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Abstract 

Background Computational text phenotyping is the practice of identifying patients with certain disorders and traits 
from clinical notes. Rare diseases are challenging to be identified due to few cases available for machine learning and 
the need for data annotation from domain experts.

Methods We propose a method using ontologies and weak supervision, with recent pre‑trained contextual repre‑
sentations from Bi‑directional Transformers (e.g. BERT). The ontology‑driven framework includes two steps: (i) Text‑
to‑UMLS, extracting phenotypes by contextually linking mentions to concepts in Unified Medical Language System 
(UMLS), with a Named Entity Recognition and Linking (NER+L) tool, SemEHR, and weak supervision with custom‑
ised rules and contextual mention representation; (ii) UMLS‑to‑ORDO, matching UMLS concepts to rare diseases in 
Orphanet Rare Disease Ontology (ORDO). The weakly supervised approach is proposed to learn a phenotype con‑
firmation model to improve Text‑to‑UMLS linking, without annotated data from domain experts. We evaluated the 
approach on three clinical datasets, MIMIC‑III discharge summaries, MIMIC‑III radiology reports, and NHS Tayside brain 
imaging reports from two institutions in the US and the UK, with annotations.

Results The improvements in the precision were pronounced (by over 30% to 50% absolute score for Text‑to‑UMLS 
linking), with almost no loss of recall compared to the existing NER+L tool, SemEHR. Results on radiology reports 
from MIMIC‑III and NHS Tayside were consistent with the discharge summaries. The overall pipeline processing clinical 
notes can extract rare disease cases, mostly uncaptured in structured data (manually assigned ICD codes).

Conclusion The study provides empirical evidence for the task by applying a weakly supervised NLP pipeline on clin‑
ical notes. The proposed weak supervised deep learning approach requires no human annotation except for valida‑
tion and testing, by leveraging ontologies, NER+L tools, and contextual representations. The study also demonstrates 
that Natural Language Processing (NLP) can complement traditional ICD‑based approaches to better estimate rare 
diseases in clinical notes. We discuss the usefulness and limitations of the weak supervision approach and propose 
directions for future studies.
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Introduction
Text phenotyping is the task of extracting diseases or 
traits of patients from clinical notes, which can benefit a 
wide range of tasks like cohort selection, epidemiologi-
cal research, and decision making for better clinical care. 
A particular set of human phenotypes are rare diseases: 
a rare disease is very uncommon, affecting 5 or fewer 
people in 10,000, but there are between 6,000 and 8,000 
rare diseases and they collectively affect approximately 
3.5-5.9% of the population (or 263-446 million persons) 
globally [1] (and over 1 in 17 people in the UK [2] and 
8% of population in Scotland [3]) at some point in their 
lifetime. Compared to common diseases, rare diseases 
are usually not coded in a precise manner, this is partly 
because they are under-represented in the current, ICD-
10 (International Classification of Diseases, version 10) 
terminologies [4, 5]. Detailed information about a patient 
is usually hidden in unstructured, clinical narratives. 
It is thus necessary to use clinical notes with Natural 
Language Processing (NLP) techniques to complement 
coded data to identify rare diseases in patients.

The main challenge for rare disease identification with 
NLP is the lack of annotated data for machine learning, 
especially deep learning. Deep learning models for clini-
cal note classification tend to perform worse for infre-
quent diseases due to the lack of cases for training [6]. On 
the other hand, annotating a variety of rare diseases in 
clinical notes from scratch needs specific domain exper-
tise. This also requires the manual annotation of a very 
large number of clinical notes to ensure enough cases for 
each rare disease, thus taking time and incurring consid-
erable costs from a group of clinical experts.

We propose an ontology-driven and weakly supervised 
framework for rare disease identification from clinical 
notes, extending our previous work in [7] with further, 
detailed empirical analyses and external validation. 
Ontologies are essential for text phenotyping as they pro-
vide a curated list of terms of diseases and traits. Previous 
studies have used ontologies to estimate the frequency of 
rare diseases [8]. Our main ontology-driven framework is 
illustrated in Fig. 1.

We use Orphanet Rare Disease Ontology [9] as the 
list of vocabularies of rare diseases1. We then leverage 
the concepts and synonyms in Unified Medical Lan-
guage System (UMLS) as an intermediary dictionary to 
extend matching terms and address the issue of name 
variation [12] in linking texts to rare diseases, e.g. “tra-
cheobronchomalacia” for Williams-Campbell syndrome. 
The framework thus contains two integrated parts, entity 
linking (Text-to-UMLS) and ontology matching (UMLS-
to-ORDO). Entity linking from mentions (or text frag-
ments) to UMLS concepts is challenging due to the 
ambiguous mentions [8, 12], especially for abbreviations, 
e.g. “HD” which could mean Huntington Disease, Hemo-
dialysis, or Hospital Day. String matching usually does 
not consider the complex contexts of a mention and can 
therefore result in many false positives. Machine learning 

Fig. 1 A pipeline for rare disease identification from clinical notes with ontologies and weak supervision. The upper horizontal lines (in ) show 
the proposed pipeline based on clinical notes (e.g. discharge summaries and radiology reports in US MIMIC‑III and UK NHS Tayside) and ontologies, 
including two steps (Text‑to‑UMLS and UMLS‑to‑ORDO). No annotation data are needed, through a UMLS extraction tool, SemEHR, and weak 
supervision (WS) based on customised rules and BERT‑based contextual representations (see details on WS in Fig. 2). The admission ID and ICD‑9 
codes (linked with dotted lines) are only available for the MIMIC‑III data. The lower, dotted lines show a baseline approach purely based on manual 
ICD codes, also enhanced with ontology matching. (Figure adapted from [7])

1 We focus on the identification of diseases instead of the associated pheno-
typic abnormalities, therefore we chose ORDO instead of Human Pheno-
type Ontology (HPO) [10]. The overall ontology based and weak supervision 
framework can potentially be applied to HPO, given it being aligned to ORDO 
[11]. We leave the phenotypic abnormalities (in HPO) for future studies.
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can be applied for the disambiguation of terms, but it 
needs abundant annotated training data, which are cur-
rently not available in the context of rare diseases.

We therefore propose a weakly supervised approach 
to filter out the false positives in entity linking. Weak 
supervision [13, 14] is a strategy to automatically create 
labelled training data using heuristics, knowledge bases, 
crowdsourcing, and other sources, to alleviate the burden 
and cost of annotation. We first use a string matching 
based named entity linking tool, SemEHR [15] (widely 
applied for text phenotyping in the UK [15–17], based 
on Bio-YODIE [18]) to generate candidate entity link-
ing results, i.e. mentions and their UMLS concepts, from 
clinical notes; then, we propose to efficiently create weak 
training data of candidate mention-UMLS pairs of suf-
ficient quality with two rules, mention character length, 
regarding ambiguous abbreviations, and “prevalence”, 
regarding rare diseases. A phenotype confirmation model 
can thus be learned through contextual mention repre-
sentations with domain-specific BERT models (e.g. Blue-
BERT [19]) to capture the context under-lied in the texts 
to disambiguate the mention to improve entity linking. 
For UMLS-to-ORDO matching, we used the mappings in 
ORDO and corrected the wrong links by filtering ORDO 
concepts with a phenome type as an upper class in the 
ontology [9].

For our main experiments, we trained a weakly super-
vised phenotype confirmation model using the discharge 
summaries in the MIMIC-III dataset [20]. A large, weak 
entity linking dataset (of 127,150 candidate mention-
UMLS pairs) was created for training. For evaluation, we 
annotated 1,073 mention-UMLS pairs as a gold-standard 
dataset. By filtering out the false positives, the proposed 
approach dramatically improved the precision and F1 of 
the entity linking tool, SemEHR, with almost no loss of 
recall.

We further evaluated the phenotype confirmation 
models from discharge summaries to radiology reports 
in US MIMIC-III and UK NHS Tayside through either 
a direct transfer of the model or a weakly supervised re-
training from new clinical notes. Almost perfect (100%) 
recall was achieved with a dramatic absolute increase 
of precision by over 30% to 50% with re-training and 
parameter tuning. This demonstrates that the approach 
can be efficiently adapted to identify rare disease pheno-
types in another type of clinical notes and from another 
institution. Our annotated datasets on discharge summa-
ries and radiology reports in MIMIC-III and our imple-
mentation of the overall approach are publicly available2.

As far as we know, this is the first study on text pheno-
typing of rare diseases using weak supervision, with the 
application on clinical notes of different types and institu-
tions. Our findings will shed light on using weakly super-
vised approaches and contextual representations for text 
phenotyping from clinical notes. The overall approach to 
identifying rare disease cohorts has the potential to sup-
port epidemiology and clinical decision making for better 
care.

Background and related work
Text phenotyping with ontologies. Compared to the 
efficient and gradually economical genotyping (i.e. 
sequencing genomics information), phenotyping usu-
ally needs high-throughput computational approaches 
for the extraction of diseases and traits from electronic 
health records (EHRs) [21, 22]. Clinical codes (e.g. 
with International Classification of Diseases, ICD) are 
a common source typically used regarding their ease 
of retrieval for phenotyping. However, ICD codes are 
usually less specific to define nuanced diseases or traits 
(e.g. rare diseases [4]) and are likely to be incomplete 
or under-coded [23], which may cause erroneous and 
missing cases in phenotyping. An alternative source 
for phenotyping is free-text clinical notes in the EHRs. 
It is shown in a previous systematic review of cohort 
identification from EHRs [24] that text phenotyping (or 
case detection) achieves on average higher precision (or 
positive prediction value) and recall (or sensitivity) than 
code-based phenotyping, and combining both sources 
(texts and codes) achieved greatly improved pheno-
typing results. Text phenotyping also requires under-
standing the wider contextual features of the matched 
concepts, including negation (i.e. whether negated or 
hypothetical), experiencer (i.e. whether experienced 
by the patient or someone else), and temporality (i.e. 
whether historical) [16, 25]. These contextual features 
have been reasonably well detected with rule-based 
approaches, e.g. [25], and applied in Bio-YODIE and 
SemEHR, and more recently with neural network meth-
ods, e.g. in MedCAT [26].

Ontologies are essential for text phenotyping as they 
define the concepts and terms of diseases and traits. 
These concepts and terms are widely used to annotate 
clinical notes, i.e. match to text fragments or mentions 
[27] and to estimate rare diseases from texts [8]. The task 
to match ontology concepts (and their terms) to men-
tions is formally referred to as entity linking. One main 
issue of entity linking is entity ambiguity, where a men-
tion could possibly denote different concepts or terms in 
an ontology [12]. Our work aims to improve entity link-
ing with better disambiguation using weak supervision 
and contextual mention representation.2 https:// github. com/ acadT ags/ Rare- disea se- ident ifica tion

https://github.com/acadTags/Rare-disease-identification
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Weak supervision. Weak supervision [13, 14] is 
a strategy to efficiently create a large set of noisy 
labelled training data in a programmatical way using 
various sources containing heuristics and knowledge 
bases. The success of applying weak supervision in 
clinical NLP studies depends on two aspects, data 
programming and data representation, as suggested 
in [13]. Efficient data programming ensures that reli-
able weak data can be programmatically created for 
supervised learning. In clinical NLP, studies use lexi-
cal or concept filtering rules to create labelled data to 
extract nuanced categories (e.g. suicidal ideation [28] 
or lifestyle factors for Alzheimer’s Disease [29]) from 
clinical texts. We extend over this line of research by 
using ontologies and a medical concept labelling tool 
with two specific rules to create reliable weak data to 
extract rare diseases. The second aspect is data repre-
sentation, representing the contexts and semantics in 
the data into vectors in a high-dimensional space for 
subsequent steps in machine learning. For deep learn-
ing methods, previous studies [13, 29] proposed to 
use neural word embeddings and more recently using 
BERT [30] to represent the contexts of the textual 
data. We follow this direction to apply weak supervi-
sion with contextual representations for rare disease 
phenotyping.

Contextual Representation. The most significant, 
recent progress in NLP is the contextual representa-
tions pre-trained using Transformers [31] from a very 
large corpus [30]. The most representative contextual 
representation is BERT [30]. The pre-training task 
for BERT learns a masked language model with next 
sentence prediction, trained with a vast amount of 
curated texts on the Web (e.g. BookCorpus and Eng-
lish Wikipedia) using a 12 or 24 layered deep neural 
network mainly composed of multi-head self-atten-
tions blocks. The learned parameters in the large 
neural network can then be applied to a wide range 
of downstream tasks, e.g. text classification, Named 
Entity Recognition, and question answering, with 
superior performance than the previous, task-specific 
models [30]. Contextual representations have been 
adapted to the clinical domain by pre-training using 
biomedical publications, clinical notes, and clinical 
ontologies. The notable models include but are not 
limited to BlueBERT [19] (BERT further pre-trained 
with PubMed abstracts and MIMIC-III clinical notes), 
PubMedBERT [32] (pre-trained from scratch with 
PubMed abstracts and full texts), SapBERT [33] (Pub-
MedBERT further pre-trained with UMLS concepts), 
etc. We adapt the contextual representation methods 
for the mentions or text fragments to improve entity 
linking.

Method
In this section, we will describe the ontology-driven 
method, the weak supervision for entity linking, con-
textual mention representation, and model training and 
inferencing.

Entity linking and ontology matching
Entity Linking. Given a set of entities E in an ontology 
and a collection of documents (e.g. clinical notes), entity 
linking aims to match a mention (or text fragment) m to 
its corresponding entity e ∈ E in the ontology [12]. The 
mention m is a sequence of tokens in a document which 
potentially refers to one or more named entities and is 
usually identified in advance during the named entity 
recognition stage [12]. For Named Entity Recognition 
and Linking (NER+L) tools with a very large number of 
entities, e.g. Bio-YODIE [18], SemEHR [15], and Med-
CAT [26], a mention m is recognised at the same time 
when it is linked to a concept in an ontology; this is usu-
ally realised through string matching [18, 26].

We applied SemEHR, a medical NER+L tool widely 
deployed in Trusted Research Environments (or Data 
Safe Havens) and servers in the UK. Previously, high 
recall and F1 (around 90%) were reported on sub-phe-
notyping with stroke from texts with SemEHR [17]. 
The output is a set of mention-UMLS pairs, where each 
mention is in a context window and with a name of the 
document structure (or the template section of the clini-
cal note) if available. SemEHR adapts Bio-YODIE as its 
main NLP module, enhanced with a search interface and 
continuous learning functionalities based on users’ feed-
back labels and rule-based and machine learning meth-
ods. Bio-YODIE can efficiently extract UMLSs from texts 
using a string matching based approach. When there is 
an ambiguous mention, time-efficient NER+L systems 
like Bio-YODIE mainly assume a corpus-based prior to 
assign the same, most frequent UMLS to the mention 
regardless of its context or surrounding texts [18]. This 
can result in many false positive phenotypes, mostly 
regarding the abbreviations in the clinical notes. For 
example in Table 1, none of the identified “HD” mentions 
indicate a type of disease, according to the context. While 
SemEHR has a continuous learning functionality to clas-
sify and correct the errors, the approach relies on users’ 
feedback labels and requires time from clinical experts.

Ontology Matching. Another issue in entity link-
ing is the variations of terms that may be missed in the 
process [12]. This can be addressed by using the rich 
term variations in the metathesaurus UMLS as an inter-
mediary dictionary with ontology matching to match 
concepts in UMLS to ORDO. Ontology matching (or 
mapping) is the task of finding the correspondence 
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between two ontologies [34]. Each correspondence 
is represented as a triple < e, e′, r > , where e and e′ 
denote an entity in the ontology O and O′ , respectively, 
and r denotes a relation that holds between the two 
entities [35, p.  43]. The main form of an entity in an 
ontology is a concept or a class, denoted as c ∈ C [35, 
p.  34]. In ORDO, the matching of an ORDO con-
cept to UMLS and ICD-10 concepts are available as 
cross references [9], for example for Orphanet_3325 
(Heparin-induced thrombocytopenia), there exist cor-
respondences < Orphanet_3325, UMLS:C0272285, E > , 
where the relation E denote “Exact matching”. We use E 
(Exact matching) or BTNT (ORDO’s Broader Term maps 
to a Narrower Term) to ensure the matched term is a 
rare disease (and removed NTBT relations). We further 
added a rule (“isNotGroupOfDisorders”) to filter out the 
Group of Disorders, e.g. Orphanet_181422 (Rare hyper-
lipidemia), which were mostly matched to a common 
disease in the UMLS, e.g. to C0020473 (hyperlipidemia). 
More details and examples of ontology matching are pre-
sented in Table S2-2 in Supplementary material 2.

Weak supervision for phenotype confirmation model
To address the issue of ambiguous mentions, we propose 
weak supervision based on rules for labelled data crea-
tion with context mention embeddings for representa-
tion. When both data and representations are created, 
a classifier can be learned to decide whether a mention 
linked to UMLS in the context indicates a correct pheno-
type of the patient.

Weakly Supervised Data Creation. The idea in the 
weak data creation is to create rules that can comple-
ment the existing tool (e.g. SemEHR) to create reliable 
mention-UMLS pairs for training. The whole data crea-
tion process for weak supervision is described in the 
Algorithm  1. The candidate mention-UMLS pairs from 
an NER+L tool are denoted as a list of 5-element tuples 
L (i.e. links), where each tuple includes a mention start 
position mstart , a mention end position mend , a rare dis-
ease UMLS concept crareUMLS , the context window of the 
mention t, and the name s of the document structure 
where the mention is located. We propose two rules as 
functions on mention-UMLS pairs, mention charac-
ter length rule, �1 , and “prevalence” rule, �2 , as shown in 
the blue blocks in Fig.  2. Given that abbreviations (like 
“HD” in Table 1) are usually ambiguous and falsely linked 
by the NER+L tools, the mention character length rule 
�1 satisfies when the mention has more than l (default 
as 3) characters, i.e. mend −mstart > l , otherwise as 
False. Given that rare diseases usually have a very low 

Fig. 2 Weak supervision process for Text‑to‑UMLS linking. The left four white text boxes displayed the metadata (with examples) of a candidate 
mention‑UMLS pair, identified by a Named Entity Recognition and Linking (NER+L) tool, SemEHR; the coloured text boxes in the middle show the 
contextual representation block (in ) and the rule‑based weak data labelling (in . A binary label is then generated, which weakly 
estimates whether the candidate pair indicates a correct phenotype of the patient. A phenotype confirmation model (in ) is then learned to 
select correct phenotypes from the pairs. (Figure adapted from [7]))

Table 1 Examples of false positives mention‑UMLS pairs in 
entity linking identified from SemEHR and Bio‑YODIE

Each mention is bolded in its context window

Mention in a context window Meaning False positive UMLS

temporary HD line was pulled. Medical device Huntington Disease

... male with ESRD on HD ... Haemodialysis (C0020179) or

... Asacol HD 800 mg Tablet ... Medication Hodgkin Disease

CT scan on HD9 showed ... Hospital Day (C0019829)
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prevalence [3, 36] and rare disease mentions usually have 
a low frequency in a consecutive sample of clinical notes, 
the “prevalence” rule �2 satisfies when the UMLS concept 
represents a very small percentage p (default as 0.5%) in 
the whole number of candidate links |L|, i.e. Freq(c)|L| < p , 
otherwise as False. This is an attempt to integrate an esti-
mated epidemiological rule into weak supervision for 
text phenotyping.

Algorithm 1 Weakly supervised data creation

The final rule-based weak labelling function � is defined 
as True (i.e, mention-UMLS indicates a correct pheno-
type of the patient) when both rules �1 and �2 are satis-
fied, and as False when both rules are not satisfied. The 
data selection is equivalent to an XNOR logic operator 
(selected if and only if both rules are True or both are 
False) and the data labelling is equivalent to an AND 
operator of the rules. This ensures that only data that are 
consistently checked by both rules are weakly labelled. 
The binary weak label, yweak ∈ {0, 1} , is then appended 
to each mention-UMLS pair to create the weakly labelled 
data Dweak.

The mention length threshold l and the “prevalence” 
threshold p are selected to ensure a sufficient amount of 
reliable, weak data generated. We empirically determine 
the best values of l (as 3 or 4) and p (as 0.005 or 0.01) based 
on the validation set or a small number of annotated data 
solely for evaluation (results on MIMIC-III discharge sum-
maries in Table S1-1 in the Supplementary material 1).

Contextual Mention Representation. We use a 
clinically pre-trained BERT model (e.g. BlueBERT, as 
described in the related work) to represent the mention 
in its context window t in the weakly labelled data Dweak . 
A BERT model can be succinctly described as the Eq. 1. 
We excluded layer normalisation, dropout, and other 
functions and parameters in the equations for simplicity. 

The output Hn ∈ R|tokens|,d is a matrix that can be used 
as the layer for the subsequent task, where |tokens| is the 
length of sequence after tokenisation and d denotes the 
dimensionality (usually 768 for BERTnorm and 1024 for 
BERTlarge). FFNN() is a feed-forward neural network 
of two linear transformations with a ReLU activation 
function in between, and MultiHead() is a multi-head 
self-attention layer that models multiple forms of align-
ment from the tokens to themselves; and the three inputs 
represent matrices of queries (Q), keys (K), and values 
(V), respectively, linearly transformed from Hi . We refer 
readers for the details of the Transformers and BERT 
architectures to [30, 31].

The contextual understanding mainly comes from self-
attention (as softmax(QK

T√
dk
)V  , where dk is a scaling fac-

tor) that captures the importance of every other token to 
each token. These parameters have been pre-trained 
based on massive corpora from general and medical 
domains. The hidden layers in BERT, H can be used as 
static embeddings to represent a sequence. We extract 
the second-last layer Hn−1 in BERT as static embedding 
(or features) for the subsequent task, according to the 
results that Hn−1 has the best feature-based results 
among any single layers in H for an NER task [30]. A 
plausible explanation for this is that the last layer is more 
biased towards the training loss (e.g. masked language 
model and next sentence prediction), while the second-
to-last layer better represents the contextual information 
of the sentence.

The selection of the specific BERT model generally 
favours models pre-trained with in-domain (i.e. clini-
cal) corpora [37] and is empirically based on results (e.g. 
F1 scores) on the validation set. We will compare and 
analyse different BERT models in the experiments (see 
Table 4).

The overall weak supervision data representation and 
model training process is described in Algorithm 2. We 
use Hn−1 ← BERT(t) to denote the whole process above. 
Mean pooling, as empirically suggested in [38], is applied 
to create a final vector v. We define a contextual mention 
representation where only the tokens within the mention 
are included, i.e. v ← mean(Hn−1[mtoken

start ,m
token
end ]) . The 

start and end tokens’ position of the mention mtoken
start  and 

mtoken
end  are derived based on the WordPiece tokenizer of 

the BERT model and the original position of the mention.
We also experimented with two encoding strategies, 

mention masking and using document structure name 
s (see line 3 in Algorithm 2), that allow a more flexible 

(1)

Hi+1 = FFNN(MultiHead(WQH
i,WKH

i,WVH
i))

H0 = Embedding(Tokenize(t))
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representation of the contexts. Non-masked encod-
ing with document structures provided better results 
on the validation set (see Table S1-2 in Supplementary 
material 1).

Model Training and Inference. Finally, a pheno-
type confirmation model can be trained from the weakly 
labelled data. The contextual mention representation 
v, as static embedding, is fed into a binary classification 
model. We use logistic regression as the training model 
(in Train_and_validate() in Algorithm 2), which is similar 
to adding a feed-forward layer on top of the static pre-
trained layer in BERT with sigmoid activation. We also 
compared this static embedding approach to fine-tuning 
the whole BERT model in the experiments.

Algorithm 2 Weakly supervised data representation and model training

The inference stage is succinctly defined in Eq.  2. We 
use SemEHR to extract candidate mention-UMLS pairs 
from a clinical note d. We then transform each instance 
into a contextual mention representation (see line 3-6 
in Algorithm  2), denoted as the function VBERT() . After 
selecting the patients’ phenotype in Orare

UMLS with Mweak , 
we can then use the correspondence between UMLS and 
ORDO, denoted as OMU→O , to obtain the final set of 
rare disease phenotypes Cd

ORDO as concepts in ORDO.

Experiments
We evaluated the above ontology-driven and weakly 
supervised algorithms on MIMIC-III discharge summa-
ries and further validated the approach with MIMIC-
III radiology reports and NHS Tayside brain imaging 
reports. For validation and testing, we manually anno-
tated a small number of mention-to-UMLS pairs from 
each of the datasets. We present results on each part of 
the system, Text-to-UMLS and UMLS-to-ORDO. For 
Text-to-UMLS, we carried out extensive experiments to 
study the best combination of parameters in weak label-
ling rules, the encoding strategies, with a comparison 

(2)C
d

ORDO
= OMU→O(Mweak (VBERT(SemEHR(d,Orare

UMLS
)))))

between weak and strong supervision. We then show 
the whole pipeline can support rare disease phenotyp-
ing by enriching the traditional method using ICD codes. 
Finally, we show that the proposed approach can easily 
generalise or be adapted to a new type of clinical note, 
radiology reports, in the same or another institution.

Data processing and annotation
We evaluated the proposed NLP pipeline with three data-
sets in two healthcare institutions in the US and the UK. 
The main dataset we used was the discharge summaries 
(n=59,652) in MIMIC-III (“Medical Information Mart 
for Intensive Care”) dataset [20], which contains clinical 
data from adult patients admitted to the ICU in the Beth 
Israel Deaconess Medical Center in Boston, Massachu-
setts between 2001 and 2012. We were granted access to 
MIMIC-III through PhysioNet after completing the ethi-
cal training by the Collaborative Institutional Training 
Initiative program. MIMIC-III data are supposed to con-
tain rich rare disease mentions, as a large number of rare 
diseases (especially genetic disorders) can lead to an ICU 
(intensive care unit) admission [36].

The manual ICD-9 codes (i.e. ICD-9-CM) of the 
MIMIC-III admissions allow us to compare code-based 
phenotyping with text phenotyping for rare diseases. We 
linked ICD-9 codes to ICD-10 codes using the match-
ing from the Ministry of Health, New Zealand [39] 
and linked ICD-9 to UMLS codes based on the ICD-9 
ontology in BioPortal [40], as shown in Fig.  1. We used 
ORDO version 3.0 (released 07/03/2020), which con-
tained 14,501 concepts or classes related to rare diseases. 
We selected the ORDO concepts which have linkage 
to UMLS and ICD-10 in this study as this supports the 
interoperability (e.g. linking and traversing) among the 
clinical terminologies; this resulted in a set of 4,064 rare 
disease concepts3. We focus on this essential set of over-
lapped rare diseases and the coverage is improving as the 
mappings are being updated; we leave the ORDO con-
cepts without both ICD-10 and UMLS linkage for future 
research.

After processing the discharge summaries with a 
SemEHR database instance4 [15] with rule-based contex-
tual filtering on negation and experiencer based on [25], 
we obtained 127,150 candidate mention-UMLS pairs 
for the UMLS concepts linked to ORDO. After applying 

3 The most 5 frequent UMLS (version 2020AB) semantic types of the 4,064 
linked ORDO concepts: T047 (Disease or Syndrome, 3,245 concepts, 79.8%), 
T019 (Congenital Abnormality, 465 concepts, 11.4%), T191 (Neoplastic Pro-
cess, 374 concepts, 9.2%), T049 (Cell or Molecular Dysfunction, 35 concepts, 
0.9%), and T046 (Pathologic Function, 19 concepts, 0.5%); note that 160 con-
cepts (3.9%) are associated with two semantic types.
4 https:// github. com/ CogSt ack/ CogSt ack- SemEHR

https://github.com/CogStack/CogStack-SemEHR
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the weak labelling function with the two rules, we finally 
obtained 15,598 positive and 74,217 negative data, and 
37,335 non-labelled data or mention-UMLS pairs.

We further applied the same preprocessing steps with 
the MIMIC-III radiology reports (n=522,279) and NHS 
Tayside brain imaging reports (n=156,618). MIMIC-
III radiology reports are from the same institution and 
within the same time span as in MIMIC-III discharge 
summaries [20]. The Tayside data contain the routine 
brain MRI and CT scans from the National Health Ser-
vice (NHS) Tayside Health Board, which have been 
applied in previous NLP research [17, 41]. We have 
received NHS Tayside Caldicott Guardian approval to 
use the anonymised brain imaging reports for this work.

The statistics of the three datasets, MIMIC-III dis-
charge summaries (“Disch”), MIMIC-III radiology 
reports (“Rad”), and NHS Tayside brain imaging reports 
(“Tayside Brain Img”), with the Natural Language Pro-
cessing pipeline and manual annotations, are presented 
in Table  2. MIMIC-III discharge summaries have pro-
portionally more documents associated with at least one 
candidate rare diseases (identified by SemEHR), quanti-
fied by |TRD|

|D|  : 3.4 times more than MIMIC-III radiology 
reports and 13.3 times more than brain imaging reports 
in Tayside.

Data Annotation. For evaluation, we created a gold 
standard dataset of 1,073 candidate mention-UMLS-
ORDO triplets (with each mention in a context window) 
generated by SemEHR and ontology matching in ORDO, 
from a set of 500 randomly sampled discharge summa-
ries from MIMIC-III, of which 312 (or 62.5%) discharge 

summaries have at least one candidate or potential 
“rare disease” mention. There were in total 95 types of 
rare disease associated with the mentions. Annotators 
were asked to label whether a mention-UMLS pair truly 
indicates a phenotype of the patient with an annotation 
guideline of detailed examples on hypothetical men-
tions. The mention-UMLS pairs were annotated by 3 
domain experts, including two research fellows and one 
PhD student in Medical Informatics (MI). Based on the 
random 200 mention-UMLS pairs annotated by all 3 
domain experts, the multi-rater Kappa value was 0.76. 
ORDO-to-UMLS concept matching was annotated by 2 
domain experts (a research fellow and a PhD student in 
MI) and obtained a Kappa of 0.72. All contradictory and 
unsure annotations were resolved by a research fellow in 
biomedical science and MI. We used the first 400 data 
instances for model validation and the rest 673 for final 
testing.

To study how the model performs when it is directly 
transferred to or re-trained on other clinical notes, we 
further annotated 198 candidate mention-UMLS pairs 
in a sample of 1,000 radiology reports in MIMIC-III [20] 
and 279 candidate mention-UMLS pairs (with 4 new 
manually identified mentions) in a sample of 5,000 brain 
imaging reports in NHS Tayside [17]. Each dataset was 
annotated by two researchers in clinical science or MI 
with contradictions addressed by another researcher. The 
Kappa for MIMIC-III radiology reports and NHS Tayside 
reports were 0.88 and 0.86, respectively.

To note that the evaluation set is independent of the rules 
used for weak supervision, thus abbreviations and “popu-
lar” disease mentions were in the validation and testing 
data. This helps to test whether the phenotype confirmation 
model trained on the rule-based weakly labelled data can 
generalise to the full scenario that also contains the unseen 
mentions, which were filtered out during weak supervision.

Implementation details
We used the open-source tool, bert-as-service5 [42], built 
on Google AI’s BERT implementation with Python Ten-
sorflow6 [30] for contextual mention representation. We 
tested a range of pre-trained BERT models (BERT, Blue-
BERT, PubMedBERT, and SapBERT) and selected Blue-
BERT-base [19] based on results on the validation set 
(see Table 4). We then trained a logistic regression model 
with the representations, with default configuration using 
scikit-learn [43] on the weakly labelled mention-UMLS 
pairs. We also implemented a word2vec embedding base-
line with Gensim7 and a BERT fine-tuning baseline with 

Table 2 Statistics of Clinical Note Datasets with the Natural 
Language Processing Pipeline and Manual Annotations

|T|, number of documents; |D|, number of mention-UMLS pairs; |Dweak+ | , 
|Dweak− | , number of weakly labelled positive and negative mention-UMLS 
pairs, respectively; |TRD| , |TweakRD | , number of documents associated with one 
or more rare diseases detected by SemEHR and SemEHR+WS (i.e. further with 
weak supervision), respectively; |Tann| , |Dann| , |TannRD | , number of documents 
sampled, number of mention-UMLS pairs sampled, and number of the sampled 
documents with one or more rare diseases identified by SemEHR, respectively. 
For Tayside data, 4 new positive mention-UMLS pairs in |Dann| were identified 
from the reports during the manual annotation

MIMIC-III Disch MIMIC-III Rad Tayside Brain Img

|T| 59,652 522,279 156,618

|D| 127,150 109,096 7,761

|Dweak+ | 15,598 13,907 1,137

|Dweak− | 74,217 65,171 2,898

|TRD| 37,110 73,589 7,321

|TweakRD | 10,568 21,102 2,855

|Tann| 500 1,000 5,000

|Dann| 1,073 198 279+4

|TannRD | 312 145 273

5 https:// bert- as- servi ce. readt hedocs. io/ en/ latest/
6 https:// github. com/ google- resea rch/ bert
7 https:// radim rehur ek. com/ gensim/ models/ word2 vec. html

https://bert-as-service.readthedocs.io/en/latest/
https://github.com/google-research/bert
https://radimrehurek.com/gensim/models/word2vec.html
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Huggingface Transformers8, with detailed parameters in 
Embedding and Fine-tuning Settings in Supplementary 
material 1. Our implementation of the experiments is 
available at https:// github. com/ acadT ags/ Rare- disea se- 
ident ifica tion.

As baselines, we compared the proposed approach 
(“SemEHR+WS”) with SemEHR with the two rules only 
using an OR operation for the interest of higher recall 
(“SemEHR+rules”). We evaluated the baselines using 
precision, recall, and F1 scores. Note that SemEHR had 
a reference recall of 100% as all candidate “rare disease” 
mentions were identified by SemEHR, which was the 
starting source for the annotations.9

We tuned the two parameters l and p (to 3 and 0.5%, 
respectively, if not specified) in the weak labelling rules 
(in Algorithm  1) by grid search based on the perfor-
mance of validation data in MIMIC-III discharge sum-
maries. The detailed parameter tuning results of l and 
p are in Table  S1-1 in Supplementary material 1, Weak 
Rule Parameter Tuning. We also tuned the size of context 
windows (default as 5), which however, did not affect the 
performance, probably because our final representation 
was based on the position of the mention in the BERT 
layer (see line 6 in Algorithm 2). Also, we tuned the opti-
mal number of random training mention-UMLS pairs 
needed (n=9k) based on the validation set, which had lit-
tle impact on the results (<1% F1 score).

In contrast to weak supervision (WS), we also pro-
vide results on strong supervision (SS), the traditional 
approach that trains a model from full manually labelled 
data. For MIMIC-III discharge summaries, we used 
the first 400 validation set in the full 1,073 mentions to 
train a model, Mstrong , and test on the rest 673 mentions 

Table 3 Evaluation results of Text‑to‑UMLS linking on validation and testing data from MIMIC‑III discharge summaries

The column statistics (n=N++/N) show the number of positive data N+ and all samples N in the dataset. SemEHR has a perfect reference recall, because all candidate 
mention-UMLS pairs were created using the tool. WS, weak supervision; SS, strong supervision. BlueBERT-base (PubMed+MIMIC-III) was used as the BERT model. The 
best scores, either or not considering strong supervison (SS), are bolded

validation (n=142+/400) test (n=187+/673) test, seen in WS (n=80+/499) 
i.e. both rules [not] satisfied

test, unseen in WS 
(n=107+/174) i.e. only 
one rule satisfied

Text to UMLS P R F1 P R F1 P R F1 P R F1

SemEHR [15] 35.5 100.0 52.4 27.8 100.0 43.5 16.0 100.0 27.6 61.5 100.0 76.2

+ rules 80.9 89.4 84.9 68.6 94.7 79.6 83.3 87.5 85.4 61.5 100.0 76.2

+ WS (rules+BERT) 92.0 89.4 90.7 81.4 91.4 86.1 83.3 87.5 85.4 80.2 94.4 86.7

+ SS (anns+BERT) ‑ ‑ ‑ 88.4 93.6 90.9 87.7 88.8 88.2 88.9 97.2 92.9

Table 4 Comparison among embeddings for weakly supervised Text‑to‑UMLS linking from MIMIC‑III discharge summaries

The column statistics (n=N++/N) show number of positive data N+ and all samples N in the dataset. All word2vec-k embeddings were pre-trained from MIMIC-III 
discharge summaries, representing the mention as the averaged k-dimensional embedding of tokens in the context window. BERT models were used as static features 
(in the second-last layer) if not specified with “fine-tuning”. The best scores, either or not considering strong supervison (SS), are bolded. We did not tune the optimal 
number of random weakly supervised training data for BlueBERT-base model (and all other models), thus its results were slightly below those in Table 3

validation (n=142+/400) test (n=187+/673)

Text to UMLS P R F1 P R F1

Word2Vec‑100 86.6 50.0 63.4 85.1 61.0 71.0

Word2Vec‑300 85.7 59.2 70.0 80.7 69.5 74.7

Word2Vec‑768 85.1 68.3 75.8 78.9 78.1 78.5

BERT 88.1 83.8 85.9 79.5 91.4 85.1

PubMedBERT 88.7 77.5 82.7 79.6 87.7 83.5

SapBERT 88.3 79.6 83.7 80.8 89.8 85.1

BlueBERT‑base 90.1 89.4 89.8 80.4 92.0 85.8
+ fine‑tuning 84.6 88.7 86.6 73.5 92.0 81.7

BlueBERT‑large 89.1 80.3 84.4 79.0 88.8 83.6

8 https:// github. com/ huggi ngface/ trans forme rs
9 We also benchmarked the performance on MIMIC-III discharge summa-
ries with recent NER+L tools, MedCAT [26] and Google Healthcare Nat-
ural Language API [44]. However, given that the results (especially recall) 
may favour SemEHR-based methods, we do not formally report the results 
of the two NER+L tools but make them available at https:// github. com/ 
acadT ags/ Rare- disea se- ident ifica tion/ blob/ main/ supp- resul ts.

https://github.com/acadTags/Rare-disease-identification
https://github.com/acadTags/Rare-disease-identification
https://github.com/huggingface/transformers
https://github.com/acadTags/Rare-disease-identification/blob/main/supp-results
https://github.com/acadTags/Rare-disease-identification/blob/main/supp-results
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with the same inferencing step in Eq. 2 but using Mstrong 
instead of Mweak . As manually labelled data are usually 
more reliable than weakly labelled data, the performance 
of strong supervision is considered as an upper bound in 
studies in weak supervision [45, 46].

We provide the results regarding each step in the pipe-
line (in Fig.  1), Text-to-UMLS linking and UMLS-to-
ORDO matching, followed by the overall results on rare 
disease identification, Text-to-ORDO linking and admis-
sion-level ORDO concept prediction.

Main results: text-to-UMLS linking
Table 3 shows the validation and testing results of Text-
to-UMLS linking. With weak supervision (WS), the pre-
cision and F1 of SemEHR has been greatly improved by 
around 55% and 40% absolute value, respectively, for both 
validation and testing data. Adding the two customised 
rules already improved the testing performance greatly 
by over 30% F1 to SemEHR (as shown in SemEHR+rules), 
which validates the efficiency of the two proposed rules 
with the NER+L tool to create reliable weak annotations. 
Adding WS further outperformed the SemEHR+rules 
setting absolutely by around 10% precision (and 5% F1 ), 
showing the usefulness of the contextual mention rep-
resentation on filtering out false positives. The recall 
dropped slightly after introducing the two rules. This 
indicates the bias or noise in the rules with the current 
threshold (p as 0.5% and l as 3). Results with weak super-
vision are within a small gap of 5% F1 of strong supervi-
sion with hand-labelled data. This, overall, demonstrates 
the potential of WS to improve text phenotype entity 
linking.

As a solid evaluation needs to assess the system with 
different biased test sets, we further split the testing 
data into those weakly labelled or unlabelled during the 
weak supervision. This helps analyse the impact of the 
rule-based weak supervision on the testing performance. 
“Seen” data mean that the mention-UMLS pairs were 
weakly labelled with � , i.e. with both rules satisfied or 
both not satisfied (see line 7-11 in Algorithm 1); “unseen” 
data mean that only one of the rules was satisfied so that 
the data were not labelled in the process. WS improved 
the performance of SemEHR in both settings: while the 
weakly “seen” data were dramatically boosted by rules (by 
nearly 50% F1 ), the “unseen” data were greatly improved 
(by 10% F1 ) through the model generalised with contex-
tual representations.

The “unseen” data can be further split into the case 
that only the mention character length rule ( �1 ) or the 
prevalence rule ( �2 ) is satisfied. The former, “unseen-�1 ” 
testing set (n=127, where 96 are positive mentions) 
has more mentions than the latter, “unseen-�2 ” (n=47, 
where 11 are positive mentions). SemEHR+WS obtained 

substantially better P/R/F1 performance on “unseen-�1 ” 
(84.1/99.0/90.9) than “unseen-�2 ” (46.2/54.5/50.0). This 
shows that mentions that are infrequent abbreviations 
(i.e., “unseen-�2 ”) tend to be more challenging than fre-
quent non-abbreviations (i.e., “unseen-�1”). In both sce-
narios, SemEHR+WS performed the best F1 among the 
baselines except for strong supervision (SemEHR+SS). 
However, given that the number of testing samples is 
small, e.g. only 11 positive mentions for “unseen-�2 ”, we 
do not formally report the breakdown of results to draw 
solid conclusions.

Embedding and Encoding Strategies. We com-
pared the different embedding methods, including word 
embeddings and several BERT models pre-trained from 
different sources. Table 4 shows that contextual mention 
embeddings (e.g. with BERT, described in lines 4-6 in 
Algorithm 2) based methods greatly outperformed word 
embeddings, although increasing the dimensionality of 
word2vec embeddings improved their recall and F1 . For 
the contextual mention embeddings, we compared the 
vanilla BERT and representative pre-trained BERT mod-
els in the biomedical domain. We observed that Blue-
BERT, pre-trained using the in-domain (or same-data), 
MIMIC-III clinical notes, outperformed the various 
BERT models only from general domains (e.g. BERT), 
biomedical publications (e.g. PubMedBERT), or clinical 
ontologies (e.g. SapBERT). This supports the use of in-
domain pre-trained models, e.g. BlueBERT for the task, 
corroborating the conclusion from [37]. We also see that 
neither using fine-tuning (cf. feature-based) nor the large 
version of BlueBERT could improve the performance, 
which is probably because they introduce more learnable 
parameters (and a larger model size for BlueBERT-large), 
thus likely overfitting the weakly labelled data and under-
performing on the real, testing data. We further com-
pare the encoding strategies and found that non-masked 
encoding (with document structures) achieved the best 
F1 scores on the validation data (see Table S1-2 in Sup-
plementary material 1).

UMLS-to-ORDO matching results
For UMLS-to-ORDO ontology matching, the origi-
nal accuracy by the ORDO ontology was 87.4% 
(=83/95), if considering the repeated mentions in 
the whole 1073 evaluation data, the linking accu-
racy was 81.6% (=876/1073). The most frequent three 
false UMLS-to-ORDO mappings in ORDO were 
Hyperlipidemia (C0020473) to Rare hyperlipidemia 
(Orphanet_181422), Epilepsy (C0014544) to Rare epi-
lepsy (Orphanet_101998), and Dyslipidemias (C0242339) 
to Rare dyslipidemia (Orphanet_101953), all linking a 
broader, common disease concept to its specific types in 
rare diseases under the phenome type or the upper class 
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[9] of group of disorders (Orphanet_557492). By filtering 
with ORDO’s phenome type using “isNotGroupOfDis-
orders” (i.e. not under group of disorders), the UMLS-
to-ORDO concept linking accuracy of the unique and 
repeated mentions was improved to 88.4% (from 87.4%) 
and 94.4% (from 81.6%), respectively, from the whole 
validation and testing data in the MIMIC-III discharge 
summaries.

Overall mention-level and admission-level results
We finally obtained the mention-level results (Text-to-
ORDO) based on the two parts of the system. The results, 
shown in Table  5, are consistent with Text-to-UMLS 
results. The overall metrics are lower than Text-to-UMLS 
results (71.7% vs 86.1% for testing F1 score for WS) due to 
the imperfect matching between UMLS and ORDO. For 
a perfect UMLS-to-ORDO matching, the results of the 
Text-to-UMLS and Text-to-ORDO should be the same.

In the interest of detection of rare disease cases in 
admissions, we aggregated the mention-level results to 
admission-level results, where one admission may be 
associated with several unique rare diseases (each as a 
concept in ORDO). Thus, we report the standard micro-
level label-based metrics for multi-label classification 
[47]. Micro-level metrics count each admission to a sin-
gle ORDO concept as an instance and create a confusion 
matrix to calculate the precision, recall, and F1 scores. 
We were also able to obtain ICD-based results purely 
based on ontology matching (from ICD-9 codes to ICD-
10 or UMLS concepts then finally to ORDO concepts, as 
shown in Fig. 1). Admission-level results were generally 
consistent with mention-level (Text-to-UMLS and Text-
to-ORDO) results. In terms of precision and F1 score, 
weak supervision greatly improved the performance 
of SemEHR and outperformed other third-party tools, 
slightly below strong supervision, while the recall was the 
same for both WS and SS. We also obtained the admis-
sion-level results of ICD codes.

Admission-level results are presented in Table  S1-3 
in Supplementary Material 1. It is discovered that our 
NLP-based approach (SemEHR+WS) achieved better 
precision and F1 scores than the code-based approach 

(ICD). In terms of recall, ICD codes could only iden-
tify a few more rare diseases cases than SemEHR with 
weak supervision (e.g. 21 vs 20 out of 30 in the valida-
tion set and 36 vs 33 out of 42 in the test set, between 
ICD ∪ SemEHR+WS and SemEHR+WS). Note that this 
result may not be accurate as our annotation is based on 
the string matching based NER+L results from SemEHR, 
so the false positives from ICD-based cohorts may actu-
ally be true cases. Also, the number of positive data is 
much lower in admission-level results than in the men-
tion-level (e.g. for testing data, 42 admissions vs. 187 
mention-UMLS pairs). But nevertheless, our results show 
the essential role of free-texts and NLP methods for rare 
disease phenotyping; the results are consistent with the 
conclusion in [24] regarding general diseases.

Error analysis
We breakdown the errors of the proposed approach 
(“SemEHR+WS”) regarding Text-to-ORDO in MIMIC-
III discharge summaries (see results in Table 5) in Fig. 3. 
There were altogether 91 errors (including 59 false posi-
tives and 32 false negatives), representing 8.5% from the 
1,073 candidate mentions-UMLS-ORDO triplets, where 
61 (or 5.7%) were from Text-to-UMLS stage and 30 (or 
2.8%) only from the UMLS-to-ORDO stage (and 4 in 
both stages).

While rules are effective for WS, they may also intro-
duce some bias. Over half 57.4% (or 35 of 61 errors) 
from the Text-to-UMLS side were likely due to the bias 
introduced from the weak rules, where the prediction 
was wrong when using the weak rules only. The other 
two main errors were either (i) semantic type errors 
(representing 26.2% or 16 out of 61), where the men-
tion was a (negative) laboratory test (e.g. “legionella”) 
or other unrelated types (e.g. “ENDO” as department 
name) instead of a disease, or (ii) diseases of hypotheti-
cal or negative contexts (represented 6.6% or 4 out of 
61), which were not filtered out by the NER+L tool, 
SemEHR, and were also challenging for the annota-
tors. The other errors (9.8%, 6 out of 61) were due to 
not enough information for human to decide or no 
exact reason found for the error. The issues above 

Table 5 Results on rare disease identification (Text‑to‑ORDO) from MIMIC‑III discharge summaries

The column statistics (n=N++/N) shows number of positive data N+ and all samples N in the dataset. WS, weak supervision; SS, strong supervision; anns, annotations. 
BlueBERT-base (PubMed+MIMIC-III) was used as the BERT model. The best scores, either or not considering strong supervison (SS), are bolded

validation (n=64+/400) test (n=82+/673)

Text to ORDO P R F1 P R F1

SemEHR [15] 18.7 95.3 31.3 13.9 92.7 24.1

+ rules 53.9 75.0 62.7 49.0 86.6 62.6

+ WS (rules+BERT) 67.6 75.0 71.1 64.7 80.5 71.7
+ SS (anns+BERT) ‑ ‑ ‑ 73.3 80.5 76.7
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may be addressed by combining WS with human-in-
the-loop machine learning [48] with adaptive rules to 
improve the performance. The wrong UMLS-to-ORDO 
ontology mappings were due to the simple heuristic 
(“isNotGroupOfDisorders”) which also filtered out cor-
rect mappings - this may be addressed when the official 
ontology matching is updated or by using a machine 
learning based system to correct the matching.

NLP vs. ICD for rare disease phenotyping
We applied the trained model and the whole pipeline to 
process all MIMIC-III discharge summaries (n=59,652) 
and compared the rare disease admissions identified 
from NLP and ICD. The NLP approach is the proposed 

ontology-driven and weakly supervised pipeline. For 
the ICD-based results, we combined the ICD-9 codes 
matched to either the UMLS or ICD-10 codes linked to 
ORDO (see Fig. 1).

Using our NLP-based pipeline, it is possible to greatly 
enrich the rare disease cases identified solely from ICD 
codes. For most (97.2%=453/466) types of the rare 
diseases, our approach mining free texts could enrich 
at least one (and usually many) potential rare dis-
ease case compared to the ICD-based approach. The 
results can be useful to identify potential cases for an 
alerting system for clinical care or a base for further 
refinement. Figure  4 shows the selected 10 rare dis-
eases which were best predicted in the annotated 312 

Fig. 3 Error breakdown of Text‑to‑ORDO identification of 1,073 candidate mentions in MIMIC‑III discharge summaries (Hypo/neg: Hypothetical or 
negation)

Fig. 4 Number of rare disease patient stays from MIMIC‑III (n=59,652): ICD (code‑based) vs. NLP (text‑based, with weak supervision), for 10 selected 
diseases. Admissions are split into those only identified through links from ICD‑9 codes (in black), those only identified from free texts with weak 
supervision (NLP, in white), and the intersection of cases from both ICD‑9 and NLP (in grey). The percentage after each horizontal bar shows the 
accuracy of NLP based on the manual assessment of the identified cases
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discharge summaries, however, since the support value 
was few (between 1 to 5) for each of the diseases in the 
admission-level evaluation, the results did not repre-
sent the predictions of the full 59k admission cases in 
MIMIC-III.

We thus further performed an extra manual evalu-
ation to verify whether the rare disease cases identified 
by NLP were true phenotypes (or represented a current 
or past rare disease of the patient), as there was no gold 
reference standard. Five researchers (one in clinical sci-
ence, one in biomedical science, and the remaining three 
in MI) screened the 1,428 cases or patient stays identi-
fied by NLP (WS or SS) regarding the 10 selected dis-
eases, according to the definitions of the rare diseases 
in ORDO. The accuracy scores (the fraction of correct 
rare disease cases in all identified cases) of the weakly-
supervised NLP-identified rare diseases are displayed 
after each horizontal bar in Fig. 4. We can see that NLP 
identified most rare diseases (6/10) with an accuracy 
score from around 70% to over 90%. For rheumatic fever, 
over 90% of the cases were true positives, except for a few 
hypothetical mentions or the subject being the patient’s 
relative. Some examples are provided in Table  S2-1 in 
Supplementary material 2. As rheumatic fever is usually 
a historical disease when the patient was a child, the dis-
ease was commonly not coded with ICD.

For certain rare diseases, the accuracy score from the 
manual evaluation was very low, e.g. 0.0% for IRIDA syn-
drome due to “microcytic anaemia” wrongly assigned as a 
synonym or an atom of C0085576 (“Iron-Refractory Iron 
Deficiency Anemia” or IRIDA) in the previous UMLS 
version (2019AA) in the Text-to-UMLS process, 8.2% and 
43.8% for Retinitis Pigmentosa and Progressive Multifo-
cal Leukoencephalopathy, respectively, due to the ambig-
uous meanings of their abbreviations (“RP” and “PML”) 
and unseen in WS (with a low corpus-based prevalence 
below 0.5%). For Multifocal Atrial Tachycardia, the defi-
nition in ORDO is a neonatal disease, while its matched 
UMLS concept of the same name may also mean an adult 
disease. We also found difficulty in reaching a consensus 
in the annotation due to the vague definition of Acute 
Liver Failure in ORDO10, for which we derived two dis-
tinct interpretations which were then reconciled by a 
senior clinician11. This analysis suggests that we should 
take the definitions into consideration in entity linking 
and ontology matching. We should also ensure that the 

definitions used are appropriate for the clinical research 
question for people using the tools.

Although the accuracy scores were not perfect, for all 
diseases except IRIDA syndrome, NLP could still enrich 
the cases identified from ICD-9 after the manual check 
by the experts. We also find that with ICD codes, it is 
possible to find cases not identified by NLP as well, as 
shown in asbestos intoxication, necrotizing enterocol-
itis, etc., which may be related to the imperfect recall of 
the NLP model or the rare diseases being not (explicitly) 
mentioned in the clinical note. In general, the results 
above on rare diseases extend the conclusion of the pre-
vious survey in case detection [24] that NLP with free-
texts can greatly enrich the information from ICD codes 
and the two sources complement each other. We further 
present the results of NLP with strong supervision in Fig. 
S1-1 in Supplementary material 1, which overall pre-
dicted fewer cases and resulted in better accuracy scores, 
but reflected the same picture as with weak supervision.

Transfer and re-training with radiology reports
For external validation, we applied the proposed weak 
supervision pipeline and models to extract rare dis-
ease phenotypes from two datasets of radiology reports, 
US MIMIC-III radiology reports (n=520k) [20] and UK 
NHS Tayside brain imaging reports (n=156k) [17]. For 
each of the datasets, we selected a subset of clinical notes 
(1,000 for MIMIC-III and 5000 for Tayside), and obtained 
the candidate mention-UMLS pairs with SemEHR to 
be labelled for evaluation. The detailed data statistics 
are in Table 2. Based on the real-world practice of NLP, 
we consider two ways to apply the pipeline in Fig. 2: (i) 
model transfer and (ii) in-domain re-training. For model 
transfer, we directly applied our phenotype confirmation 
models, Mweak (and Mstrong ), trained from MIMIC-III 
discharge summaries to the two new datasets; for in-
domain re-training, we created weakly labelled training 
data from each new dataset and trained a data-specific 
phenotype confirmation model with Algorithms 1-2; we 
further tuned the parameters p and l in the weak labelling 
rules during re-training.

Table 6 shows the external validation results of the NLP 
pipeline with model transfer or in-domain re-training. 
We mainly present the Text-to-UMLS results, consistent 
with Text-to-ORDO results in Table S1-4 and admission-
level results in Table  S1-5 in Supplementary material 1. 
It is observed that directly applying a weak supervision 
model trained from another type of report (e.g. discharge 
summaries) could largely improve the precision and F1 
score of SemEHR, with a slight drop of recall from nearly 
100% to over 90%. This transferability of models sug-
gests that there are common linguistic patterns used in 
all types of clinical notes, even from different sources. 

10 https:// www. ebi. ac. uk/ ols/ ontol ogies/ ordo/ terms? iri= http% 3A% 2F% 
2Fwww. orpha. net% 2FORDO% 2FOrp hanet_ 90062
11 Our two interpretations of acute liver failure differ most in the factors 
of drug use, alcohol abuse, virus infection, etc., that could contribute to the 
rarity of the disease but not specified in the definition from ORDO. We 
finally considered hepatitis virus or drugs as causes of acute liver failure as a 
rare disease, but removed cases of alcohol abuse.

https://www.ebi.ac.uk/ols/ontologies/ordo/terms?iri=http%3A%2F%2Fwww.orpha.net%2FORDO%2FOrphanet_90062
https://www.ebi.ac.uk/ols/ontologies/ordo/terms?iri=http%3A%2F%2Fwww.orpha.net%2FORDO%2FOrphanet_90062
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The strong supervision model obtained a higher preci-
sion, but with a much lower recall (a drop of 20% to over 
30% compared to SemEHR only) and thus may bear the 
risk of missing true positive mentions. Results from the 
in-domain re-training of models were much better than 
model transfer, as the former could bridge the linguistic 
gap between discharge summaries and radiology reports 
even for the same cohort or institution in MIMIC-III. 
We further tuned the weak labelling parameters to opti-
mise the recall or F1 score. A perfect or no loss of recall 
(100% or near 95%) was achieved on par with SemEHR 
and the precision was further improved compared to 
using the original parameters. Although the parameter 
tuning process was based on the full annotated data, this 
can be substituted by the inspection of a small number of 
data at the rule designing stage. Finally, we noticed that 
simply using rules (SemEHR+rules) with the best tuned 
parameters was highly effective, achieving better results 
than most evaluation settings, but still surpassed by the 
best tuned WS model, especially for the Tayside reports. 
The results between rules only and weak supervision 
were consistent with those of the discharge summaries in 
Table 3.

Conclusion, discussion, and future studies
In this study, we proposed an ontology-driven and 
weakly supervised approach for rare disease phenotyp-
ing from clinical notes. Unlike the use of ontologies, weak 
supervision has not been well established in the clinical 
NLP domain. Our proposed weak supervised deep learn-
ing approach requires no human annotation and extends 
the paradigm from [13] on weak supervision for clinical 
texts, by introducing ontologies, named entity linking 
tools, and contextual representations. We designed two 
simple but effective rules (mention character length and 
corpus-based “prevalence”) to create weakly labelled data 
regarding ambiguous abbreviations and rare entities. The 

trained phenotype confirmation model effectively filtered 
out the false positives in the data with no (or a minimum) 
side effect on the true positives.

Traditional clinical NLP relies heavily on strong 
supervision with manually labelled data. However, with 
recent data-demanding methods like deep learning, it 
is time to consider to automatically create labelled data 
to train models, with the support of rules and resources 
like ontologies and NER+L tools. Our work on rare dis-
eases provides empirical evidence for the task by apply-
ing a weakly supervised NLP pipeline on three clinical 
note datasets (one for discharge summaries and two for 
radiology reports) in two institutions in the US and the 
UK. The improvements on the precision were highly sig-
nificant (by over 30% to 50% absolute score for Text-to-
UMLS linking), with almost no loss of recall compared 
to the existing NER+L tool, SemEHR. Our study also 
demonstrates that NLP can complement traditional ICD-
based approaches to better estimate rare diseases in clini-
cal notes (see Fig. 4).

While our rule-based weak supervision does not 
require annotated data, it can bring bias or noise as no 
simple rule can perfectly predict the labels for a complex 
task. This bias, although not affecting most predictions 
for the testing data, was manifested in the slight drop 
of recall in Text-to-UMLS linking (Table  3). This loss 
of recall may be minimised through tuning the param-
eters in the weak labelling rule (e.g. relaxing the “preva-
lence” or mention length threshold, shown in Table  6), 
but needs a small set of annotated data or some manual 
inspection of the predictions. The mention character 
length rule may also be enhanced with accurate abbre-
viation expansion and disambiguation to retain abbrevia-
tions that are rare diseases. Besides, recent studies in the 
general NLP domain have begun tackling the bias of rules 
(with a rule-level attention mechanism [49]) or noise of 
weakly labelled data (with the estimation of data-level 

Table 6 External Validation Results on Radiology Reports from MIMIC‑III and NHS Tayside

The column statistics (n=N++/N) show number of positive data N+ and all samples N in the dataset. WS, weak supervision; SS, strong supervision. The original 
parameters for WS were p = 0.005 and l = 3 . The new parameters for best recall (R) were p = 0.01 and l = 4 and for best F1 were p = 0.0005 and l = 4 , for both 
datasets. For SemEHR+rules, we present the results of rules, where p = 0.0005 and l = 4 , with an OR operation. The best scores for the metrics are bolded

MIMIC-III Radiology (n=53+/198) Tayside Brain Imaging (n=79+/283)

Text to UMLS P R F1 P R F1

SemEHR [15] 26.7 100.0 42.2 26.9 94.9 41.9

+ WS (transfer) 54.4 92.5 68.5 56.3 91.1 69.6

+ SS (transfer) 89.4 79.2 84.0 69.0 62.0 65.3

+ rules (tuned) 87.5 92.5 89.9 56.8 94.9 71.1

+ WS (in‑domain) 72.9 96.2 82.9 48.0 92.4 63.2

+ WS (+ tuning R) 81.5 100.0 89.8 58.1 94.9 72.1

+ WS (+ tuning F1) 89.1 92.5 90.7 75.3 88.6 81.4
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confidence [50]). Also, we used a heuristic-based logic 
operation (as XNOR) to aggregate the two rules; future 
studies can explore more advanced aggregation methods 
(e.g., learning a label model [45, 46]).

As suggested in our results and other studies [45, 46], 
the current performance of the best weakly supervised 
methods is still below strong supervision. But the gap 
between the weak and strong supervision is small (within 
5% F1 score) and there is no difference in terms of recall. 
This shows that the expensive and time-consuming anno-
tations for text phenotyping may be greatly reduced, sub-
stituted by an alerting system or manual screening based 
on the predictions of a weakly supervised NLP system. 
With a small number of annotated data for parameter 
tuning, both the precision and recall of our weak NLP 
model were further improved (see Table  6). This may 
suggest a future study to better use a small sample of 
annotated data with the weakly annotated data for semi-
supervised learning to improve the performance.

There are still, however, some false positive mentions 
detected by the proposed NLP pipeline, as shown in 
our analyses of the prediction errors and the identified 
cohorts (in Figs. 3-4). Disambiguating entity types (espe-
cially for abbreviations) still remains a challenge for text 
phenotying. This suggests to potentially integrate word 
sense disambiguation to enhance the weak supervision 
approach, e.g., through more reliable weak data crea-
tion. Also, errors in identifying hypothetical and nega-
tion (“Hypo/neg”) mentions suggest to separately model 
“Hypo/neg” in the classification, which can be learned 
with mentions beyond the scope of rare diseases. Fur-
thermore, the complexities of linguistic patterns of a 
(rare) disease may still require better representations 
beyond the current context window and may need to be 
enhanced with ontology concepts. Our evaluation of the 
NLP-identified cases suggests modelling the semantics 
of the lexical definitions in ontologies (e.g. ORDO) to 
improve entity linking and ontology matching.

Also, we note that our work is highly dependent on 
existing ontologies and their available matchings to 
each other. We leveraged and validated the matching 
among ORDO, UMLS, ICD-10, and ICD-9. The cur-
rent matchings are generally correct, but not perfect 
(e.g. 88.4% accuracy of matching between UMLS and 
ORDO). A more accurate matching among ontolo-
gies, potentially corrected with machine learning [51], 
will improve the performance of our pipeline. It is also 
possible to directly match texts to ORDO, which can 
include rare diseases not contained in UMLS, but this 
does not leverage the synonyms in UMLS that repre-
sent the name variation of rare disease entities. Also, 
our approach cannot identify emerging rare disease 

entities, not contained in the ontologies and not thus 
easily captured by SemEHR, which is the next, chal-
lenging direction for our study.

While we only enhanced SemEHR with the weakly 
supervised phenotype confirmation model, the 
approach can be adapted to improve other NER+L 
tools and models to support more accurate rare dis-
ease cohort selection and coding. Recently, more pack-
ages and environments (e.g. Snorkel [46], skweak [52]) 
have been created to apply weak supervision in general 
domain NLP practice. Thus, a promising future study is 
to adapt the current weak supervision infrastructures 
or the ideas behind them to the clinical NLP domain 
and establish best practices in the field; a recent work 
adapting Snorkel [46] is Trove [45], which has not 
yet been applied to the domain of rare diseases, that 
involves additional ontologies and their mappings.

Our work mainly focused on identifying rare disease 
concepts in the clinical notes, while other physical, 
behavioural, and physiological characteristics need to 
be identified so as to establish a clinical diagnosis of a 
rare disease. We also mainly focused on rare diseases 
as a whole and the approach can be applied to identify 
specific rare diseases. Future work needs to extract a 
wider set of information to enhance rare disease pheno-
typing, and to facilitate the development of risk predic-
tion tools for rare diseases to support decision making 
during the COVID-19 pandemic and beyond [53, 54].
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