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Note S1: optical confinement of the superfluid - The prove the effectiveness

of the optical confinement by means of an out of resonance ring, we looked at the time

evolution of the superfluid with the aid of a streak camera. Figure S1 shows the evolution

of a central horizontal slice of the condensate without (left) and with boundaries (right).

In the latter the dynamics of the system can be followed for a much longer time, whereas

without any type of confinement the superfluid quickly expands.
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FIG. S1. Streak camera images of the central slice of the superfluid without (a) and with (b) the

optical confinement. The red vertical lines represent the size of the barrier.

Note S2: experimental setup - The schematic representation of the experimental

setup, with a complete description of the optics and the lines, is shown in Fig. S2. The pulsed

laser (2 ps, 80 MHz) is used to quasi-resonantly excite the system (beam 1. in Fig. S2) at

∼ 772.9 nm for the H case and at ∼ 773.4 nm for L. The trapping, as discussed in the main

text, is made with an out of resonance CW laser at ∼ 730 nm. To shape the beam as a ring

we employed a phase-only SLM with a Bessel pattern, working with a diffraction grating to

carry on only the modulated part of the beam.

The signal and the reference beam form an angle (not visible in Fig. S2), for an easier

separation of the information contained in the interferograms that we measure.
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FIG. S2. A schematic representation of the experiment. The pulsed laser beam is split in two (1.,

2.) by a polarizing beam splitter (PBS1), coupled with a half-waveplate to tune the power in each

arm. The first beam (1.) arrives focused on the sample (S), with a linear polarization, through

a 5 cm camera objective (L1). The photoluminescence from the sample is collected by a second

polarizing beam splitter (PBS2) which also serves as a first filter for the laser beam. The second

beam (2.) hits a retroreflector mounted on a moving stage, which allows for fine adjustments of

its optical path length. This beam then passes through an iris to create a spherical light source so

that, after its propagation, we get a reference beam with a relatively flat phase. The two beams

(1., 2.) are then put back together at a beam splitter (BS2). A half-waveplate and a polarizer

ensure that the reference has the same polarization as the emission. A Bessel phase is imprinted on

a CW laser (3.) with a spatial light modulator (SLM); this beam enters the sample from a beam

splitter (BS1) placed in the detection line and a half-waveplate is used to tune the power that

passes through PBS2. The camera objective (L1) Fourier transforms this beam into a ring, that

is then used to confine the superfluid. The image from the sample is reconstructed on the CCD

with a 100 cm lens (L2), after passing through a set of waveplates and a polarizer to extinguish

the resonant laser and a long-pass filter to block the non-resonant one. The beam sizes and the

length of the lines are not to scale, and unnecessary reflections from the beam splitters (BS) have

been omitted.

Note S3: Helmholtz decomposition of the velocity - To disentangle the velocity

into its incompressible and compressible parts, we adopt the Helmholtz decomposition for

vector fields. Given v(x), we can write it as the sum of a potential and a divergence-free
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contribution: v(x) = ∇ϕ(x) + ∇ × A(x), where ϕ and A are a scalar and a vector field,

respectively. In the Fourier space, the decomposition has a straight-forward implementation.

Indeed, given the vector field in real space v(x):

V (k) =
1

2π

∫
e−ik·xv(x)dSx ,

which can be decomposed as

V (k) = ikVϕ(k) + ik × V A(k) (S1)

where we used the scalar and vector fields:

Vϕ(k) = −i k · V (k)

||k||2

V A(k) = i
k × V (k)

||k||2
.

Once evaluated these in Fourier space, back to real space we finally have:

∇ϕ(x) =
∫
eik·x ikVϕ(k)dSk

∇×A(x) =

∫
eik·x ik × V A(k)dSk

which are the potential and divergence-free components of the velocity field, respectively.

Note S4: kinetic energy decomposition - At any given time of the temporal

evolution, the total energy of the quantum fluid can be written as the sum of hydrodynamic

kinetic, quantum pressure, potential, and interaction contributions [1, 2]:

Etot = Ekin + Eq + EV + EI , (S2)

where

Ekin = m/2

∫
n(x, t)|v(x, t)|2dSx ,

Eq = ℏ2/(2m)

∫
|
√
n(x, t)|2dSx ,

EV =

∫
n(x, t)V (x, t)dSx ,

EI = g/2

∫
n(x, t)2dSx.
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Clearly in our case, this is not conserved in time, since we loose polaritons.

The hydrodinamics kinetic (from now on, simply kinetic) energy Ekin = m/2
∫
n(x, t)|v(x, t)|2dSx

can be further decomposed in incompressible and compressible components, which are at-

tributed to the kinetic energy of quantum vortices and of the sound excitation, respectively.

Following Refs. [2–4] we define a density-weighted velocity field u(x, t) =
√
n(x, t)v(x, t)

and decompose it as:

u(x, t) = uinc(x, t) + ucomp(x, t), (S3)

where the incompressible and compressible field satisfies ∇ · uinc = 0 and ∇ × ucom = 0,

respectively. In Fourier space, the total incompressible kinetic energy reads as

Einc
kin =

m

2

∑
i=x,y

∫
|U inc

i (k)|2dSk, (S4)

with

U inc
i (k) =

1

2π

∫
e−ik·xuinci (x) dSx . (S5)

Finally, since the system geometry is isotropic we can simply consider the longitudinal energy

spectrum Ekin(k) (where we have dropped the incompressible label for simplicity), which is

obtained by integrating over the azimuthal angle as

Ekin(k) =
m

2
k
∑
i=x,y

∫
Ω

dΩk|U inc
i (k)|2 . (S6)

Note S5: previous configurations - Several configurations were tested before the

one used in the main text, all of which employed a second SLM to imprint in a controllable

any desired vortex distribution as initial configuration on a flat polariton superfluid.

Free expansion (Fig. S3a): without the trapping potential, polaritons are free to expand

indefinitely and the inter-vortex distance increases with time. In this configuration, vortex-

vortex interactions are too weak and the correlation function C decreases from C=-0.75 at

t=0 towards C=-1 at later times.

High vortex density imprinted externally (Fig. S3b).: to increase the vortex-vortex inter-

action, a random distribution of a large number of vortices and antivortices with C=0 can

be imprinted in the pulsed beam directly by the SLM. In this case, the condensate fills the

whole trap since the beginning, without initial expansion. However, using this technique to

inject a random distribution of vortices in a homogeneous polariton fluid is not effective:
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FIG. S3. Snapshots of the configurations used before the successful one described in the paper.

(a) Without a trapping potential the superfluid expands way faster than the average speed of

vortices, causing an overall increase of the mean distances. (b) Confining the superfluid in a

circular potential and increasing the polariton density stabilised the number of vortices in time

but nucleation (and annihilation) is still the predominant process. (c) Starting from two clusters

the superfluid quickly becomes inhomogeneous and dipoles start to appear. (d) Value of the first

order correlation function for the configurations in a, b, and c.

even if the number of vortices is more or less constant over time, we observe that the value

of the first order correlation function is negative from the very beginning of the polariton

dynamics. Indeed, vortices and antivortices just annihilate before reaching the sample dur-

ing propagation in the linear medium (air), creating a very inhomogeneous condensate with

a large number of dipoles and C decreasing quickly with time towards C=-1.

Externally imprinted clusters (Fig. S3c): we inject a flat polariton fluid with two clusters

of vortices with positive and negative circulation, respectively, corresponding to the config-

uration with C=1. Also in this case, the polariton fluid is injected with the same size as the

trap, without initial expansion. We observe the breaking of the cluster structure in time,

accompanied with the nucleation of a large number of dipoles in the low-density regions of

the condensate, quickly bringing the correlation towards C=-1.
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Fig. S3d shows the temporal evolution of the first order correlation function in the three

cases, where C is always decreasing towards C=-1. Indeed, we find that the collision of the

expanding polariton fluid against the potential barrier is the best strategy to induce the hy-

drodynamic nucleation of a large number of vortices and antivortices in this system, avoiding

the annihilation of vortices of opposite sign that occurs when external imprinting techniques

and propagation through linear materials are used. Moreover, the formation of sound waves

enables the injection of incompressible kinetic energy into the vortex distribution, as shown

in Fig. 3a of the main text.

Note S6: low energy vortex distribution - We report in Fig. S4 the three vortex

species fractions, namely dipoles (ρd), clusters (ρc) and free vortices (ρf ), together with the

total number of vortices, for the L case. Contrary to what is show in Fig. 3b of the main

text we can observe in this case slower dynamics of the superfluid, with the formation of the

vortices due to the backflow taking place at a later time (∼ 10 ps). The three populations

remain approximately constant throughout the evolution, with the dipoles being the highest

fraction at all times.
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FIG. S4. Mean values (over four realisations) of the fractions of dipoles (ρd, purple line), clusters

(ρc, green line) and free vortices (ρf , yellow line), together with their respective standard deviations,

for the low energy configuration. The total number of vortices in time is shown by the gray scatter

plot as a mean of the same configurations ± SD.

Note S7: turbulent estimates - To find the signature of turbulent behaviour, the

simplest observable is a two-point statistical object. In the section above, we have defined

the isotropic (or longitudinal) energy spectrum Ekin(k) = mπk⟨|Uinc(k)|2⟩, from which the

total incompressible kinetic energy can be obtained as the sum over all k = |k|, Ekin =
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∫
Ekin(k) dk.

Here we want to dimensionally estimate the characteristic time-scales of the turbulent

inverse energy cascade [5], and see if these are compatible with our experimental measure-

ments. To do that, the starting point is the observation that Ekin(k) ∼ k−5/3 in some range

of wavenumbers, that in our experiments is kc < k < kξ, where kc is the inverse of to the

typical cluster scale lc, and kξ is the inverse of the healing length ξ. The characteristic times

τlc of the clusters at scale lc ≃ 1/kc in the turbulent inverse cascade obeys the scaling law

τlc ≃ l
2/3
c (or equivalently the characteristic frequencies of cluster of size k obey ωk ≃ k2/3

for kc < k < kξ).

To make the scaling argument dimensionally correct, we write the characteristic time as:

τl = [l/(δlu)], where δlu is the characteristic velocity fluctuation at scale l, and an O(1)

adimensional constant is absorbed into the characteristic velocity value.

Since the Kolmogorov scaling is observed in the region of wavenumbers kc < k < kξ, it

exists a corresponding region in real space ξ < l < lc such that:

δlu
3

l
= cost

which extends down to the healing length. Hence we obtain: δlu ≃ (δξu)(l/ξ)
1/3, for all

ξ < l < lc.

Then we can use the experimental values for the typical velocity at the healing length, and

the healing length itself: in the experiment H, these are δξu = ξ/τξ = (0.7 ± 0.1) µmps−1,

where ξ = (4.6± 0.5) µm, and τξ = (6.6± 0.7) ps.

By applying the τl estimate to the scale of the clusters lc ≃ 4ξ, we get: τlc = [lc/δlcu] ≃

(16.5 ± 1.5) ps, which tells us that the characteristic time of the clusters at the observed

scale lc is comparable to that observed in the experiments.

Note S8: numerical modelling and simulation results - The collective dy-

namics of the polariton fluid is described by means of Eq. (1) of the main text, which we

solve using a eighth-order Runge-Kutta method on N2 = 5122 points numerical grid with

discretization a ≃ 0.6 µm. The turbulent dynamics of the quantum fluid is simulated by

starting from a wavefunction with a Gaussian profile (and uniform phase) ψ(x, t = 0) =

A exp(−(x2 + y2)/2σ2) (see Fig. S5a), resembling the resonantly-pulsed excitation applied

in the experiments. The parameter A = χn
1/2
0 controls the density of particles (which along
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the time evolution is in the order of |ψ|2 ∼ 102 µm−2), as well as the velocity of the out-

ward particle flux. Therefore, varying the amount of blue-shift in the system corresponds to

tuning the parameter χ. For our numerical simulations, we choose the width of the initial

Gaussian profile σ = 24.5 µm, so that the system average healing length is ξ ∼ 2 µm for

χ = 0.7 (n0 is fixed to 1). A conservative dynamics (γc = 0) is adopted since it has been al-

ready successfully employed to simulate quasi-resonant pumping exciton-polaritons [6]. We

are careful to simulate the system dynamics in a numerical grid which is at least double the

size of the ring diameter, so to avoid artificial boundary effects.

An example of the temporal dynamics from numerical simulations is illustrated by the

snapshots in Fig. S5, showing the trapped condensate for χ = 0.7. During the first stage

of the dynamics, the condensate radiates isotropically until it hits the hardly-bound con-

finement, eventually creating density fringes which emerge due to the interference with the

reflected wave, Fig. S5b. The wave turbulence is then responsible for the generation a large

number of vortices which start to emerge from the centre of the trap (Fig. S5c) and even-

tually expand throughout the whole sample, where they are free to proliferate (Fig. S5d).

The single topological defects is numerically identified computing phase gradients around

closed paths of each grid point; more specifically when the circulation around a close path

C of double the size of the vortex healing length is found to be approximately 2π [7].

We proceed by investigating the turbulent properties of the fluid at different detuning

rates. We explored the dynamics by varying the detunings as χ = [0.5; 0.55; 0.6; 0.7]. Fig-

ure S6 shows the physical observables calculated throughout the temporal evolution for L,

the lowest detuning (yellow case), and H, the highest detuning (purple case). The quantities

are calculated after 100ps, when the vortices have been generated by the initial pulse. In

qualitative agreement with the experimental curves reported in the main script (see Fig. 2c

and Fig. 3a,b), the numerical curves exhibit an enhanced clustering correlation function

(Fig. S6b) for higher detunings. This fact is corroborated by the behaviour of the temporal

ratio between incompressible and compressible energies (Fig. S6c) and the fraction between

free, dipole and clustered vortices, reported in Fig. S6d and Fig. S6e, respectively. We

attribute this feature to stronger interactions between vortices, driven by the mean inter-

vortex distance which decreases at higher defect densities. Noteworthy, it is in the late-time

dynamics, between 140 and 190 ps, that the system presents the highest number of clustered

vortices over dipoles and free vortices, correspondingly to an increment of incompressible
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FIG. S5. Temporal evolution of the simulated polariton fluid: the density field within the trap is

shown at the starting of the evolution, (a) t = 0 when the wavefunction has a Gaussian profile.

At intermediate times t = 70 ps (b) and t = 120 ps (c) the wave-turbulence generates topological

defects that at later time t = 190 ps (d) proliferate throughout the whole sample.

energy per vortex and highest correlation function values. Finally, adopting the methods

explained in Note S4, we compute the incompressible energy spectra for the different cases

investigated. Fig. S6f depicts the low- and high-detuned time-averaged spectra calculated

in the late-time dynamics of the system. In qualitative agreement with the experimental

results shown in Fig. 4a of the main text, the total amount of incompressible energy is

found to be larger in the H case when compared to lower detunings. Importantly, the latter

case also exhibit the expected scalings for a turbulent quantum fluid [2], in the ranges of

wavelength smaller than the inverse of ξ, as well as in the infra-red and ultra-violets part of

the spectrum, as discussed in the main paper.

We conclude by discussing the possible role of quantum fluctuations in the turbulent

regimes analysed. We perform simulations of the equation of motions for the polariton field

ψ = ψ(r, t) [7, 8] within the Truncated Wigner formulation [8] which reads (ℏ = 1):

idψc = dt

[
− ∇2

2m
+ g|ψc|2− +

i

2
γc + V (r)

]
ψc + dWc, (S7)

where m is the polariton mass, g is the polariton-polariton interaction strength and γc
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FIG. S6. Physical observables of the system as extracted from the simulations for the lowest and

highest detuning value. a. Total number of vortices. b. Value of the clustering correlation function,

which show the increasing trend over time. c. Ratio of the incompressible and compressible kinetic

energy during the evolution. d.-e. Ratios of the number of vortices belonging to clusters (ρc),

dipoles (ρd) or neither of them (free, ρf ) for the low (d) and high (e) density case, respectively.

f. Incompressible kinetic energy spectra showing the Kolmogorov scaling in the time range t ∈

[140 − 190] ps, for wavenumbers smaller than the inverse of the healing length and larger than

those dominated by the far-field behaviour.

is the polariton loss rate. Here, |ψ|2− corresponds to the renormalized density |ψ|2− ≡(
|ψ|2 − 1/(2dV )

)
which includes the subtraction of the Wigner commutator contribution.

(Here, dV = a2 corresponds to the volume element of our 2d grid of spacing a.) The

zero-mean white Wiener noise dWc fulfils ⟨dWc(r, t)dWc(r
′, t)⟩ = 0, ⟨dW ∗(r, t)dW (r′, t)⟩ =

γc/2δr,r′dt.

We check that simulating with the addition of the stochastic noise do not alter the

conclusions presented in this work. This confirms that the turbulent behavior of the system

does not arise from the spontaneous formation of vortices due to quantum fluctuations, as

seen in previous works [9], but instead takes place at a mean-field level due to the strong

wave turbulence generated by the presence of the barrier.
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Note S9: results of averaging - To simulate the potential disorder, we add a term

V = d · ε to the dynamic equation

i
d

dt
ψ = Hψ +D · V (x, y)ψ (S8)

with ε a real, Gaussian noise distributed in space and constant in time. We vary the real

quantity D, while we set d = 100 µeV and we add initial random noise to the wavefunction.

The effect of disorder on a single shot numerical experiment can be appreciated in the

following Fig. S7. We detect the positions of vortices in a time window of 100 ps and, in

Fig. S7a, we show the integrated spatial distribution, which confirms that disorder may

“localize along set trajectories” vortex cluster generation, suggesting that in the experiment

some vortex clusters are not washed out by the randomness of each run [10]. In Fig. S7b, we

compare the counts each vortex is detected in a determined spatial position over a period

of time of 100 ps. In the presence of disorder, there are more events where some vortex is

measured many times in the same grid point, while the histogram is less populated at small

vortex counts, accordingly to the physical intuition that hills of potential would generate

vortices more frequently in a determined position. In the following, we report the results

obtained by numerical simulations of n = 10 different stochastic realisations. As shown in

the phase profile of the averaged signal in Fig. S8a, vortices mostly remain clear-cut, with a

2π rotation of the phase, confirming that the presence of vortices can be detected from the

averaged phase profile at each instant of time. Finally, Fig. S8b shows that by increasing

the number of realisations from 3 to 10, one reaches a similar number of vortices to the

single-run case in the presence of a moderate level of disorder D = 0.01.
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FIG. S7. Effect of disorder on a single shot realisation. a., the spatial distribution of vortices with

D = 0 (left) and D = 0.01 (right) showing the integrated counting of vortices in space between

100 ps and 200 ps. In the case with disorder, the distribution of vortices is less homogeneous, with

some regions of the sample where vortices are more often observed. b. Comparison of the counts

of events in the same spatial position for D = 0 and D = 0.01. The histogram of the configuration

with disorder shows higher frequency for higher vortex counts in the same spatial position.
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FIG. S8. a. Time frame of the phase map, and detection of vortices/antivortices, after averaging

10 stochastic runs, showing that the 2π jumps are preserved. b. The number of vortices as a

function of time in the presence of a weak disorder D = 0.01. The blue curve is a single-shot

realisation, other curves are averaging over n = 3, 5, 10 stochastic realisations.
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