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Abstract
A central theme of theoretical neurobiology is that most of our cognitive operations require processing of discrete

sequences of items. This processing in turn emerges from continuous neuronal dynamics. Notable examples are sequences

of words during linguistic communication or sequences of locations during navigation. In this perspective, we address the

problem of sequential brain processing from the perspective of active inference, which inherits from a Helmholtzian view

of the predictive (Bayesian) brain. Underneath the active inference lies a generative model; namely, a probabilistic

description of how (observable) consequences are generated by (unobservable) causes. We show that one can account for

many aspects of sequential brain processing by assuming the brain entails a generative model of the sensed world that

comprises central pattern generators, narratives, or well-defined sequences. We provide examples in the domains of motor

control (e.g., handwriting), perception (e.g., birdsong recognition) through to planning and understanding (e.g., language).

The solutions to these problems include the use of sequences of attracting points to direct complex movements—and the

move from continuous representations of auditory speech signals to the discrete words that generate those signals.
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Introduction

The dynamics of cognitive systems are often characterised

in terms of sequences. These range from sequences of

words in linguistic communication (Friston et al. 2020a) to

the sequences of steps we might take while navigating a

maze (Kaplan and Friston 2018). From a dynamical sys-

tems perspective, this implies a series of unstable fixed

points that are visited in turn (Afraimovich et al. 2004).

This idea is (implicitly) central to most neurobiological

theories of planning and behaviour, and manifests in the

notion of a cognon (Rabinovich et al. in preparation) or

elementary cognitive unit. Simply put, the hypothesis is

that cognition is underwritten by an emergence of discrete

sequences of events from the continuous evolution of

neural activity. This reflects a recent trend in theoretical

neurobiology from modelling of behaviour using continu-

ous differential Equations (Friston 2005)–like those used in

filtering problems in engineering (Kalman and Bucy

1961)–to models predicated upon discrete transitions

(Mirza et al. 2018; Schwartenbeck and Friston 2016;

Schwartenbeck et al. 2019) of the sort found in partially

observed Markov decision processes (Åström 1965)–with

applications in artificial intelligence research (Kaelbling

et al. 1998).

To gain some intuition as to how sequences can emerge

from continuous dynamical behaviour, consider a system

involving populations of carnivores, herbivores, and plants

(Volterra 1928). As the plant population increases, the

herbivore population increases in turn. As they eat the

plants, this causes a fall in the plant population. However,

the herbivores are themselves eaten by the carnivore pop-

ulation, which increases while inducing a corresponding

fall in the herbivore population. The drop in herbivore

population has two consequences. It deprives the carni-

vores of food, so causes their population to decline. It also

allows the plants to grow back. This simple example

illustrates the basic idea behind the dynamics of sequences.

It describes a system that can be characterised as a series of
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peaks in populations of plants, then herbivores, then car-

nivores, then plants, then herbivores, and so on. This

generalised Lotka-Volterra system is an example of a

winnerless competition (Afraimovich et al. 2008), as each

population competes to increase its number, but ultimately

gives way to another population.

From a neurobiological perspective, this emergence of

discrete sequences from continuous dynamics may occur as

populations of neurons increase and decrease their firing

rates in turn. For recent reviews of neuronal sequence

generation, see (Pezzulo et al. 2014; Frölich et al. 2021).

Conspicuous examples of this phenomenon include the

sequential activation of place cells as animals move

through a series of spatial locations (Foster and Wilson

2007; O’Keefe and Dostrovsky 1971; Redish 2016), and

during subsequent replay of these sequential activations

(Foster 2017; Louie and Wilson 2001; Pezzulo et al. 2017).

This decomposition of spatial trajectories into a series of

locations offers an explanation for the role of brain oscil-

lations, such as the hippocampal theta rhythm that occurs at

approximately the same frequency as sequential place cell

activation during behaviour (Buzsáki 2002). Similar

dynamics have been observed in brain-wide calcium

imaging of Caenorhabditis elegans (Kato et al. 2015).

In this paper, we discuss the emergence of discrete

sequences from continuous neuronal dynamics through the

lens of active inference (Friston et al. 2012)—a theoretical

framing of behaviour that generalises the Bayesian brain

hypothesis (Doya 2007; Knill and Pouget 2004) (see

Fig. 1). We provide examples of this process at work in

several cognitive domains, including motor control, per-

ception, planning and linguistic communication. The key

idea underlying active inference is that our brains behave

as if they were using statistical models to explain how

sensory data are generated. Among those factors required

to explain sensations are the choices we make about where

to deploy our sensory epithelia. This means the models our

brains use must include the choices and plans we make,

when engaging with the world around us. In other words,

we model our own agency. Once framed in this way,

decisions about what to do next become inference prob-

lems (Botvinick and Toussaint 2012). By combining our

prior beliefs about how we are likely to respond to the

sensations generated by our actions, we arrive at posterior

beliefs about the most plausible sequence (plan or policy)

we might pursue.

A common alternative to generative modelling approa-

ches is the use of function approximators and neural net-

works, as in deep learning; and there are several successful

examples of sequence learning and prediction for machine

learning and data analysis (Sutskever et al. 2014; LeCun

et al. 2015). The main advantage to adopting an explicit

generative modelling approach is that it is transparent, in

the sense that the ensuing computations have a clear

interpretation. Realizing interpretable and ‘‘explainable’’

models is essential for the agenda of trying to understand

how our nervous systems behave; and also recognized as

an important objective to realize future technologies that

humans can trust (Castelvecchi 2016; Parr and Pezzulo

2021).

We start with a brief overview of generative models,

with a focus on the representation of trajectories with a

sequential or ordinal aspect (Dehaene et al. 2015; Friston

and Buzsaki 2016). While sequences can be formulated in

terms of differential equations in continuous time, their

behaviour is often captured more simply through a series of

discrete transitions. This is followed by examples in which

different sorts of behaviour emerge when these generative

models are integrated over time to simulate sentient

behaviour. We touch upon formulations of moving and

planning of the sort required to generate handwriting and

limb movements, and upon forms of communication that

range from birdsong to language. As we will see through

these examples, one of the key benefits of formulating our

internal models in terms of discrete sequences is that it

simplifies the process of planning—i.e., the adjudication

between alternative future sequences of states.

Generative models

A generative model specifies the mechanisms by which

sensory data are generated. It normally takes the form of a

joint probability distribution over the data and the things

necessary to explain those data. Figure 1 highlights the

central role of a generative model in active inference. In

brief, different kinds of creature—or different kinds of

person—might expect to encounter different distributions

of sensory input, depending upon their preferred environ-

ments and behaviour. These distributions can be highly

context sensitive and depend upon things that are not

directly observed. Such dependencies are captured in the

generative model that the creature (or person) uses to

explain their sensations. Crucially, it is the creature’s

generative model that guides its active engagement with

the external environment, i.e., its action-perception cycle

(Fuster 2004).

The pink circles connected by arrows in Fig. 1 provide a

formal illustration of the action-perception cycle of a

generic active inference creature, in which states of the

external world (x) cause sensory data (y). Sensory data

could mean patterns of photoreceptor activation,

somatosensation, or any other modality. These data induce

perceptual belief updating, operationalized as the optimi-

sation of a probability distribution (q(x)) so that it

approximates the posterior probability p(x|y) of states of the

external world given the sensory data sample, under an
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internal (generative) model p(x,y). Given sensory data and

our beliefs about their causes, we generate actions (a) to

change the external world and our sensory input to better

conform to our model of the world. Both action and per-

ception minimise a quantity called free energy (F) which

depends upon our beliefs about the world, our sensory

input (and via this on action), and on our internal model.

The blue panel unpacks free energy to aid intuition. It can

be formulated as the difference between a Kullback–Lei-

bler divergence—which measures the discrepancy between

beliefs (q(x)) and the posterior probability (p(x|y))—and the

log evidence or marginal likelihood for a model (p(y)).

When perceptual inference has closed the gap—quantified

by the divergence—action maximises the evidence term

(i.e., self-evidencing dynamics (Hohwy 2016)). An alter-

native interpretation of the evidence is as a distribution of

sensory data compatible with life, at which point self-evi-

dencing is simply homeostatic control (Cannon 1929). Free

energy can also be expressed—from the perspective of

Bayesian statistics—as the difference between the com-

plexity of a model and the accuracy with which it predicts

data (Penny 2012). In machine learning, it is often referred

to as an evidence bound (Winn and Bishop 2005). This

emphasises its interpretation as a measure of model fit. The

symbol DKL indicates a Kullback–Leibler divergence. The

E symbol indicates an expectation (or average).

The perception-as-inference perspective offered by

active inference has roots in Helmholtzian psychology and

the notion of unconscious inference (Helmholtz 1866) and

perception as hypothesis testing (Gregory 1980). In addi-

tion to their role in helping us explain our world, generative

models specify how we expect our world to be. We can

correct deviations from this expectation through acting to

change our sensory input, so that it coheres with our model:

i.e., the generative model is not just ‘descriptive’ but also

‘prescriptive’, as it guides our behaviour. This is the idea

underneath the principle of homeostasis (Cannon 1929),

and modern formulations in terms of the underlying

stochastic physics (Friston 2019), which says that devia-

tions from some allowable distribution of sensations should

be corrected through (active) negative feedback mecha-

nisms. By engaging negative feedback mechanisms—to

render sensory data more probable under a generative

model—the resulting data then afford better evidence for

that model. For this reason, this is sometimes referred to as

self-evidencing (Hohwy 2016).

In neurobiology, the above formulation reduces to an

account of spinal (e.g., motor) and brainstem (e.g.,

Fig. 1 Active inference. This figure summarises the central idea in

active inferential formulations of brain function. The pink circles

connected by arrows illustrate an action-perception cycle (Fuster

2004) in which states of the external world (x) cause sensory data (y).
Crucially, in active inference, both action and perception minimise a

quantity called free energy (F), which is shown in the blue panel.

Perception corresponds to belief updating and the optimisation of a

probability distribution (q(x)), so that it approximates the posterior

probability p(x|y) of states of the external world given the sensory

data sample, under an internal (generative) model p(x,y). Action

selection corresponds to generating actions (a) to change the external

world and our sensory input to better conform to our model of the

world. See the main text for explanation
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autonomic) reflexes. By comparing top-down predictions

carried in descending motor tracts to the data carried by

proprioceptive afferents, these circuits modify the firing

rates of motoneurons (Shipp et al. 2013; Adams et al.

2013a). The resulting changes in muscle length brings the

proprioceptive signal into line with the top-down predic-

tions (Feldman and Levin 2009). On this view of beha-

viour, the key problem the brain must solve is how to get

the predictions right. This brings us back to the importance

of optimising the generative model used to generate these

predictions. An important feature of biologically plausible

generative models is that they are dynamic. They must

account for dynamic changes in the outside world that

cause sensory input. In addition, they must account for the

actions of the creature employing that generative model.

This raises an important question about the ways in which

the brain might represent dynamical systems.

Figure 2 illustrates the behaviour of an example system

that we can use to unpack the central concepts behind these

dynamical representations. The construction of the system

is described in the legend and results in an orbit (in 4-di-

mensions) that visits the maximum for each coordinate in

turn—much like the ecological example of predators and

prey in the introduction. Each coordinate is associated with

a point in a 2-dimensional space. A particle in this 2-di-

mensional space is drawn to each of these points as if

attached to a spring connecting it to that location. The

spring constants for each point are scaled by the normalised

coordinates in the 4-dimensional system. The result is a

relatively complex orbit in the 2-dimensional system, in

which the particle is sequentially drawn to the different

attracting points. This construction represents a method for

generating arbitrary orbits, which might differ in the

locations of the attracting points or the order in which they

are visited.

The system in Fig. 2 is straightforward to represent

using continuous differential equations describing the

evolution of each part. However, the sequential aspect of

these dynamics suggests an alternative, simpler represen-

tation. Specifically, we could follow the approach taken in

the field of symbolic dynamics (Morse and Hedlund 1938);

a branch of dynamical systems theory that assigns symbols

to parts of a dynamical state space and represents a tra-

jectory in terms of the transitions of the system from one

symbol to another. Figure 3 illustrates this graphically,

displaying the orbit in terms of a set of arrows mapping

between alternative attracting points. In addition, it shows

what happens when we rotate the original 4-dimensional

orbit, such that the order in which the attracting points are

visited (i.e., the order in which the springs are tightened)

changes. The result is a simple representation of the sys-

tem’s dynamics in terms of a set of allowable transitions.

While complex and interesting dynamics can be gener-

ated from sequences of fixed points, these are more akin to

the dynamics associated with central pattern generators

(Marder and Bucher 2001) than to autonomous, purposeful,

behaviour. To make the leap from the former to the latter,

we need some way of adjudicating between alternative

sequences—like those shown in Fig. 3—given some

Fig. 2 Sequences in continuous dynamical systems. This figure sets

out the key theme of this paper. It illustrates the emergence of discrete

sequences from continuous dynamical systems, and the way in which

these can be used to direct behaviour. The upper left plot shows an

orbit in a 4-dimensional space (omitting one of these dimensions for

plotting). The upper right plot shows all four coordinates (v) of this
orbit as they evolve through time. An orbit of this sort can be regarded

as a linearised version of a generalised Lotka-Volterra system, which

has a saddle point at the origin such that a decrease along one-

dimension (e.g., predator population) results in an increase along

another dimension (e.g., prey population). The middle plots show a

normalised version of this orbit (using the symbol r to indicate a

normalisation function), such that the coordinates at each point sum to

one. The lower left plot shows the behaviour of a system in which

each coordinate of the normalised orbit is associated with the spring

constant in one of a set of springs placed in different locations of a

2-dimensional space—all attached to the same particle in this space.

This means each spring is sequentially tightened, giving rise to the

trajectory of the lower left plot. The evolution of the coordinates of

this trajectory is shown in the lower right plot
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motivational goal. Under active inference, the drives that

motivate choices between alternative sequences are for-

mulated as prior beliefs. This means that motivational

drives become part of the generative model, representing

explanations1 for different behaviours or policies. Just as in

Fig. 1 we scored inferences according to their free energy,

Fig. 3 shows how we can score policies according to their

expected free energy (Friston et al. 2020b). This quantity

represents the cost of pursuing a policy, which can be

decomposed into a risk and an ambiguity penalty. Formally

speaking, the risk is analogous to the complexity cost in

Fig. 1. Similarly, ambiguity is (loosely speaking) the

expected inaccuracy, where both risk and ambiguity are

evaluated under the sensory outcomes that are expected,

under the policy in question.

To understand these quantities, we must draw a dis-

tinction between those things that can be observed directly

(i.e., sensory data) and the hidden states (i.e., explanatory

variables) that generate them and must be inferred. Our

discussion so far has focused upon the dynamics of hidden

states of the world. However, to engage with these states,

they must have sensory consequences. Risk is defined as

the divergence between a distribution of preferred sensory

inputs (e.g., homeostatic set points) and the distribution

anticipated under a given policy. Framing this in terms of

Fig. 3, if we knew that the yellow state was associated with

a distribution of sensory outcomes incompatible with our

1 It may seem unintuitive to frame motivational drives as explana-

tions for behaviour as opposed to the things guiding selection between

alternative behaviours. However, this inversion is central to the active

inferential formalism. It speaks to the fact that when a motivational

drive causes one to behave in a particular way, that drive becomes an

explanation for the behaviour.

Fig. 3 Alternative sequences. This figure illustrates a key problem

associated with intelligent behaviour: given multiple possible plans or

sequences (e.g., sequences of locations to be visited to reach a

destination), how do we select among them? Two possible sequences

of transitions between attracting points are given for the system in

Fig. 2 through providing two different orientations for the orbit

generating the sequence—shown here schematically on the left

through the different patterns of transitions between the attracting

points (indexed by s). These lead to different behaviours for the

dynamical system, shown on the right. Interpreting each set of

transitions as an alternative behavioural policy (indexed by p), we are
left with the question as to how to select between policies. Under

active inference, this is formulated as a Bayesian inference problem,

in which prior beliefs about each policy are scored by the expected

free energy (G) under that policy. This quantity is shown in the blue

panel and is decomposed into two complementary interpretations that

are unpacked in the main text. As in Fig. 1, the distributions indicated

by p represent the generative model, while the distributions indicated

by q are the beliefs obtained through minimising free energy. The

C variable is a parameter of a distribution over prior preferences
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preferences (i.e., it is risky), we might favour sequences in

which the yellow state is omitted or features less fre-

quently. Ambiguity is a measure of the confidence with

which we can predict sensory data given the hidden states

that caused them. Ambiguity aversion would lead us to

favour sequences in which states that precisely predict

sensory data feature more frequently than those with a

broader distribution of outcomes (Parr and Friston 2017).

An alternative way of carving up the expected free

energy is shown in Fig. 3, highlighting its decomposition

into intrinsic and extrinsic value terms. Intrinsic value is

the information gain expected on pursuing a policy

(Lindley 1956). In other words, it is the change in beliefs

about hidden states anticipated on observing sensory data,

averaged under the distribution of sensory data anticipated

under that policy. Maximising this quantity results in

explorative behaviour and active sensing (Mirza et al.

2016, 2018; Itti and Baldi 2006; Itti and Koch 2000; Yang

et al. 2016; Donnarumma et al. 2017). Extrinsic value

represents degree to which anticipated data cohere with the

creature’s preferences. This quantity promotes exploitative

behaviour (Todorov 2007; Kinjo et al. 2013) of the sort that

predominates in most reinforcement learning settings

(Sutton and Barto 1998). In sum, expected free energy

balances exploratory and exploitative drives through

combining them into a single quantity. When there is a

stark difference between preferences for outcomes under

different policies, the exploitative part dominates. In

uncertain contexts, the explorative part supervenes. Taken

together, these contributions to the expected free energy

introduce agency into the model, expressing a prior belief

that we will act in a goal-directed and information seeking,

curiosity-driven manner.

Figure 4 summarises the anatomy of two sorts of gen-

erative model based upon alternative representations of

dynamical systems, formulated in continuous time (left)

and discrete time (right). The details are unpacked in the

legend, but the key points are as follows. Each model

provides a graphical expression for the factors of the joint

probability distribution over hidden states and sensory data.

In Fig. 4, everything above the sensory data nodes (y) is

the generative model. Everything below illustrates the

structure of the inversion scheme used to solve the infer-

ence problem is shown. This mirrors the structure of the

generative model and depends upon the passing of mes-

sages (shown as blue arrows) among nodes of a network.

Message passing of this sort has been associated with the

dynamics of neuronal networks, where messages are pas-

sed across synapses (Friston et al. 2017a; Parr et al. 2019;

Parr et al. 2022; Pezzulo et al. 2018). The generative model

shown on the left of Fig. 4 is formulated in continuous

time, using the coefficients of a Taylor series expansion of

the coordinates of some system to represent a trajectory

(Friston et al. 2010). The model on the right is formulated

as a sequence of transitions, with discrete time steps. The

transition probabilities vary with the policy selected, where

the prior over policies is determined by their negative

expected free energy.

Each of these models can be extended to an arbitrary

level of complexity, through addition of additional

dimensions or factors of hidden state variables, or through

hierarchical composition of the models of Fig. 4 to account

for separable timescales of the modelled dynamics. For

details on hierarchical expansion of these models, please

see (Friston et al. 2017b). Having said this, it is normally

desirable to limit model complexity unless an increase in

complexity affords a corresponding increase in the accu-

racy with which data can be explained (Jefferys and Berger

1992). In subsequent sections, we draw from examples in

computational neuroscience in which these two (continu-

ous and discrete) approaches have been adopted.

Moving and planning

This section moves from the relatively abstract treatment

above and showcases two examples in which generative

models have been used as a basis for autonomous motor

behaviour and planning. First, we describe a generative

model that has been used to simulate the complex trajec-

tories required for handwriting (Friston et al. 2011). This is

based upon the kinds of sequences we saw in Fig. 2. We

then turn to a more deliberative example in which the

sequence-generating part of the dynamics were replaced

with a discrete-time model to simulate a simple coordina-

tion task (Parr et al. 2021). Together, these demonstrate the

autonomous behaviour that can be developed from models

comprising sequences of attracting points, and the way in

which we can efficiently select between alternative

sequences once formulated in discrete time intervals. Fur-

thermore, these two examples illustrate that active infer-

ence models can be used to simulate the neuronal dynamics

that one should expect to observe under the hypothesis that

the brain maintains a generative model of sequential

dynamics. These include the winnerless competition

between neural populations that we might anticipate given

sequences of attracting points, and the periodic belief

updating—manifesting as local field potentials—we would

expect given a model articulated in terms of a discrete

sequences.

The handwriting model is based upon the generative

model and accompanying message passing (i.e., belief

updating) illustrated on the left of Fig. 4. The first thing we

need to do—to understand this model—is to consider the

sorts of sensory data we would have to explain on

observing ourselves writing. This includes both proprio-

ceptive signals as we move our joints, and visual input, as
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we see our arm and hand moving. So, what are the

explanatory variables we need to account for these sensa-

tions? They are simply the angles of the joints in our arm

and their instantaneous rates of change—i.e., the hidden

states. However, a static mapping from these variables to

our visual and proprioceptive sensations is not enough to

explain the trajectories we would expect on tracing out

letters. For this, we need to incorporate dynamics in these

hidden states. This involves equipping the model with a set

of abstract hidden states that evolve according to the Lotka-

Volterra equations. These are developed from the same sort

of predator–prey interactions described in the introduction.

An example of the inferred trajectory of such states is more

superimposed on the image of the brain in the upper part of

Fig. 5. Just as in Fig. 2, the sequential peaks in these states

can be associated with fictive attractors to which the arm is

pulled. These are fictive in the sense that there are no

springs in the real world pulling our arm as we write.

However, if incorporated in the generative model, we can

predict the dynamics that would result if such attractors

were pulling our hand around the letters. Finally, low level

reflexes cause the data that would be explained by this

model. In other words, the arm moves to fulfil proprio-

ceptive and visual predictions—which represent the

Fig. 4 Generative models for continuous and discrete time. This

figure, adapted from Friston et al. (2017b) to which we refer readers

for technical details, illustrates two ways of formulating a generative

model of a dynamic process. Everything above the sensory data nodes

(y) is the generative model. Everything below represents the inversion

of the generative model. The models are shown as factor graphs

(Loeliger et al. 2007). These use squares to indicate factors of a

probability distribution, and circles to indicate the variables con-

nected by those factors. For instance, the square labelled g in the left

plot indicates the probability of data given continuous states (x).
Similarly, those labelled A in the model on the right indicate the

probability of data conditioned upon discrete states (s). The prime (0)
notation in the model on the left indicates a temporal derivative. This

means the factors connecting states in the horizontal direction (f, f0, f0 0,
…) represent the relationship between position, velocity, acceleration,

and so on—effectively providing a summary of a trajectory based

upon the coefficients of a Taylor series expansion. In contrast, the

subscripts in the model on the right relate to the discrete time step

associated with that state. As such, the transition probabilities (B) tell
us the probability that a state takes on a particular value one step in

the future, given the present state. This transition is itself conditional

upon the action (u) selected at that time that, in turn, is determined by

the policy (p). The x symbols are normally distributed fluctuations.

The E symbol indicates a zero-mean normal distribution. The blue

arrows indicate the message passing required to minimise free energy.

The red arrows show those messages needed to compute the expected

free energy and, via this, the expected policy (p). The form of these

messages take include prediction errors (e) and expectations (l or

s) and underwrite theories of neurobiological message passing

schemes such as predictive coding (Friston and Kiebel 2009; Rao

and Ballard 1999; Srinivasan et al. 1982) and those based on

variational message passing (Parr et al. 2019; Friston et al. 2017c;

Dauwels 2007)
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anticipated data on engaging in writing behaviour. An

example trajectory is shown in the upper part of Fig. 5.

Implicit in this perspective on handwriting, and other

complex motor trajectories, is the idea that movement can

be chunked into a sequence of short trajectories (Wymbs

et al. 2012) and micromovements (Navas and Stark 1968;

Miall et al. 1993; Woodworth 1899; Doeringer and Hogan

1998). Given this, we could simply omit the additional

hidden state dimensions required to generate the sequential

dynamics, and work in discrete time instead as in the right

of Fig. 4. On doing so, it becomes simpler to adjudicate

between alternative transition probabilities, and to generate

more purposeful behaviour. As an example, consider the

problem shown in the lower part of Fig. 5. Here we have an

arm in a 3-dimensional space, and three possible targets

depicted as black and white spheres. One of the three

spheres is black at any given time, but this can swap

between spheres periodically. The task is to move the hand

to the black sphere. How do we formulate this task as a

generative model? As in the handwriting example, we must

first identify the data we must explain. In addition to the

proprioceptive and visual data pertaining to the arm, we

also need to explain the visual data from the target spheres.

The model developed to solve this task combined a

continuous model, like that described for the handwriting

model, with a discrete time model. This has the effect of

piecing together a sequence of continuous trajectories. At

each discrete time step, a new attracting point and target

(black) sphere was predicted. However, there was no pre-

defined sequence of attracting points as in the handwriting

example. More precisely, there were several possible

sequences of points (i.e., policies) that could have been

chosen. To adjudicate between these, the expected free

energy of each sequence was computed, under the prior

belief (or preference) that the hand location is the same as

that of the target sphere. This meant those policies

involving sequences of points—that ended at the target

sphere—had a lower expected free energy, rendering them

more plausible. Figure 5 illustrates two frames in which a

fictive attracting point is first placed at an intermediate

point between the hand and the sphere, and then at a point

coinciding with the sphere as the hand is drawn towards it.

As above, the predicted attracting points have conse-

quences for proprioceptive predictions, which themselves

are fulfilled through spinal reflex arcs.

There are many applications of generative models in

motor control. Other examples we could have chosen

include the use of Lotka-Volterra systems to time respon-

ses in a cerebellar conditioning paradigm (Friston and

Herreros 2016), the use of harmonic oscillators to model

whisker dynamics (Mannella et al. 2021), or the use of

attracting points in motivating reaching behaviours in a

robotic system (Pio-Lopez et al. 2016). We have chosen

two examples that emphasise sequential processing, and

the emergence of purposeful autonomous behaviour. The

handwriting example illustrated how visiting a series of

attracting points in sequence lets us specify arbitrary tra-

jectories. The coordination task goes beyond this to the

Fig. 5 Sequential movements. This figure illustrates the use of

sequences of fixed points to develop complex motor behaviours. The

upper part of this figure illustrates handwriting behaviour, resulting

from inversion of a generative model. The sequential Lotka–Volterra

dynamics are shown superimposed on the image of the brain, with

each peak mapped to the attracting point with the corresponding

colour in the sample of synthetic handwriting shown. The handwriting

is generated by visiting the series of attracting points, assuming the

paper beneath the hand is moved to the left as the arm continues to

write. The lower plot shows motor control using an arm with three

degrees of freedom. The plot superimposed upon the brain shows

simulated local field potentials, generated as described in Friston et al.

(2017c). They represent the updating of beliefs about the fixed points

selected at each discrete time point. The frames shown below

illustrate the fictive fixed points selected by the discrete model, and

the movement of the arm towards these points. The graphics for these

figures are adapted from the simulations described in Friston et al.

(2011) (handwriting) and in Parr et al. (2021) (coordination). The

winnerless competition superimposed on the upper image and the

local field potentials superimposed on the lower image represent the

different kinds of neural responses we might expect to measure under

each sort of generative model
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adjudication between alternative sequences to fulfil a

goal—i.e., planning.

Language and communication

In this section, we turn to the application of active infer-

ence to communication, to show that the same computa-

tional principles that we have used to explain perceptual

and motor control might also underlie advanced forms of

(social) cognition. We highlight the recent move from

accounts of communication in terms of coupled dynamical

systems—of the sort used to simulate birdsong—to more

linguistic communication defined in terms of sequences of

words intended to convey meaning. First, we must specify

what is meant by communication. There must be at least

two creatures, such that each has a conspecific to com-

municate with. Each must be able to take action that

influences the sensorium of the other. Successful commu-

nication results in a (generalised) synchronisation of beliefs

between the two–or in the formation of a common ground

in psycholinguistics parlance (Clark and Brennan 1991).

Figure 6 illustrates the behaviour of a pair of songbirds.

Their generative models—which are identical to one

another—are based upon coupled Lorenz attractors (Kiebel

et al. 2009). Lorenz systems exhibit a chaotic itinerancy

that lends them an appearance of autonomy (Kuznetsov

et al. 2020; Lorenz 1963). The generative model used by

the songbirds to explain auditory and proprioceptive (la-

ryngeal) data comprises a high-level Lorenz system (sec-

ond level hidden states) that predicts the parameters of a

low-level Lorenz system (first level hidden states), which

causes auditory data. When one bird hears the other sing-

ing, it updates its beliefs about the hidden states causing

these data. When it hears nothing, brainstem reflexes cause

the bird to produce the sounds predicted by its model. In

Fig. 6, the birds take turns to sing. The key insight from

this figure is that the auditory data produced by the two

birds is sufficient for the two to synchronise their expec-

tations about the states of the generative model. Put simply,

both birds are trying to predict their auditory sensations and

both birds (take it in turn to) generate those sensations.

Maximum predictability is assured when they both predict

and generate the same thing.

This communication by synchronisation again depends

upon the continuous time generative model shown on the

left of Fig. 4. However, there is much to be gained through

moving to discrete time models in understanding linguistic

communication. Partly, this is for the same reason as we

saw in the context of movement: it is simpler and more

efficient to select among alternative sequences than tra-

jectories that vary along continuous dimensions. However,

it is also due to the discrete nature of language, which

comprises units such as phonemes, words, sentences, and

so on (Chomsky 2017). Figure 7 reproduces the results of a

simulation from Friston et al. (Friston et al. 2020a) that

exploits this discrete form. The set-up involves a pair of

agents who can ask and respond to questions to find out

about a spatial scene, in the style of a game of 20 questions.

The underlying generative model is a discrete time model

of the form shown on the right of Fig. 4. The hidden states

are organised into those that evolve over a slow and a fast

timescale. The slower timescale includes the narrative

structure (i.e., whether the question currently being asked

or answered), the topic of the question being asked (e.g.,

about shapes, locations of objects in a scene, or their col-

our), the structure of the scene, and the relevant nouns,

adjectives, and prepositions that can be slotted into the

question. These combine to generate sequences of hidden

states at the faster timescale, with an appropriate syntactic

structure and semantic content. From these, the spoken

words can be predicted.

By selecting between alternative sequences for the topic

of the question and the specific words to slot into this, the

agents can solicit answers from one another. In the motor

control example above, the selection between these

sequences was driven mostly by the preference for reach-

ing the target. This depended upon the extrinsic value or

risk term in the expected free energy. However, in this

linguistic setting, questions are driven purely to gain

information—emphasising the intrinsic or epistemic value

in the expected free energy. Figure 7 shows how an agent,

initially uncertain about the scene, asks a series of ques-

tions that resolve her uncertainty about the objects in the

scene such that, when queried, she can accurately answer

questions about the scene.

As in the previous section, these two examples—the

songbirds and the question game—were chosen to illustrate

the expression of autonomous dynamics in a continuous

generative model, and the explicit discretisation into

sequences that have been employed in more recent models.

Both forms of models have found broad application,

including in computational psychiatry. For example, the

songbird model has been developed to explain pathologies

of inference, such as auditory hallucinations of the sort

found in schizophrenia (Adams et al. 2013). Discrete

models based upon linguistic communication have fur-

thered this, focusing upon the verbal (Benrimoh et al.

2018) and context sensitive (Benrimoh et al. 2019) aspects

of these hallucinations in psychosis.

To this point, we have ignored a (possibly ubiquitous)

issue surrounding the use of temporally discrete generative

models to account for sequential dynamics. This is that

each element of the sequence, once expressed in the con-

tinuous domain, may have a different temporal duration.

Language provides an intuitive example of this problem:

different words take different lengths of time to vocalise.
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Inferences about sequential causes of continuous data

therefore require segmentation of that sequence. This

problem has been addressed under the same (active infer-

ence) framework detailed above in the context of active

listening (Friston et al. 2021). The idea is that, by

comparing the marginal likelihood—or free energy

approximations to this quantity—of alternative boundaries

for words in a continuous auditory stream, we can select

the boundary associated with the greatest marginal likeli-

hood. Effectively, this treats alternative word boundaries as

Fig. 6 Synthetic birdsong. This figure, reproduced from Friston and

Frith (2015), illustrates a simple form of communication based on a

generative model for birdsong. The underlying generative model,

shared between two birds, uses two chaotic (Lorenz) dynamical

systems. At the second level, a slow Lorenz attractor predicts

parameters of the faster Lorenz attractor at the first level, which itself

predicts sonographic data. By minimising free energy through action,

the birds reflexively generate the songs they expect to hear. This

means generating no sound when one bird hears the other sing and

singing when there is silence. Minimising free energy through

perceptual inference allows the birds to synchronize their internal

narrative, such that the segments of the song they sing in turn cohere

as part of a single (musical) narrative. The blue and red lines in the

middle and lower plots indicate the beliefs (expectations) held by

each of the two birds about the states of the Lorenz systems. The

shading indicates which of the two is singing at each point. Note the

synchronisation between the beliefs of the two birds based upon the

auditory data they take turns to generate
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hypotheses. Comparison of the evidence for each hypoth-

esis allows us to select the most parsimonious

segmentation.

Figure 8 illustrates this for an acoustic signal in which a

speaker repeats the words ‘triangle’ and ‘square’ and the

listener attempts to identify the words out of a (small)

vocabulary. Plausible segmentation boundaries are identi-

fied based upon a thresholding of the spectral envelope, and

then are compared to arrive at a segmentation. The simu-

lated neuronal firing plot illustrates the inferential solution

to this problem, with neural populations representing

alternative words. These represent each word for different

lengths of time but are non-overlapping—illustrating the

segmentation of continuous data into a discrete sequence.

While applied in the context of listening, the principles

underneath this segmentation are generic, reflecting the

fact that the problem of segmenting continuous streams of

observations into discrete events is ubiquitous in cognitive

processing (Kurby and Zacks 2008). These Bayesian

principles depend upon the idea that the brain employs a

generative model to explain continuous data whose causes

have a sequential aspect, and that the model can be opti-

mised by maximising its marginal likelihood.

Conclusion

This paper set out to showcase the use of generative models

that, under active inference, give rise to autonomous

behaviour. In brief, this depends upon the idea that crea-

tures implicitly employ models that help them to explain

their sensory input and to help guide action. More formally,

this means perception and action both contribute to the

maximisation of the marginal likelihood of an implicit

generative model—via variational approximations to this

quantity. Our focus has been on the notion that many

cognitive processes depend upon discrete sequences, and

that this is reflected in the form of the dynamics in gen-

erative models. This includes the predator–prey like

dynamics that mediate a winnerless competition in con-

tinuous generative models. However, it also includes the

more explicit discrete time models that are used to account

for planning and decision-making. These alternative

Fig. 7 Linguistic

communication. This figure,

reproduced from Friston et al.

(2020a), illustrates a simulation

of a simple game based upon 20

questions. The agent is

represented by the silhouette

icon, and her beliefs are

illustrated by the central scene

in each panel with the two

shapes. The correct scene is

indicated by the green and red

squares on the right of each

panel. As she asks a series of

questions (panels A-D), her

beliefs about the scene resolve

into veridical beliefs, at which

point she can correctly answer

two questions about the scene

(panels E–F)
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framings of the dynamics have consequences for the

anatomy of the neuronal circuits solving generative mod-

els, and for the activity of the neurons in these circuits. The

abstract notion that sequential dynamics are an important

part of our internal models gets us only so far. To make this

idea useful, it is necessary to commit to specific forms of

generative model to explain specific behaviours or

neuronal responses. To this end, we outlined examples in

motor control and linguistic communication that exploit

these sequential dynamics, and briefly touched upon the

challenge of segmenting a continuous timeseries into a

sequence. These included modelling of the complex tra-

jectories of the sort observed in handwriting using, a

3-dimensional reaching task for a 2-jointed arm, the

emergence of generalised synchrony through song, a sim-

ple language game, and the segmentation of words from a

continuous stream of auditory data. However, the same

perspective can be applied to any other kind of sequential

dynamics. Much of the complexity consists in specifying or

learning an appropriate generative model for the task at

hand. When the generative model is in place, the beha-

vioural and neural dynamics of any active inference system

are reproduced using exactly the same (variational) infer-

ence scheme, which is computationally efficient and can be

in principle extended to deal with large state spaces

(Maisto et al. 2021). Central to all the above is the idea that

cognitive systems are self-evidencing. This does not just

mean that we behave in such a way as to maximise evi-

dence for some implicit generative model. It also implies

that the model must include ourselves, the decisions we

make, and the sequences of events these cause.
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Frölich S, Marković D, Kiebel SJ (2021) Neuronal sequence models

for bayesian online inference. Front Artfi Intell. https://doi.org/

10.3389/frai.2021.530937

Fuster JNM (2004) Upper processing stages of the perception–action

cycle. Trends Cogn Sci 8:143–145. https://doi.org/10.1016/j.tics.

2004.02.004

Gregory RL (1980) Perceptions as hypotheses. Phil Trans r Soc Lond

B 290:181–197. https://doi.org/10.1098/rstb.1980.0090

Helmholtz H v (1866) In: Treatise on physiological optics Vol. 3 (ed

J. P. C. Southall) (Dover, 1866).

Hohwy J (2016) The self-evidencing brain. Noûs 50:259–285. https://
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