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Abstract 23 

The interactive effects of multiple threats are one of the main causes of biodiversity 24 

loss, yet our understanding of what predisposes species to be impacted by multiple 25 

threats remains limited. Here we analyse a global dataset of over 7000 marine, 26 

freshwater, and terrestrial vertebrate populations, alongside trait, threat and 27 

geographical data, to identify the factors influencing the number of threats a species 28 

is subjected to at the population level. Out of a suite of predictors tested, we find that 29 

body mass and latitude both are broadly available for vertebrate species, and 30 

influence the number of threats a population is subjected to. Larger bodied species 31 

and those nearer the equator are typically affected by a higher number of threats. 32 

However, whilst this pattern broadly holds across ecosystems for most taxa, 33 

amphibians and reptiles show opposing trends. We suggest that latitude and body 34 

mass should be considered as key predictors to identify which vertebrate populations 35 

are likely to be impacted by multiple threats. These general predictors can help to 36 

better understand the impacts of the Anthropocene on global vertebrate biodiversity 37 

and design effective conservation policies. 38 

Keywords: Conservation, extinction, life history, living planet database, multiple 39 

stressors, population dynamics, traits. 40 
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Introduction 42 

The Anthropocene is characterised by the strong influence of human activities on the 43 

structure and functioning of Earth’s natural systems (Steffen et al., 2011; Dirzo et al., 44 

2014). Threats like climate change, habitat loss, exploitation, pollution, or invasive 45 

species, directly or indirectly caused by human activities, are reshaping the 46 

biosphere at an unprecedented rate and scale (Scholes et al., 2018; Díaz et al., 47 

2019; IPCC, 2021). Although the individual effects of these threats can have strong 48 

impacts (Kroeker et al., 2010; Newbold et al., 2015; Hughes et al., 2017), about 80% 49 

of species are exposed to more than one threat simultaneously (IUCN 2021). The 50 

pervasiveness of multiple threats is of particular concern because of the 51 

unpredictability of their interactive effects (Darling & Côté, 2008; Côté et al., 2016). 52 

Yet, our understanding of the factors driving exposure to multiple threats remains 53 

limited (Maxwell et al., 2016; Hodgson et al., 2017). 54 

Whether a population is exposed to a threat is a result of the combined effects 55 

of environmental factors, species life histories, and human activity (Purvis et al., 56 

2000; Cardillo et al., 2005). Life history traits such as body mass, trophic level, or 57 

habitat specificity have been linked to the vulnerability of species (Fisher & Owens, 58 

2004; Di Marco et al., 2015; Pacifici et al., 2017). For instance, species with large 59 

body mass are disproportionately targeted for exploitation (Pauly et al., 1998; 60 

Duncan et al., 2002), making them more vulnerable to further threats. Likewise, 61 

predators usually require large home ranges and also depend on the abundance of 62 

their prey species, making them vulnerable to habitat loss, as well as being a 63 

common target for hunting (Cardillo et al., 2005; Wolf & Ripple, 2016). Moreover, 64 

species with low habitat specificity have the potential to be more prone to be 65 
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exposed to multiple threats, given their wider range of distribution (Malcolm et al., 66 

2006; Ehrlén & Morris, 2015; Batt et al., 2017). While the influence of all these traits 67 

on the vulnerability to species extinction has been largely explored (Purvis et al., 68 

2000; Fisher & Owens, 2004; Cardillo et al., 2005), how these contribute to the 69 

predisposition of species to being exposed to multiple threats remains unknown.  70 

The exposure of species to threats can also depend on environmental factors. 71 

For instance, the prevalence and impact of anthropogenic threats differs in marine, 72 

terrestrial and freshwater systems (Díaz et al., 2019). While in freshwater and 73 

terrestrial ecosystems habitat loss is the most prevalent threat (Newbold et al., 2015; 74 

Birk et al., 2020), exploitation represents the most pressing threat for marine species 75 

(Halpern et al., 2015). On top of that, local and global threats show distinct spatial 76 

clustering worldwide (Bowler et al., 2020; Harfoot et al., 2021). Many local threats 77 

are directly linked to human populations (e.g., habitat loss, hunting, etc.), so their 78 

presence is likely to change in line with human population density across different 79 

latitudes (Santini et al., 2017). Global threats (e.g. climate change) are also non-80 

uniformly distributed, particularly across latitude (Harfoot et al., 2021; IPCC, 2021), 81 

making it challenging to predict them using simple proxies (Sunday et al., 2012).  82 

Understanding the role life history traits and the environmental factors 83 

influencing the predisposition of vertebrate populations to be exposed to multiple 84 

threats is therefore the first step to manage their effects (Maxwell et al., 2016). Here, 85 

we study multiple threats by identifying factors that best predict the number of threats 86 

a population is affected by. To do this, we use population-level threat data from the 87 

Living Planet Database (Loh et al., 2005), containing spatially explicit data for 7826 88 

populations of 2667 vertebrate species, across the seven continents and all major 89 
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ecosystems. To test the influence of life history on the predisposition of species to be 90 

exposed to multiple threats, we supplemented the threat data with traits which are 91 

broadly available and comparable across different taxa: body mass, trophic level, 92 

and habitat specificity. To test the influence of environmental factors, we also 93 

supplemented the data with human population density, latitude, and system 94 

(freshwater, marine or terrestrial) as proxies. We then used multilevel Bayesian 95 

models to determine which factors have the strongest influence on the predisposition 96 

of populations to be exposed to multiple threats.  97 

Materials and Methods 98 

Threats data  99 

To determine the number of threats vertebrate populations are exposed to, we used 100 

the Living Planet Database (LPD hereafter). The LPD 101 

(http://livingplanetindex.org/data_portal) contains information on over 25,000 102 

vertebrate populations around the world, comprising all vertebrate classes across 103 

marine, freshwater, and terrestrial systems and providing population-specific 104 

information such as spatial location, abundance, and threat exposure. Data are 105 

collected from scientific literature, online databases, and grey literature published 106 

since 1970, with at least two years of abundance; detailed inclusion criteria for the 107 

LPD can be found in Collen et al., (2009). If the data source was a report of paper, 108 

the entire article would be screened and the information was usually extracted from 109 

the discussion. For population data shared directly form a data provider, threat 110 

information was recorded in the database template form that was provided. A 111 

population did not have to be in decline for a threat to be recorded.  112 
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Of the 25,054 population time series making up the LPD (including 113 

confidential records), 7826 contained data relating to population threat exposure. 114 

Based on information from the data source, for each publication we first identified 115 

whether the population was threatened, not threatened or whether its threat status 116 

was unknown. In this study, we only considered those populations for which threat 117 

status information was available. Threats were identified as direct or indirect human 118 

activities or processes that impacted the populations for at least 50% of the surveyed 119 

years, according to the original source of the time series. If the population was 120 

threatened, the number of threats at which the population was exposed was 121 

recorded, from one to three. The information within the data sources was sometimes 122 

quantitative, e.g. stating number of individuals hunted annually, but most often it was 123 

reported in a qualitative way, e.g. a describing a general pattern of hunting that 124 

impacts the populations. For this reason, and because the impact of the threat was 125 

rarely quantified in the data sources, broad categories describing the threat to the 126 

population were recorded.  127 

Body mass data 128 

Body mass data were collated from a number of pre-existing databases and the 129 

scientific literature (see Table S1 for a full list of sources utilised). When minimum 130 

and maximum values where given, maximum was taken to ensure measures were 131 

most likely those of mature individuals, and thus in line with commonly reported 132 

measures from the other databases. Most data sources did not contain sex-specific 133 

body mass measurements; however, where sex was indicated an average of the 134 

male/female record was taken to account for dimorphism. Finally, where multiple 135 

records of the same species were present between datasets, the mean was taken, 136 

with all records then standardised to reflect a common unit (g, grams). 137 
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For some taxa body mass data were unavailable, and so were estimated 138 

using allometric regression equations using length measurements when possible 139 

(Feldman et al., 2016; Stark et al., 2020). We used the general equation W = a Lb, 140 

where W = body mass, L = length, and a and b are the intercept and slope of a 141 

regression line over log�transformed weight�at�length data, respectively (Froese, 142 

2009; Ripple et al., 2017). This method was applied to 47 amphibian species using 143 

snout to vent length (SVL) records and clade-specific regression coefficients in 144 

FishBase (Froese, 2009; Santini et al., 2018; Stark et al., 2020). A further 320 fish 145 

species’ mass were estimated, based on maximum total length (TL) and regression 146 

coefficients in FishBase (Froese, 2009). Where a measure other than TL was listed 147 

(e.g., standard length (SL), fork length (FL)), regression coefficients were used to 148 

convert these to total length before estimating body mass. 149 

Trophic level data  150 

We broadly classified species according to their diet in three main categories: 151 

omnivores, carnivores, or herbivores. For amphibians, birds, mammals and reptiles, 152 

we used the data from Etard et al. (2020). For bony and cartilaginous fishes we 153 

inferred trophic levels from dietary information obtained from the parameter Feeding 154 

Type contained in FishBase (Froese, 2009). Following the description in Froese 155 

(2009) we considered: that herbivores were those species with between 2.0 and 156 

2.19; carnivores had trophic levels equal to or greater than 2.8; and omnivores had 157 

trophic levels between 2.2 and 2.79. 158 

Habitat breadth data 159 

We estimated the habitat breath as the number of distinct habitats a species utilises 160 

according to the IUCN habitat classification scheme (Daskalova et al., 2020; Etard et 161 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2022. ; https://doi.org/10.1101/2022.02.04.479091doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.04.479091
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 8

UOB Open 

al., 2020).  For amphibians, birds, mammals and reptiles, we used the data available 162 

in Etard et al. (2020). For bony and cartilaginous fishes the number of habitats was 163 

estimated using the rredlist package (Chamberlain, 2017).  164 

Human population density data 165 

To estimate the human influence across different latitudes, we obtained human 166 

population density (inhabitants/km2) information from HYDE3.2.001 (Hurtt et al., 167 

2011). The human population density represents the number of human habitants per 168 

km2 per grid cells of 5’ resolution. We used the country where the vertebrate 169 

populations were studied to obtain the human population density data of each time 170 

series.  171 

Final dataset 172 

When merging the above datasets with the data from the LPD, not all the species 173 

had the same information available. The variables that were accessible for most of 174 

the species was latitude (7826 time-series) and body mass (7492), followed by 175 

human population density (7361), habitat breadth (6330) and trophic level (4833; 176 

Figure 2a). When accounting for the combined availability of the variables, trophic 177 

level was the variable with the less availability (Figure 2b). 1087 populations were 178 

missing for the combined factors of trophic level and habitat breadth, 112 for trophic 179 

level and body mass, 97 trophic level, body mass and habitat breath, 67 trophic level 180 

and human population density, 48 trophic level, human population density and 181 

habitat breadth and only 1 for trophic level, human population density and body 182 

mass (Figure 2b). Because of the low numbers of shared data between some of the 183 

factors, we fitted each model (see Statistical Analysis) using the dataset with the 184 

maximum number of data for each factor. That is, the size of the data set used for 185 
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each of the models was different depending on the data availability for each of the 186 

factors tested.      187 

Statistical Analysis 188 

To quantify the effects of latitude, body mass, habitat breath, human population 189 

density, system, taxon, and trophic level we developed a set of multilevel Bayesian 190 

models, using number of threats as a response variable. Body mass was log-191 

transformed and we used the absolute value of latitude. Body mass, latitude, habitat 192 

breath, and human population density were added as numeric fixed effects and were 193 

all standardised by subtracting the mean from each value and dividing by its 194 

standard deviation. System, taxonomic class, and trophic level were considered as 195 

categorical variables: the first having three levels, marine, terrestrial, and freshwater; 196 

the second having five, amphibians, birds, bony fishes, cartilaginous fishes, 197 

mammals and reptiles; and the third having three levels, omnivores, carnivorous and 198 

herbivorous.  199 

First, to test the effects of each of the aforementioned factors on the number 200 

of threats at which vertebrate populations were exposed we fitted individual models 201 

for each of the factors. Then, because we found that the system and taxonomic 202 

group had an influence on the number of threats at which populations were exposed 203 

(see Results), we fitted individual models for each combination of taxonomic group 204 

and system. To account for the non-independence of repeated measurements for 205 

each species we included a random intercept for each species. Given the lack of 206 

phylogenetic signal in the number of threats at which the populations were exposed 207 

(Figure S1) we did not include a phylogeny in these models. Each model with 208 

categorical factors (e.g. system, taxon and trophic level) was fitted with a zero 209 
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intercept to allow us to determine absolute effect of each category of the factors. The 210 

general structure of the models was:  211 

       � � ������	μ, ��, eq 1 212 

μ � �������� � ��	�
�� , eq 2 213 

��������~������	��, ��������, eq 3  214 

We set weakly informed priors: 215 

μ~������	0,1, eq 4 216 

��~������	0,1, eq 5 217 

��	�
��~������	0,1, eq 6 218 

��������~�����������	1, eq 7 219 

All models were fitted using the brms package v2.1.0 (Bürkner, 2017) in R 220 

v4.0.0 (R Core Team, 2020). Models were run for 10000 iterations, with a warmup of 221 

1000 iterations. Convergence was assessed visually by examining trace plots and 222 

using Rhat values (the ratio of the effective sample size to the overall number of 223 

iterations, with values close to one indicating convergence).  224 

Results 225 

General models 226 

The number of threats which populations are exposed to is affected by a number of 227 

factors (Figure 3). Among all the systems, freshwater and terrestrial species are 228 
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exposed to a higher number of threats (Figure 3a; Table S3). Reptiles are the 229 

taxonomic class exposed to the highest number of threats, followed by amphibians, 230 

birds, mammals, cartilaginous fishes, and then bony fishes respectively (Figure 3b; 231 

Table S3). All trophic levels show similar degree of exposition to multiple threats, 232 

with omnivores slightly less at risk than carnivores or herbivores (Figure 3c; Table 233 

S3). Across all taxa and systems there is low evidence for the influence of body 234 

mass on the number of threats (Figure 3d; Table S3). On the contrary, latitude has a 235 

clear effect on the number of threats, with populations at higher latitudes being 236 

exposed to a lower number of threats (Figure 3e; Table S3). However, human 237 

population densities have a less clear effect, with a low certainty that the effect size 238 

is different to zero (Figure 3f; Table S3). Finally, there is moderate evidence that 239 

species with larger habitat breadth are exposed to a lower number of threats (Figure 240 

3g; Table S3). 241 

System and taxa models 242 

The influence of body mass on the number of threats to which populations are 243 

exposed varies across different systems and taxa (Figure 4). The number of threats 244 

decreases with body mass in amphibians and reptiles independently of the system 245 

they inhabit (Figure 4; Table S4). However, these estimates are highly uncertain for 246 

freshwater amphibians and reptiles, and marine reptiles (Table S4). For all the other 247 

taxonomic groups and systems, the number of threats increases with body mass 248 

(Figure 4; Table S4), with high uncertainty in freshwater birds, freshwater and marine 249 

bony fishes, and marine mammals (Table S4).  250 

In line with the results of the general models, for most systems and taxa the 251 

number of threats decreases at higher latitudes (Figure 5). However, for some 252 
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system and taxa combinations (notably terrestrial amphibians, birds, marine bony 253 

fishes, marine cartilaginous fishes, and marine reptiles) the slope estimates are 254 

again uncertain (Table S5). Our results also suggest that the number of threats could 255 

increase with latitude in freshwater amphibians, freshwater mammals, and terrestrial 256 

reptiles, although again these estimates were highly uncertain (Table S5).   257 

Discussion 258 

Identifying the factors determining the predisposition of species to be exposed to 259 

multiple threats is crucial to maintain biodiversity (Gunderson et al., 2016; Maxwell et 260 

al., 2016). To date, most studies have focused on identifying the factors that make 261 

species more prone to extinction, rather than to multiple threats (Purvis et al., 2000; 262 

Cardillo et al., 2005; Atwood et al., 2020). Consequently, we currently lack 263 

understanding of the (a)biotic factors which predispose species to multiple threats,  264 

what could help pre-emptively design conservation actions. Here, using a global 265 

collation of threat, trait, and geographic data from vertebrate populations, we show 266 

that a suite of factors can be used to anticipate the number of threats which 267 

vertebrate populations are exposed to. Among these, latitude and body mass are the 268 

most readily available and with a strong predictive power. These results are the first 269 

necessary step to develop predictive approaches to anticipate the number of threats 270 

impacting wildlife populations using minimal data. 271 

Latitude proved a strong predictor of the number of threats which populations 272 

are exposed to. Although we hypothesised that the potential reason for this pattern 273 

could be that the largest number of people live in lower latitudes (Kummu & Varis, 274 

2011; Figure S4), human population density was a weak driver of threat number. 275 

Human population density has long been considered a proxy for anthropogenic 276 
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disturbance factors (Santini et al., 2017), and arguably the main cause for the 277 

ongoing sixth mass extinction event (Ceballos et al., 2020). This premise is based on 278 

the assumption that areas with high human density increase the numbers of threats 279 

to populations, driving populations beyond the point of recovery (Symes et al., 2018). 280 

However, our results suggest that human population density fails to capture the 281 

patterns of threats distribution in our global data, and that latitude encapsulates 282 

additional latent predictors which predispose populations to be impacted by multiple 283 

threats.  284 

Global and local threats are distributed unevenly across the planet (Bowler et 285 

al., 2020). For instance, our results suggest that terrestrial and freshwater species 286 

are exposed to a higher number of threats compared to marine ones. These findings 287 

are in line with the millennia-long human impacts of terrestrial and freshwater 288 

systems (McCauley et al., 2015; Van Der Kaars et al., 2017), but may also reflect the 289 

difficulty of monitoring species in marine environments. In addition, the presence of 290 

threats affecting species can vary within and across countries (Harfoot et al., 2021), 291 

often in relation to local governmental conservation policies (Barnes et al., 2016; 292 

Amano et al., 2018). Climate change also shows complex spatial patterns, with some 293 

mid-latitude regions projected to experience the highest increase in the temperature 294 

of the hottest days, while the Arctic is expected to suffer the highest increase in the 295 

temperature of the coldest days (IPCC, 2021). In these areas, where the impacts of 296 

climate change are likely to become more intense, the interaction with other threats 297 

is likely to increase in the coming decades (Bennett et al., 2015). Given the 298 

complexity of accounting for such multiple spatial drivers, latitude can provide a 299 

simple proxy for multiple threats exposition.  300 
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We also show that in most vertebrate groups larger species are exposed to a 301 

greater number of threats. The greater vulnerability of larger species is often 302 

attributed to different intrinsic and extrinsic factors (Fisher & Owens, 2004; Cardillo et 303 

al., 2005). For instance, larger species are disproportionally targeted for exploitation 304 

and more affected by invasive species (Bennett & Owens, 1997; Duncan et al., 305 

2002). Also, species with larger body size often occupy higher trophic levels, which 306 

are also associated with higher extinction risk (Böhm et al., 2016; Collen et al., 307 

2011). However, our results support recent research (Atwood et al., 2020) showing 308 

that species with higher trophic levels are not necessarily exposed to a larger 309 

number of threats. Because body size was the most readily available trait, and its 310 

tight link with the life history of species (Gaillard et al., 1989), conservation status 311 

(Ripple et al., 2017) and ecological processes (White et al., 2007), our findings 312 

validate its use as a proxy for multiple threats exposition.    313 

Amphibians and reptiles were the exception to the abovementioned pattern, 314 

with body size being inversely related with number of threats. These pattern may be 315 

driven by the nature of the threats affecting them. Both groups are mostly affected by 316 

habitat loss, while mammals, birds and fishes are mostly impacted by exploitation 317 

(Díaz et al., 2019; Harfoot et al., 2021). While larger individuals are often the target 318 

of exploitation (Pauly et al., 1998; Duncan et al., 2002), the lower dispersal ability 319 

and more constrained range sizes of small organisms could make them more 320 

vulnerable to habitat loss (Cardillo et al., 2008; González-Suárez et al., 2013; Pacifici 321 

et al., 2017). Moreover, our results suggest amphibians and reptiles are facing the 322 

largest number of threats, mirroring recent reports suggesting that these are the 323 

vertebrate groups experiencing the most dramatic decline (Daskalova et al., 2020). 324 

Despite these findings, amphibians and reptiles are the most understudied 325 
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vertebrate groups in global conservation assessments (Alroy, 2015). For instance, 326 

about 25% of known reptiles and amphibian species are classified as data deficient 327 

by the IUCN Red List (IUCN, 2021). Hence, our results adds evidence for the need 328 

of global efforts to study these groups, to better understand the causes of their 329 

decline and develop effective conservation policies (Gibbons et al., 2000). Our 330 

findings also highlight the importance of understanding the mechanisms that 331 

predispose reptiles and amphibians to multiple threats as a key area for future 332 

research.  333 

Although our research uses the largest compilation of population-level threat 334 

data, there are still gaps in our understanding of the drivers of multiple threats. While 335 

the LPD draws from published literature, this also means its data inherits any biases 336 

derived from its sources. This has resulted in the over-representation of well-studied 337 

regions and taxa, with research also inclined towards populations within protected 338 

areas and terrestrial ecosystems (Loh et al., 2005; McRae et al., 2017). In addition, 339 

while here we only focused on the number of threats, their type (e.g. exploitation, 340 

habitat loss), intensity and/or frequency also has a major influence on the population 341 

trends and this information was not readily available. For instance, different threats, 342 

or the same threat with different intensity and/or frequency, might interact in different 343 

ways, causing different impacts on the populations (Darling & Côté, 2008; Côté et 344 

al., 2016; Orr et al., 2020). Not only that, but the timing (when threats impacted the 345 

population over the time series) and the synchrony (the overlap on time between 346 

multiple threats) of the threats might have a strong influence on populations 347 

(Johnstone et al., 2016; Jackson et al., 2021). The limited data available on 348 

disturbances nature and timing at the population-level hampered including such 349 

information in our analyses. To this end, we advocate explicit reference to threats 350 
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within ecological research to enable the expansion of current databases and to keep 351 

multiple threats processes at the forefront of developing research. 352 

353 
Figure 1. Global distribution of the mean number of threats by country and 354 

latitude. Global overview of the mean number of threats, (a) within each country and 355 

(b) by latitude with numbers alongside bars representing sample sizes for each 5° 356 

latitude bin.  357 

 358 

 359 

  360 
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 361 

 362 

Figure 2.  Patterns of missingness in the data. The variable the most available for 363 
the species in the subset of data from the Living Planet Database containing threat 364 
information was body mass. (a) Proportion of missing and present values of the 365 
different variables. (b) Total presence and absence of the different variables across 366 
the dataset.    367 

    368 
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370 
Figure 3. Factors influencing the number of threats at which vertebrate 371 

populations are exposed.  (a-c) density plots of posterior distributions for the 372 

effects of (a) system, (b) taxonomic class, and (c) trophic level, on the number of 373 

threats. Each density plot is based on 1,000 samples from the posterior distribution 374 

of the slope estimates (Table S2). The reported values are the highest posterior 375 

density median values (circles), with 80% (thickest bars), 90%, and 95% (thinnest 376 

bars) uncertainty intervals. n represents the sample size for that given threat in the 377 

original dataset. (d-g) predictions of the number of threats as a function of the (d) 378 

body mass (g), (e) latitude (absolute value), (f) human population density and (g) 379 

habitat breadth. Lines represent the predictions from the multilevel Bayesian models 380 

(Table S2), where thin lines correspond to the predictions drawn from each of the 381 

250 posterior samples of the model, and the thick line represents the mean outcome 382 

of the model. 383 

  384 
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 385 

 386 

 387 

Figure 4. Model predictions of threat number as a function of body mass. 388 

Multilevel Bayesian model predictions of the number of threats as a function of body 389 

mass (in grams). Ribbons display 95% confidence intervals. 390 

  391 

 392 
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 394 

395 
Figure 5. Latitudinal trends of the number of threats. Multilevel Bayesian model 396 

predictions of the number of threats as a function of the absolute value of latitude. 397 

Ribbons display 95% confidence intervals. 398 

          399 
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