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Locally-Enriched Cross-Reconstruction for
Few-Shot Fine-Grained Image Classification
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Abstract—Few-shot fine-grained image classification has at-
tracted considerable attention in recent years for its realistic
setting to imitate how humans conduct recognition tasks. Metric-
based few-shot classifiers have achieved high accuracies. However,
their metric function usually requires two arguments of vectors,
while transforming or reshaping three-dimensional feature maps
to vectors can result in loss of spatial information. Image
reconstruction is thus involved to retain more appearance details:
the test images are reconstructed by different classes and then
classified to the one with the smallest reconstruction error.
However, discriminative local information, vital to distinguish
sub-categories in fine-grained images with high similarities, is not
well elaborated when only the base features from a usual embed-
ding module are adopted for reconstruction. Hence, we propose
the novel local content-enriched cross-reconstruction network
(LCCRN) for few-shot fine-grained classification. In LCCRN,
we design two new modules: the local content-enriched module
(LCEM) to learn the discriminative local features, and the cross-
reconstruction module (CRM) to fully engage the local features
with the appearance details obtained from a separate embedding
module. The classification score is calculated based on the
weighted sum of reconstruction errors of the cross-reconstruction
tasks, with weights learnt from the training process. Extensive
experiments on four fine-grained datasets showcase the superior
classification performance of LCCRN compared with the state-
of-the-art few-shot classification methods. Codes are available at:
https://github.com/lutsong/LCCRN.

Index Terms—Few-shot image classification, fine-grained im-
age classification, discriminative local features, ridge regression,
image reconstruction

I. INTRODUCTION

With the development of deep learning, the recognition
performance of machines has surpassed that of humans in
many large-scale image classification tasks. However, when
the amount of data that can be learnt from is small, the
recognition ability of machine is not satisfactory [1], [2].
Therefore, image classification based on a very small number
of labelled samples, often referred to as few-shot classification,
has attracted considerable research attention in recent years.
Few-shot classification usually involves two types of data with
disjoint label spaces, namely the base class data and the novel
class data. It aims to use the knowledge learnt from the base
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class data and a small number of labelled samples from the
novel class data to accurately predict the labels of the unseen
samples from the novel classes.

In this paper, we aim to investigate the challenging task
of few-shot fine-grained image classification [3]–[5]. Fine-
grained data have a lot of sub-categories, each with few
labelled samples, which are natural choices to evaluate the
classification performances of the few-shot algorithms. How-
ever, the high similarities between the sub-categories make the
classification of fine-grained images difficult.

Metric-based approaches are effective solutions for few-
shot classification. They determine the class membership of
a test sample via the similarity or dissimilarity between the
test sample and the classes, which is evaluated by a metric
function, such as the simple pre-defined cosine similarity [6]
and Euclidean distance [7], and more advanced nonlinear
functions and networks that can be learnt from data [8]–[13].
However, conventional metric-based methods usually do not
perform well for fine-grained images, because they do not
take the high similarities between the sub-categories into con-
sideration. To precisely classify fine-grained images, extract-
ing the discriminative features that can distinguish between
the sub-categories is one key to success. Li et al. propose
the bi-similarity network (BSNet) that utilises two similarity
measures to learn distinctive characteristics of each class [5].
Huang et al. propose the low-rank pairwise alignment bilinear
network (LRPABN) involving the bilinear pooling operation
to capture the subtle differences between the support and
query images [4]. Huang et al. later propose the target-oriented
aligment network (TOAN) to explicitly reduce the intra-class
variance by matching the support and query features while
enlarge the inter-class variance by extracting discriminative
fine-grained features [14].

The feature map reconstruction networks (FRN) designed
by Wertheimer et al. [15] can also provide excellent classifica-
tion performance for fine-grained images. FRN aims to tackle
one problem in metric-based approaches: the metric functions
usually measure the similarity or dissimilarity between two
vectors, while transforming or reshaping the three-dimensional
feature maps extracted by convolutional modules to vectors
can result in loss of spatial information. In FRN, the feature
maps of each class in the support set are pooled to a single
two-dimensional matrix of support features, with each column
representing the concatenated feature maps of a channel. To
classify a query image, every location of its feature map is
reconstructed by the weighted sum of the support features of
each class via a ridge regression formulation, and the recon-
struction error is adopted to calculate the metric score. Images
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should be well reconstructed by the feature maps of their
corresponding classes because their embeddings are similar,
while they are hard to be reconstructed by wrong classes
that result in large reconstruction errors. Hence, through the
reconstruction process, it is possible to preserve the appearance
details to assist to distinguish the sub-categories.

nput ima es

LC  eatures

Base eatures

Fig. 1. Illustrations of the base and local content-enriched features of the
aircraft images. The base features capture large areas of the aircrafts as well
as the annoying background, while the local content-enriched features can
focus more on the discriminative local areas of the aircrafts.

In FRN, however, when simply adopting the base features
from the usual embedding module for reconstruction, the
discriminative local features that are vital for fine-grained
image classification are not well considered. For example, in
Fig. 1, the base features capture most of the aircrafts, but also
involve large areas of the annoying background of sky around
the aircrafts. Thus, to further improve the classification perfor-
mance under the feature reconstruction framework of FRN, we
propose a local content-enriched cross-reconstruction network
(LCCRN), with a local content extraction module that learns
the local information to assist fine-grained few-shot image
classification. By utilising the new local content extraction
module, the local content-enriched features, as shown in the
last row of Fig. 1, can concentrate more on the local areas of
the aircrafts and get rid of most of the background.

Besides the local content-enriched features, we generate
an additional set of base features through a separate em-
bedding module to preserve the appearance details. To fully
exploit the best of both types of features, we propose the
new cross-reconstruction module, through which the query
features that focus on both the appearance details and local
information are reconstructed via ridge regression. The name
‘cross-reconstruction’ means that the reconstruction tasks are
conducted across different feature types, e.g. reconstructing
the query image’s base features from the corresponding local
content-enriched features, and vice-versa. In this way, the
relationship between the base features and their neighbourhood
is explored, allowing the model to learn more about the local
information presented in images. The classification score is
derived based on the weighted sum of reconstruction errors
of the cross-reconstruction tasks, with the weights adaptively

learnt during the training process. The experiments on four
fine-grained image datasets demonstrate the superior classifi-
cation performance of LCCRN over state-of-the-art methods.

To sum up, our contributions are three-fold:
• We propose a novel local content-enriched cross-

reconstruction network (LCCRN) for few-shot fine-
grained image classification.

• We propose a new local content extraction module
(LCEM) to explore the discriminative local information
within the feature maps, which can assist semantic un-
derstanding of the images.

• We design a novel cross-reconstruction module (CRM) to
leverage both the base and local content-enriched feature
representations, enabling the learning of both appearance
details and local information.

The rest of the paper is organised as follows. In section II,
we provide a thorough discussion about the literature closely
related to our work. We then present technical details of the
proposed LCCRN in section III. Extensive experimental results
and ablation study are presented in section IV. Lastly, we draw
conclusions in section V and propose future work.

II. RELATED WORK

A. Metric-based methods for few-shot image classification

Metric-based methods for few-shot image classification aim
to learn a metric function to distinguish between image classes
based on the similarity or dissimilarity evaluated in a metric
space. For example, the matching networks (MatchNet) [6]
utilise the attention mechanism for feature embedding and
adopt the cosine similarity. The prototypical networks (Pro-
toNet) [7] represent each class by a prototype and clas-
sify a test sample via its Euclidean distances to the class
prototypes. The relation network (RelationNet) [8] improves
the prototypical networks by learning a metric module to
assess the relation scores between the test sample and the
class prototypes. The similarities between images can also
be measured by graph neural networks (GNN) [16], [17],
which consider the similarities between any two images in
the task. Some metric-based approaches can provide promising
classification results for fine-grained images, because they aim
to extract more discriminative features. For instance, the deep
nearest neighbor neural network (DN4) [18] adopts a local
descriptor-based image-to-class measure to preserve the local
discriminative information. Adopting only one metric function
may not well capture the subtle differences between the sub-
categories, thus the bi-similarity network (BSNet) [5] involves
two distinct similarity measures to learn more discrimina-
tive feature maps. The low-rank pairwise alignment bilinear
network (LRPABN) [4] can exploit the subtle differences
between the support and query images via the bilinear pooling
operation.

Different from previous methods, LCCRN involves four
reconstruction tasks to exploit the discriminative local infor-
mation. Thus LCCRN calculates the weighted sum of the
reconstruction errors of the reconstruction tasks as the metric
for classification.
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Fig. 2. The framework of LCCRN. We use orange, yellow and blue to represent three sub-categories of support images, and green to represent query images.
The original images are fed to the embedding module f� to obtain the base representations Ps and Pq , which are later converted into the local content
enriched feature representations Zs and Zq by the local content extraction module (LCEM). A separate set of base representations Bs and Bq are obtained
by the embedding module f that does not share parameters with f�. Then, the cross-reconstruction module cross-reconstructs the two types of query features
by the two types of support features, resulting in four reconstruction tasks. Finally, the metric score is calculated based on the weighted reconstruction errors.
Q̂ZZ

n , Q̂ZB
n , Q̂BZ

n and Q̂BB
n denote the four reconstructed query images based the nth class of the support set. !ZZ , !ZB , !BZ and !BB denote the

corresponding weights to calculate the weighted reconstruction score for the query image.

B. Feature alignment for few-shot image classification

Feature alignment approaches usually aim to align the
spatial positions of similar objects to improve the learnt
similarities between images. The position-aware relational
network (PARN) [19] calculates the similarities between any
two positions of features, regardless of their spatial distances,
and thus can provide high similarities for images with related
objects that are not in the same positions. The semantic
alignment metric learning (SAML) [20] adopts the collect-
and-select strategy to give higher weights to the semantically-
related local regions. DeepEMD [9] uses the Earth Mover’s
Distance (EMD) to calculate the structural similarity between
two images. CrossTransformers (CTX) [21] determine the
similarity between two images via the spatially-correlated
features via a transformer-based network. The global-local
interplay metric learning (GLIML) [22] semantically aligns
the global information of image label semantics and the local
features, which can decrease the semantics irrelevant to the
global information. FRN [15] utilises the ridge regression to
reconstruct the feature map of the query image based on
the support features, which has a closed-form solution and
is computationally efficient. FRN tries to preserve the spatial
details, but cannot well reconstruct the local features, and thus
the semantic information of the images is not fully considered.

In contrast, in the LCCRN proposed in this paper, we
design a novel cross-reconstruction module that can fully
integrate both the base and the local content-enriched feature
representations to enhance the semantic understanding of the

network.

III. METHODOLOGY

In this section, we introduce our new local content-enriched
cross-reconstruction network (LCCRN), with the technical
details of the local content extraction module in section III-C
and the cross-reconstruction module in section III-D.

A. Problem definition

In few-shot classification, given a dataset D, we partition it
into the base dataset Db with its class set Lb, the validation
dataset Dv with its class set Lv and the novel dataset Dn

with its class set Ln. Note that the three class sets, Lb,
Lv and Ln, are mutually exclusive. The goal of few-shot
classification is to train a model based on Db and Lb so that the
model can generalize well on tasks sampled from Dn, which
is challenging because there are only few labelled samples
available for each task. Dv and Lv are used to verify the
accuracy of the current model during the iterative training
process to determine whether it is the best-performing one.
We follow the classic N -way K-shot classification setting in
this paper. That is, in each task, the few labelled data form
the support set S = {(xi, yi)}N⇥K

i=1 , which contains N classes
with K support images for each class. The model is then
evaluated on a separate query set Q = {(xj , yj)}N⇥q

j=1 , with the
same N classes in S and q query images for each class. The
test performance of the model is calculated as the averaged
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accuracy on the query set over multiple tasks sampled from
Dn.

B. The framework of LCCRN
In Fig. 2, we depict the framework of LCCRN. The

support set S and the query set Q are both fed to two
distinct embedding modules, f� and f , which do not share
parameters. Two sets of base features are thus obtained: Ps

and Pq from f�; and Bs and Bq from f . We adopt the
subscripts s and q to denote features from the support and
query sets, respectively. The local content extraction module
(LCEM) takes Ps and Pq as inputs to generate the local
content-enriched (LCE) features Zs and Zq , which then go
through the cross-reconstruction module together with Bs and
Bq to obtain four sets of cross-reconstructed query features.
The metric distances between these cross-reconstructed query
features and their corresponding ground-truth query features
are calculated as the reconstruction errors. The weighted sum
of these four reconstruction errors are adopted as the metric
score for classification of the query image.
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Fig. 3. The local content extraction module. Left: the local information
extraction module under the Conv-4 backbone. Right: the local information
extraction module under the Resnet-12 structure. The relational patterns in the
input local windows R are captured by convolving the U ⇥ V dimensions.

C. The local content extraction module
The local content extraction module (LCEM) aims to con-

vert the base representations Ps and Pq into the ones that can
reflect more about the discriminative local information of the
support and query images to assist classification.

Suppose the base representation of the i th image in S is
denoted as Ps(i) 2 RH⇥W⇥C , where H and W denote the
height and weight of the feature maps, respectively, while C

denotes the number of channels. The LCEM is implemented
via the following two steps. First, we pool the neighbourhood
windows surrounding each position in each channel of Ps(i)

to generate the representation Rs(i) 2 RH⇥W⇥U⇥V⇥C for
further exploration of local structures. To be more specific,
for each value of Ps(i)(h,w, c) (h = 1, 2, . . . , H , w =

1, 2, . . . ,W , c = 1, 2, . . . , C), we take its neighbourhood
window of size U ⇥ V with Ps(i)(h,w, c) in the centre and
normalise the window by its Frobenius norm, and aggregate
all local windows to form Rs(i). Zero padding is adopted to
deal with the positions on the edges of the feature maps.

Then, to learn the local content-enriched (LCE) features,
we propose a novel convolutional module to extract the local
features from Rs(i) by convolving the U ⇥ V dimensions.
Through this module, we also aim to obtain the feature repre-
sentations that match the dimensions of Bq(i) 2 RH⇥W⇥C to
facilitate the cross-reconstruction step. Fig. 3 (left) presents
our designed module for the Conv-4 backbone, which in-
cludes two 3 ⇥ 3 convolutional layers for conversion with
batch normalisation and ReLU inserted between convolutions.
Compared with that for the Conv-4 backbone, the feature map
obtained by the ResNet-12 backbone has more channels. In
order to improve the computational efficiency, the local content
extraction module for the ResNet-12 backbone depicted in
Fig. 3 (right) has two additional point convolutional layers for
channel size reduction. Note that the strategy of using the two
additional point convolutional layers to reduce the channel size
for efficient computation can be generalised directly to other
networks with a large amount of channels. We denote this
convolution block as g(·) : RH⇥W⇥U⇥V⇥C ! RH⇥W⇥C .
Thus, the final LCE features of the ith image in S can be
calculated in the following general formulation:

Zs(i) = g(Rs(i)) =

(
gd(Rs(i)) C  64,

ga(Rs(i)) C > 64,
(1)

where Zs(i) 2 RH⇥W⇥C , gd(·) is the module on the left-
hand-side of Fig. 3 when the two point convolutional layers are
deactivated while ga(·) is that on the right-hand-side when the
two point convolutional layers are activated for computational
efficiency. In ga(·), we reduce the channel size to 64, i.e. C 0 =
64.

For the jth query image Pq(j), we follow the same approach
to obtain Rq(j) and calculate its LCE features as Zq(j) =
g(Rq(j)).

D. The feature cross-reconstruction module
To fully engage the local features extracted by the

LCEM, we design a novel feature cross-reconstruction module
(CRM). The query feature maps Bq and Zq are both cross-
reconstructed based on both Bs and Zs, which forms four
reconstruction tasks: Bq using Bs, Bq using Zs, Zq using
Bs, and Zq using Zs, as shown in Fig. 2. We follow the
strategy of ridge regression in Wertheimer et al. [15] for all
reconstructions tasks.

To fit to the setting of ridge regression, the feature repre-
sentations of the query image and the support images have
to be pooled to two matrices, respectively. With abuse of
notation to improve the readability of this section, we denote
the matrix for the query image by Q 2 RM⇥C and that for the
support samples from the nth class by Sn 2 RKM⇥C , where
M = H⇥W . Since the reconstruction calculations for images
with the base and LCE features are the same, we present one
general example of reconstructing Q by Sn here.
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TABLE I
THE NOTATIONS OF THE CROSS-RECONSTRUCTED QUERY FEATURES BY

THE SUPPORT FEATURES OF THE nTH CLASS.

Query

Support
Base features LCE features

Base features Q̂BB
n Q̂BZ

n

LCE features Q̂ZB
n Q̂ZZ

n

Specifically, the query image Q can be reconstructed by the
weighted sum of all support samples in the nth class Sn:

Q = WSn +E, (2)

where W 2 RM⇥KM is the weight matrix and E 2 RM⇥C

is the residual. The weights are learnt from ridge regression
by solving the following least-squares problem:

W⇤ = argmin
W

kQ�WSnk22 + �kWk22, (3)

where � is the constant that controls the bias-variance trade-
off. Here we follow the suggestion from Wertheimer et al. [15]
to set � = KM

C
e
⌘ , where ⌘ is learnt from meta training and the

normalising factor KM

C
is to ensure a stable training process.

The weight matrix W has a closed-form solution of

W⇤ = QST

n

�
SnS

T

n
+ �I

��1
, (4)

where I 2 RKM⇥KM is an identity matrix. Thus the recon-
structed query image by the nth class is calculated as

Q̂n = �W⇤Sn, (5)

where we set � = e
⌧ with ⌧ learnt from the training process

to make � nonnegative.
For each query image, we have two matrices reshaped

from the two types of feature representations: the matrix
from the base representation, QB ; and that from the LCE
representation, QZ . The reconstruction of QB by the base
representation of the nth class of the support set is denoted by
Q̂BB

n
, while that based on the LCE representation is denoted

by Q̂BZ

n
. Similarly, the reconstruction of QZ based on the

base representation is denoted by Q̂ZB

n
, while that based on

the LCE representation is denoted by Q̂ZZ

n
. We illustrate this

notation in Table I to avoid confusion.
The final reconstruction error for the query image based on

the nth class of the support set is a weighted sum of the errors
of the four reconstruction tasks:

en =
1

M
(!BB ||QB � Q̂BB

n
||22 + !BZ ||QB � Q̂BZ

n
||22 (6)

+ !ZB ||QZ � Q̂ZB

n
||22 + !ZZ ||QZ � Q̂ZZ

n
||22),

where !BB , !BZ , !ZB and !ZZ are the learnable weights
associated with each reconstruction task, respectively.

Based on this reconstruction error, we calculate the pre-
dicted probability of the query image belonging to the nth
class as

P (ŷj = n | xj) =
e
��en

P
n02N e��en0

. (7)

For each task, the network is trained by the cross-entropy loss:

L = �
NqX

j=1

log(P (ŷj = yj | xj)). (8)

For a test image, we calculate its predicted probabilities in
(7) for all classes and classify it to the class with the highest
probability.

IV. EXPERIMENTS

Experiments in this section serve five purposes:
1) To compare the proposed LCCRN with state-of-the-art

methods for few-shot fine-grained image classification;
2) To investigate the impact of the new LCEM and CRM

on the classification performance of LCCRN;
3) To assess the effect of the numbers of ways, shots and

epochs;
4) To visualise and compare the base features and LCE

features obtained by the LCEM;
5) To visualise the reconstructed images generated from the

CRM.

A. Datasets
In the experiments, we test four fine-grained datasets:

CUB [30], Aircraft [31], Flowers [32] and Cars [33].
The CUB dataset has 200 classes and 11,788 images of

birds, and we randomly divide it into a training set with 100
classes, a validation set with 50 classes and a test set with 50
classes. In addition, we crop each image to a human annotated
bounding box following the pre-processing method of [9],
[34].

The Aircraft dataset contains 100 aircraft classes with
10,000 images, and we randomly select 50 classes for the
training set, 25 classes for the validation set and 25 classes for
the test set. Images are pre-cropped to the provided bounding
box.

The Flowers dataset consists of 102 categories of common
flowers, and each category consists of 40 to 256 images with
large-scale, pose and light variations. We randomly divide this
dataset into a training set with 51 classes, a validation set with
26 classes and a test set with 25 classes.

The Cars dataset contains 16,185 images of 196 classes of
cars. We randomly select 98 classes to form the training set,
48 classes for the validation set and 48 classes for the test set.

We also test the classification performance of LCCRN on
two coarse-grained datasets: mini-ImageNet [6] and few-shot
CIFAR (FC100) [35].

The mini-ImageNet dataset has 100 classes of 60,000 im-
ages, with each class containing 600 images. We randomly
select 64 classes for the training set, 16 classes for the
validation set and 20 classes for the test set.

The FC100 dataset contains 20 high-level classes with 100
object categories, and each object category has 600 images.
The training set is consisting of 12 high-level classes with 60
object categories, the validation set is consisting of 4 high-
level classes with 20 object categories and the test set is also
consisting of 4 high-level classes with 20 object categories.
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TABLE II
THE 5-WAY FEW-SHOT CLASSIFICATION ACCURACIES ON THE CUB, AIRCRAFT,FLOWERS AND CARS DATASETS FOR THE CONV-4 BACKBONE.

Model CUB Aircraft Flowers Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [6] 60.06±0.88 74.57±0.73 58.23±0.89 74.90±0.66 71.89±0.90 85.46±0.59 44.73±0.77 64.74±0.72
ProtoNet [7] 61.82±0.23 83.37±0.15 50.90±0.22 80.65±0.15 64.23±0.23 84.94±0.16 48.42±0.22 71.38±0.18
Relation [8] 63.94±0.92 77.87±0.64 61.73±0.98 75.96±0.72 69.50±0.96 83.91±0.63 46.04±0.91 68.52±0.78

Baseline++ [23] 62.36±0.84 79.08±0.61 58.38±0.83 77.62±0.60 70.54±0.84 86.63±0.58 46.82±0.76 68.20±0.72
DSN [24] 71.57±0.92 83.51±0.60 66.30±0.87 79.00±0.61 67.71±0.92 84.58±0.70 48.16±0.86 60.77±0.75
DN4 [18] 57.45±0.89 84.41±0.58 68.41±0.91 87.48±0.49 70.44±0.95 89.45±0.52 34.12±0.68 87.47±0.47

BSNet(D&C) [25] 62.84±0.95 85.39±0.56 56.51±1.09 70.80±0.81 66.60±1.04 80.42±0.75 40.89±0.77 86.88±0.50
MixFSL [26] 53.61±0.88 73.24±0.75 44.89±0.75 62.81±0.73 68.01±0.90 85.10±0.62 44.56±0.80 59.63±0.79

FRN [15] 73.46±0.21 88.13±0.13 69.29±0.22 83.94±0.13 73.60±0.22 88.69±0.14 64.03±0.22 84.02±0.13
TDM [27] 74.39±0.21 88.89±0.13 69.90±0.23 83.34±0.15 70.66±0.24 85.14±0.17 65.89±0.22 82.45±0.15

Ours 76.22±0.21 89.39±0.13 76.81±0.21 88.21±0.11 75.57±0.22 90.15±0.12 71.62±0.21 86.41±0.12

TABLE III
THE 5-WAY FEW-SHOT CLASSIFICATION ACCURACIES ON THE CUB, AIRCRAFT , FLOWERS AND CARS DATASETS FOR THE RESNET-12 BACKBONE.

Model CUB Aircraft Flowers Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MatchingNet [6] 73.02±0.88 85.17±0.60 82.20±0.80 88.99±0.50 75.70±0.88 87.61±0.55 73.32±0.93 87.61± 0.55
ProtoNet [7] 79.64± 0.20 91.15±0.11 86.57±0.18 93.51±0.09 75.41±0.22 89.46±0.14 82.29±0.20 93.11±0.10
Relation [8] 63.94±0.92 77.87±0.64 74.20±1.04 86.62±0.55 69.51±1.01 86.84±0.56 69.67±1.01 84.29±0.68

Baseline++ [23] 64.62±0.98 81.15±0.61 74.51±0.90 88.06±0.44 69.03±0.92 85.72±0.63 67.92±0.92 84.17±0.58
DeepEMD [9] 71.11±0.31 86.30±0.19 69.86±0.30 85.17±0.28 70.00±0.35 83.63±0.26 73.30±0.29 88.37±0.17

VFD [28] 79.12±0.83 91.48±0.39 76.88±0.85 88.77±0.46 76.20±0.92 89.90±0.53 77.52±0.85 90.76±0.46
RENet [29] 79.49±0.44 91.11±0.24 82.04±0.41 90.50±0.24 79.91±0.42 92.33±0.22 79.66±0.44 91.95±0.22

MixFSL [26] 67.87±0.94 82.18±0.66 60.55±0.86 77.57±0.69 72.60±0.91 86.52±0.65 58.15±0.87 80.54±0.63
FRN [15] 83.11±0.19 92.49±0.11 87.53±0.18 93.98±0.09 81.07±0.20 92.52±0.11 86.48±0.18 94.78±0.08
TDM [27] 82.41±0.19 92.37±0.10 88.35±0.17 94.36±0.08 82.85±0.19 93.60±0.10 86.91±0.17 96.11±0.07

Ours 82.97±0.19 93.63±0.10 88.48±0.17 94.61±0.08 86.95±0.19 96.13±0.08 87.04±0.17 96.19±0.07

TABLE IV
THE ABLATION STUDY OF REMOVING BOTH THE LCEM AND CRM IN SETTING (A), ONLY THE LCEM IN SETTING (B) AND THE CRM IN SETTING (C),

ON THE CUB, FLOWERS, AIRCRAFT AND CARS DATASETS FOR THE 5-WAY FEW-SHOT SCHEME.

LCEM CRM CUB Flowers Aircraft Cars
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

(a) 7 7 74.02 88.74 73.63 88.59 67.90 84.03 63.86 84.37
(b) 7 3 74.16 88.81 74.77 89.37 68.54 84.57 65.34 85.36
(c) 3 7 75.98 88.82 73.58 88.70 76.02 88.04 70.50 85.77

LCCRN 3 3 76.22 89.39 75.57 90.15 76.81 88.21 71.62 86.41

B. Implementation details

We conduct experiments under two widely-used backbone
architectures for few-shot image classification: Conv-4 [36],
[37] and ResNet-12 [37], [38]. We train the models under the
Conv-4 and ResNet-12 backbones for 800 and 1,200 epochs,
respectively.

The initial learning rate is set to 0.1 and the weight decay is
set to 5e�4. After every 400 epochs, the learning rate decreases
by a factor of 10. We train the network by the 20-way 5-
shot setting for the Conv-4 backbone and the 10-way 5-shot
setting for the ResNet-12 backbone. LCCRN based on Conv-
4 backbone has 0.3M parameters with a computational cost
of 0.2G FLOPs, while that based on ResNet-12 backbone has

25M parameters with a computational cost of 7G FLOPs.
In addition, we select the best-performing model based on

the validation set and validate it every 20 epochs. For all
experiments, we report the average classification accuracies
with 95% confidence intervals of 10,000 randomly generated
tasks on the test datasets under the standard 5-way 1-shot, and
5-shot settings.

C. Comparisons with the state-of-the-arts

In order to verify the effectiveness of our method in fine-
grained few-shot classification, we reproduce the results of the
classic few-shot image classification methods (MatchingNet
[6], ProtoNet [7], Relation [8] and Baseline++ [23]) and those
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Fig. 4. The barplots of the classification accuracy against the number of epochs on the CUB and Aircraft datasets for the 5-way 1-shot and 5-way 5-shot
schemes of our proposed LCCRN (orange), FRN (green) and ProtoNet (blue), respectively.

TABLE V
THE CLASSIFICATION ACCURACIES OF DIFFERENT NUMBER OF SHOTS UNDER THE CONV-4 BACKBONE FOR THE CUB AND AIRCRAFT DATASETS.

Model Backbone CUB Aircraft
1-shot 3-shot 5-shot 7-shot 9-shot 1-shot 3-shot 5-shot 7-shot 9-shot

ProtoNet [26] Conv-4 61.82 79.13 83.37 85.33 86.40 50.90 76.90 80.65 81.98 83.08
FRN [15] Conv-4 73.46 85.98 88.13 89.95 90.63 69.29 81.03 83.94 85.05 85.70

Ours Conv-4 76.22 86.98 89.39 90.21 90.67 76.81 85.96 88.21 88.53 89.05

of the latest few-shot image classification methods (DSN [24],
DN4 [18], BSNet [25], DeepEMD [9], VFD [28], RENet [29],
MixFSL [26], FRN [15] and TDM [27]). The datasets used in
these methods are also used in this paper.

The classification accuracies of 5-way few-shot classifica-
tion accuracies on the fine-grained datasets are summarised in
Tables II and III for the Conv-4 and ResNet-12 backbones,
respectively. It is obvious that our proposed LCCRN has the
best mean classification accuracies for all settings, except for
the 5-way 1-shot classification of the CUB dataset with the
ResNet-12 backbone. Moreover, the widths of the confidence
intervals of our results are also noticeably narrower than most
of the state-of-the-art methods, which indicates that LCCRN
can provide more precise predictions.

D. Ablation study
In this section, we first investigate the impact of the new

LCEM and CRM on the classification performance of LCCRN

on the four fine-grained datasets under the Conv-4 backbone.
We then study the impact of the number of ways, shots and
epochs on the classification performance of LCCRN on the
CUB and Aircraft datasets under the Conv-4 backbone. Lastly,
we provide some visual comparisons of the base and LCE
features to show the advance of the LCE features in capturing
semantic structures.

1) The impact of the LCEM and CRM: In Table IV, we
summarise the classification accuracies of removing both the
LCEM and CRM in setting (a) and either of them in settings
(b) and (c). In setting (b), when the LCEM is removed, we
still keep f� as a usual embedding module and conduct cross-
reconstruction tasks based on the based features extracted from
f� and f . The experiments are conducted under the Conv-
4 backbone for all four fine-grained datasets with the same
parameter settings in section IV-B and the results of the 5-
way 1-shot and 5-shot experiments are reported.

It is apparent that removing both modules (setting (a))
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Fig. 5. The curves of the classification accuracy against the number of ways on the CUB and Aircraft datasets for the 1-shot and 5-shot schemes of our
proposed LCCRN (orange), FRN (green) and ProtoNet (blue), respectively.

performs the worst in almost all cases. The classification
accuracies of LCCRN are also remarkably higher than those
without the LCEM in setting (b), with the largest difference
of 8.27% for the 5-way 1-shot classification on the Aircraft
dataset. Even the two separate usual embedding modules in
setting (b) cannot provide competitive classification perfor-
mance compared with explicitly involving the LCEM, which
demonstrates the importance of the local features learnt by the
LCEM.

Moreover, in setting (c), we modify the CRM in LCCRN
to a parallel-reconstruction version by removing the “cross”
tasks. That is, the base query features are reconstructed by
their corresponding base support set features while the LCE
query features are reconstructed by their corresponding LCE
support set features, and en in (6) only involves the two terms
with !BB and !ZZ . Clearly, cross-exploiting the differences
and commonalities of the two types of features can further
boost the classification performance. However, we note that
the accuracy of the Flowers data under the 1-shot setting
is slightly below the base accuracy in setting a). This is
because the colour, shape and texture of the petals of some
flower images from different classes are extremely similar,
which makes the local information less valuable for such
classification task. Thus simply considering the additional
local content information in the parallel-reconstruction fashion

without properly fusing it with the global base features could
potentially lower the classification performance.

To further demonstrate the roles of the four reconstruction
tasks, we present the four weights in equation (6) for the CUB
and Aircraft data in Table VI. It is clear that the weights
associated with the two cross tasks, i.e. !ZB and !BZ , have
higher values, which suggests that the cross tasks weigh more
to determine the classification results for the two datasets.

TABLE VI
THE WEIGHTS OF THE FOUR RECONSTRUCTION TASKS IN EQUATION (6)

FOR THE CUB AND AIRCRAFT DATA.

!ZZ !ZB !BZ !BB

CUB 0.578 7.001 2.152 0.830

Aircraft 0.241 5.558 3.979 1.298

2) The impact of the number of ways, epochs and shots:
In this section, we compare the classification performances of
LCCRN with the classic metric-based method ProtoNet [7]
and the latest and most relevant FRN [15] with different
numbers of ways, shots and epochs in the training process. We
set the initial learning rate to 0.1 and scale down the learning
rate by a factor of 10 every 400 epochs.

In Fig. 4, we plot the classification accuracy against the
number of epochs on the CUB and Aircraft datasets for the
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TABLE VII
THE CLASSIFICATION ACCURACIES OF FRN AND LCCRN ON TWO COARSE-GRAINED DATASETS, THE MINI-IMAGENET AND THE FC100.

mini-ImageNet FC100
Conv-4 ResNet-12 Conv-4 ResNet-12

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
FRN 53.15±0.20 71.22±0.66 62.57±0.21 77.24±0.15 37.33±0.17 51.18±0.17 38.80±0.17 52.44±0.18
Ours 53.93±0.20 70.41±0.16 62.24±0.20 79.19±0.14 35.38±0.16 48.76±0.17 38.71±0.17 52.24±0.17

nput ima es

Base  eatures

LC  eatures

Fig. 6. The visual comparisons of the base and LCE features. The LCEM extracts more semantic information compared with the base embedding module,
allowing the LCE features to focus more on the birds themselves and reducing the effect of the background.

Fig. 7. The visualization of the reconstructed images in the CRM via the ResNet decoder on the CUB dataset, with Z and B as inputs. The two large blocks
on the two ends are Zs and Bs, respectively, showing five classes of birds in each row. The middle four columns are the reconstructed images for the query
with features Zq and Bq . The top row is for the same class of the query and the rest four rows are for the classes different from the query.

5-way 1-shot and 5-way 5-shot schemes. We can observe that
for different datasets, LCCRN achieves the highest accuracy
with different number of epochs: for the CUB dataset, 800 is
the best number of epochs while for the Aircraft dataset, 1,600
is the best. It is also worth noting that the classification accu-
racies of LCCRN are better than those of ProtoNet and FRN
for all numbers of epochs considered, which demonstrates the
superiority classification performance of LCCRN.

The impact of the number of ways is depicted in Fig. 5.
Clearly, the number of ways do affect the classification per-
formance: in general, the classification accuracy is higher
when the number of ways is large. Similarly to the pattern

of the number of epochs, the number of ways required for the
best classification accuracy varies for different datasets and
methods. For example, for the CUB dataset, when the number
of ways is larger than 20, there is a slight decrease in the
classification accuracy of LCCRN. Nevertheless, Fig. 5 shows
that our proposed LCCRN is better than ProtoNet and FRN
for all numbers of ways considered.

Finally, the results of the number of shots are reported in
Table V. We adopt the same training setting as in section IV-B,
but change the number of shots for test. It is clear that our
LCCRN has the best classification accuracies for all number of
shots on the CUB and Aircraft datasets. We also note that the
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gaps between the classification accuracies of the three methods
become larger as the number of shots decreases, which also
demonstrates the superior performance of LCCRN on the more
challenging tasks with smaller numbers of shots.

E. The classification performance of LCCRN on coarse-
grained images

Here we compare the classification accuracies of LCCRN
with FRN on two coarse-grained datasets, mini-ImageNet [6]
and few-shot CIFAR (FC100) [35]. We adopt the same training
strategy as for fine-grained datasets. The results in Table VII
indicate that LCCRN cannot beat FRN for classification of
coarse-grained data in most cases. One potential reason is that
coarse-grained data usually have larger inter-class differences
compared with fine-grained data. Thus classifiers focus more
on the global features of the entire image, such as FRN,
can achieve better results for coarse-grained data. In contrast,
LCCRN involving extensive amount of local discriminative
details may bring confusing information to classification, and
hence has a lower classification performance.

F. Visual comparisons of the base and LCE features

To compare the base and LCE features, we visualise few
examples of the bird class of the CUB dataset in Fig. 6. Here
we train LCCRN with 20 ways, 5 shots and 800 epochs under
the Conv-4 backbone. The results confirm that the LCEM
pays more attention to the local information by learning the
features related to the local neighborhood, so that the effect of
the background part is reduced. Moreover, the LCE features
can also focus on the more discriminative areas to distinguish
different species of birds.

G. Visualization of the reconstructed images

To visualize the reconstructed images and illustrate the
effectiveness of the CRM, we train the reverse ResNet as
a decoder to visualize the base features, LCE features and
reconstruction features. To train the decoder, we adopt the
Adam optimizer with an initial learning rate of 0.01, set
the batch size to 100 and train 1000 epochs to measure the
prediction error with L1 loss. The decoded image features can
then be obtained by feeding the base, LCE and reconstructed
features generated from the trained LCCRN to the decoder.
The recovered images are of size 3⇥ 84⇥ 84.

In Fig. 7, we visualise the two types of embeddings, Z and
B, and the four reconstructed images of the query image by
5-shot reconstruction for images in the CUB dataset. Clearly,
the four reconstructed images based on the same category are
visually more similar to the query image, but with differences
in morphology and colour. This suggests that the four recon-
struction tasks can provide complementary information about
the query image. On the contrary, the reconstructed images
based on the different categories are visually different from
the query image, which result in large reconstruction errors.

V. CONCLUSION

In this work, we propose the new LCCRN for few-shot
fine-grained image classification, which extracts LCE features
and cross-reconstructs the base and LCE features for better
semantic content understanding. The experiments on four
fine-grained datasets demonstrate the superior classification
performance of LCCRN to the state-of-the-art methods.
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