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Relaxation of imbalance in a disordered XX model with on-site dephasing
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The relaxation of observables to their nonequilibrium steady states in a disordered XX chain subjected to
dephasing at every site has been intensely studied in recent years. We comprehensively analyze the relaxation of
staggered magnetization, i.e., imbalance, in such a system, starting from the Néel initial state. We analytically
predict emergence of several timescales in the system and extract results which match with large-system
numerics without any extra fitting parameter until a universal timescale. An often reported stretched exponential
decay is just one of the regimes which holds in a finite window of time and is therefore in fact not a true stretched
exponential decay. Subsequently, the asymptotic decay of imbalance is governed by a power law irrespective of
the disorder. We show that this emerges from the continuum limit of the low magnitude eigenspectrum of the
Liouvillian. However, for finite systems, due to discreteness of the spectrum, the final phase of relaxation is
governed by the relevant smallest Liouvillian gap.
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I. INTRODUCTION

Noninteracting disordered systems in one dimension,
isolated from external environment, are known to exhibit An-
derson localization [1]. One expects that if a generic initial
state is allowed to evolve in such a system, at long time scales,
the wave function will not show significant change. Among
the several quantifiers of this phenomenon [2], one of the
most commonly used is imbalance, a quantity easy to measure
in experiments. Imbalance I is the staggered magnetization
and captures the difference in orientation of spins on adjacent
sites,

I = (1/L)
L∑

j=1

(−1) j
〈
σ z

j

〉
, (1)

where L is the length of the lattice, σ z is the Pauli spin z
operator, and the expectation is taken with the state of which
we want to measure the quantity. It should be evident that for
computational states, the state with the largest I , which equals
1, is the Néel state.

One can also surmise that for an Anderson localized sys-
tem, if one starts from this state, one should see I ∼ 1 at
large timescales. However, if the localized system is no longer
isolated, then the external degrees of freedom typically serve
to break Anderson localization. The system eventually forgets
the memory of its initial state. Accordingly, I would also
evolve with time. In the previous works, the focus has mainly
been to find the nonequilibrium steady state (NESS) in such
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systems [3–10], or perturbations around NESS [11], while
recently there has been some work studying how different
observables relax to NESS in such systems [12–18] or in Stark
localized systems [19]. Of particular focus was the decay of
imbalance. A slow stretched exponential [A exp(−tα )] decay
of I (t ) has been reported [15,20–23], though the value of α

obtained has some dispute. For example, a short theoretical
analysis in Ref. [22] finds α ∼ 0.33, whereas a different anal-
ysis in Ref. [20] puts α ∼ 0.5. Numerical fits in Ref. [20]
put α ∼ 0.38 and Refs. [15,23] put α ∼ 0.42. Addition-
ally, the analytical expressions suggested usually require at
least one fitting parameter to be matched with the numerical
results.

In our work, we seek to understand and resolve this in-
consistency. Upon carefully analyzing the relaxation, we see
that several timescales emerge. Broadly speaking one has a
regime where off-diagonal matrix elements of time-dependent
density matrix of the system ρ(t ) are large, then a regime in
which ρ(t ) becomes increasingly diagonal due to dephasing
and the scaling variable is [12] τ = 8γ t/W 2 (where γ and W
denote the strength of dephasing and disorder, respectively),
and finally a regime where the system starts to “feel” its finite
size L. In fact, we argue that the “stretched exponential” is
not a true (asymptotic) description for the relaxation. It holds
only in a finite window and is universal and independent of
disorder type just in a linear-expansion regime, after which
a nongeneric disorder-dependent behavior follows. Addition-
ally, beyond a timescale, τ = 8γ t/W 2 ∼ 5, we show that the
relaxation first smoothly changes to 1/t3/2 irrespective of
boundary conditions. Subsequently, only for open boundary
conditions, at large τ ∼ L, the decay asymptotically changes
to 1/(L

√
t ), which is also the standard result for clean open

boundary systems with dephasing. Finally, for finite size sys-
tems, an exponential decay occurs at the longest timescale,
governed by the finite Liouvillian gap.
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Using a toy model involving three lattice sites, we find an
expression of I (τ ) analytically, using second order perturba-
tion theory, that matches with numerics very accurately, until
τ ∼ 1, without any fitting parameters. From the model, we
show that the universal behavior I (τ ) = (1 − β

√
τ ) occurs

for very short times τ � 1, beyond which the nonuniversal
behavior follows until τ ∼ 1.

We first provide a brief description of our main results in
Sec. II before going into the details later.

II. SUMMARY OF RESULTS

We begin by summarizing our findings. Starting from the
Néel initial state, in the XX model with on-site disorder and
dephasing, the behavior of − ln I (t ) can be schematically rep-
resented by Fig. 1(a), where ln denotes the natural logarithm,
γ is the strength of dephasing, W is the strength of disorder,
and J is the exchange interaction strength of XX model. As
evident from the figure, five windows with different behavior
emerge during the evolution of I (t ). Depending on t (or the
scaled τ = 8γ t/W 2) they are as follows.

(I) t < t0 ∼ min(1/γ , 1/W ): the shortest timescale in the
problem. Here, I (t ) ∼ 1 − t2 and hence − ln I (t ) ∼ t2. Dur-
ing this time period, off diagonal correlations first develop in
the system and then start decaying after reaching a maxima
[24]. When the disorder strength W is small compared to the
dephasing γ , t0 is given by ∼1/γ , akin to clean systems. How-
ever, when W � γ , then this behavior exists until t ∼ 1/W .

(II) t0 < t < t1 ∼ 0.1W 2/(8γ J2): this is where local re-
laxation of σ z starts and most (but not all) off-diagonal
correlations become negligible. In this timescale one sees
−lnI (t ) ∼ −ln(1 − β

√
t ) ∼ β

√
t behavior irrespective of the

nature of disorder chosen (β can depend on the nature of
disorder). This is the short time, linear regime of the stretched
exponential behavior noted in previous works [15,20–23]. Un-
like previous results, we find that this regime is not asymptotic
and is only valid until τ ∼ τ1 = (8γ J2t1)/W 2 = 0.1. There-
fore, the “stretched exponential” is not really a true stretched
exponential decay as it does not hold asymptotically, i.e., at
arbitrarily small values of I .

(III) t1 < t < t2 ≈ 5W 2/(8γ J2): in this regime, which
holds until τ ∼ τ2 = (8γ J2t2)/W 2 ≈ 5, a nongeneric decay
dependent on the choice of disorder distribution is seen. t2 also
marks the end of local relaxation in the system.

(IV) t2 < t < t3: in this regime the decay is a power law
due to a continuum of low magnitude eigenvalues of Liou-
villian [21,25]. Because details of eigenvalues and overlaps
depend on boundary conditions, i.e., having periodic or open
boundary conditions, the imbalance decay can likewise de-
pend on it. Specifically, for periodic boundary conditions one
has L-independent I (t ) ∝ 1/t3/2, while for open boundary
conditions one eventually gets an L-dependent decay I (t ) ∝
1/(L

√
t ). Because the imbalance for open and periodic bound-

ary conditions agree up to extensive times t ∼ L (light-cone
hitting the boundary), one has an interesting situation for open
boundary conditions: for sufficiently large L one will initially
have I (t ) ∼ 1/t3/2, which will then gradually transition into
the asymptotic decay I (t ) ∝ 1/(L

√
t ) at a time τ ≈ L/2 [in

Fig. 1(b) this time is τ ≈ 25 for L = 50 and 250 for L = 500].

FIG. 1. (a) Schematic figure denoting the five regimes of imbal-
ance decay for an initial Néel state. Panel (a) shows the schematic
diagram with timescales t0 ∼ min(1/γ , 1/W ), t1 ≈ 0.1W 2/(8γ J2 ),
t2 ≈ 5W 2/(8γ J2), and t3 ∼ L2W 2/γ , whereas in (b) disorder aver-
aged exact numerical data (open boundary conditions) for different
system sizes L are plotted as a function of τ = 8γ t/W 2 (J = 1,
γ = 1, W = 8). Black dashed line is a stretched exponential with
β obtained from expanding Eq. (12), while brown and green dashed
curves are the theoretical predictions of Eq. (24) and Eq. (23) (L =
500). The green vertical lines denote the time stamps of the schematic
diagram for L = 500 (τ3 falls outside the plot’s range).

(V) t > t3 ∼ L2W 2/γ : the final timescale in finite sized
systems is governed by the Liouvillian gap, i.e., the largest
real nonzero eigenvalue of the Liouvillian (since it has an
eigenvalue of zero). Here the decay is given by I (t ) ∼
exp(−|λ1|t ), where λ1 is the Liouvilian gap. This timescale
begins in the leading order around t3 ∼ 1/|λ1|. As will be
discussed in Sec. IV D, λ1 ∼ γ /(L2W 2) (for open and peri-
odic boundary conditions); hence this regime starts around
t3 ∼ L2W 2/γ .

It is worth noting that until region IV there is no system
size dependence of the results; neither the time windows nor
the behavior depend on L. However, the ending time t3 of
region IV and the behavior of I (t ) for open boundaries depend
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on L [for periodic boundary conditions I (t ) does not depend
on L]. This feature is clearly visible in Fig. 1(b), where for
τ > 5 different system sizes start showing different behav-
ior. We perform disorder averaging over 102 realizations for
L = 50, 500, and 10 for L = 3000.

Since until τ ∼ 5, the rescaled data for the different system
sizes clearly overlap with one another and are almost linear in
log-log scale, this prompted the stretched exponential fits in
previous works. In Fig. 1(b), we have added a black dashed
line showing the stretched exponential expression obtained
from a theoretical computation in Sec. IV B. As will be clear
from the analysis in that section, this behavior is expected to
hold best until small τ ∼ 0.1, which is what is demonstrated
in the plot [26]. Finally for L = 50 one sees a fast growth of
− ln I (t ) (see a slight bend upwards) at τ > 200, which is due
to the exponential decay of I (t ) from the finite size Liouvillian
gap.

In what follows, we shall discuss the above findings in
detail and provide a theoretical understanding for the same.
In the next section, we describe the model in more detail
and elaborate on the technique used to compute the numerical
results. Then in Sec. IV we elaborate on the behavior of I (t ) in
different timescales. Finally, in Sec. V we provide some final
remarks on our results and possible extensions of this work.

III. MODEL

We take the one dimensional disordered XX chain with
spin 1/2 particles,

H = −J
L−1∑
j=1

(
σ x

j σ
x
j+1 + σ

y
j σ

y
j+1

) +
L∑

j=1

h jσ
z
j , (2)

where h j are the on-site disorders and σ x,y,z denotes the Pauli
matrices. In this work, unless otherwise mentioned, hj’s are
chosen from a uniform distribution in (−W,W ), with W being
the strength of disorder. We set J = 1 for the rest of our
work. To simulate an open system, each spin is exposed to
a dephasing. The evolution of the system’s density matrix is
given by

dρ

dt
= i[ρ, H] + Ldeph(ρ) = L(ρ). (3)

The nonunitary part can be written in terms of Lindblad op-
erators as Ldeph(ρ) = ∑

k ([Lkρ, L†
k ] + [Lk, ρL†

k ]). We choose

Lk =
√

γk

2 σ z
k to represent the on-site dephasing term. For the

rest of this work we shall put γk = γ , i.e., have a spatially
uniform dephasing. This choice of dephasing causes an ex-
ponential decay of the off diagonal elements of the density
matrix with a strength γ , in the diagonal basis of σ z in the
absence of disorder.

If we want to solve Eq. (2) directly, numerically or other-
wise, we need to solve a set of 4L − 1 coupled differential
equations. Fortunately due to the choice of dephasing and
the quadratic nature of the Hamiltonian, the exponentially
many equations can be decoupled into blocks of polynomial
complexity [3,11,27–32]. In other words, observables fol-
low a hierarchy based on the number of fermionic operators
they contain. For example, the block of two point correlators
decouples from the rest and one can write a closed set of

equations for these observables. Then this solution serves as
a source term for the three point correlations and so on. Since
we are interested in imbalance, which can be extracted from
a two-point correlator in the fermionic language (σ z ∼ c†c),
we will just consider the subspace of two point correlation
functions. Following the consideration of Refs. [3,27], we
define the operators

A(t ) =
L∑

r=1

L+1−r∑
j=1

a(r)
j (t )A(r)

j ,

B(t ) =
L∑

r=2

L+1−r∑
j=1

b(r)
j (t )B(r)

j , (4)

where A(r+1)
j = σ

j
x Z (r−1)

j+1 σ
j+r

x + σ
j

y Z (r−1)
j+1 σ

j+r
y and B(r+1)

j =
σ

j
x Z (r−1)

j+1 σ
j+r

y − σ
j

y Z (r−1)
j+1 σ

j+r
x for r � 2. Z (r)

j = σ
j

z . . . σ
j+r−1

z

are strings of σz operators and A(1)
j = −σ

j
z . Then the equa-

tion governing the time evolution of the set of two point
correlation functions can be written compactly as

dC(t )

dt
+ 2i[PC(t ) − C(t )PT ] + 2[�C̃(t ) + C̃(t )�] = 0,

(5)
where C, C̃, P,� are L × L matrices. Their elements are
defined as Cjk (t ) = a(k− j+1)

j (t ) + ib(k− j+1)
j (t ) for k > j,

Cj j (t ) = a(1)
j (t ), and Cjk = C∗

k j . C̃ = C − diag(C). P = W −
T, where Wjk = hkδ jk , the on-site disorders, and for our
model. Also for our model, Tjk = J (δ j,k−1 + δ j,k+1), as we
consider only nearest neighbor couplings [33] and 
k

j = γ δ jk .
Clearly, I (t ) = (1/L)

∑
j (−1) j+1Cj j (t ). Hence for the Néel

initial state Cj j (0) = (−1) j+1 and I (0) = 1.
Equation (5) can be recast into a linear differential equa-

tion with L2 variables, in the form

df
dt

= Qf, (6)

where f = (C11,C12, . . . ,C1L,C21, . . . ,CLL ) and Q is the
L2 × L2 matrix governing the evolution. In fact, due to the
hierarchical structure of observables, the eigenvalues of Q are
exactly the eigenvalues of the one particle sector of the Liou-
villian, L, while the eigenvectors of both are connected via an
appropriate rotation. This linearized equation will be useful in
understanding the behavior of I (t ) in different regimes.

Unlike most of the previous results for this model which
are generated by either an effective Hamiltonian or DMRG
based techniques [20,22], we use Eq. (5) or Eq. (6) for the
analysis that follows. This not only allows us to obtain an
exact description of the correlators but also provides access
to sizes and times an order of magnitude larger than usually
accessed by DMRG techniques. Thus we can make better
statements about system size dependence of the results.

IV. DIFFERENT TIMESCALES

Let us now discuss each timescale in more detail.

A. Region I

Doing a simple power series expansion of I (t ) in t , the
first nonzero term turns out to be quadratic. Hence we expect
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FIG. 2. Initial t2 behavior of − ln I (t ) in region I for different
disorder strengths W and open boundary conditions (obc).

I (t ) ∼ 1 − ηt2 behavior at the smallest timescale. As evident
from Fig. 2, this is the case. This behavior continues until time
t0 which is dependent on γ and W . To be more precise, let
us first consider the simpler case, W → 0. At t = 0, since we
start from a pure state, ρ(t = 0) has only one nonzero element,
which is in the diagonal, and C(t = 0) is diagonal as well.
Correlations then spread rapidly throughout the system, reach
a maxima, and start decaying around t ∼ 1/

√
|γ 2 − 4| ∼ 1/γ

for γ � 1. As we see from Fig. 2, indeed below t0 ∼ 0.5 for
γ = 1 and W = 0, one can approximate I (t ) as 1 − ηt2 and
hence − ln I (t ) ∼ ηt2. From the numerical fit in Fig. 2 shown
by the black dashed line, we find η ∼ 16. This behavior can
also be qualitatively extracted from a simple two-site model
(details in Appendix A) and we get, for small t , I (t ) ∼ 1 −
8t2 + O(t3). One can then numerically check that on addition
of a few more sites to the system η approaches 16 rapidly.

However, on addition of disorder, t0 reduces with increas-
ing W , as can be seen Fig. 2. This can be qualitatively
understood from Eq. (5), where we see that correlations can
develop in the system either due to P, i.e., the terms involving
disorder, or due to � which involves dephasing. The dominant
term would then determine the smallest timescale. Also, it can
be shown using the two-state model again that, for W � γ ,
the t0 now becomes 1/δ, with δ being the difference of on-site
disorders in the two-site problem. Hence several timescales
emerge due to different δ’s at different lattice sites and we will
get t0 � 1/γ . If we approximate the width of the distribution
of δ’s as W , we can say that t0 is around min(1/γ , 1/W ). This
is region I.

B. Regions II and III

Next, we shall understand the decay of imbalance in re-
gions II and III. Local evolution is dominant in these regimes
and we can use the same analysis to describe both. Hence we
discuss them together. A timescale separating the two regimes
will emerge naturally from the computation that follows.

We consider W � γ , a regime where localization effects
would be prominent in the system. Then, to understand the
evolution of 〈σ z

j 〉 for site j, we need to take into account the
influence of the neighboring sites, j − 1 and j + 1. Matrix C
in Eq. (4) for this three-site system becomes a 3 × 3 matrix.
We further ignore Ci j’s where | j − i| > 1, as they are negli-
gible compared to the rest in this timescale. We can then use

Eq. (6) with

f = (C11, C12, C21, C22, C23, C32, C33), (7)

where we have taken j = 2 without loss of generality. The
form of Q for this system in Eq. (6) is given in Appendix B.
We use second order perturbation theory to find the eigen-
values as outlined in Appendix B, since exact analytical
diagonalization is not tractable. We also just need to diag-
onalize the subspace where we have the smaller modulus
eigenvalues, as the larger modulus eigenvalues dictate the
behavior in regime I. Doing so, we obtain the relevant eigen-
values as given in Eq. (B3) in Appendix B. These in the regime
W � γ can be approximated as �(0) = 0 and

�(±) ∼
8γ

(
δ2

1 + δ2
2 ±

√
δ4

1 + δ4
2 − δ2

1δ
2
2

)
δ2

1δ
2
2

, (8)

where δ1 = |h1 − h2| and δ2 = |h2 − h3|. Hence the long time
behavior of C22(t ) = −〈σ z

2 (t )〉 can be generically written as

C22(t ) =
∑

m=±,0

d (m)
2 exp(−�(m)t ), (9)

where d (m)
2 is the corresponding element of the mth eigenvec-

tor, weighed by the factors arising from the initial conditions.
We shall drop the subscript 2 in what follows.

Further simplification of Eq. (9) can be made by observing
that typically (see Appendix B) d (+) is the largest coeffi-
cient; hence the principal mode of relaxation is �(+). The
contribution from �(0) and �(−) modes weighted by d (0)

and d (−), respectively, effectively act as perturbations around
the principal mode [34] (see Appendix B). In the random
disorder case since �(+)’s are different for different sites,
we reintroduce the subscript j and write for the Néel initial

state I (t ) = (1/L)
∑L

j=1 |Cj (t )| ∼ (1/L)
∑L

j=1 |d (+)
j |e−�

(+)
j t ,

where the perturbative corrections due to the other modes can
be neglected due to averaging. Additionally, since d (+)

j ’s are
O(1) (see Appendix B), it is not essential to keep track of
them. Hence, given a disorder distribution, one can calculate
the evolution of imbalance for the Néel initial state in the
thermodynamic limit as

I (t ) = f (t,W, γ ) = lim
L→∞

(1/L)
L∑

j=1

e−�
(+)
j t , (10)

where different �
(+)
j ’s are obtained from the distribution of

h j’s, using Eq. (8). From Eq. (10) we can see that, in this
timescale, I (t ) is the average over the decay of magnetization
at individual sites with effective decay rates at each site con-
trolled by the disorders in its nearest neighbors. From Eq. (8),
we also see an emergent energy scale 8γ /W 2 (recall J = 1),
which gives us the rescaled time τ = 8γ t/W 2.

In Fig. 3(a) we show comparison between exact numerical
results with Eq. (10) and other approximations described later
in the section. The plots for different system sizes L, disorder
strengths W , and dephasing γ obtained via exact numerics
collapse on each other when we use rescaled τ = 8γ t/W 2,
confirming the presence of the universal timescale [12]. As
shown in Fig. 3(a) with the black dashed line, computing
Eq. (10) by sampling a large number of random numbers
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FIG. 3. Comparison of analytical predictions with exact numerics in regions II and III for obc. (a) Plot showing how the rescaled time
causes complete collapse of data with different L, γ ,W , and agreement of the said numerical results for the box distributed random on-site
disorder, with the theoretical predictions. f (τ ) is defined in Eq. (10) and g(τ ) is defined in Eq. (12). (b) Plot showing agreement of our
theoretical prediction with numerical results derived from for two other disorder distributions, viz. Gaussian random and alternating disorder;
see Eq. (13) and Eq. (14), respectively. fG(τ ) is obtained from Eq. (10), where the random numbers are picked from a Gaussian distribution.
Vertical lines show the starting and ending times of region III.

from the box disorder distribution we get a result that is a
very accurate match with exact numerics until τ ∼ 1. Note
how a numerical result obtained via solving many coupled
differential equations can be replicated by correctly sampling
the underlying disorder distribution, due to locality of the
evolution.

However, it is difficult to perform the summation ana-
lytically to obtain a closed form expression for different
disorder distributions. To proceed further we need to go
to the continuum limit and write Eq. (10) as I (t ) =∫

d�(+) p(�(+) )e−�(+)t , with p(�(+) ) being the probability
distribution of �(+). Even so, computing p(�(+) ) analyti-
cally is a very difficult task. Hence we need to make further
simplifying assumptions. If we approximate δ4

1 + δ2
2 − δ2

1δ
2
2 ∼

(δ2
1 + δ2

2 )2 and hence �(+) ∼ 16γ ( 1
δ2

1
+ 1

δ2
2
), the integral be-

comes tractable. This approximation is valid in the limit
of |δ2

1 − δ2
2 | � 0, where we have δ2

1δ
2
2 � δ4

1 + δ4
2 and hence

works in the large �(+) tail of p(�(+) ) very well; see Fig. 8
in Appendix B [35]. Then, we consider that δ1 and δ2 are
independently drawn from different sets of random numbers
to avoid calculating the complicated convolution term. This
allows us to write

I (t ) =
(∫

dδ p(δ)e−16γ t/δ2

)2

, (11)

where p(δ) is the probability distribution of δ’s. Equation (11)
allows us to compute the evolution of I (t ) analytically for
any given disorder distribution. For example, for a disorder
distributed uniformly in (−W,W ), i.e., the box distribution,
Eq. (11) gives the result in terms of known mathematical
functions as

I (τ = 8γ t/W 2) = g(τ ) =
[

−
√

2π
√

τ erfc

(√
τ

2

)

+ e− τ
2 + 1

2
τ


(
0,

τ

2

)]2

, (12)

where erfc(z) = 1 − erf(z), erf denotes the error function, and

 is the incomplete gamma function defined by 
(0, z) =∫ ∞

z e−t/t dt . The green dashed line in Fig. 3(a), obtained
from Eq. (12), shows good agreement until τ ∼ 0.1, which
is expected since our approximation works best in the large
�(+) tail.

1 − β
√

t scaling regime. Actually, in the regime of τ � 1
or t � W 2, Taylor expanding Eq. (12) in τ , we get I (τ ) =
1 − β

√
τ + O(τ ) with β = √

8π , which is exactly the linear
term in the stretched exponential [21] e−β

√
τ . In Fig. 3(a), we

plot − ln I (τ ) ∼ β
√

τ as the brown dashed line and it also
agrees well with exact numerics until τ ∼ 0.1.

Generally, if p(δ) is an analytic function of δ, then it can
be expanded as p(δ) = 1

N [c + O(δ)], where N = ∫
dδ[c +

O(δ)]. Since
∫

dδ e−16t/δ2 ∼ t1/2 + O(t ), the lowest order
term obtained from p(δ) in this form would be

√
t (for c = 0

the result would be different). For many different disorder dis-
tributions this is a good approximation of results until higher
order terms become important with larger t .

To highlight this special scaling, we label the regime where
the linear approximation of β

√
τ is valid as region II, which

is approximately until τ = 0.1, and denote the nongeneric
regime during 0.1 � τ � 5 as region III.

Other disorder distributions. To further consolidate our
claims, we repeat the above calculations for other disorder
distributions, viz. the Gaussian random distribution and stag-
gered on-site or alternating potential, shown in Fig. 3(b). We
have also checked the quasiperiodic Aubre Andre distribution;
the data are not shown to avoid cluttering. In Fig. 3(b), results
from Eq. (10) are represented by the green dashed line for
the Gaussian disorder case and the black dashed line for the
alternating potential case. In both cases (and the quasiperiodic
one not shown), we see that Eq. (10), obtained from the second
order perturbation result of the three-site model, captures the
nuances in the evolution very well until τ = 1 (longer for
the alternating potential; see Appendix B). In general, our
analysis is valid for any disorder distribution where typical
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|h j − h j+1| � 0 to make the second order perturbation theory
hold [36].

For the Gaussian distribution it is also possible to compute
Eq. (11) analytically and the result is

I (τ ) = e−√
8τ , (13)

which is a different result to Eq. (12) and exactly the stretched
exponential [37]. This is shown as the purple dot-dashed line
in Fig. 3(b), which we again see to be valid until τ ∼ 0.1, thus
showing a separation of timescales similar to box distribution.
Other standard disorder distributions such as the exponen-
tial and student’s T distribution also show similar timescale
separation.

Finally, for the staggered potential, i.e., when h j =
(−1) jW , Eq. (10) has a simple form. Since we have δ1 =
−δ2 = δ/2 = W , �(+) = 6γ /W 2 for all sites. In this case
the weight of the �(−) mode d (−) = 0; hence I (t ) ∼ d (0) +
d (+)e−�(+)t . For large W , this can be approximated as falt =
e−�eff t , where �eff = 8γ

W 2 and hence

I (τ ) ∼ e−τ . (14)

See Appendix B for more details. In Fig. 3(b), we see exactly
the expected behavior. The almost perfect agreement between
our theoretical predictions with the numerical data provides a
good benchmark about the generality of our theory.

Effective Hamiltonian approach. Before we end this sec-
tion we make a digression to briefly discuss an alternative
approach. In Ref. [12] it was shown that, for the interact-
ing XX chain with dephasing and strong disorder, beyond
a timescale given by 1/γ , off-diagonal terms of the density
matrix are negligible and the evolution of the diagonal terms
of the density matrix is given by the differential equation,
dρD
dt = −HeffρD, where ρD denotes the diagonal part of ρ and

Heff =
L∑

j=1

2
(γ j + γ j+1)

(h j − h j+1)2 + (γ j + γ j+1)2
(1 − σ j · σ j+1),

(15)
where σ = (σ x, σ y, σ z ). An emergent rescaled time
4γ t/(W 2 + 4γ 2) is seen as the overall prefactor of Heff , if we
consider γ j = γ and δ j = h j − h j+1 ∼ W , reminiscent of the
one we extracted from the three-site model, since this is also
a second order perturbative description. In our noninteracting
XX model, this effective description still holds as there is no
term involving any interaction in Eq. (15). Beyond a cutoff
timescale, which for L = 24 and W = 30 is given by τ ∼ 0.01
(check Appendix C) the agreement of exact numerics and
evolution of I (t ) with Heff is excellent. This means the
effective Hamiltonian describes the system approximately for
τ � τ0 in our model (τ0 ∼ 0.001 for W = 30), while before
that timescale the off diagonal elements of the density matrix
still have significant contribution to the evolution. While,
a direct use of Heff to repeat the analysis of this section to
understand regions II and III is a bit involved, we shall use
this effective Hamiltonian to explain the behavior in regions
IV and V in the following sections.

Finally, it is worth noting that, for W = 0, regions II and III
no longer exist and there is an oscillatory behavior in −lnI (t )
as can be seen in Fig. 2, with an envelope growing as 4γ t . For
large γ one can again apply the effective Heisenberg model

to obtain these results for this system as in Ref. [21]. Upon
analysis via our three-site model, we observe that the magni-
tude of the real part of eigenvalues involved in the evolution
∼4γ as the corresponding eigenvectors carry almost all the
weight—a distinct shift from what happens in the disordered
case, where lower magnitude eigenvalues carry most of the
weight. Near the end of this timescale the system begins to
realize its nonlocal nature and the evolution slowly changes to
what is seen in region IV, discussed below, irrespective of the
presence of disorder.

C. Region IV

In this section, we shall discuss the behavior of I (t ) in
the fourth time window, where we observe an asymptotic
power law decay irrespective of the nature of disorder dis-
tribution. This is the first regime where we see L dependent
behavior, as evident from Fig. 1(b), where the evolution
of − ln I (t ) is plotted for different L’s with open boundary
conditions. Additionally, unlike the previous regimes which
did not depend on the boundary conditions, behavior of
I (t ) in region IV is strongly dependent on such factors. As
shown in Fig. 4(c), for open boundary conditions, we see
a I (t ) ∝ 1/(L

√
t ) or − ln I (t ) ∼ 1

2 ln(tL2) behavior (depen-
dence on γ is more complicated and discussed later in the
section). However, for periodic boundary conditions (pbc), as
plotted in Fig. 4(d), − ln I (t ) ∼ 3

2 ln t show a completely dif-
ferent behavior with a different exponent and no system size
dependence.

To explain this behavior, we first realize that in this regime
charge is transported on longer scales and the system can
no longer be described by three-site models of the previous
section. Hence we need to study the eigenspectrum of the
Liouvillian. Additionally, we need to focus on the low mag-
nitude eigenvalues as this regime is asymptotic. However,
since we have the hierarchical structure of observables, we
do not need to study the full 4L × 4L Liouvillian, but the
eigenspectrum of Q in Eq. (6), which, as mentioned earlier,
is related to the one-particle Liouvillian of the problem. We
can write the solution of Eq. (6) generically as

f (t ) = fNESS +
∑

j

δf ( j)e(λ j+i� j )t , (16)

where f is defined under Eq. (6), fNESS is the steady state value
of the observables, λ j and � j are the real and imaginary parts
of the eigenvalues of Q, and δf ( j) contains the correspond-
ing eigenvectors weighted by the initial conditions. Typically,
the weights are similar to the corresponding elements of the
eigenvector, i.e., δf ( j) ∼ m2

j , where mj is the jth eigenvector
(see Appendix D for more details).

From Eq. (16), it might naively seem that any observable
should show exponential decay with different rates at different
timescales, depending on λ j’s. However, in reality, in the
thermodynamic limit the eigenspectrum becomes continuous
and this leads to a power law approach of observables towards
NESS. To demonstrate this, assume without loss of generality
that

λ j ∼ − jα, δf ( j) ∼ jβ, (17)
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FIG. 4. Power law decay of I (t ) in region IV for obc systems. (a) Plot showing j2 scaling of low magnitude Liouvillian eigenvalues
averaged over 100 disorder realizations compared with approximate theoretical prediction in Eq. (21). (b) Plot showing scaling of I( j) defined
in Eq. (20) averaged over 100 disorder realizations. obc and pbc denote open and periodic boundary conditions, respectively. See text for details.
(c) Plots showing the scaling of − ln I (t ) with t for obc at different system sizes L. (d) Same as (c) but for periodic boundary conditions.

and [38] � j � λ j . Then Eq. (16) can be written in the contin-
uum limit as [21,22,25]

f (t ) − fNESS ∼
∫

d j jβe− jαt ∼ t− β+1
α . (18)

In what follows, we shall understand the behavior of I (t ) for
different systems using Eq. (16).

In Table I we first summarize the results of various cases
which shall be discussed in this section. Since f contains
all the two particle fermionic operators in the system, while
I (t ) = 1

L

∑L
k=1(−1)k+1Ckk (t ), we can rewrite Eq. (16) in the

continuum for I (t ) as

I (t ) = INESS +
∫

d j I ( j)eλ j t , (19)

where

I ( j) = 1

L

L∑
k=1

(−1)k+1[δf ( j)](k−1)L+k (20)

sums over the relevant operator subspace for the finite L
system. Equation (18) gets appropriately modified.

Let us first look at the simpler case of systems without
disorder. It is known that the low lying eigenenergies in
the one-particle Liouvillian, in open boundary conditions,

TABLE I. Decay of I (t ) in regime IV for different cases; α and β are exponents defined in Eq. (17). For obc, the scaling of I (t ) with t does
not qualitatively change on addition of disorder, whereas for pbc they are remarkably different. See text for details.

Case Disorder α β I (t ) − ln I (t )

pbc, even L 0 2 No overlap e−4γ t 4γ

pbc, odd L 0 2 0 1
L
√

8πt
1
2 ln(tL2) + 1

2 ln(8π )
obc, any L 0 2 0 1

L
√

8πt
1
2 ln(tL2) + 1

2 ln(8π )

obc, any L W 2 0
√

π

2L
√

at
1
2 ln(tL2) + 1

2 ln 4a
π

pbc, any L W 2 2
√

π

2(at )3/2
3
2 ln t + 1

2 ln 4a3

π
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are approximately [39] λ j = 2(
√

4 cos( π j
L ) − 3 − 1), j =

0, . . . , L − 1. For periodic boundary conditions the expres-
sion becomes 2(

√
4 cos( 2π j

L ) − 3 − 1), j = 0, . . . , L − 1,
i.e., there is a degeneracy of 2. Since we are interested in
the regime j/L � 1, we can approximate obc eigenvalues as
2π2 j2

L2γ
. For pbc this gets multiplied by a factor of 4 and hence

in both cases α = 2.
I ( j) can be computed from the relevant elements of

the eigenvectors of the one-particle Liouvillian. It turns
out that the relevant elements of the jth eigenvector can
be approximated to be exactly the free fermion wave
function with the corresponding boundary condition; i.e.,
for pbc, they are 1√

L

∑L
k=1 exp(2iπ jk/L). Hence I ( j) ∼

1
L [

∑L
k=1

1√
L

cos(πk) exp(2iπ jk/L)]2 is identically 0 for even
L due to the symmetry of the wave function [40]. Since I
has no support on the low magnitude eigenspectrum of the
Liouvillian, it does not show a power law decay. Instead it
decays exponentially with the largest λ j = 4γ .

The situation for odd L in pbc is different
as the one site is unpaired. In this case I ( j) ∼
1
L [

∑L
k=1

1√
L

cos(πk) exp(2iπ jk/L)]2 ∼ 1
L2 for j � L. This

means β = 0 and hence I (t ) ∼ 2
∫

d j 1
L2 e−8π2 j2/L2 = 1

L
√

8πt
,

where the factor 2 in front comes from the degeneracy of the
eigenvalues.

For obc the eigenvectors are given by
√

2
L

∑L
k=1 cos

(π jk/L). Hence I ( j) = 1
L [

∑L
k=1

√
2
L cos(πk) cos(π jk/L)]2.

This equals 0 when both L and j are even or odd and 2
L2 oth-

erwise. This gives I (t ) ∼ ∫
d j 2

L2 e−2π2(2 j)2/L2 = 1
L
√

8πt
. These

results for the clean systems have been matched with exact
numerics, data not shown.

Now we focus our attention to disordered systems. Intu-
itively, we can predict that, since the behavior in this regime
involves the low energy eigenspectrum of the Liouvillian, it
should not drastically change on addition of disorder. If we
look into the obc case, we indeed see ∝1/(L

√
t ) behavior for

both clean and disordered systems, but not so for the pbc case
where we see a t−3/2 behavior.

Unfortunately it is very difficult to find an analytical ex-
pression for the eigenspectrum when we add the disorder in
the system, so we have to resort to exact diagonalization.
However, we can make some crude approximations about the
low lying eigenvalues and their scaling with L, W , and γ

since the evolution is described by the effective Heisenberg
Hamiltonian, Eq. (15), in this time regime. First, since the
effective Hamiltonian is a Heisenberg model, we conclude
that the low energy distribution would be ∝1/L2. We make
a further educated guess by borrowing the result λ j = 2π2 j2

L2γ

for clean systems from Ref. [39] and then introducing the
relevant prefactor in Heff for disordered systems. Thus we
have disorder averaged

λ j ∼ −a(γ ,W ) j2/L2, (21)

for j � L, where

a(γ ,W ) = 8π2γ(
2W 2

3 + 4γ 2
) (22)

and we have used 〈(h j − h j+1)2〉 ∼ 2W 2/3 for the box dis-
tribution (−W,W ). Henceforth we shall write a(γ ,W ) as a.
In Fig. 4(a) we see a very good agreement between our ap-
proximate prediction in Eq. (21) and numerical results for the
low magnitude eigenvalues of the Liouvillian. Now we turn
our attention to the eigenvectors. As shown before, imbalance
has a constant support which was significant for odd/even j in
clean obc systems. Small perturbations around this value due
to disorder do not affect the overall scheme of things upon
averaging over many disorder realizations, as can be verified
from Fig. 4(b). As seen in Fig. 4(b), for odd j, I j is almost the
same for clean and disordered obc systems with even L. For
even j on the other hand this quantity is no longer identically
0, as the symmetry of the system is broken due to disorder and
shows a (

√
2 j)2/L2 scaling. However, this does not seriously

affect the evolution as their magnitude is much smaller than
for odd j. Consequently, for disordered obc systems,

I (t ) ∼ 1

L

∫
d j

2

L
e−a(2 j)2/L2

=
√

π

2L
√

at
. (23)

This is the behavior seen in Fig. 4(c), where disorder, W = 4,
is chosen to be smaller to highlight region IV (data for W =
10 is similar at larger times and not shown).

However, for the periodic case, we have a different sce-
nario. Previously I ( j) had no support for any j in this regime
for clean systems, but now, due to breaking of symmetry,
I ( j) ∼ (

√
2 j)2/L2 as evident from Fig. 4(b). The eigenvalues

as seen in Fig. 4(a) follow the same scaling law as obc (the
degeneracy in the smallest magnitude eigenvalue is resolved
as we increase j). Hence we get

I (t ) ∼ 1

L

∫
d j

2 j2

L2
e−a( j)2/L2

=
√

π

2(at )3/2
. (24)

Indeed this is what we see in Fig. 4(d), including the lack of
L dependence in the result. For smaller W , e.g., W = 4, using
theoretical a in Eq. (22) differs slightly from numerical data
(not shown); however, time dependence is still 1/t3/2.

We can see that the difference between open and periodic
boundary conditions comes due to different scaling of the
overlaps of imbalance with eigenvectors. On a more physical
note it is worth observing that the imbalance dynamics will
agree between open and boundary conditions at least up to
extensive times t ∝ L when the causal cone hits a boundary
and the system starts to feel the boundary condition. This can
be seen in Fig. 5, where we compare dynamics for two types
of boundary conditions. We can see that indeed for L = 50
the obc and pbc data overlap until around t ∼ 10, while for
L = 500 there is overlap until almost an order of magnitude
larger, t ∼ 80.

D. Region V

As mentioned in Sec. II, region IV becomes asymptotic in
the thermodynamic limit, when we have a continuum in the
eigenspectrum. For finite size systems though, the spectrum
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1 10 100 1000
0

5

10

15

20

FIG. 5. Comparing the behavior of − ln I (t ) for different bound-
ary conditions at different system sizes L. The black vertical lines
approximately denote the time when obc data deviates significantly
from pbc. The two brown dashed lines denote the theoretical results
for obc at shown L and the green dashed line denotes the pbc result.

eventually gets resolved and hence for larger t ∼ L2W 2/γ we
observe a different behavior, which we classify as region V. In
this region, I (t ) shows an exponential decay, with the rate gov-
erned by the Liouvillian gap λ1 [41]. λ1 is the largest real part
of the nonzero Liouvillian eigenvalue for both obc and pbc
systems. Clean obc, odd L systems constitute an exception, as
the determination of the imbalance operator is based on the
next largest eigenvalue, since the largest nonzero eigenvalue
has zero support. In Fig. 6, we see that − ln I (t ) grows linearly
with time at large times for disordered obc systems, with the
slope |λ1(L, γ ,W )| [which is approximated by Eq. (22) with
j = 1, explained in the following], verifying our expectation.
The plots are similar for pbc (data not shown), with slope
approximately four times corresponding obc systems, as can
be seen by comparing λ1 for pbc and obc in Fig. 4(a). As
before, analytical results for clean systems are well known
[39], but upon addition of disorder one can only resort to

0 500 1000 1500 2000
0

5

10

15

FIG. 6. Plot showing the linear growth of − ln I (t ) in region V
for obc finite size systems of different lengths L and at disorder
strengths W . The black dashed lines denote the expected growth of
− ln I (t ) with the rate given by corresponding λ1 dependent on L, W ,
and γ .

numerics for exact results. Nevertheless, the description given
by Eq. (15) is still valid in this timescale and explains the
scaling behavior of λ1 with L, W , and γ as discussed below.

In Fig. 7(a) we show the change of λ1 with L for constant
W and γ . It is known that the 1/L2 scaling of λ1 works for suf-
ficiently large L for clean systems. In fact, it has already been
shown in Ref. [39] that the critical length required to observe
this scaling is Lc ∼ π

√
2

γ
. For γ = 0.1 this is at L ∼ 45 and is

shown by the blue gridline in Fig. 7(a). This behavior also con-
tinues when we introduce disorder in the system. It is evident
from the figure that upon increasing W , Lc decreases. This
can be explained as in the previous section using Eq. (15) and
Eq. (21), which tells us that, on addition of disorder of strength
W , γ can be effectively replaced by (4γ 2 + 2W 2

3 )/(4γ ). This
gives

Lc(W ) ∼ 4
√

2πγ

4γ 2 + 2W 2

3

, (25)

shown as different colored gridlines in the plot, and captures
the transition point between the two regimes quite well.

Finally in Fig. 7(b) we show the change of λ1 on changing
W and γ for constant L = 3000 via a contour plot. We expect
|λ1L2| ∼ a and hence the equation of constant contours can
be obtained from Eq. (22) as

ln a = const. (26)

Three such contours are plotted as red dashed lines in Fig. 7(b)
and they match very well with the contours obtained from
exact numerics.

V. DISCUSSION

In this work we have studied the evolution of imbalance,
I (t ) for the disordered XX chain with on-site dephasing, start-
ing from the Néel initial state. Using the hierarchical nature of
equations for the observables, we have computed I (t ) for large
system sizes (L ∼ 103) and long times (t ∼ 103). Our anal-
ysis showed the emergence of five timescales in disordered
systems.

The shortest time scale, t < t0 ∼ min(1/γ , 1/W ), where
I (t ) ∼ (1 − ηt2), constitutes the linear response regime of
the system. Then, due to the localization via disorder, two
timescales denoted by regions II and III emerge, which are
absent in clean systems. Region II is the linear regime of
what has been called a stretched exponential decay in previous
works [15,20–23], where I (t ) ∼ (1 − β

√
t ), and is universal

irrespective of the nature of disorder chosen, and contin-
ues until t1 ∼ 0.1W 2/8γ , before smoothly transitioning to a
disorder dependent behavior in region III which continues
until t2 ∼ 5W 2/(8γ J2). We thus conclude that the stretched
exponential fits are neither universal nor asymptotic for the
system under study. Simple local three-site models describe
the behavior in these two regimes and a rescaled time emerges
during the analysis τ = 8γ t/W 2. An effective Heisenberg
model given by Eq. (15) also provides the correct description
of the evolution from region II.

For t > t2, where region IV begins, dephasing breaks lo-
calization and the system shows size and boundary condition
dependent power law decay of I (t ). In fact for pbc it shows a
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FIG. 7. Scaling of λ1, the smallest Liouvillian gap, with different parameters for obc. (a) Plot showing 1/L2 scaling of λ1, for different
disorder strengths, W . Lc from Eq. (25) is marked by appropriate colored gridlines in the plot. Averaging is done over 100 realizations. (b) Plot
showing dependence of ln |λ1L2| with W and γ for L = 3000 averaged over 100 disorder realizations. The red dashed lines indicate three
constant contours at 0, 2.5, and 3.5 for ln a obtained from Eq. (22).

1/
√

t3 decay, while for obc the initial decay 1/
√

t3 transitions
at time t ∝ L into 1/(L

√
t ). These were explained from the

continuum limit of the low magnitude eigenspectrum of the
Liouvillian. Finally, we discussed that, for finite sized systems
due to resolution of the eigenspectrum, the decay of I (t ) in the
final region V at t > t3 is exponential with the rate governed
by the relevant Liouvillian gap λ1. We also provided analysis
of how λ1 typically scales with W, L, γ using the effective
Heisenberg Hamiltonian approach.

Our analysis gives insight to the mechanism behind the
evolution of imbalance in such a system. It demystifies the
behavior of the system in regions II and III, clearly showing
its local origin, and gives us the ability to make predictions
about the evolution for many different disorder distributions.
Additionally, the proper analysis of the Liouvillian eigenspec-
trum provides us with the correct asymptotic description of
evolution for different models and boundary conditions.

We would also like to briefly mention the nuances of
crossover from one regime to another. Since the transition
is smooth, there is always a finite time taken by the system
to go from one regime to another. For example, from region
III to IV, where the finite size effects first appear, the system
typically takes t ∼ L to transition to the asymptotic power law
for open boundary conditions. However, this does not seem to
be the case for periodic boundary conditions.

Additionally, it is worthy to remark that the effective
Hamiltonian description [12] of Eq. (15) is also valid for
weakly interacting systems where the interaction strength is
much smaller than disorder strength. This means weak in-
teraction does not play much of a role in evolution in such
timescales, so we expect most of our results to hold for weakly
interacting systems as well.

Furthermore, while we have discussed the Néel initial state
in this work, decay of I (t ) from other generic computational
initial states also share some similar features. The behavior in

regions I, IV, and V seen for the Néel state is still observed
for other typical states. The differences occur in t2 and the
behavior in regions II and III. The first difference in other
initial states is that I (t = 0) < 1, i.e., − ln I (t = 0) > 0. Since
t2 is defined by a finite nonzero value of I universal for a
given disorder distribution, relaxation from different I (t = 0)
typically reaches this value at different times. Secondly, all
the sites of the initial state are not locally equivalent unlike
the Néel state. Hence the scaling in regions II and III show
a difference due to variation in local behaviors. A detailed
analysis of this aspect is beyond the scope of the present
work.

There are still a few open questions left in the context
of this work. One natural extension would be to study the
evolution of other observables such as current in such a model.
The question of whether the scaling laws depend on the type
of dephasing is also worth studying. Indeed, the hierarchical
structure of observables or the effective Heisenberg model
might break down if we choose a different model of de-
phasing. Additionally, while regions I–III have been studied
under different disorder settings, we have provided a general
explanation for the power law decay in region IV, discussing
the two cases where it shows different exponents. Specific
potentials may give rise to unique behavior in this timescale
and an analysis of that is left for a future work.
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APPENDIX A: TWO-SITE MODEL

In this Appendix we shall derive the eigenspectrum expres-
sions for the two-site model using Eq. (6) as the starting point
of our computation. For regime I this simple model is enough
to qualitatively explain the features seen. For the two-site
model, f = (C11,C12,C21,C22) and

Q =

⎛
⎜⎜⎝

0 2i −2i 0
2i 2iδ + 4γ 0 −2i

−2i 0 −2iδ + 4γ 2i
0 −2i 2i 0

⎞
⎟⎟⎠, (A1)

where we have taken J = 1 and δ = h1 − h2. For δ = 0 (clean
system), one can compute the eigenvalues exactly as

[0, 4γ , 2(γ −
√

γ 2 − 4), 2(
√

γ 2 − 4 + γ )] (A2)

and the time dependent solutions to the C11(22) can be written
as

C11(22) = e2γ t

[
(−) cosh(2t

√
γ 2 − 4)

− (+)
γ sinh(2t

√
γ 2 − 4)√

γ 2 − 4

]
. (A3)

Hence

I (t ) = 1
2 [C11(t ) − C22(t )] ∼ 1 − 8t2 + O(t3). (A4)

This is the demonstration of the short time quadratic behavior
when t < 1/

√
γ 2 − 4.

However, when δ > 0 the exact solution is given from a
cubic equation since one of the eigenvalues of Q is always 0.
The expressions are complicated and hence not shown. But we

can formulate a simple perturbative result for δ � 1, γ . To do
so we first rearrange Q to separate the degenerate block and
nondegenerate blocks as

Q =

⎛
⎜⎜⎝

0 0 2i −2i
0 0 −2i 2i
2i −2i 4γ + 2iδ 0

−2i 2i 0 4γ − 2iδ

⎞
⎟⎟⎠

=
(

O2×2 B2×2

C2×2 D2×2

)
. (A5)

Then applying second order degenerate perturbation theory to
O and second order nondegenerate perturbation to D we have
the eigenvalues as[

0,
16γ

4γ 2 + δ2
, 4γ + 2iδ + 8

4γ + 2iδ
, 4γ

−2iδ − 8

−4γ + 2iδ

]
(A6)

and the solution for δ � γ is given by

I (t ) = −4 cos(2
√

δ2 + 4t ) + δ2

δ2 + 4
= 1 − 8t2 + O(t4), (A7)

where the quadratic decay with t remains but it is valid until
t ∼ 1/

√
δ2 + 4.

APPENDIX B: THREE-SITE MODEL

Now we repeat the above calculation for a three-site model
which describes the behavior in regimes II and III. In this case
f is given by Eq. (7), while Q is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 2i −2i 0 0 0 0
2i 4γ + 2iδ1 0 −2i 0 0 0

−2i 0 4γ − 2iδ1 2i 0 0 0
0 −2i 2i 0 2iτ −2i 0
0 0 0 2i 4γ + 2iδ2 0 −2i
0 0 0 −2i 0 4γ − 2iδ2 2i
0 0 0 0 −2i 2i 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B1)

where h1 − h2 = δ1 and h2 − h3 = δ2. Rearranging in the form of Eq. (A5), we get the general form in this case as

Q =
(

O3×3 B3×4

C4×3 D4×4

)
. (B2)

Then, using second order degenerate perturbation theory in the subspace of O, we can compute the eigenvalues as �(0) = 0 and

�± =
8γ

(
8γ 2 ±

√
16γ 4 + 4γ 2

(
δ2

1 + δ2
2

) + δ4
1 − δ2

1δ
2
2 + δ4

2 + δ2
1 + δ2

2

)
(
4γ 2 + δ2

1

)(
4γ 2 + δ2

2

) . (B3)

Since we are in the regime where W � γ , we have δ1, δ2 � γ , and hence we can approximate Eq. (B3) as Eq. (8).
One can also compute the eigenvectors in this subspace and plug in the initial Néel state to find the coefficients

d (0) = −1

3
, d (+) =

(
2δ2

1 − δ2
2 + κ

)(
δ2

2 + κ
)

3δ2
1κ

,

d (−) =
(
2δ2

1 − δ2
2 − κ

)( − δ2
2 + κ

)
3δ2

1κ
, (B4)
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ROOPAYAN GHOSH AND MARKO ŽNIDARIČ PHYSICAL REVIEW B 107, 184303 (2023)

FIG. 8. Comparison of distribution of p(�(+) ), between �(+)

given by Eq. (B6) and approximated by Eq. (B7).

where κ =
√

δ4
1 − δ2

1δ
2
2 + δ4

2 . We can see that, when |δ1| =
|δ2|, d (+) = 4

3 , d (−) = 0. In the opposite regime, i.e., when
|δ2

1 − δ2
2 | � 0, d (+) → 1 and d (−) → −d (0). Consequently,

it can be shown that 1 � d (+) � 4/3, 0 � d (−) � 1/3, and
hence d (+) always provides the largest contribution to the
evolution.

We use the result for |δ1| = |δ2| when we compute I (t ) for
alternating potential plotted in Fig. 3(b) as

I (t ) = − 1
3 + 4

3 e−�(+)t

∼ e−4/3�(+)t = e−τ , (B5)

where we have used �(+) ∼ 6γ /W 2 for W � γ . One surpris-
ing aspect is that Eq. (B5) is a good fit to exact numerics in
Fig. 3(b) beyond τ ∼ 1. This can be explained by observing
that if we take local models of higher sizes, then we will find
numerically that d (0) decreases and the weight gets shifted to
a mode which evolves with ∼4/3�(+). Thus Eq. (B5) remains
valid even when the transport occurs in a more nonlocal region
(but not in the full lattice) and hence to longer times, before
the system shows the asymptotic power law behavior. Also
notice that because there is only one mode of relaxation, the
decay is exponential in this timescale.

For the random disorder case we will have a distribution of
d and �(±) based on the distribution of disorder. However, the
principal mode of decay is via �(+). To the leading order, the
effect of d0 on this mode becomes progressively smaller as we
move away from the limiting alternating potential case |δ1| =
|δ2|, as it is countered by the d (−) term. Furthermore, �(−)

is typically too small to have a significant effect on evolution
in regimes II and III. Finally, the shifting of weight towards
a mode ∼�(+) when we take slightly bigger but still local
models is valid for the disordered case as well. Hence simply
averaging over �(+) modes is usually enough to get accurate
results as presented in Fig. 3(a).

The final point we need to address is the validity of the ap-
proximation we have used to arrive at Eq. (11) from Eq. (10).

FIG. 9. Comparison between exact numerical results for evolu-
tion of I (t ) with those obtained by solving Eq. (C1) averaged over 20
realizations for L = 24 and W = 30, obc.

Let us recall that

�(+) ∼
8γ

(
δ2

1 + δ2
2 +

√
δ4

1 + δ4
2 − δ2

1δ
2
2

)
δ2

1δ
2
2

. (B6)

For very large W , we can expect terms with |δ1| ∼ |δ2| would
be statistically insignificant. Hence to get a tractable expres-
sion, we take the approximation |δ2

1 − δ2
2 | � 0. This would

constitute the long tails of the distribution of �(+). Finally,
to be able to perform the analytical computation simply, we
choose to approximate �(+) by

�(+) ∼ 16γ
(
δ2

1 + δ2
2

)
δ2

1δ
2
2

(B7)

and show its agreement with full �(+) in Fig. 8. The approx-
imation qualitatively represents the exact curve reasonably
well. Also, since it becomes exact in the tail, i.e., for large
�(+), consequently the expression computed using these re-
sults represents the exact result for I (t ) for smaller t more
accurately than the rest, a feature seen in Fig. 3(a) and
Fig. 3(b). The exact stretched exponential result which arises
out of this approximation for Gaussian disorders is also valid
only for small t .

APPENDIX C: AGREEMENT OF EXACT NUMERICS
WITH EVOLUTION BY Heff

In the end of Sec. IV B we mentioned that we could use
an effective Hamiltonian to replicate the behavior of I (t ) from
a bit later than τ = τ0. Let us discuss this aspect in a bit of
detail.

Following Ref. [12], at a sufficiently large timescale the
density matrix becomes effectively diagonal and the evolution
of the diagonal elements ρi is given by

dρi(t )

dt
=

∑
j

[Heff ]i jρ j (t ), (C1)
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FIG. 10. Comparison of exactly computed I j via solving L × L
linear equations for the initial conditions with our approximation
using the squares of the eigenvector elements for a system with
L = 80, W = 30, γ = 1, and periodic boundary conditions, averaged
over 103 disorder realizations. The dashed line is the approximate
scaling we have used in Sec. IV C.

where Heff is given in Eq. (15). I (t ) can then be computed
from ρi(t ) as

I (t ) =
2L∑
i

ρi(t )
L∑
j

〈αi| (−1) jσ z
j |αi〉 , (C2)

where |αi〉 can be taken as the computational basis states. We
plot the comparison of results obtained from exact numerics
using Eq. (11) and evolution of the density matrix using
Eq. (C1) and Eq. (C2) in Fig. 9. We see that from τ ∼ 0.01
the two results are almost equal. This effective description
reproduces the low energy eigenspectrum of the Liouvillian
quite accurately and hence correctly approximates the evo-
lution from τ � τ0, and thus is effective in capturing the
evolution of I (t ) from approximately region II, as expected.

APPENDIX D: COMPUTATION OF LOW MAGNITUDE
EIGENSPECTRUM OF LIOUVILLIAN

Following the arguments of Ref. [39], we have extracted
the low magnitude eigenspectrum of the system by diag-
onalizing a matrix of size ∼L × L instead of ∼L2 × L2

one-particle Liouvillian. If we denote the computational basis
as | j〉, then the low magnitude eigenspectrum of the one-
particle Liouvillian can be approximated by eigenspectrum of
the following matrix:⎛

⎝0 RT 0
R −4Iγ iIX
0 −iIX −4Iγ

⎞
⎠, (D1)

written in the basis | j〉〈 j|, | j〉〈 j + 1| + | j + 1〉〈 j|, and | j〉〈 j +
1| − | j + 1〉〈 j|. Here γ is the dephasing, Rjk = −2i

√
2(δ j,k −

δk, j+1), and Xjk = (h j − h j+1)δ jk , with hi being the on-site
disorders. Note that unlike the clean Hamiltonian case treated
in Ref. [39], | j〉〈 j + 1| + | j + 1〉〈 j| are not eigenvectors of
L as disorder breaks translational invariance. Thus we need
to effectively solve a 3L − 2 × 3L − 2 [3L × 3L] problem
for obc [pbc] to obtain the eigenspectrum, which is the
“tridiagonal” approximation. This allows us to compute the
eigenspectrum for large systems and results are shown in
Figs. 4(a) and 4(b).

Furthermore, for small system sizes one can numerically
show that the δf ( j)’s are proportional to the correspond-
ing eigenvector elements and that approximating I ( j) with
the square of corresponding eigenvector terms is justified.
In Fig. 10 we show the comparison of our approximation
with exact I ( j) found by numerically computing the correct
weights due to the initial Néel state. We do exact diagonal-
ization for a system size of L = 80 at large W = 30 averaged
over 103 realizations under periodic boundary conditions to
obtain the exact data. As one can see the qualitative nature of
both the plots are the same; they vary by a factor of approx-
imately 1.5 (computed numerically). Hence in Fig. 4(b) our
approximation was able to qualitatively replicate the behavior
of I (t ) with insignificant deviation from exact numerics.
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