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Exterior facelift has become an effective method for automakers to boost the consumers’ interest in an existing car model before it is

redesigned. To support the automotive facelift design process, this study develops a novel computational framework – Generator,

Evaluator, Optimiser (GEO), which comprises 3 components: a StyleGAN2-based design generator that creates different facelift designs;

a convolutional neural network (CNN)-based evaluator that assesses designs from the aesthetics perspective; and a recurrent neural

network (RNN)-based decision optimiser that selects designs to maximise the predicted profit of the targeted car model over time.

We validate the GEO framework in experiments with real-world datasets and describe some resulting managerial implications for

automotive facelift. Our study makes both methodological and application contributions. First, the generator’s mapping network and

projection methods are carefully tailored to facelift where only minor changes are performed without affecting the family signature of

the automobile brands. Second, two evaluation metrics are proposed to assess the generated designs. Third, profit maximisation is

taken into account in the design selection. From a high-level perspective, our study contributes to the recent use of machine learning

and data mining in marketing and design studies. To the best of our knowledge, this is the first study that uses deep generative models

for automotive regional design upgrading and that provides an end-to-end decision-support solution for automakers and designers.
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1 INTRODUCTION

“... which brings us on to the new Golf GTI. Well, VW says it is new — in reality it is a facelift of the

current MK 7 — in the hope that existing owners will feel compelled to sell their old model and sign on

the dotted line of whatever nonsensical finance arrangement the beancounters have come up with this

time. ”

- Jeremy Clarkson

The Clarkson Review: 2017 VW Golf GTI

The automotive sector is a major industrial and economic force worldwide. Automotive markets are very well

developed in many countries, and cars are becoming more homogeneous in prices and functions. Therefore, exterior

styling has played an important role in any market success [1, 2]. According to J.D. Power [3], which surveyed consumers

who had just bought a car, exterior styling has been considered a strong motivation for their purchase. In fact, it has

become one of the most critical determinants for automotive sales, and a hot spot for market competition.

Most automakers launch a new generation of a given car model every six to eight years. This is a very long lifespan

for a consumer good. Before the arrival of the next generation, automakers typically introduce some minor changes to

an existing car model, which are known as facelift (or mid-generational refresh) [4]. When consumers search for a new

car, they may prefer to consider “the facelifted VW Golf" or “the facelifted BMW 3 Series”. Facelifts include upgrades to

exterior styling, interior equipment, accessories, engine and safety options. For example, if a car model has a facelift, it

may have a newly-designed front or rear bumper, LED lights or wheels, and the infotainment system may be upgraded

with a bigger screen. Most of the time, a facelifted car will have a noticeably different look from the previous year’s

model. Fig. 1 illustrates two real facelift samples from the market in the past. Facelifts have become an effective method

of boosting a consumer’s interest in an existing car model before it is redesigned.

Building on the work from [5, 6], which apply deep learning algorithms to assist the automotive aesthetic design,

this paper proposes a computational framework for automotive exterior facelift, which provides intelligent decision

support to automakers and designers. Our study aims to address the following research questions: Can a generative

model be trained to present a design space for various automotive designs? How can such a model upgrade existing

designs regionally with innovative design patterns? How can an upgraded design be evaluated? How can the profit

shift caused by a given design change be estimated?

The proposed framework contains three key components – a design generator, a design evaluator and a decision

optimiser – hence we simply call it GEO. The design generator proposes various upgrading schemes for automotive

exterior facelift; the evaluator assesses the designs from the aesthetic perspective; and the decision optimiser selects

the best design that maximises the overall profit for the automaker. Specifically, the design generator is based on

the state-of-the-art StyleGAN2 model [7, 8] where we reform the mapping network and the projection method to

generate new facelift designs. Therefore, the design generator can generate many innovative designs on the targeted

car front areas but keeps the “family” face of a given car model. For instance, a facelifted BMW 3 Series can have a

more aggressive front bumper and LED headlights while still possessing the well-known BMW “kidney” grille. The

design evaluator is responsible for rating the designs from the aesthetic perspective. As modern car designs have similar

shapes and layouts, it is difficult for the regular deep models, with limited samples, to learn discriminating features for

aesthetic ratings. Inspired by previous studies [9, 5] that solve the problem through the metric learning approach, a

double-task training frame is proposed in this paper, incorporating an angular loss-based classification [10, 11, 12] to
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Audi A3 2015 Audi A3 2016 facelift

Lexus NX 2017 Lexus NX 2018 facelift

Fig. 1. Examples of car front facelifts (designs before and after the facelifts) for Audi A3 and Lexus NX.

facilitate the learning of discriminating features. The decision optimiser is specified for selecting the best facelift plans,

maximising profit over time. By deploying the recurrent neural network (RNN) [13] to estimate the market share shifts

caused by the facelift, the optimiser compares the possible gains of different plans and then selects the ones with the

highest returns.

From a broader perspective, our study adds to the recent applications of machine learning and data mining in

marketing and design studies. Different from previous studies, which have employed deep generative models for

automotive exterior design [5, 6, 14], our study is the first to investigate automotive facelift that focuses on regional

design upgrades and considers the design selection from a revenue maximisation perspective. In terms of technology, the

proposed computational framework provides an end-to-end decision-support solution for automakers and automotive

designers. First, the design generator adopts a style-based generative adversarial network (GAN) [15] architecture. By

carefully selecting the latent space and training examples, innovative facelift designs for a car front can be generated

while maintaining the car model’s family characteristics. Second, new aesthetic evaluation metrics are proposed to

assess the car’s design analogous to the subjective human preferences. Last but not least, the decision optimiser tries to

recognise the designs that can maximise mid-term revenues before the redesign of the target model.

The rest of this article is organised as follows. Section 2 reviews the related literature. Section 3 introduces our

proposed computational framework for automotive exterior facelift. In Section 4, we introduce the datasets we have

used, the experimental settings and our analysis of results. Finally, Section 5 concludes the paper.

2 RELATEDWORK

Until recently, product aesthetic design had for a long time been assumed to be a field of human endeavour, despite

computer science researchers having made various attempts over decades to break into it. The very early attempts

were focused on manipulating 2D design shapes, which were represented by coordinate points and the curves between

them [16]. Later studies followed similar approaches but augmented such a manipulation with more dimensions to

Manuscript submitted to ACM
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4 Huang et al.

obtain more detailed designs. For instance, restructuring the product design in the 3D space or creating additional rich

colour choices [17, 18]. However, as pointed out in [19], the inclusion of new dimensions amplified the manipulation

difficulties, thus lessening the design flexibility. Such a trade-off between generation realism and flexibility has for long

been a challenge for subsequent researchers.

This trade-off has now been largely reconciled. Recent deep generative models only need hundreds of latent variables

to obtain various highly realistic designs. The generative adversarial network and variational autoencoder (VAE) [20]

families are the two most popular deep generative frameworks nowadays; GAN has the advantage of generating more

realistic results [21]. A classical GAN frame involves two subnetworks, termed generator and discriminator. The former

is used for generating fake images, while the latter is responsible for discriminating between real and fake images. As

the generator and discriminator have adversarial roles, intuitively, in the game theory sense, the training procedure can

be perceived as a zero-sum game between the generator and discriminator.

A few existing studies have attempted to apply deep generative models to automotive design. In the very first study,

the authors of [19] demonstrated that by training the VAE model with adequate data, the trained model is capable

of generating diverse car designs. The generator can automatically produce cars in various body types, brands, and

viewpoints with no need to carefully select numerous control variables. In their next study [5], Pan et al. proposed a

more comprehensive design framework that included both the deep generative models for design generation and deep

neural networks for design evaluation. Such a framework is functional in both offering various candidate designs and

evaluating them from an aesthetic perspective. However, these existing studies deployed generative models to produce

novel designs, in which design freedom constraints have not been considered. As [22] pointed out, in real automotive

markets, designers need to achieve a balance between design freedom and brand recognition. Thus, regional design

upgrading, known as design facelift, is much needed in automotive aesthetic design. From the technical perspective, this

is more challenging due to the feature entanglement problem [23, 24]. That is, the change of a single latent value can

cause global changes in the resulting design. Furthermore, a theoretical analysis [23] has indicated that the disentangled

representations cannot be resolved through the unsupervised learning approach if no inductive biases are provided.

The newly developed style-based generators, namely StyleGAN [7] and StyleGAN2 [8], have performed outstandingly

on the controllability of generation, while easing the entanglement problem. Similar to our application needs, Liu

et al. [25] proposed an objective function-based method for spatial modification, which changes regional content by

manipulating the “style” values fed to the synthesis network. On the other hand, to resolve the problem of embedding a

given image in the trained StyleGAN, both [26] and [8] have proposed methods for projections, which have the inverse

purposes of image generation.

From the automaker’s perspective, the ultimate goal of the facelift is to maximise the overall profit of the car models

that have been launched, which could be seen as an optimisation problem. Despite the extensive study of optimisation

problems in economics, game theory, and marketing studies, only a few existing studies have attempted to investigate

product design from the optimisation perspective [27, 28, 29]. In these studies, simulation is based on high-level aesthetic

attributes. Due to the lack of proper design generation methods, no realistic designs were provided as vivid samples. In

our present study, we try instead to solve design optimisation directly on the various designs proposed by the generator.

To estimate the profit/utility caused by the design change, the evaluation of designs from the aesthetic perspective

is required. Psychologically, the perception of aesthetics (known as aesthetic emotion) involves a series of neural

activations for visual processing and emotional arousal. The complicated nature of this issue made the prediction of

aesthetic sensation challenging before the rise of deep models in the last decade. These days, it is common to apply

convolutional neural networks (CNNs) [30] for aesthetic evaluation tasks. CNNs are well-known for their end-to-end
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Deep generator

RNN

Design generator

Decision optimizer

CNN

Design evaluator

… …

Upgraded designs

Aesthetic prediction

Facelift

Producing

…

Target model 

historical sales

Target model 

image

Predicted aesthetic 

change

Corresponding 

latent codes

Upgrade 

scheme

Projection

Market share 

changes

Predicted mid-term 

profit gains

Modified latent codes

Fig. 2. Schematic view of the GEO framework.

prediction power, which has achieved impressive record-breaking results on several computer vision tasks [31, 32, 33,

34]. Several existing studies [35, 36, 37] attempted to apply the CNN model to the categorisation of fashion products,

achieving a remarkable accuracy. On the other hand, several studies relied on CNN-based models to predict the aesthetic

level of durable products such as cars [38, 5, 6]. Researchers found that with sufficient images of cars and subjective

labels, the CNN model could learn to make aesthetic ratings on diverse aspects such as sporty, appealing and innovative

cars. Inspired by these studies, the development of an automotive aesthetic evaluator becomes relatively straightforward.

Motivated by the aforementioned advances, our present study aims to develop a three-stage framework that can

generate, evaluate and estimate profit changes of facelifted designs for various existing designs. Compared with the

most relevant works, namely [5] and [6], our proposed framework differs in two major aspects. First, our study focuses

on offering regional design upgrades rather than new designs, where the primary shape of existing car models is

untouched. Second, profit maximisation is incorporated into the pipeline, which attempts to locate the upgrades that

lead to the highest profit. This makes our current study a product design optimisation investigation.

3 THE GEO FRAMEWORK

As illustrated in Fig. 2, the proposed GEO framework consists of a design generator, a design evaluator, and a decision

optimiser. The generator proposes different facelift designs; the evaluator assesses the designs from the aesthetic

perspective; and the decision optimiser selects the designs that maximise mid-term profit for the automaker. In the

following, the technical details of these three components will be introduced in turn.

3.1 The Design Generator

Our generator is based on the StyleGAN2 model [8] as it is the state-of-the-art deep generative model that has performed

extremely well in synthesising high-resolution images [39]. Meanwhile, compared with other GAN models, it has a
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6 Huang et al.

flexible and enriching architecture that allows automotive designers to control design types, which results in more

innovative designs.

As Fig. 3 shows, a StyleGAN2-based generator has two parts: a mapping network and a synthesis network. The

mapping network, denoted by 𝑓MAP (·), is implemented through 𝑙 fully-connected layers, responsible for mapping an

input latent code z(0) to an intermediate code z(𝑙) . The superscript indicates the position of the latent code within the

mapping network. For instance, the intermediate latent code z(𝑙) is the output from the 𝑙th layer. The synthesis network,

denoted by 𝐺ST (·), comprises 𝐾 generation blocks. As blocks or convolutional layers can take different intermediate

latent codes to produce images, we denote all the fed latent codes by a matrix 𝑍 . This is different from the original

StyleGAN2 study [8], since the fed intermediate latent vectors in our design framework are not required to be the same

across the generation blocks or convolutional layers.

Also illustrated by Fig. 3, each generation block (excepting the first one) in StyleGAN2 consists of two convolutional

layers and one upsampling layer. To simplify, the computation of a single block is formulated as 𝑂𝑘 = 𝑔ST
(
𝑂𝑘−1, 𝑍 [𝑘 ]

)
,

where 𝑂𝑘 represents the output feature maps from the 𝑘th generation block, 𝑔ST (·) denotes the computation of the

entire generation block, and 𝑍 [𝑘 ] represents the latent code fed to the 𝑘th generation block. As the right part of the

synthesis network in Fig. 3 shows, unlike the original StyleGAN model, StyleGAN2 replaces the progressive growing

strategy with “skip connections", then the final output image is the sum of all the generation block results:

𝐺ST (𝑍 ) =
𝐾∑︁
𝑘=1

𝑓UP

(
𝑓RGB (𝑂𝑘 ), 𝐾 − 𝑘

)
, (1)

where 𝑓RGB (·) represents the “To RGB” module that converts feature maps to images, each feature map has the size of

2
𝑘+1 × 2

𝑘+1
, 𝑓UP (·) is the upsampling function, and 𝐾 − 𝑘 indicates the times needed to double the size, ensuring output

channels from different blocks are all sized in 2
𝐾+1 × 2

𝐾+1
.

After a proper training, the resulting StyleGAN2 can be perceived as a design space for various automotive images.

By searching for the latent codes that produce the most similar results, a given car design 𝐶𝑎 can be represented by a

distinct 𝑍𝑎 through the inverse of the generation process 𝐺−1 (·), namely the projection method:

𝐺−1
ST

(𝐶𝑎) = argmin

𝑍

𝐷PER

(
𝐺ST (𝑍 ),𝐶𝑎

)
, (2)

where 𝐷PER (·) is the distance measure between images. It should be noted that for the projection, the obtained 𝑍 can

consist of latent codes from arbitrary layers of the mapping network. With regard to measuring the distance between

images, we adopt learned perceptual image patch similarity (LPIPS) [40], which is a CNN-based score that measures the

perceptual difference between two images.

To indicate the generator model’s ability to produce novel and realistic designs, we propose two new metrics related

to the concept of design space, namely domain size and domain quality. The former evaluates the generator’s ability to

generate innovative designs, and a larger-sized design space would contain more unseen designs. In the study, we apply

the calculation of projection accuracy to measure the domain size, which is formulated as follows:

E𝐶∼Xtest
𝐷PER

[
𝐺ST

(
𝐺−1
ST

(𝐶)
)
−𝐶

]
, (3)

where 𝐶 is an unseen design drawn from the test setXtest, and 𝐺ST (𝐺−1
ST

(𝐶)) is the reconstruction of 𝐶 in the given

design space. The projection accuracymeasures how accurately an unseen design is represented in the learned generative

system. Intuitively, if a generative system has a large design space for cars, it should be able to precisely represent

unseen designs.
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Fig. 3. Structure of the generator in StyleGAN2. The StyleGAN/StyleGAN2models comprise twomain parts, the mapping
network and the synthesis network. The former transforms the raw latent code to the intermediate latent code, while the
latter generates images/designs according to the given intermediate latent codes.

The domain quality metric indicates the quality of design generations. The quality problems have been extensively

studied in deep generative models, where the Fréchet inception distance (FID) [41] metric is widely used. We adopt a

modified FID, namely FID of random mixing, to sample the overall generation quality since our proposed facelift tries to

shift an existing latent code partially to another. It is formulated as follows:

Ez𝑖 ,z𝑗∼𝑃z 𝑓FID
(
𝐺ST (Zz𝑖 ,z𝑗 ),Xtrain

)
, (4)

where 𝑓FID (·) denotes the FID measure, Xtrain is the training set, and 𝑍 z𝑖 ,z𝑗 consists of vectors that result from the

random mixing of z𝑖 and z𝑗 .
Inspired by the architecture of StyleGAN2, it is expected that regional design upgrades could be achieved by revising

the corresponding 𝑍 . Given a candidate design𝐶𝑎 and an intended upgrading scheme 𝐵𝑎 (which is a binary matrix that

indicates the image area to modify, it can have an arbitrary size and shape in the given image), our design generation

objective can be formulated as follows:

max

𝑍

[
𝑆AE

(
𝐺ST (𝑍 )

)
− 𝐷PER

(
𝐵𝑎 ⊙ 𝐶𝑎, 𝐵𝑎 ⊙ 𝐺ST (𝑍 )

) ]
, (5)

where 𝑆AE (·) is the aesthetic evaluation carried out by the evaluator, and ⊙ represents the Hadamard product. Then,

we look for a latent matrix 𝑍 that can maximise design aesthetics while mitigating the modifications of the unintended

areas. The latter can be the areas related to the family signature of a given car model such as the BMW kidney grille.

For convenience, in the rest of the paper we will refer to these unintended areas as the fixed region.

It is worth pointing out that, from the automotive facelift perspective, Eq. (5) is not a proper objective function. First,

automotive designers would prefer to have more candidate designs rather than a single “best” suggestion [6]. Second,
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high-level modifications (e.g., shape) are preferred over fine-feature changes (e.g., colour, texture). If we do not specify

further constraints, the upgrades will end up with changes to the fine-features rather than to the overall structure.

To obtain more candidate designs, Eq. (5) can be reformulated as a two-stage optimisation problem. In the first stage,

we look for designs inspired by other latent codes while minimising the changes in the fixed region. Given a candidate

design𝐶𝑎 and an inspiration latent matrix 𝑍 𝑖 from the set {𝑍
1
, ..., 𝑍𝑁 }, we look for a design that satisfies the following

objective:

min

𝑍

���𝑍 [:𝑘 ] − 𝑍 𝑖 [:𝑘 ]
��� + 𝐷PER

(
𝐵𝑎 ⊙ 𝐶𝑎, 𝐵𝑎 ⊙ 𝐺ST (𝑍 )

)
, (6)

where 𝑘 indicates the target latent code places, 𝑍 [:𝑘 ] are the intermediate codes given to the first 𝑘 blocks, and

|𝑍 [:𝑘 ] − 𝑍 𝑖 [:𝑘 ] | is the 𝐿1 distance between the design latent matrix and the 𝑖th inspiration latent matrix. We adopt

the 𝐿1 norm since in our trials it achieves more stable results than the Euclidean distance [42]. Previous studies have

shown that early generation blocks control general-features and later ones regulate the fine-features [7, 8]. Therefore,

constraining the latent codes allows us to decide what types of design features to modify. Let Z denote the set of

designs from solving Eq. (6), we then rank the designs obtained according to their aesthetic scores and select the best

candidates accordingly:

argmax

𝑖

𝑆AE
(
𝐺ST (𝑍 𝑖 )

)
, for 𝑍 𝑖 ∈ Z . (7)

3.2 The Design Evaluator

As modern car designs share similar layouts and forms, the design evaluator needs to learn discriminating features to

distinguish between the proposed designs and facelifts. Inspired by the existing metric learning studies [43, 9, 5] and

facial recognition/prediction studies [44, 45, 46, 47], where similar data challenges are faced, the double-task training

strategy is adopted. The evaluator is trained simultaneously for aesthetic estimation and car model recognition to

facilitate the learning of contrasting features between designs:

min E𝑎∼Xtrain

[
ℓ
(𝑎)
aes

+ ℓ (𝑎)
rec

]
, (8)

where ℓ
(𝑎)
aes

and ℓ
(𝑎)
rec

are the aesthetics estimation and class recognition loss, and the ℓ
(𝑎)
aes

is expressed as

(
𝑠 (𝑎) − 𝑠 (𝑎)

)
2

,

representing theMean Squared Error (MSE) between the predicted and ground truth aesthetic score. Unlike the traditional

softmax, the ℓ
(𝑎)
rec

adopts the angular loss [10, 11, 12] setting, further enhancing the learning of discriminating features

in classification. Given the design 𝐶𝑎 under car model 𝑦𝑎 , and x𝑎 as its corresponding feature vector extracted from the

convolutional backbone network, the 𝑗th classification values before softmax can be expressed as ℎ
(𝑎,𝑗)
rec

= w⊺
𝑗
x𝑎 + 𝑏 𝑗 ,

where w and 𝑏 represent the output weight vector and bias values, respectively. These variables are constrained in the

angular loss setting: | |w𝑗 | | = 1, 𝑏 𝑗 = 0, and | |x𝑎 | | = 𝛼 , where 𝛼 is a given constant. This makes each ℎ
(𝑎,𝑗)
rec

only depends

on the angle size between w𝑗 and x𝑎 , and converts the whole softmax computing into the following formula:

ℓ
(𝑎)
rec

= − log

{
exp

(
𝛼 cos (\𝑦𝑎,𝑎 + 𝛽)

)
exp

(
𝛼 cos (\𝑦𝑎,𝑎 + 𝛽)

)
+∑

𝑗≠𝑦𝑎 exp
(
𝛼 cos\ 𝑗,𝑎

) } . (9)

Here we adopt [12]’s setting, which incorporates a constant margin penalty 𝛽 in the target class’s angle, making

ℎ
(𝑎,𝑦𝑎)
rec

= 𝛼 cos (\𝑦𝑎,𝑎 + 𝛽), thereby facilitating further discriminative feature learning by making the negative log-

likelihood more sensitive to the angular distances. These settings force the model to use the vectors’ directional

differences rather than scale the differences to distinguish between classes, thus representing the class centres in the

Manuscript submitted to ACM
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angular space. The use of angular loss has been empirically validated to maximise intra-class distance and minimise

inter-class distance on tasks with comparable inputs [10, 11].

3.3 The Decision Optimiser

The decision optimiser is proposed to select designs that maximise the expected mid-term revenues for the automaker

before the redesign of the given car model. We use market share changes to measure and approximate revenue changes.

Like other durable products, car models have a typical life-cycle: a new car’s sales increase in the early years when a

new generation is launched and then deteriorate over the rest of its lifespan until the facelift or redesign occurs [48].

Based on this knowledge, we treat sales deterioration as a time-series process and thus rely on the RNN model to

estimate how the future market share would evolve according to different facelift plans.

Given an existing design 𝐶𝑎 and its historical market share records {𝑑 (𝑎)
0
, ..., 𝑑

(𝑎)
𝑇

}, we compute its market share

change vector v(𝑎)
𝑇

:= {𝑣 (𝑎)
1
, ..., 𝑣

(𝑎)
𝑇

} according to the formula: 𝑣
(𝑎)
𝑡 = 𝑑

(𝑎)
𝑡 /𝑑 (𝑎)

𝑡−1. The predicted share change 𝑣
(𝑎)
𝑡 at

year 𝑡 can be expressed as 𝑓MS

(
v(𝑎)
𝑡−1, Δ𝑠

(𝑎)
𝑡

)
, where 𝑓MS (·) represents the predictive RNN model and Δ𝑠

(𝑎)
𝑡 indicates the

aesthetic change due to the design modification at year 𝑡 . The model is simply trained to minimise the perdition error

E𝑎,𝑡∼Xtrain

[
𝑣
(𝑎)
𝑡 − 𝑣 (𝑎)𝑡

]
2

. After training, to estimate the market share changes driven by a suggested facelift 𝐶𝑎 that

launches at year [, the estimation setting becomes as follows:

𝑣
(𝑎)
𝑡 =


𝑓MS

(
ṽ(𝑎)
𝑡−1, Δ𝑠

(𝑎)
)
, if 𝑡 = [

𝑓MS

(
ṽ(𝑎)
𝑡−1, 0

)
, otherwise

, (10)

where Δ𝑠 (𝑎) represents the aesthetic scores change of the facelift design, and 0 means no design/aesthetic changes. It is

worth noting that here we use ṽ(𝑎)
𝑡−1, not v

(𝑎)
𝑡−1, to denote the input vector since here inputs are also simulated results

(except for 𝑡 = 1 where v(𝑎)
0

is based on actual records).

Considering that the model will be redesigned at 𝑇 + 1, we can adopt the baseline ṽ(𝑎)
𝑇

, which represents the actual

facelift to infer the overall profit change:

𝑚
(𝑎)
[ = 𝑑

(𝑎)
0

·
𝑇∑︁
𝑟=1

[
𝑟∏
𝑡=1

𝑣
(𝑎)
𝑡 −

𝑟∏
𝑡=1

𝑣
(𝑎)
𝑡

]
, (11)

where𝑚
(𝑎)
[ represents the overall share difference when adopting facelift 𝐶𝑎 at year [, and 𝑑

(𝑎)
0

·∏𝑟
𝑡=1 𝑣

(𝑎)
𝑡 represents

the predicted market share at year 𝑟 .

4 EXPERIMENTS

In this section, we introduce the datasets used, present the experimental settings for model training and testing, and

discuss the analysis of the results.

4.1 Datasets

Fig. 4 presents our targeted car models for facelift exterior design. We deliberately select car models of three popular

types (i.e., hatchback, SUV and saloon), which have received criticism for their exterior styling
1
. The aim of the

experiments is to improve the market performance of the targeted models by suggesting good exterior designs in the

facelift. For simplicity, the given scheme samples (indicated by the yellow masks in Fig. 4) focus on modifying the design

1
E.g. see www.parkers.co.uk/audi/a4 regarding Audi A4
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Table 1. Summary of the used datasets.

Dataset DVM-Car
†

Edmunds
‡

Period 2001-2020 2000-2019

Main content 1,451,784 images, 773 model sales 299,045 reviews

Number of automakers 60 46

Number of car models 899 905

† https://deepvisualmarketing.github.io

‡ https://www.kaggle.com/shreemunpranav/edmunds-car-review

of the headlights since they are the most frequently upgraded features in automotive refreshments. As shown in Table 1,

two publicly available datasets are used in the experiments. The DVM-Car dataset contains 1.4 million images from 8

different viewing angles of 899 car models as well as the corresponding model specification and sales information over

more than ten years in the UK [49]. For the generator training, 42,130 car front images are sampled from the DVM-Car

dataset to develop the design generator, evaluator and optimiser in the proposed GEO framework. The Edmunds
dataset contains 299,045 car reviews of various automotive brands from edmunds.com between 2000 and 2019. Unlike

many previous studies, which rely on surveys or lab experiments to collect subjective ratings, we estimate the car

design aesthetic ratings by text mining the available consumer reviews. The aesthetic ratings obtained in this manner,

together with the DVM-Car dataset, are used to develop the design evaluator. For the aesthetic ratings extraction, the

car reviews on models sold between 2007 and 2017 are extracted. After pairing the extracted aesthetic ratings with the

car images from the DVM-Car dataset, 15,213 images from 118 car models are used to train the evaluator.

4.2 Experimental Settings

We use the StyleGAN2 model for the facelift design generation [8]. The generator is set with 7 generation blocks for

256 × 256 resolutions as well as 90% mixing regularisation. 2,000 out of 42,130 images are used for testing and the rest

are used for model training. To enhance the generator’s upgrading ability on the target designs, each image of the

targeted models is also augmented by rotating and flipping it with 20 replications. During the training procedure, we

track the model’s performance using the FID and the Perceptual Path Length (PPL) [7] metrics. When there are no

significant gains on the FID score, the training is stopped. The images in the test set and the twelve targeted designs

are embedded into the latent space through the projection method, where both the MSE and the LPIPS metrics are

included in the reconstruction loss part. We remove the optimisation of random noises during the projection since they

would overplay their roles in latent spaces with small sizes. The facelift is implemented as a variation of the projection

method, where the starting latent code is the one that represents the original design.

To prevent the overfitting problem, we adopt a 5-fold cross-validation in the evaluator training. Specifically, images

are grouped according to their car models. This protects the trained evaluator from the bias of their model recognition.

For the decision optimiser, we take each car model’s annual share in the segmented market (by body type) to indicate

the market performance over time. The car models’ historical market shares and the aesthetic shifts over the years are

used as inputs for RNN training, where the gated recurrent unit (GRU) [13] is used.

4.3 Analysis of Results

As shown in Fig. 5, the projection accuracy and the FID scores of random mixing are calculated across different latent

space settings. We compare two different mapping network architectures: (i) 512 dimensions and 8 layers [7]; and (ii)
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Fig. 5. Comparison of candidate latent spaces, where the superscript indicates the latent layer position among the
mapping network.

2048 dimensions and 3 layers. In the “global unique z” setting, all the generation blocks use one latent code. In the “block

specified z” setting, each generation block has a specific latent code, hence there are 7 different latent codes in total. In

the “module specified z” setting, each modulation has a latent code. Since the first block has only one modulation and

the “To RGB” module shares the same latent code with the second CNN module in the block, there are 13 different

latent codes in total.

Compared with the default latent space [7, 8], different intermediate codes offer various choices for design subspaces

characterised with different domain sizes and qualities. There is a clear trade-off between the projection accuracy and

the FID score of random mixing when adopting different intermediate codes exists. Latent codes from an earlier layer

(e.g., z(0) ) would have better FID scores but lower projection accuracy than a later layer (e.g., z(7) ). We interpret this

trade-off with the concept of design space. The output space corresponding to z(8) (the intermediate latent codes)

can be seen as a design space with a large size. The stacking of additional mapping network layers (such as z(7) , z(6) )
can reduce the space size, thereby resulting in denser subspaces for the car designs that increase the quality of the

generated designs (i.e., with lower FIDs). On the other hand, Fig. 5 also shows that the use of incongruous z (i.e., the
“block specified z” and “module specified z”) results in an increased projection accuracy and decreased FID scores. In

particular, we suggest that the “disassociation of latent codes” (i.e., using different latent codes in different generation

blocks) allows more novel designs that were not seen in the training set to appear in the test set, even though such

novelty comes at the price of reduced quality. For example, if there are no white SUVs in the training set, then white

SUVs would barely appear when using the global unique z setting, but the incongruous z would generate SUVs with

various colours.

As Fig. 5 shows, a new setting of the mapping network (2048 dim, 3 layers) can improve the domain size as measured

by the projection accuracy while retaining a similar domain quality measured by the FID score of random mixing. This

new setting is inspired by the universal approximation theorem where a shallower network with more neurons in the

hidden layer can also have a high approximate power. Hence, the new mapping network has fewer layers but reserves
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Table 2. Comparison of our design upgrading algorithm with existing methods.

Method Mapping setting Projection accuracy FID of random mixing

Style-based [25] 8 × 512 0.120 60.60

Our intermediate-based
†

8 × 512 0.190 23.66

Style-based [25] 3 × 2048 0.119 91.57

Our intermediate-based 3 × 2048 0.151 18.76

† Here the module specified z(0) is used for comparison

1

2

3

4

5

6

7

1 2 3 4 5 6 7

Source

Inspiration

Fig. 6. Comparison of car front designs of replacing different generation block latent codes, where a column is the
replacement starting block and a row is the replacement end block.

more space for novel designs. Overall, the results of our experiment confirm that a broader but shallower mapping

network allows the synthesis network to generate further novel designs with higher qualities.

In Table 2, we further compare our design upgrading algorithm with the method proposed by [25], as their study

also develops a regional modification algorithm using StyleGAN. Unlike our intermediate latent-based method, their

method directly manipulates style variables in StyleGAN. The reported results show that random modifications in

style variables lead to distortions (indicated by the low FID scores) in the outputs, while our intermediate latent-based

method can retain the design quality. This suggests that our method has better capabilities for generating unseen

designs when exploring the design space, and hence is more suitable for the needs of the automotive facelift.

Fig. 6 provides an empirical example of an image matrix that compares the latent mixing results at different generation

layers. When the inspiration latent codes are fed to the 1st-4th blocks (illustrated by the top four rows), the car’s overall

design structure would be changed. When the 5th-7th blocks are fed with the inspiration codes (illustrated by the

bottom three rows), the changes mainly happen to the texture and colours. Since a structural change is more preferred
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Peugeot 308 Volvo S90 BMW M2 Jaguar XF

(1.53) (1.65) (1.86) (2.40)

Ford C-Max Toyota Aygo Hyundai ix20 Fiat Punto

(0.773) (0.96) (1.13) (1.18)

Fig. 7. Empirical examples of car front aesthetic scores predicted by the trained evaluator.

for automotive facelifts, our implemented facelift method would focus on modifying the first four generation blocks

while leaving the rest unchanged.

As mentioned earlier, car front design aesthetics are evaluated by the design evaluator in terms of aesthetic scores.

Fig. 7 provides several empirical examples of car front images with the predicted aesthetic scores, in which three car

models receive low aesthetic scores (i.e., Toyota Aygo, Hyundai ix20, Fiat Punto) while the other three receive high

scores (i.e., Volvo S90, BMWM2, and Jaguar XF). These results are consistent with the users’ aesthetics reviews collected

in the Edmunds dataset. To illustrate this, we list a few examples of reviews as follows:

“...can’t disguise its dated design, and the Punto looks bland ...making Fiat’s Punto look really rather old..."
2

“...the ix20 rather blends into the crowd compared to its more stylish rivals..."
3

“...the BMWM2 is a car that’s huge fun from behind the wheel, stupendously quick and relatively low-key in its

subtle appearance..."
4

“The Jaguar XF...that car pulled Jaguar into the 21st century, rejecting the classic design language that had

characterised the brand’s models since the fifties by replacing round headlights with sleek fastback looks and

an aggressive new grille..."
5

The first plot of Fig. 8 shows the average aesthetic score of the cars sold over the years. We find that the cars on the

market are steadily becoming more aesthetic. It should be noted that the average rise of the aesthetic score is 0.008 per

year, which is used in our decision optimiser’s hyper-parameter setting. We carry a simple linear regression analysis to

investigate how the car models’ aesthetic levels are associated to their market performance (see the right-hand plot of

Fig. 8). In particular, the second plot of Fig. 8 shows that the car models’ market share is significantly correlated to their

aesthetic levels. Interestingly, car models with higher prices do not appear to be more aesthetic, which is not in line

with our expectations.

Table 3 presents several design examples from three target models (i.e., Audi A4, Ford EcoSport, Vauxhall Astra) as

well as the summarised statistics for all the targeted models. In order to perceive the variation caused by the design

2
URL:www.autoexpress.co.uk/fiat/punto/interior

3
URL:heycar.co.uk/hyundai/ix20

4
URL:www.autoexpress.co.uk/bmw/2-series/105480/used-bmw-m2-review

5
URL:www.carbuyer.co.uk/jaguar/xf
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Fig. 8. Analysis of the aesthetic scores: (left) Time series plot of the average aesthetic score and the sales of the targeted
car models from 2008 to 2017; (right) Aesthetic score VS market shares. By comparing the model’s market shares and
their aesthetic scores in recent years, we find that the market share is correlated to their aesthetic levels, where the
Pearson test results are as follows: 𝜌 = 0.39 with a 𝑝-value=0.009.

Table 4. Number of facelifts released in ten years.

Number of facelifts 10 5 3 2

Total profit 94.61% 94.49% 94.35% 94.22%

The profit is calculated by
Estimated 10 year sales

10×Starting year sales
.

difference, for each model, two novel facelift designs (i.e., an inferior design and a superior design) are presented

together with their original looks, and compared with their predicted market shares before the redesign (first row in the

table). The original A4, EcoSport and Astra facelift designs are rated as 1.394, 1.330 and 1.208, respectively. Overall, the

compact segment benefits the most from the proposed facelift designs, with a 0.126 aesthetic rise, resulting in an average

36.757% increase in market share. However, the variance between the individual models is huge – most of the increment

is contributed by Astra, which has an expected market gain of 209.555%. Based on the proposed facelift designs, SUVs

have a significant aesthetic rise (0.141) but a moderate market increase (14.139%). Compared to the ground truth, the

increase is not as significant as the aesthetic rise since the real facelift designs are remarkable – for instance, the Ford

EcoSport has upgraded from 1.186 to 1.330. When comparing years for a suggested facelift for superior and inferior

designs, the optimiser tends to delay the facelift for the weak designs. For instance, the new design 1 of A4 (i.e., scored

1.382) is suggested for a facelift in 2014, but its new design 2 (i.e., scored 1.439) is suggested to be facelifted in 2010.

Fig. 9 investigates the effects of the facelift interval and aesthetic change on the car model market share in the

mid-term. The first plot of Fig. 9 shows that for facelifts with identical rising aesthetic scores, higher market shares

can be expected if the facelifts are performed earlier, but such strategies can backfire, with a steeper market share

deterioration in the long term. On the other hand, as demonstrated in the second plot of Fig. 9, according to our

simulation of various facelifts, the stronger facelift will always result in higher mid-term gains, while lower aesthetic

scores will lead to a mid-term loss.

Benchmarked with the expected annual aesthetic rise of 0.008, Table 4 investigates the optimal facelift frequency

without cost constraints. Consistent with the observation that most automakers in the market release facelifted models

annually or biennially, the optimal strategy is to have more frequent facelifts before the redesign of a given car model.

5 CONCLUSIONS

We have developed a new machine learning-based framework (i.e., GEO), which can assist automakers when it comes

to the cars’ aesthetic design. Unlike the existing works, our study focused on the scenario of automotive facelifts,
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Fig. 9. Effects of facelift: (left) mid-term market share evolution when adopting different facelift years. (right) market
share simulation according to aesthetic changes.

which delivers regional upgrades for launched car models and views the design selection from a profit optimisation

perspective. The proposed generator and facelift algorithm can incorporate novel styling features into existing designs

while maintaining the primary look of the car model. The metric learning-based evaluator can ease the challenge of

evaluating the aesthetics of objects when they look similar, as the angular-loss guides the algorithm to focus on more

discriminating features. For decision optimisation, based on the proposed aesthetic changes, the RNN-based optimiser

simulates mid-term profit changes as a result of the released facelifts, hence providing automakers with intuitionistic

support for decision making. In addition to the proposed GEO framework, we showed that the most desirable properties

for design spaces are the domain size and quality. The former relates to the generator’s ability to generate novel designs,

while the latter determines the quality of the generation. We proposed two corresponding metrics to these perspectives,

which can be used as benchmarks for future product aesthetic studies. Finally, we explored how to improve the design

space size and quality based on the StyleGAN2 model. We found that the rearrangement of mapping networks or the

selection of different latent spaces can improve the StyleGAN2 generator’s performance in terms of both domain size

and domain quality. Overall, our proposed framework provides automakers with a technology allowing them to better

manage their facelift design process. However, our study does naturally have some limitations, which can be addressed

in future research work. First, our study does not discuss how to achieve spatial disentanglement. However, deep

generative-based design upgrading is strongly related to the feature disentanglement problem. In fact, product aesthetic

design upgrading can be perceived as a crucial application scenario for the disentanglement problem. Second, the nature

of aesthetic perception is pretty complex. Future user studies could investigate how different aesthetic attributes affect

the overall aesthetic perception. Third, when computing market changes, we did not take into account the effects of

competition from other car models, while the modern automotive market is typically a zero-sum game. It would also be

an interesting direction to study aesthetic design competition in different segmented markets.
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