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In recent decades, we have witnessed great advances on the Internet of Things, mobile devices, sensor-based 
systems, and resulting big data infrastructures, which have gradually, yet fundamentally influenced the way 
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Geographical space 
Cyberspace 
GeoAI 
GeoVA 

people interact with and in the digital and physical world. Many human activities now not only operate in 
geographical (physical) space but also in cyberspace. Such changes have triggered a paradigm shift in geographic 
information science (GIScience), as cyberspace brings new perspectives for the roles played by spatial and 
temporal dimensions, e.g., the dilemma of placelessness and possible timelessness. As a discipline at the brink of 
even bigger changes made possible by machine learning and artificial intelligence, this paper highlights the 
challenges and opportunities associated with geographical space in relation to cyberspace, with a particular focus 
on data analytics and visualization, including extended AI capabilities and virtual reality representations. 
Consequently, we encourage the creation of synergies between the processing and analysis of geographical and 
cyber data to improve sustainability and solve complex problems with geospatial applications and other digital 
advancements in urban and environmental sciences.   

1. Introduction 

The development of Information and Communication Technology 
(ICT) and hence the Internet of Things (IoT) have ushered our society in 
the digital era. The proliferation of personal computers, mobile phones, 
intelligent autonomous sensors such as those used in autonomous ve-
hicles, and pervasive network connectivity facilitating interactions be-
tween individuals has led many human activities to shift gradually from 
offline to online. The digital transformation of human activities has 
transferred many human activities into cyberspace where people can 
perform collaborative activities, and where the role played by distance 
can at least be reconsidered (Cairncross, 2001). Cyberspace is generally 
considered “a global domain within the information environment con-
sisting of the interdependent network of information technology in-
frastructures, including the internet, telecommunication networks, 
computer systems, and embedded processors and controllers” (England, 
2008). This transformation brings opportunities and challenges to 
obtain valuable insights into the way these two spaces (geographical 
space and cyberspace) can be mapped onto each other, and interact. To 
face these challenges, current GIScience concepts, theories, and imple-
mentations should be revisited and extended to integrate the novel op-
portunities offered by cyberspace, including the way spatial and 
temporal properties are embedded in digital spaces. In recent years 
many efforts have been dedicated to exploring cyberspace and its 
associated activities. For example, through the analysis of mobile users’ 
behavior connecting (physical) spatial locations and web environments, 
a strong correlation between human dynamics in geographical space 
and cyberspace is uncovered using a super linear statistical scaling 
model (Zhao et al., 2014). Through the analysis of social media data, 
another study reveals that geographical proximity still plays an impor-
tant role in the interaction between humans in cyberspace, but spatial 
autocorrelation is significantly weaker than in physical space (Han et al., 
2018). In fact, in online social networking (e.g., Facebook, Twitter, or 
Weibo), the interactions between people are not subject to the con-
straints of space and time as before, as individuals can communicate 
from anywhere without incurring travel costs, although time differences 
are still somewhat important for synchronous online meetings. Our work 
discusses the opportunities and challenges of geospatial artificial intel-
ligence (GeoAI) and geovisual analytics (GeoVA) in geographical space 
and cyberspace, a challenging task as the theoretical and conceptual 
foundations that should be associated with them are still to be identified 
(Gao et al., 2019). 

The continuous development of cyberspace generates a remarkable 
diversity of very large volumes of geospatial data at unprecedented rates 
of dissemination. Cyberspace data, whether voluntarily or involuntarily 
generated, originates from a variety of user communities, ranging from 
experts to the general public and different supports from social media to 
mobile users, but are not always well structured because they are most 
often not generated for further manipulation. This new cyberspace data 
space opens up a new field of interactions with that of geospatial data, 
thus offering novel application opportunities for many fields. However, 
this requires a preliminary study of the data modeling and processing 
principles associated with cyberspace data, and potential interopera-
bility with geographical space. This leads us to specifically consider the 

potential contribution of GeoAI, which nowadays offers new methods 
for processing and reasoning on complex and time-related geospatial 
data, either structured or unstructured, and that of GeoVA, which pro-
vides cutting-edge visualization capabilities for the exploration of 
complex data. Together, GeoAI and GeoVA are well suited for providing 
a data processing framework associated with cyberspace in close 
connection with geographical space and humans-in-the-loop. The goal is 
to derive a series of conceptual data interaction principles that when 
considering together will bring new opportunities and synergies for 
urban, environmental, and earth sciences. 

Given exciting recent developments in artificial intelligence (AI) that 
can provide novel computational solutions to mimic human intelligence 
to a certain degree, this paper proposes to recast GIScience in the era of 
cyberspace and envision its future characteristics. Based on a conceptual 
framework that identifies the respective intertwined roles of geograph-
ical space and cyberspace (Liu et al., 2022), we review current chal-
lenges and future directions offered by close interactions between the 
two spaces, as illustrated in Fig. 1. First, the data generation dimension 
covers a much larger information space, from geolocated smart sensors 
to human-generated geospatial data. Second, data modeling approaches 
are evolving, from well-structured data to the integration of very large 
heterogeneous datasets not always explicitly generated for further use. 
Third, the geographical space and geospatial data favor the exploration 
of novel AI data processing and visual explorations, where humans are 
directing different processing and interactive steps. Finally, the appli-
cation scope is expanding at an unprecedented rate and reaching novel 
application areas. We specifically focus on geospatial artificial intelli-
gence (GeoAI) and geovisual analytics (GeoVA) as these emergent fields 
in GIScience provide novel approaches and opportunities that enable 
analysis and exploration of the opportunities connecting geographical 
space and cyberspace. The following sections document the key op-
portunities and challenges offered by GeoAI and GeoVA in an era where 
geographical space is inextricably linked to cyberspace. 

2. Geospatial data in the context of cyberspace 

A large part of the world’s population interacts and communicates in 
cyberspace daily. Cyberspace is an open, global, unregulated, and vir-
tual area of decentralized human activities, social interactions, and 
application services in the information space transmitted by sensors and 
Internet communication channels, supported by cyberinfrastructure. 
Cyberinfrastructure provides a flexible integration of interdependent 
computing systems, data storage systems, advanced sensors powered by 
Industry 4.0, and data repositories, visualization environments and 
people, all linked together by software, high-performance networks, 
protocols, and computing resources not otherwise possible in the 
physical world. Cyberinfrastructures are constantly evolving and are 
even likely to soon integrate massive, decentralized sensors and robot 
devices with cognitive capabilities. A great deal of the data people are 
generating and transmitting in cyberspace includes geospatial elements. 
This raises many challenges related to data quality and trust, but as 
emerging data flows are generally massive, useful information can be 
inferred (Niu et al., 2017). Differences can be drawn between the large 
amount of physical Earth data (e.g., cartographic data, and satellite 
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observations), human activities in geographical space (e.g., mobility), 
and those that happen in cyberspace (e.g., social media data). Although 
this classification gives a primal sense of the range of activities and 
potential geospatial data types, most human interactions in cyberspace 
are not isolated from events in geographical space, as they often influ-
ence and are influenced by one another. The degree of interaction be-
tween geographical space and cyberspace varies according to the nature 
of human activity. For instance, in many mobility services such as 
ridesharing, real-world interaction with cyberspace is intense. When 
requesting a ride, the client user will remain in contact with the backend 
system from the time they board the car until they arrive at their 
destination. In contrast, the interactions between cyber and geograph-
ical space when shopping online (i.e., delivery of goods through logistics 
and transport systems) can be much looser. 

Geospatial data (e.g., location, identity, and semantics) that connect 
geographical space and cyberspace offers opportunities to better un-
derstand human behaviors at different scales with unprecedented spatial 
and temporal resolution (Lee et al., 2015). As human activity data is 
generated in real-time with high temporal frequency, monitoring and 
analysis of spatiotemporal dynamics for complex human activities in an 
urban context is enabled (Roche, 2016). Nonetheless, there is no doubt 
that big data creates challenges related to its characteristics (i.e., its 
dimensions) (Khan et al., 2017; L’heureux et al., 2017; Yang et al., 
2017). In addition to the challenges of dimensionality and non-linearity 
in large amounts of generated data, GIScience and Cyberscience 
together may provide novel pathways for intelligent processing, while 
also raising new, complex challenges. Data standards, ethics, and 
modeling approaches can be reconsidered in light of these novel infor-
mation spaces. The way physical space is related to cyberspace can raise 
data modeling challenges. For instance, a smart device connected to the 
Internet can have more than one IP address when using different net-
works, which may affect data accuracy. Additionally, with user- 
generated geospatial content, location spoofing can create data quality 
issues when users adopt these methods to improve proactive data pri-
vacy protection (Zhao and Sui, 2017). Moreover, cyberspace is a fertile 
environment for the growth of obsolete and useless data (e.g., junk email 
and bot spam), and the potential exists for cyberspace to be flooded with 
garbage data (Che et al., 2013). Therefore, it is imperative to envision 

and implement a sustainable and ‘clean’ cyberspace. 

3. Modeling geographical space and cyberspace 

GIScience was originally developed to address the fundamental 
theoretical issues behind the representation of the geographical world 
and a representation of places, activities and phenomena (Goodchild, 
1992). However, rethinking GIScience from a cyberspace perspective 
requires data modeling beyond place (geographical space, context) and 
time (dynamics,) so a sound integration of digital interactions and data 
that emerge from cyberspace. In other words, conventional GIScience is 
concerned with the formulation of the geographical data model that has 
the potential to abstract reality or the real world and represents phe-
nomena and feature attributes that are located in space, while cyber-
space is rather oriented to the modeling of the digital space and the 
human interactions that happen in it. A specific peculiarity of cyber-
space is that data is often recorded at a higher frequency than ever 
before. Early studies have discussed “virtual activity” and argued that 
the virtual environment can be regarded as a type of space (Batty, 1997; 
Yu and Shaw, 2008). Cyberspace has appeared due to the wide use of 
network infrastructure, continuous development of information, and 
sensor-based technologies that have greatly reduced geographical space 
constraints on people. Resembling geographical space, cyberspace is 
composed of virtual places (including identities, websites, and 
communication platforms) where people interact at an order of magni-
tude faster than in geographical space (Lü et al., 2018). In geographical 
space, the main modeling abstractions are derived from places and 
people, while in cyberspace they are derived from digital places and 
people, and overall cyberspace and geographical space are widely 
interacting and progressively integrated into a common modeling-based 
framework. 

It is acknowledged that cyberspace cannot exist or function without 
geographical space, even though cyberspace has specific properties 
distinct from it (Batty, 1997; Mohebbi et al., 2020). Cyberspace is not 
considered a simple abstract virtual space, instead, it includes human 
activities and interactions that might be related to geographical space. 
First, human activities in cyberspace are mainly dependent on sensing 
and communications and network infrastructures (e.g., data servers and 

Fig. 1. An integrated view of GIScience and cyberspace, with perspectives offered by GeoAI and GeoVA  
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clients) deployed in the physical world. Second, geographical space and 
cyberspace have the same essential components (i.e., humans who exist 
and carry out physical activities) while humans themselves must exist 
and (so far) rely on the real geographical world. Third, many cyberspace 
services serve as an extension of physical-world activities rather than 
creating a new world. This indispensable relationship between cyber-
space and geographical space sets an important foundation for future 
GIScience studies. 

However, challenges remain in designing spatial data models that 
efficiently incorporate geographical space and cyberspace in an inte-
grated framework to support the development of Geo-visualization ca-
pabilities and Geo-AI analytics. Their mutual interdependence and 
impact may also vary in different and unexplored scenarios. CyberGIS 
conceptual and logical models can supply reliable solutions to integrate 
various hardware and software systems and interact with end clients 
through layers such as cyberspace server and networking layers and 
with the presence of diverse and multi-type media data and its fit to 
initiatives in building smart and sustainable cities (Xing et al., 2020). For 
instance, there is a need to represent activities in cyberspace resulting in 
digital spatiotemporal trajectories (Shaw and Yu, 2009); when associ-
ated with geographical information, such spatially embedded digital 
trajectories have proven to be highly useful to predict human mobility 
(Pan et al., 2013), improve the identification of urban infrastructure (Xie 
and Ou, 2019), and support disaster management (Xiao et al., 2015). 
Various types of information beyond geospatial location can be used in 
cyberspace such as text, images, videos, website logs, and social media 
links. Another critical consideration is that activities in cyberspace are 
mostly characterized as flows, such as information transactions, tele-
phone communications, and social media interactions; therefore, graph 
theory and network-based data models are often used to represent to-
pological structures between entities (Çöltekin et al., 2020b). In prac-
tice, topological structures in cyberspace can be determined by spatial- 
social relations and flows from mobile phone and social media data 
which provide valuable insights into urban functions and structure in 
geographical space (Shen and Karimi, 2016; Tu et al., 2017). There is a 
clear interdependence across geographical space and cyberspace, which 
means that unified models and ontologies should be progressively 
defined. There are two similarities between human activities in cyber-
space and geographical space (Hu et al., 2018): 

(1) Cyberspace activities mimic physical activities, as Internet users 
navigate from one online community to another, explore different online 
communities, and often revisit communities they already know well, 
comparable to physical space (Kwan, 2001). 

(2) Both cyberspace and geographical space have similarities that 
relate to locations (i.e., online platforms and places), such that some 
locations are more popular, and those places tend to attract more people. 
In contrast, other locations may attract only a limited number of people, 
and further locations may be authorized for only certain people to visit, 
such as private groups within online communities. 

Because of these similarities, and as shown in Fig. 2, human activity 
patterns in cyberspace can be remodeled with the aid of sensing data in 
geographical space. A major constraint to take into account is that 
Euclidean distance is not the most suitable for analyzing relations and 
flows on networks. Though there is a large amount of research oriented 
to the modeling of human activities on the web, there is little research in 
the literature that has fully considered human activity in cyberspace as 
well as in geographical space so that we might understand human 
mobility patterns and their influence on movements in virtual spaces. 
Moreover, there is a need to revisit current GIS modeling approaches 
originally designed for well-designed models and applications whose 
data were mainly very well structured. In particular, data modeling and 
manipulation opportunities arising from knowledge graphs offer novel 
opportunities for a dynamic representation of geospatial phenomena 
(Del Mondo et al., 2021). 

With the emergence of very diverse information sources resulting 
from cyberspace, most of the data is likely to be heterogeneous and 
unstructured, derived from diverse data processing algorithms, thus 
leading to a new generation of flexible data modeling approaches. The 
way geographical space and cyberspace data models should be designed 
and implemented also requires new thinking and integration of addi-
tional principles and constraints. In particular, there is a need to identify 
the most appropriate filtering and aggregation rules to conserve the 
minimum set of data that will be not only useful at a given time, but also 
possibly for the next generation, and with the difficulty of identifying 
these future needs that are not easily identifiable at present. This mo-
tivates the development of an integrated reference meta-model and data 
infrastructures for geographical space and cyberspace information. Cy-
berspace can be considered an interdependent network of data and 
global infrastructure. Data in cyberspace is captured from different 
sources, platforms, and users’ actions, but a marginal amount of the data 
generated are generally stored and kept, thus generating the need for 
advanced real-time or live GeoAI capabilities. As cyberspace is physical 
distance free, and where people from different origins can interact, 
definitions of standards, management, and governance rules are difficult 
to implement. This leads to important vulnerability, transparency, se-
curity, and data protection issues that are difficult to resolve (Karim 
et al., 2019). 

4. GeoAI: Geospatial artificial intelligence in geographical and 
cyberspace 

4.1. Challenges and opportunities 

Exploring spatiotemporal patterns attributed to natural or human- 
induced processes has been a vital part of the research agenda of GIS-
cience for a long time. Through physical and virtual experiments, ge-
ographers and other spatial scientists derive knowledge on human- 
human and human-environment relationships and mechanisms, 

Fig. 2. Modeling geographical space and cyberspace.  

M. Chen et al.                                                                                                                                                                                                                                   



Earth-Science Reviews 241 (2023) 104438

5

forming theories for a wide range of benefits such as promoting sus-
tainable living spaces (agricultural lands, cities). It is common to collect 
diverse data and adopt different approaches to obtain spatial knowl-
edge, searching for appropriate spatial distributions, relationships, 
clustering, and dynamic processes (Goodchild, 2010). An early land-
mark contribution at the crossroads of GIScience and artificial intelli-
gence (AI) is the book on Artificial Intelligence and Geography 
(Openshaw and Openshaw, 1997), which developed a series of 
computational approaches and parallel processing machines for 
searching for geographical patterns. AI also provides a novel form of 
exploration of human behaviors in the real world (Torrens, 2018). The 
ability and potentiality of AI for GIScience have been progressively 
strengthened with the availability of large databases and the search for 
novel data manipulation and exploration approaches. The emergence of 
data mining approaches (Miller and Han, 2009) and computational 
machine learning programs applied specifically to geographical data 
have been a rising trend in the past few years. Machine learning applied 
to geographical space encompasses a wide range of techniques from the 
discovery of spatial associations, clusters, and patterns to anomaly 
detection (Li et al., 2016). Neural network algorithms have been widely 
applied to the detection and extraction of objects in large images (Tang 
et al., 2021; Zhang et al., 2022a; Qian et al., 2022a), and trajectory 
prediction in urban environments (You et al., 2021; Qian et al., 2022b; 
Zhang et al., 2022b), although work to fully interpret the patterns and 
intrinsic mechanisms of these learning-based AI methods in a logical 
way that humans understand remains a major challenge. 

GeoAI combines the strengths of GIScience and AI, which greatly 
improves the ability of dynamic perception, intelligent reasoning, and 
knowledge discovery of geographical phenomena and the accompa-
nying processes (Li, 2020). With the support of the IoT, the Internet, 5G, 
VR, cloud computing, and other new technologies, the integration of 
GeoAI technologies and cyberspace can provide powerful methods and 
technical support for GIScience research (Janowicz et al., 2020). 
Meanwhile, this will open novel opportunities, or at least can be 
considered an integrative part of other emerging scientific and techno-
logical domains, and promote a transdisciplinary impact of GIScience. 
The recent convergence of social computing research over the Internet 
and geographical research opens a series of major opportunities for 
gaining additional information and insight from large data repositories 
whose initial objective was far away from offering such possibilities, 
such as inference of mobility patterns from social media activities in 
geographical space (Wakamiya et al., 2011). It has been shown that 
cyber-related big data is useful in classifying natural and human- 
induced spatial structures. For instance, the combination of social 
sensing big data and remote sensing technology can be well applied to 
observing actual human activities and obtaining more accurate imagery 
classification results (Deng et al., 2019). 

For prediction tasks, GIS mainly relies on constructing linear-form 
models between historical hotspots and demographic factors. In this 
way, massive data and advanced data mining techniques enable us to 
build more versatile models that adopt high dimensional and complex 
features, while prediction has also become more accurate over time. 
Successful applications can be found in tourism and predictive policing 
(Shapiro, 2017; Williams et al., 2019; Cheng and Chen, 2021). Never-
theless, there are multiple challenges in the convergence of social and 
spatial relations. For instance, there are explicit (direct) interactions 
shown by changes in location and calls among people, and implicit 
(indirect) interactions indicated by co-locations and similar interests. 

Other challenges include proactively identifying algorithm-driven 
behavior of the major platforms, such as overtly persuading and 
covertly manipulating behaviors. Effective initiatives decentralizing the 
power of social media platforms and ensuring accountable sovereignty 
of algorithms should be placed on the agenda focused on socio-economic 
issues, whereas now, data with a finer resolution in terms of human 
movement make it possible to gain knowledge about interactions from a 
mobility perspective. A further indication of mobility-induced spatial 

relations and structures represent the underlying foundational design of 
urban functions that drive the motivations for movement and travel. 

Another challenging and promising work is to explore the composite 
impact of geographical and cyber human activities on classification and 
prediction tasks (Liu et al., 2022). This has attracted more attention as 
people are spending more time online and are more influenced by online 
content and relations; hence, the activities in cyberspace are not just 
additional features in Geo-AI models but should be combined with 
physical activity as a whole. There are numerous challenges and 
therefore opportunities in developing models with the advent of new 
cyber data and defined data representations. 

4.2. GeoAI and collaborative cyberspace for current data science 

The development of ICT introduces the concept of collaborative cy-
berspace, which enables different subjects (e.g., governments, organi-
zations, communities, enterprises, and citizens) from different regions of 
the world to participate in cyberspace activities through cooperation. 
Because a considerable amount of data generated in cyberspace and 
geographical space is the consequence of people’s passive or active 
participation in user-generated content (See et al., 2016), there are two 
major challenges. First, cyberspace is filled with data of unknown val-
idity as previously stated. Second, maintaining active participation of 
people in cyberspace, which is easier in projects where people 
contribute passively, such as social networks, but more difficult when 
people are actively, knowingly, and voluntarily generating data, such as 
the OpenStreetMap project. GeoAI and collaborative cyberspace suggest 
approaches to addressing these challenges. 

GeoAI can be employed to validate the quality of user-generated 
content in cyberspace. Computer vision, and particularly image recog-
nition algorithms, have been widely used to evaluate user-generated 
information, such as in species identification applications (Wäldchen 
and Mäder, 2018), but there has been less emphasis on using AI to 
analyze geospatial user-generated content. GeoAI can help validate user- 
generated big data in cyberspace by training algorithms to model 
geographical space using other data sources such as sensors and satellite 
images and then using these trained models to validate data contributed 
by people. For example, using satellite imagery and deep learning al-
gorithms to assess the positional accuracy or completeness of Open-
StreetMap data (Xie et al., 2019). Another possibility is to utilize GeoAI 
to evaluate social media posts. For example, there has been research on 
how to evaluate fake news and misleading information on social net-
works such as Twitter during natural disasters (Rajdev and Lee, 2015; 
Torabi Asr and Taboada, 2019), but this work has primarily focused on 
textual analysis. One potential application of GeoAI may be to train 
models using sensor observations that forecast the likelihood of a nat-
ural disaster occurring to assess the accuracy of geo-tagged posts on 
social media about such events. 

Furthermore, combining semantic information from big data in cy-
berspace with geographical data may improve the performance of AI 
algorithms, allowing for more accurate verification of future contributed 
data to cyberspace. For example, geo-tagged images of obstacles in 
streets, sidewalks, and parks, as well as textual information about the 
degrees of walkability and accessibility in a city, when combined with 
satellite and aerial imagery, can produce a more accurate classification 
map of a city’s walkable/accessible areas than results using only one 
type of data. Another example project uses algorithms and collected 
images of lakes/seas to predict whether or not there are algae present, 
for the purpose of monitoring water quality (Biraghi et al., 2021). If the 
prediction is solely based on images, there is a risk of false positives 
(shadows, vegetation, etc.); however, if the images are combined with 
physical or social sensor data to build ensemble models trained on multi- 
type data, the water quality labeling can be more accurate, and thus 
more trusted data is generated in collaborative cyberspace. These more 
precise models can also be used to evaluate new data generated in 
cyberspace. 
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Another use of GeoAI in collaborative cyberspace is to infer the 
location of user-generated data by adding spatial information to non- 
geo-tagged content (Ajao et al., 2015; Stock, 2018). For example, 
there is a significant number of non-geotagged postings on social net-
works, but by utilizing existing geotagged posts, it may be possible to 
train algorithms that can predict the geolocation of non-geotagged posts, 
such as geolocating Tweets (Dutt and Das, 2021). 

Besides data quality, GeoAI can propose potential solutions for the 
second challenge in collaborative cyberspace: sustaining people’s con-
tributions to cyberspace. As mentioned, the contributed data is either 
passive/involuntary (e.g., social media data, delivery applications, etc.) 
or active (e.g., crowdsourcing, VGI, citizen science, etc.). In active 
contributions, initiating and sustaining people’s participation are known 
challenges (Lee et al., 2020; Lotfian et al., 2020). More specifically the 
main problems are to first reach out to the subjects that are potentially 
interested to contribute and second to provide motivational factors for 
them to continue contributing. 

One way where GeoAI can help initiate participation is to use 
existing data to identify people’s interests based on their location among 
other parameters and suggest they engage in a project of their interest. 
Thereby the advertisement for the project is targeting the interested 
community. This is similar to what is being done in Facebook News 
Feed, YouTube suggestions, etc. (Cotter et al., 2017; Roth et al., 2020), 
but for integrating the geographical space. Furthermore, receiving 
communication about the contributed data is another important key to 
sustaining participation. One possibility to address this is to provide 
people with automatic machine-generated feedback which is centered 
on the users’ location. One example is the use of trained models on 
species distribution to provide feedback on the probability of observing 
a certain species in a particular location (Lotfian et al., 2021). 

5. GeoVA: Geovisual analytics in geographical and cyberspace 

5.1. Challenges and opportunities 

Visual analytics (VA) frameworks leverage visual interfaces to sup-
port analytical reasoning and can bridge problem spaces where human 
decision-making and reasoning are superior to machines (e.g., semantic 
interpretation, object, and pattern recognition). In addition, VA can 
maximize advantages where machines are superior to humans (e.g., 
real-time advanced computations and infinite recall-on-demand) to 
support complex reasoning by humans. VA approaches are inherently 
those with humans-in-the-loop, a concept that frequently appears in the 
AI community in recent years (e.g., Zanzotto, 2019; Wu et al., 2022) and 
refers to the strengths of human cognition as an equal counterpart in 
analytical processes. This bridge between computational and visual 
methods is often constructed as a dynamic, coordinated-view visual 
interface (a ‘dashboard’) connected to a backend where a database and 
computational infrastructure supporting traditional statistics as well as 
machine learning/AI can be utilized. Users play a key role in directing 
VA, and this may depend on their desire to deduce, induce, or abduct 
hypotheses. Sometimes, users will rely on AI and computational 
methods to identify candidate patterns or anomalies (bottom-up ana-
lyses), and sometimes users approach the VA environment with a spe-
cific pattern already in mind that they seek to interrogate (top-down 
analyses) versus insights generated by visualization outputs and 
computational processes. 

Visualization has always been an important part of GIScience, with 
roots of course in cartography. Geographical visualization (geo-
visualization) has played a crucial role in sophisticated workflows to 
leverage human sense-making and cognition (Andrienko et al., 2003). A 
challenge in the design of geovisualization is to craft intuitive repre-
sentations of data that enable instant identification of patterns (or 
anomalies) related to certain phenomena in space and time (Çöltekin 
et al., 2020a). Considering the large volume and complexity of 
geographical data, the design of effective geovisualization and visual 

analytics approaches that integrate human strengths with computa-
tional tools (i.e., artificial intelligence that is critical to big data ana-
lytics) is also a core research aim within GIScience. In recent years, 
geovisual analytics (GeoVA) has emerged where computational analysis 
is directed by humans interacting with geospatial visual interfaces, and 
can also involve human assessment as a final step after automated pre- 
filtering. For example, automated methods to extract and visualize 
high-volume trajectories from GPS data have been proposed (Andrienko 
et al., 2007). Both two-dimensional (2D) map layouts and 3D visuali-
zation based on time geography are powerful approaches to analyzing 
human movements in geographical space (Çöltekin et al., 2020a). 
Various applications of extended (virtual, augmented, mixed) reality 
have also been proposed in GIScience as a potential paradigm shift in 
spatial knowledge acquisition and visual information processing (Slo-
cum et al., 2001; Çöltekin et al., 2020b). 

Since most of the geospatial data processing in modern society has 
spatial and temporal characteristics, GeoVA can combine visual and 
interactive methods and advanced computational techniques such as 
data mining, statistics, machine/deep learning, AI algorithms, and 
optimization to support human analytical reasoning, hypothesis build-
ing, and argumentation (Andrienko et al., 2009). While there are 
countless different opportunities to make use of GeoVA, a concrete 
(randomly selected) example could be as follows: To improve the clas-
sification accuracy of choropleth maps, a GeoVA environment can help 
users experiment with and evaluate different classification schemes 
involving multiple criteria interactively, thus better reflecting the spatial 
(and possibly temporal) distribution of phenomena (Sun et al., 2017). 

The paradigm shift of activities to cyberspace has brought GIScience 
a wide range of information beyond human movement in geographical 
space or applications of extended reality. A prominent contemporary 
example is geotagged social media data, where documents not only 
include references to locations and time but also linguistic and social 
network relations (e.g., Straumann et al., 2014). It is challenging to 
extract knowledge and visualize information that is not solely related to 
its associated geographical space, and spatial references themselves may 
be vague or otherwise difficult to disambiguate. Since extracting 
knowledge in the social dimension is useful to better understand human 
societal behavior, some efforts have been made in urban studies to 
develop theoretical and more practical approaches for obtaining geo- 
social visual analytics (Luo and MacEachren, 2014: Gao et al., 2018). 
Contemporary big data may generate more knowledge than that of the 
social dimension mentioned above. An undeniable trend is that we have 
more opportunities to simultaneously observe both geographical and 
cyber systems. For example, in mobile phone data, visited websites are 
recorded along with geographical user positions. Thus, it is possible to 
gather high-resolution trajectories in both geographical space and cy-
berspace which may, in turn, improve current geovisual frameworks. 
Empirical research on how to properly define and present entities and 
personalize or customize visualizations to enhance the geo-visual 
explainability and amplify human cognition based on audience and 
context is still required. 

5.2. GeoVA and extended reality (XR): immersive analytics 

Along with the developments in AI, a new generation of display 
technologies such as extended reality (XR), i.e., augmented (AR), virtual 
(VR), and mixed (MR) reality systems open up new opportunities for VA 
(Çöltekin et al., 2020b), termed immersive analytics (Chandler et al., 
2015; Simpson et al., 2016; Lochhead and Hedley, 2021). As a special 
case of immersive GeoVA, virtual geographic environments (VGEs), also 
referred to as geo-virtual environments, have been studied through 
several decades in GIScience dating back to the late 1990s (MacEachren 
et al., 1999; Lin et al., 2013a; Lin et al., 2013b; Chen et al., 2013a, 
2013b). XR and VGEs have methodological and data-driven links to the 
digital twin concept, in which digital mirroring of both physical and 
social phenomena can be represented and interactively explored (Chen 
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and Lin, 2018; Voinov et al., 2018). As digital twins provide real-time 
data from multiple sensors, the GeoVA dashboards, as well as their 
immersive versions, also referred to as embodied digital twins (Klippel 
et al., 2021), become potentially useful for big data applications. Con-
cepts of in-situ visualization have been introduced for data analytics 
during runtime, e.g., of large ensemble simulations, allowing for model 
adaptation during simulation runtime for rapid prognostics (e.g., for 
extreme weather events). The newly enabled interactions between users 
and VGEs as the user can ‘walk in the data’ embody an example of the 
human-in-the-loop concept with added benefits of experience-based 
learning and life-like interactions, thus can increase the interest of 
public participation and feedback, and can further promote the devel-
opment of VGEs (Lü et al., 2019). 

After users enter a VGE that is based on collaborative cyberspace, 
IoT, and ICT, geospatial data can be displayed, processed, and shared in 
this virtual world, and then humans can realize omnidirectional inter-
action with computers and with each other. For instance, the Smart City 
Digital Twin (SCDT) paradigm (Michalik et al., 2022) was proposed and 
applied to increase the visibility of interactions between humans and 
urban infrastructures, where the spatiotemporal geographical data can 
be integrated into a platform with the powerful abilities of visual 
analytics. 

Geospatial data (as available in cyberspace) offer many extraordi-
nary opportunities enabled by the emergence of virtual and interactive 
communities such as ‘the metaverse’ (Stephenson, 2003). The metaverse 
concept is based on a large-scale network of three-dimensional virtual 
environments, which is born out of the real world and parallel to it. It is 
envisioned that there is an unlimited number of users and continuous 
dynamic geospatial data in the metaverse, which can as such create 
virtual spaces whose dynamic and semantic properties can be then 
explored and analyzed by GeoVA and GeoAI capabilities as we do in 
real-world geographical spaces (Ball, 2022). Therefore, the metaverse 
can be considered a virtual world based on geographical and collabo-
rative cyberspace, where GeoVA can also be used to display and reason 
with geospatial data in real-time by users who can contact, interact with, 
and collaborate with each other. 

As with all the geospatial sciences, earth sciences also benefit from 
the above-mentioned new paradigms (e.g., Gerloni et al., 2018, Moysey 
and Lazar, 2019, and Harknett et al., 2022). For example, mathematical 
and geoscience models, algorithms, and simulations can be shared in a 
lively and engaging way using dynamic interfaces and cyberinfras-
tructures, providing interaction capabilities and favoring methodology 
exchanges and replicability throughout different experts and disciplines 
(Shao et al., 2020; Goodchild and Li, 2021). 

6. Perspectives 

Geographical space and cyberspace, when combined in a common 
framework, offer a wide range of application opportunities in the urban, 
environmental, earth science, socioeconomic, and health domains. Not 
to mention the fact that in the era of urgent sustainable development 
objectives, the two should contribute to the development of a livable 
society. Smart cities provide a prominent example of the combined 
development of geographical space and cyberspace in that they rely on 
the full integration of the capabilities of the two information environ-
ments (Li et al., 2020). Cyberspace offers many opportunities for the 
development of advanced services in urban environments, from social to 
leisure to professional and resource-sharing activities. A substantial 
change came from the unprecedented data flow, transmission, and 
diffusion rates that produce large spatio-temporal-semantic data streams 
and sometimes data repositories. In urban environments, these big data 
sources can support the development of real-time data observation and 
processing applications at fine resolution and acceptable accuracy. By 
integrating multi-source heterogeneous data, GeoAI might favor the 
development of analysis, modeling, understanding, simulation, and 
prediction mechanisms that will take full advantage of the data sources 

generated in geographical space and cyberspace. GeoVA surpasses 
pictorial representations in visual effects as well as increases the quality 
and efficiency of understanding the geospatial data along with decision- 
making (Harbola and Coors, 2018). Utilizing GeoAI to reveal hidden 
patterns of big data of transportation networks and combining GeoVA to 
assist transportation management departments in understanding real- 
time traffic conditions can effectively achieve traffic monitoring in 
smart cities (Mortaheb and Jankowski, 2023). The emergence of the 
digital twin concept in urban environments provides a very close link 
between geographical space and cyberspace at an efficient and low cost 
(Scott, 2016). A digital city twin should reveal a bidirectional mapping 
between geographical space and cyberspace, thus enhancing the 
governance and policies of the entire urban system. In urban environ-
ments, specifically, the emerging field of autonomous driving, which is a 
typical and fundamental AI subject, when combined with sensors and 
large-scale geographical space and cyber-simulated worlds, opens rev-
olutionary opportunities for the development of efficient autonomous 
driving solutions (Tu et al., 2021). 

GeoAI is increasingly applied to model and capture the environment 
around us, which has certain advantages in exploring the internal links 
and interaction mechanisms between human activities and the living 
environment, especially in exploring its potential role in health research. 
The relationship between place and health was already recognized by 
Hippocrates more than two thousand years ago in his treatise “On Airs, 
Waters, and Places” (Nriagu, 2011). These associations between health 
and place form the foundations of modern health geography or geo-
medicine and are often exploited in the field of spatial epidemiology 
(Koch and Koch, 2005, and references therein, and Joost et al., 2018). 
But the recent advent of GeoAI opens new perspectives for research and 
applications in health, digital health, and related fields, for which the 
properties of the built, natural, or socio-economic environment plays a 
determining role (Brakefield et al., 2022). Indeed, integrating location- 
based information extracted from big geospatial data may allow us to 
better understand environmental risk factors and precisely identify new 
targets for tailored prevention efforts and treatment strategies (Kamel 
Boulos et al., 2019) considering places where the individual is living, 
working, or were traveling (Sirmaçek et al., 2022). Beyond spatial 
epidemiology and environmental health (VoPham et al., 2018), several 
disciplines may benefit from the contribution of GeoAI within the do-
mains of public health. In particular, the use of the geographical 
dimension of the Internet of Things (IoT) makes it possible to enrich 
precision medicine with valuable additional information (Aravind and 
Maddikunta, 2022). During the COVID-19 pandemic, intelligent health 
monitoring frameworks were developed using wearable IoT and geo-
fencing (El-Haleem et al., 2022) for susceptible patient monitoring and 
isolation and quarantine management (Ullah et al., 2021). The health 
domain is also likely to benefit from the further integration of Just-in- 
Time Adaptive Interventions (JITAIs) with GeoAI and IoT to under-
stand, predict, and intervene in health behaviors at risk (Yang and 
Jankowska, 2019). 

GeoAI applications to novel sources of spatial big data, such as social 
media, and electronic health personal sensors, have already advanced 
the science of population health in a significant way (Mohapatra and 
Mohanty, 2022). For instance, the automated HealthMap developed by 
the Boston Children’s Hospital scans online and georeferenced news and 
social media reports for early warning signs of outbreaks. The system 
continuously (24/7) brings together distinct data sources to integrate, 
monitor, organize, and visualize online information about emerging 
diseases and facilitate their early detection (Cho, 2020). Besides, the 
mobile communication data of patients with infectious diseases can be 
well analyzed by GeoAI and an epidemic spread map can be produced 
and displayed by GeoVA, which can effectively assist government de-
partments in early warning of epidemic transmission and epidemic 
prevention. 

The combination of GeoAI with the advanced technologies recently 
developed in the field of the IoT and communications constitutes a 
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unique chance to improve the quality of life of individuals and pop-
ulations through the integration of different sources of environmental 
monitoring, health, and behavior data. But it should not be forgotten 
that the pooling of these data, which can only be achieved through the 
use of geographical information, also represents an important risk if it is 
carried out by health insurance companies or prospective employers, or 
lenders. Appropriate security measures, standards for securing and 
sharing data, and ethical frameworks (Kamel Boulos et al., 2019) for 
engagement are therefore key elements that must accompany any 
project in this area. 

The United Nations Sustainable Development Goals (SDGs), issued 
by the United Nations in 2015, aim to solve 17 important social, eco-
nomic, and environmental development issues from 2015 to 2030 in a 
comprehensive way and turn to the path of sustainable development. 
The implementation of the SDGs requires huge amounts of spatial- 
temporal data, and there is an urgent need for geographical informa-
tion data, methods, frameworks, cyberspace tools, and platforms. With 
Earth observation and geospatial data as the main body, big Earth data 
can break through the constraints of statistical data administrative re-
gions, cover different spatial and temporal scales and geographical 
location information, more accurately assess the progress of SDG in-
dicators, and find problems on time (Guo, 2017). Since network infra-
structure, behavioral agents, and network data have differences in 
spatial and regional characteristics, the methods of cyberspace geogra-
phy (e.g., network data and geographical location high-precision auto-
matic matching technique, spatiotemporal feature analysis, and 
knowledge map construction of network data) (Gao et al., 2019) can 
effectively realize the mapping from geographical space to cyberspace. 
The mapping from geographical space to cyberspace can help scholars 
more easily perceive, recognize, reason, and analyze the global forests, 
water resources, cultivated lands, cities, carbon fluxes and stocks, 
biodiversity, and human health conditions in combination with the 
models and methods of GeoAI and GeoVA, so as to obtain knowledge 
about the distribution of the global poor population, migration rates of 
wild animals, global forest area change, climate change, and so on. 
These results can provide geographical science decision-making support 
for the realization of the 2030 Sustainable Development Goals of the 
United Nations. 

While geographical space and cyberspace are likely to provide an 
extraordinary range of application opportunities, cyberspace also brings 
avenues for cyber warfare, which can both disrupt cyber data in-
frastructures as well as the availability and security of critical data 
(Carlos Pedro, 2019). We should not underestimate the difficulties that 
await us. There is also a risk associated with the complexity of GeoAI and 
the wide range of possible human interactions which are likely to 
generate technical dead-ends as the level of expected maturity of many 
of the emerging application domains are still not well developed. This is 
likely to result in major difficulties associated with the explanation of 
data manipulation processes applied to geographical space and cyber-
space and it will entail transparency challenges related to the explana-
tion of so-called “black box” computational processes. Personal privacy 
and data access rights should be preserved and guaranteed by appro-
priate legal and technical mechanisms, and this at the global and indi-
vidual levels, as the range of possible interactions in space and time is 
likely to generate data lakes where humans are likely to act upon these 
integrated geographical spaces and cyberspace, thus offering many op-
portunities for malicious actors to infer valuable information on the way 
humans behave in space and time. 

7. Conclusions 

Due to recent technological advances, we have witnessed a shift in 
human activities from geographical space to include cyberspace. This 
shift requires rethinking GIScience in the presence of new concepts and 
advances coming from cyberspace, such as placelessness, some aspects 
of timelessness, and the changing meaning of distance. Spatial concepts 

of place and distance are central to GIScience and modifying these from 
their traditional meaning calls for new thinking. Similarly, temporal 
analyses also take new meaning within cyberspace where we have 
abundant longitudinal data and a lack of transiency. 

The shift of activities to cyberspace has been and will continue to be a 
key part of GIScience. The rich data flow in cyberspace has indicated 
that the dramatic changes in daily life transform human-environment 
relations. In future research, improved conceptual and computational 
data models should be proposed and empirically examined to reveal and 
understand, beyond human-environment relations, the complexity, and 
diversity of human-human, human-environment, and environment- 
environment relations in hybrid geographical space and cyberspace. 
Based on these data models, analysis of cyber-physical human activities 
is expected to extend current theories and methods in GIScience and 
have an even broader impact in other research fields that involve spatial 
analysis and visualization with geographical perspectives. For human 
geography, considering the cyberspace dimension in GIScience will be 
beneficial for improving the understanding of human well-being. For 
example, the assessments of social segregation require deep and detailed 
insights into human perception and social activities in cyberspace 
(Kwan, 2001) as well as the spatial patterns of static social attributes. 
For urban geography, hybrid models and analysis-based cyber-physical 
frameworks fit the complexity of reality and may result in superior 
prediction of mobility dynamics and enhanced interpretation of the 
functionality of urban places (Qian et al., 2020). This paper demon-
strates how a re-thinking of GIScience, especially about GeoAI and 
GeoVA, from a cyberspace perspective, will profoundly motivate the 
innovation of theories and methods in traditional GIScience, as well as 
promoting interdisciplinary research, e.g., connecting to fundamental 
questions in geospatial knowledge acquisition and cognition, and 
extended (virtual, augmented, mixed) reality. 

We have provided a brief overview of geospatial big data here and 
the associated challenges from a cyberspace perspective with a specific 
focus on GeoAI and GeoVA. To keep pace with developments in the 
Fourth Industrial Revolution, we call here for research attention to be 
focused on the GIScience research agenda from a cyberspace perspec-
tive. The more pressing needs include an appropriate ontology for 
geospatial data related to cyberspace, proposals outlining new virtual 
GIS capabilities, and the development of applications of GeoAI and 
GeoVA in cyberspace. We have supported our discussion with provoc-
ative and constructive ideas that will stimulate future work. 
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