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Abstract

Turbulent phenomena are among the most striking effects that both classical and quantum

fluids can exhibit. While classical turbulence is ubiquitous in nature, the observation of quantum

turbulence requires the precise manipulation of quantum fluids such as superfluid helium or atomic

Bose-Einstein condensates. In this work we demonstrate the turbulent dynamics of a 2D quantum

fluid of exciton-polaritons, hybrid light-matter quasiparticles, both by measuring the kinetic energy

spectrum and showing the onset of vortex clustering. We demonstrate that the formation of clusters

of quantum vortices is triggered by the increase of the incompressible kinetic energy per vortex,

showing the tendency of the vortex-gas towards highly excited configurations despite the dissipative

nature of our system. These results lay the basis for the investigations of quantum turbulence in

two-dimensional fluids of light.

The complex dynamics of turbulent flow has repeatedly attracted the interest of scientists

across many fields of research [1]. The experimental investigation of quantum fluid dynam-

ics started with the evidence of quantised vortices in superfluid helium [2, 3], following the

theoretical speculations of Feynman [4]. Despite important differences, quantum turbulence

shares observables with its classical counterpart and allows a simpler description in terms of

vortices with unitary topological charge [5, 6]. Since the observation of Bose-Einstein con-

densates (BECs) of ultracold atoms [7, 8], BECs have become a well-established platform for

the study of quantum turbulence [9, 10]. Recently, the ability to form highly oblate BECs

boosted the research on vortex clustering [11–16], an elusive feature of two-dimensional quan-

tum turbulence (2DQT) strongly related to the inverse energy cascade observed in classical

2D turbulence [17]. The inverse energy cascade, as opposed to the direct cascade, involves

the energy transfer from small to larger scales and manifests in the universal Kolmogorov-like

−5/3 power law scaling of the kinetic energy spectrum [18]. Onsager proposed an expla-

nation for this counter-intuitive phenomenon by applying equilibrium statistical mechanics

to a model of point-like vortices: in a closed and conservative system, the formation of

vortex clusters is the result of a transition to a thermal equilibrium state which comprises

more energy but less entropy (resulting in a negative absolute temperature) as compared

to a configuration of randomly distributed vortices [19]. Quantum vortex clustering and

negative temperature regimes were realized only recently in atomic BECs thanks to finely-

tuned excitation conditions [20, 21]. However, the direct measurement of the kinetic energy
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spectrum and the inverse cascade in 2DQT is still challenging. Optical systems, such as

quantum fluids of light, are intriguing alternatives in this direction, since it is possible to

directly measure the phase of the quantum fluid and its velocity field [22–26].

As a paradigmatic family of quantum fluids of light, here we study exciton-polaritons—

bosonic quasi-particles which result from the strong interaction between light and matter

in semiconductor microcavities with embedded quantum wells [27]. The formation of soli-

tons and vortices in polariton superfluids has been observed under different configurations,

including spontaneous formation due to local density flows, nucleation in the wake of an

obstacle and direct imprinting via phase mapping [28–31]. Notably, polaritons are strictly

2D, being confined in the plane of the cavity, and the potential landscape can be designed

at will by both all-optical and lithographic techniques, potentially enabling strong connec-

tions between topological photonics and 2DQT [32–34]. Few works, however, have addressed

polariton superfluids in the general context of turbulent dynamics. This is because polari-

ton superfluids, unlike atomic BECs, are inherently dissipative, with the polariton lifetime

limited in the picoseconds time range by the photon leakage from the microcavity or the

non-radiative exciton decay. This raises the question whether 2DQT is even observable in

this regime and, in the affirmative case, what are the main differences as compared to a

conservative system [35–37]. Theoretically, the turbulent dynamics of out-of-equilibrium

condensates were first studied by Berloff [38] and, more recently, Koniakhin et al. simulated

the 2DQT energy spectrum of polariton superfluids in the conservative limit of long polari-

ton lifetime [39]. Despite both these works suggesting that turbulent regimes are indeed

possible in polariton fluids, no experimental evidence has been reported so far.

In this work we show both the onset of vortex clustering and inverse energy cascade in

a polariton quantum fluid. To overcome the intrinsic time limit imposed by dissipation, we

create a highly energetic initial state by injecting a polariton superfluid against a potential

barrier. Indeed, two dynamical processes compete: the build-up of energy at larger spatial

scales, and the polariton dissipation which weakens the growth of spatial correlations among

vortices. We demonstrate that the initial kinetic energy provided to the superfluid is crucial

to form a dense vortex gas and accelerate the formation of clusters. These observations are

confirmed using numerical simulations of the polariton nonlinear Schroedinger equation.

System. - In quantum fluids, the formation of clusters of same sign vortices is often seen

as the statistical signature of the inverse energy cascade. Indeed, clustering not only limits
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FIG. 1. Fig. 1: Injection and trapping of a polariton quantum fluid. a. Energy resolved

photoluminescence of a vertical slice of the ring-shaped potential barrier, created upon non-resonant

excitation of the sample. The blue and red dashed lines indicate the injection energies of the

superfluid labeled as L and H respectively. b. Superposition of the image of the trap in real

space and the measured density of the polariton superfluid taken 2 ps after the injection with a

pulsed laser. c., d. Time frame of the polariton density taken at 60 ps after the injection for

the low (c) and high (d) detuning; N denotes the total number of vortices, d the mean distance

between nearest neighbouring vortices and ξ the healing length. The red dashed circle represents

the position of the potential barrier. e. Phase of the superfluid corresponding to the red solid

circle in (d). Vortices can be identified by a 2π change of the circulation.
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pair-vortex annihilations and the consequent phonon emission, but drives the system to a

highly energetic state [40, 41]. To check if similar dynamics can be observed in a dissipative

quantum fluid, the system needs to be initialized in a highly excited state. To this aim, we

inject polaritons in a high Q-factor (> 105) microcavity [42] by using a 2 ps pulsed laser

beam focused at the center of a ring-shaped potential barrier as shown in Fig. 1a-b (further

details can be found in the Methods section). The detuning of the pulsed beam from the

bottom of the potential barrier corresponds to the initial kinetic energy of the polariton

fluid, which expands radially after the injection, until it reaches the ring barrier [43, 44]

(additional details in Note S1 and Fig. S1 of the Supplementary Information). To assess

the role of the initial energy on the dynamics of the vortex gas, we consider two injection

energies δE from the bottom of the potential, namely δEL = 0.21 meV and δEH = 1.2 meV,

henceforth referred to as L and H, which are indicated in Fig. 1a by the blue and the red

horizontal dashed lines, respectively. The temporal evolution of the vortex gas after the

collision with the potential barrier is followed using off-axis digital holography [45]. This

interferometric technique allows us to obtain a time resolution comparable to the pulse

length and enables the direct measurement of both the polariton density and the polariton

phase distributions at each time frame with sub-healing length spatial resolution (additional

details in Note S2 and Fig. S2 of the Supplementary Information). The vortex dynamics are

initiated after an initial expansion time of approximately 40 ps for the H case and 50 ps for

the slower-expanding fluid in the L case.

A snapshot of the 2D polariton density after 60 ps from the injection is shown for the L

and H configurations in Fig. 1c and Fig. 1d, respectively. The identification of the vortex

positions, including their circulation direction, is realized by searching for an exact 2π cir-

culation of the phase around each point (Fig. 1e). Since the net angular momentum of our

experiment is zero, the system nucleates only vortex-antivortex pairs (dipoles), preserving

the neutrality of the charge throughout the whole dynamics. In the following, we analyse

the spatial configuration of the vortex gas and compare its temporal evolution for L and H

initial conditions.

Vortex classification and energy decomposition. - To study the ordering of our system

we classify the phase singularities into three different categories: free vortices, dipole pairs,

and clusters of the same sign [12, 20, 46]. Figure. 2a shows a typical result of this analysis

applied to a time frame corresponding to 70 ps after the pulsed excitation. The vortex
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positions are indicated by dots, while the streamlines in the background are the velocity

field v(r, t) = ℏ
m
∇ϕ(r, t), with m the polariton mass, as directly obtained from the measured

phase ϕ(r, t) of the polariton fluid. In H, the total number of vortices formed after the

collision with the border of the ring is larger (≈ 80) than L (≈ 40) due to the higher

expansion velocity of the fluid. As can be seen from the color code in Fig. 2a, vortices

mostly belong to dipoles in the upper panel (L), as opposed to the lower panel (H) where

the number of vortices in clusters, dipoles and free vortices is comparable.

Before discussing the temporal evolution, let us stress the importance of being able to eas-

ily measure the phase of the superfluid ϕ(r, t) at any time interval. This allows us to separate

the contribution to the total kinetic energy due to the presence of quantum vortices from

that coming from the sound waves [47]. Indeed, applying the Helmholtz decomposition one

can separate the divergence-free (incompressible) and the irrotational (compressible) part of

the superfluid velocity associated with the vortex distribution and the sound waves, respec-

tively (see Note S3 and Note S4 of the Supplementary Information). In the next section,

we use the incompressible velocity field to compare the information on the kinetic energy

with the vortex classification analysis. In Fig. 2b, the result of the velocity decomposition

as extracted from the experimental data are shown for a portion of the fluid in H (dashed

circle). The bright points in the bottom panel of Fig. 2b correspond to singularities in the

polariton phase. In the tracking and classification analysis, we consider only those vortices

with cores separated by a distance larger than the healing length, ξ = ℏ/(2mg|ψ|2)1/2, with

g the interaction constant and |ψ|2 the density of polaritons (see Methods).

Temporal evolution and onset of clustering. - The vortex tracking allows us to compute

the correlation function C = 1
N

∑N
i=1 ci for each time frame, with N the total vortex number

and ci = 1 if the circulation of the nearest neighbor of the i-th vortex has the same sign, or

ci = −1 if it has the opposite sign. Increasing values of C correspond to higher energetic

states of the vortex gas. In the Onsager model, negative temperatures are associated to

C > 0, whereas C = 0 corresponds to the infinite temperature limit (maximum entropy) and

C = −1 is the lowest (positive) temperature [14, 15, 18]. Typically, during the spontaneous

evolution of a polariton fluid, C is negative and tends towards the lowest energy state, C =

−1, due to the dissipative nature of the system and the spontaneous nucleation of dipoles

(see Note S5 and Fig. S3 of the Supplementary Information). In Fig. 2c, we show instead

that C reaches values close to C = 0 between 40 ps and 80 ps (red points), suggesting that,
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FIG. 2. Fig. 2: Vortex classification and velocity decomposition. a. Distribution of

vortices at low (L, top panel) and high (H, bottom panel) injection energies taken at t = 70 ps after

the injection time. Blue and red dots represent positive and negative winding vortices belonging

to dipoles (black dashed lines) or clusters (solid lines) respectively. For free vortices (green dots),

the sign is not reported. The streamlines in the background show the incompressible velocity field

of the superfluid. b. Velocity field decomposition of a portion of the superfluid in panel (a). The

three figures show the modulus of the total velocity (top panel), in addition to the compressible

(middle) and incompressible (bottom) components. The modulus of the velocity is normalised for

each panel. c. Vortex first order correlation functions for high and low injection energy shown

as the mean over different realizations (n = 4) by red and blue points, respectively, with their

standard deviations (SD).
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FIG. 3. Fig. 3: Energy transfer and clusterization. a. Ratio between the mean values

of the incompressible and compressible kinetic energy for the two configurations shown as points

± SD (n = 4). For the sake of clarity, we provided the error bars at each alternate point; the

missing ones are comparable to those displayed. b. Mean values of the fractions of dipoles (ρd,

purple line), clusters (ρc, green line) and free vortices (ρf , yellow line) for the H configuration.

The temporal resolution is the same as in every other figure and the respective standard deviations

are represented by shadowed regions. The mean total number of vortices in time is shown by

the scatter gray dots with their respective SD. The sample size is the same as in (a) c. Relative

number of clusters versus mean incompressible energy per vortex in both the L and H case. Arrows

represent the direction of time.
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despite the finite polariton lifetime (≈ 100 ps), the vortex gas evolves towards more energetic

configurations. In the dynamical evolution, clustering competes with other processes, the

main one being the polariton losses which causes the growth of the healing length and

makes the inverse cascade even more energetically expensive. In the presence of losses, the

correlation C initially increases towards higher values and remains approximately constant

for a transient time, as shown in Fig. 2c. After 80 ps, eventually dissipation prevails and

correlations start decreasing. This behavior is visible only in H (red points in Fig. 2c), while

in L (blue points) the correlation function is C ≈ −0.7 throughout the dynamics.

The increase of C requires the injection of incompressible kinetic energy into the system.

In a closed system such as an atomic BECs, even in the absence of a constant energy

injection, this is explained by means of an evaporative-heating mechanism [14]. The vortex

gas undergoes vortex-pair annihilation while conserving the total energy of the system,

leading to an increase of the mean energy per vortex. Therefore, the number of vortices

decreases with time, and the few remaining vortices tend to form small clusters [20, 48]. In

our open system, the simultaneous presence of sound waves and vortices leads to additional

mechanisms of energy transfer. In fact, the interplay between the different contributions to

the total energy in compressible quantum fluids is crucial to the study of turbulent dynamics

and it has only recently been addressed theoretically [49]. In the following, we show that

the kinetic energy of sound waves is efficiently transformed into kinetic energy of the vortex

gas.

In Fig. 3a, the ratio of the compressible and incompressible kinetic energy is shown for H

and L as a function of time. In H (red points), the compressible component is transformed

into incompressible kinetic energy, which becomes dominant starting from 40 ps. On the

contrary, in L (blue points), the sound waves component is higher than the incompressible

one during the whole dynamics, becoming roughly the same at later times. In Fig. 3b,

the three vortex species fractions, namely dipoles (ρd), clusters (ρc), and free vortices (ρf )

are shown for the H configuration, along with the total number of vortices (dotted line).

While in the first 40 ps the increase of the incompressible kinetic energy occurs through the

nucleation of new vortices, the further increase up to 80 ps occurs with a constant number

of total vortices. In this time-interval, the increase of the number of clusters occurs at

the expense of dipoles, showing that the additional incompressible kinetic energy forces the

vortex gas to form small clusters, as opposed to L configuration (see Note 6 and Fig. S4
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of the Supplementary Information). This behaviour is displayed in Fig. 3c, where we plot

the clustered fraction of vortices versus the average incompressible kinetic energy per vortex,

showing the opposite dynamical evolution of H and L configurations.

Energy spectrum. - Figure 4a shows the incompressible kinetic energy spectrum mea-

sured in H and L configurations between 60 ps and 80 ps. The appearance of a Kolmogorov-

like k−5/3 scaling law (horizontal, dashed-black line), associated with the inverse energy

cascade [18, 50], is clearly visible in H at wavevectors smaller than kξ, the inverse of the

healing length. It is noteworthy that in spite of the small range of scale involved, this is

the first direct measurement of an energy spectrum showing the inverse cascade in a 2D

quantum fluid.

In the ultraviolet range k > kξ, both H and L show a k−3 decay (dotted black line),

the expected scaling law associated to the internal structure of a quantum vortex [11].

Different behaviour are instead observed for wavevectors smaller than kξ. In L, the infrared

spectrum (k < kξ) tends towards k−1 (solid black line), which can be derived from the

velocity distribution of a collection of vortices in the far-field [11]. On the contrary, in H, we

observe the k−5/3 scaling extending from kc < k < kξ, with kc approximately corresponding

to the inverse of the typical spatial size of the clusters, lc ≃ (3-4)ξ. In Fig. 4b, to highlight

the microscopic mechanism of energy transfer to larger scales, we show the incompressible

velocity field, as extracted directly from the experiment in H, around a dipole and a cluster

of three vortices. In the dipole, the two vortices are closer to each other and the maximum of

the velocity is observed between them; whereas in the cluster, the velocity field is arranged on

a larger spatial scale, with the flow circulating externally to the three vortices. Dimensional

analysis shows that the time required to form clusters of that size is of about 20 ps in

our system (see Note S7 of the Supplementary Information), which is comparable with the

measured time interval after the expansion in our measurements. In Fig. 4c, by integrating

over different time intervals, we show how the Kolmogorov-like scaling law emerges over

time as the energy is gradually transferred to larger scales.

Finally, we note that the energy spectrum is taken directly from spatial differentiation

of the measured phase, without any knowledge about the number and relative distances

between vortices. The independent observation of vortex clustering and inverse cascade

spectrum provides a direct link between the two descriptions of 2DQT, the one related to

Onsager point-vortex model and that of the inverse cascade of incompressible kinetic energy.
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of the cluster, indicated by the blue line, is ∼ 3.4 ξ. c. Time evolution of the energy spectrum for H
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t2 = 47–57 ps, t3 = 60–70 ps and t4 = 70–80 ps. Error bars are defined as in (a). All spectra are

normalised by the number of particles, as discussed in the Methods section.
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To confirm our findings, we perform simulations of the Gross-Pitaevskii equation for the

polariton field [51]. The appearance of the k−5/3 scaling law in the incompressible kinetic

energy spectrum is observed in numerical simulations and corresponds to an increase of

both the correlation function and the incompressible kinetic energy per vortex (Fig. S6

of the Supplementary Information). As observed in both experiments and simulations,

the dynamics is faster when the polariton density is larger and the intervortex distance is

comparable to the healing length, resulting in an effective increase of the interactions between

vortices. Moreover, we check with simulations that a moderate sample inhomogeneity allows

the detection of random vortices even after averaging over many independent realisations,

as already anticipated in previous works [52, 53] (further details in the Methods and Note

S9 of the Supplementary Information).

In conclusion, in this work we demonstrate the possibility of exploring turbulent states in

quantum fluids of light. These results show the first evidence of the inverse energy cascade

in dissipative quantum fluids, along with the onset of vortex clustering on timescales of

few tens of picoseconds. Importantly, we can decouple the compressible and incompressible

contributions to the kinetic energy, showing that the energy required to start the clusteri-

zation dynamics is provided to the vortex gas by the dissipation of sound waves. Finally,

we show that the optical measurement of the velocity field allows an unprecedented control

over the dynamics of the vortex gas, enabling a new series of experiments to be performed in

nonlinear optical systems such as semiconductor microcavities, nonlinear crystals, and laser

beams coupled to hot atomic vapours or Rydberg atomic states [54–57].

Methods. -

Experiment: The ring potential (diameter R ≃ 150 µm) is realized by shaping a

continuous-wave (CW) laser beam (λ = 735 nm) with a spatial light modulator. The local

energy shift of the polariton resonance, due to the high exciton density induced by the CW

pump, is able to confine the polariton superfluid within the potential barrier (Fig. 1a). The

polariton superfluid is quasi-resonantly injected (λ ≈ 773 nm) by focusing a pulsed beam

(pulse length ∼ 2 ps) in a Gaussian spot with a beam radius w ≃ 17 µm at the center of

the ring potential (Fig. 1b). Given the repetition rate of the pulsed pump (80 MHz) and

the typical integration time of 1 ms, each time frame is obtained from the integration of a
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large number of pulses, giving as a result the average vortex distribution averaged over a

large number of events. This is required since a single realisation would not provide enough

signal to be detected. The time-resolved 2D map of the polariton fluid is obtained by

averaging, for each time frame, over many pulses directly on the CCD camera. The vortex

can be detected despite the averaging over many realisations thanks to the unavoidable

presence of spatial inhomogeneity, which allows the observation of coherent realisations of

the spontaneous vortex dynamics [52] (see Note S9 of the Supplementary Information).

Our analysis is the result of an average of four measurements for each case, obtained by

translating the sample in plane to exclude effects due to its morphology. Moving onto a

different location of the sample, we obtain different spatial configurations, whose statistical

properties are however unchanged, confirming the statistical significance of the observables.

The sample used is a planar AlxGa1−xAs microcavity with aluminium fractions of 0.2 and

0.95 in the distributed Bragg reflectors and 12 quantum wells of GaAs embedded in the

cavity layer. The sample is kept at a cryogenic temperature of ∼ 5 K. The measurements

are taken in reflection configuration, with counter-polarized detection with respect to the

polarization of the exciting laser. This is possible due to the precession of the polarization

typically observed in polariton microcavity as a consequence of TE-TM splitting [58].

From the separation of scales observed in the energy spectrum (Fig. 4a) we are able to

estimate the healing length in the 60–80 ps interval to be ξ ≃ 4.6 µm in H and ξ ≃ 10.6 µm

in L.

In the energy decomposition, the density of the system is normalised at each time frame

so that
∫
ρ(x)dx = 1, to rule out non-relevant physical behaviours stemming from the mod-

ulation of the density throughout the evolution due to the measurement technique employed.

In Fig. 4a, the energy spectrum is displayed for a range of wavevectors that spans from

the inverse diameter of the trap kt = 2π/R to kr = 2π/r, with r = 3 µm (slightly more

than the optical resolution of our optical setup ∼ 2 µm), both rescaled by the respective

kξ = 2π/ξ for H and L.

Simulations: To further confirm our findings, we perform simulations of the equation

of motions for the polariton field ψ = ψ(r, t) with the generalised polariton Gross-Pitaevski
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equation [23, 51], which at a mean-field level reads (ℏ = 1):

idψc = dt

[
− ∇2

2m
+ g|ψc|2 +

i

2
γc + V (r)

]
ψc (1)

where m is the polariton mass; g is the polariton-polariton interaction strength; γc = 1/τc

is the polariton loss rate, corresponding to the inverse of the polariton lifetime τc. In the

Supplementary Information (Note 8) we compare and discuss the results obtained with

Eq. (1) with those achieved within the Truncated Wigner approximation, a beyond mean-

field theoretical formulation which accounts for quantum fluctuations [23].

Parameters are chosen to correspond with the microcavity used in the experiments, and

reads m = 0.22 psmeV µm−2 = 3.5210−35 kg, g = 5 × 10−3 meV µm2. The fluid of light is

confined in a hard-bounded annular potential V (r) with a radius r = 70 µm.

The dynamics is initiated by a central Gaussian profile, providing the initial expansion. Its

local phase is constant throughout space thus accounting for the quasi-resonant nature of the

initial experimental impulse. The increase of the detuning of the pump in the experimental

case is controlled by the intensity of the initial profile, which also corresponds to an increment

of the density of particles as well as the velocity of the outward particle flux. Simulations for

different blue-shifts are found to be in good agreement with the experimental results as shown

in Figs. 3, 4, and Figs. S5, S6 in the SI. In Fig. 3b-c and Fig. S6d-e (SI), the fraction of vortices

belonging to clusters is shown in experiments and simulations, respectively. Increasing the

injection energy, the formation of clusters is faster and occurs with higher probability. The

faster dynamics is driven by stronger interactions between vortices, which are effectively

increased at lower intervortex distances (i.e. when the total vortex density is increased),

as observed in both experiments and simulations (Fig. 3b and Fig. S6a in SI). The relation

between clusterization and vortex density is confirmed by additional analysis reported in

the supplementary text.

Data availability - The data that support the findings of this study are available from

the authors upon reasonable request.

Code availability - The codes used in this study will be provided upon reasonable
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