, 17 were
associated with proteins not detected in healthy tissues. Table 1
provides a summary of these 17 cancer-selective ncMAPs, which we

suggest as promising targets for clinical applications (see Supplemen-
tary Table S3 for more details).

Discussion
The cartography of noncanonical antigen presentation revealed in

our study arose from a harmonized large-scale analysis of immuno-
peptidomic data mapped to the human genome. Our innovations over
the most recent trends in computational MS identified a diversity of
peptidesmapping to canonical and noncanonical translation products.
We mapped deviations away from the reference proteome as mass
shifts (PTMs) and applied a sequential approach to tackle the non-
canonical immunopeptidome. Our proteogenomic pipeline allowed
the identification of thousands of ncMAPs (8,601) derived from
noncoding regions of protein-coding genes with an FDR of 1%. This
was accomplished by analyzing a large collection of publicly available
studies using COD-dipp, a highly modular large-scale pipeline that
bypasses the challenge of multi-omics requirements and large MS
databases when identifying ncMAPs.

Recent studies have suggested that the immunopeptidome is rich in
PTMs (62), which can have profound effects on immune tolerance. T
cells can discriminate between modified and nonmodified epitopes,

Table 1. List of cancer-selective noncanonical MHC-associated peptides.

ID Peptide Gene name

Mean expression
in healthy tissues
(TPM)

Number of
healthy tissues
with protein
expression Annotation

1 AFAPFPTQF CXorf49B 0.01 0 of 56 Cancer selective
1 AFAPFPTQF CXorf49 0.01 0 of 56 Cancer selective
1 AFAPFPTQF RP11–402P6.15 0.10 0 of 56 Cancer selective
2 DYIHFVHHF RP11–325B23.2 0.00 0 of 56 Cancer selective
3 EALSASQALYTR HIST1H4L 0.04 43 of 56
4 ELIKAFSK GNGT1 0.05 1 of 56
5 ESAGLFQVPR SUN3 0.13 3 of 56
6 EVEKILIQY KCNU1 0.05 0 of 56 Cancer selective
7 EVPGAQGQQGPR CTAG2 0.15 0 of 56 Cancer selective
7 EVPGAQGQQGPR CTAG1B 0.03 0 of 56 Cancer selective
7 EVPGAQGQQGPR CTAG1A 0.06 0 of 56 Cancer selective
8 FPVDVDHAVL CTAG2 0.15 0 of 56 Cancer selective
8 FPVDVDHAVL CTAG1B 0.03 0 of 56 Cancer selective
8 FPVDVDHAVL CTAG1A 0.06 0 of 56 Cancer selective
9 ILSDNIRNL C1orf94 0.14 0 of 56 Cancer selective
10 IPKDKSKNK C2orf83 0.02 0 of 56 Cancer selective
11 KLLELIKAFSK GNGT1 0.05 1 of 56
12 KNNIYAFKI RP11–231I13.2 0.01 0 of 56 Cancer selective
13 KTLHLTIVK C12orf50 0.07 0 of 56 Cancer selective
14 KYLSRFRPK TRPC5 0.08 0 of 56 Cancer selective
15 MVRSPEEGSLR TEX19 0.13 0 of 56 Cancer selective
16 MVRSVSAAAR HIST1H2BB 0.26 44 of 56
17 MVRSVSAAARR HIST1H2BB 0.26 44 of 56
18 REEAPRGVRM CTAG2 0.15 0 of 56 Cancer selective
18 REEAPRGVRM CTAG1B 0.03 0 of 56 Cancer selective
18 REEAPRGVRM CTAG1A 0.06 0 of 56 Cancer selective
19 SAGLFQVPR SUN3 0.13 3 of 56
20 SQVHKFFLL OR9Q1 0.04 0 of 56 Cancer selective
21 SYGIYIYTY SLC15A5 0.06 0 of 56 Cancer selective
22 TVSHQIIFY EXD1 0.06 0 of 56 Cancer selective
23 VIQKVILVV MGAT4D 0.03 0 of 56 Cancer selective
24 YYFILEHAKY SOX30 0.29 0 of 56 Cancer selective

Note: Themean parent gene expression in TPMwas derived from 29 healthy tissues from the GTEx v8 dataset. The number of healthy tissueswith protein expression
was obtained from the Human Protein Atlas v22.0.
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which has been demonstrated in the case of ubiquitination (63),
glycosylation (64), phosphorylation (1, 65). T-cell reactivity to PTMs
is an effect of their central tolerance escape from the thymus (66).
PTMs may also alter proteolytic activity, and consequently, peptide
presentation by the MHC system (67). The open-search component
sheds light on several PTMs implicated in immunogenicity (serine N-
terminal acetylation, cysteinylation, and cysteine tri-oxidation) and
could provide insights for future studies on PTM-based epitopes. For
instance, tri-oxidation of cysteine has the potential to alter the immune
response (55); however, its mechanism of interaction with HLA
molecules and T cells is still in its infancy. Additionally, T cells can
discriminate between cysteinylated and unmodified cysteine resi-
dues (56). Likewise, N-terminal serine acetylation is known for
multifunctional regulation, acting as a protein degradation signal,
inhibitor of endoplasmic reticulum (ER) translocation, and mediator
of protein complex formation. Methionine sulfone (methionine diox-
idation) has been found to occur in vivo in Proteus mirabilis (68), a
Gram-negative bacterium present in malignant cancers (69), although
it can result from the use of a strong oxidizing agent.

The validity of ncMAPs was rigorously tested using retention time
correlation (experimental vs. theoretical), orthogonal second-round
search, mass accuracy, PTM retention time shifts, HLA binding
prediction, and PSM comparison with previously published results.
Twenty-five percent of the identified ncMAPs accounted, on average,
for 81.36% of intersections when compared with three other high-
profile studies (6, 13, 16). In addition, COD-dipp revealed 6,433 new
ncMAPs fromprotein-coding genes. Considering the high-quality and
rigorous computational validation, the identification rate discrepancy
is partly due to the performance of COD-dipp and the size of our
dataset collection, making it the most exhaustive noncanonical library
of MHC class I–associated peptides.

Our survey of the possible sources of ncMAPs revealed that 70.1%
could be attributed to nORFs, IR, or frameshift mutations. We
identified 597 ncMAPs downstream of known frameshift mutations
in COSMIC, an understudied source of antigens in immunopeptido-
mic studies. Certainly, other biological processes not accounted for in
this study could generate ncMAPs. For instance, mechanisms such as
ribosomal slippage (11) and stop codon readthrough could explain
some of the remaining ncMAPs (29.9%).

This study focuses on peptides from noncoding regions of the
genome, referred to as noncanonical peptides. Unlike neoantigens,
which derive from patient-specific mutations in cancer, these nonca-
nonical peptides are not mutated and are present in both cancer and
healthy individuals. Although their presence in healthy samplesmakes
their tumor specificity less clear, noncanonical peptides tend to be
more abundant in cancer cells than in healthy cells. Over two decades
ago, Ishii and colleagues (70) purified an octamer noncanonical
antigen (IPGLPLSL or pRL1a) associated with heat shock proteins
(HSP) and validated their findings using MS. The isolated octamer
noncanonical antigen pRL1a was derived from the 50-untranslated
region of the AKT gene in leukemia and induced tumor rejection.
To the best of our knowledge, this was the first demonstration of a
noncanonical antigen that confers immunity. Subsequent studies
have shown that HSPs are beneficial for anticancer vaccines (71)
because they bind canonical/noncanonical antigens with tumor
rejection properties that end up being presented by MHC I and
II molecules (72).

Numerous studies have suggested various possible candidates for
cancer vaccines over the past two to three decades, and each has failed,
at least partly, due to the issue of specificity. We used a conservative
definition of cancer selectivity that follows three iterative steps. We

searched for the identified ncMAPs over a panel of 334 normal MS
samples and confirmed a fraction (32%) of noncancer–selective
ncMAPs. The remaining fraction (5,843, 68%) contained both can-
cer-selective ncMAPs and noncancer–selective ncMAPs that were not
detected by MS. We used the expression levels of the ncMAPs’ parent
genes across 29 healthy tissues as a means of prioritization (6, 14, 16).
ncMAPs whose parent genes were expressed in any normal tissue
above a threshold of 1 TPM were not considered cancer selective.
However, we caution that this definition excludes the consideration of
92% of protein-coding genes. We revealed 17 rigidly defined candi-
dates as cancer-selective ncMAPs, originating from genes and proteins
that were completely absent or available in trace amounts in healthy
tissues. We hope that this offers a sufficiently stringent approach to
reducing toxicity in clinical applications. We provide a complete
breakdown of all detected ncMAPs in Supplementary Table S3. We
report the parent gene and protein expression values across healthy
tissue types from the GTEx cohort and Human Protein Atlas, respec-
tively. Moreover, we report their cancer-selectivity status conditioned
on a gene expression cutoff (1 TPM) and lack of protein expression in
healthy tissues. This will allow the research community to make
decisions regarding the peptides that should be retained or removed
from their analyses. It is particularly important that we do not filter all
peptides, as aberrant intron-retention and frame-shift mutations that
are certainly cancer-specificmay lie within these results and would not
need this stringent filtering if found in subsequent studies.

Here, we provide a free and open-source informatics pipeline to
study noncanonical peptides, alongwith a reservoir of potential targets
that could be used in combination with T-cell therapies or cancer
vaccines. We anticipate that this will help pave the way for future
research on antigens from noncanonical sources and engage further
oncology research on alternative sources of antigens.

We acknowledge that our study presents several limitations. First,
our approach relies on a DDA MS, which is known for its dynamic
range limitations. Thus, only the most abundant ncMAPs were
identified. Moreover, owing to the technical limitations of MS, we
require that our ncMAPs be at least 3 amino acids different from any
known human protein. Thus, a substantial fraction could be elimi-
nated, leading to underestimation of the noncanonical fraction. Sec-
ond, because immunogenicity prediction is still in its infancy, the
identified ncMAPs require further validation to qualify as tumor
rejection–mediating antigens for clinical applications. Despite our
efforts to identify cancer-selective targets, the toxicity of these peptides
in healthy tissues requires further investigation.
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