

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  APRIL 20 2023

Oblique water entry of an inclined finite plate with gravity
effect 
Sun Shi Yan (孙士艳)  ; Wu G. X. (吴国雄)  

Physics of Fluids 35, 042112 (2023)
https://doi.org/10.1063/5.0147309

Articles You May Be Interested In

Effect of entrance portal inclination on the formation of entry compression wave in a high-speed railway
tunnel

AIP Conference Proceedings (November 2020)

Jet formation and deep seal phenomena associated with inclined oil entry of rotating steel spheres

Physics of Fluids (August 2020)

A numerical study on water entry of cylindrical projectiles

Physics of Fluids (September 2021)

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0147309/16898013/042112_1_5.0147309.pdf

https://pubs.aip.org/aip/pof/article/35/4/042112/2884747/Oblique-water-entry-of-an-inclined-finite-plate
https://pubs.aip.org/aip/pof/article/35/4/042112/2884747/Oblique-water-entry-of-an-inclined-finite-plate?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/pof/article/35/4/042112/2884747/Oblique-water-entry-of-an-inclined-finite-plate?pdfCoverIconEvent=crossmark
javascript:;
javascript:;
javascript:;
https://doi.org/10.1063/5.0147309
https://pubs.aip.org/aip/acp/article/2293/1/030006/690054/Effect-of-entrance-portal-inclination-on-the
https://pubs.aip.org/aip/pof/article/32/8/087102/1061086/Jet-formation-and-deep-seal-phenomena-associated
https://pubs.aip.org/aip/pof/article/33/9/093304/1064514/A-numerical-study-on-water-entry-of-cylindrical
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2063275&setID=592934&channelID=0&CID=754934&banID=520996622&PID=0&textadID=0&tc=1&adSize=1640x440&matches=%5B%22inurl%3A%5C%2Fpof%22%5D&mt=1683647639649061&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpof%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0147309%2F16898013%2F042112_1_5.0147309.pdf&hc=6cbbd0052a0a35850eda4bc18fa2a05005f7e431&location=


Oblique water entry of an inclined finite plate
with gravity effect

Cite as: Phys. Fluids 35, 042112 (2023); doi: 10.1063/5.0147309
Submitted: 21 February 2023 . Accepted: 4 April 2023 .
Published Online: 20 April 2023

Shi Yan Sun (孙士艳),1 and G. X. Wu (吴国雄)2,a)

AFFILIATIONS
1School of Naval Architecture & Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
2Department of Mechanical Engineering, University College London, Torrington Place, LondonWC1E 7JE, United Kingdom

a)Author to whom correspondence should be addressed: g.wu@ucl.ac.uk

ABSTRACT

The hydrodynamic problem of an inclined finite plate entering into water obliquely is investigated through the velocity potential flow theory
in the time domain, together with the fully nonlinear boundary conditions on the deforming free surface. A boundary element method is
adopted. A stretched coordinate system method is used for the varying computational domain, which starts from a single point at the lower
edge of the plate. The whole process of the flow attached on the plate and flow detached from its upper edge is considered, which may
involve self-similar flow, transient flow, and steady flow. The gravity effect is also considered. Studies are further conducted for oblique water
entry and varying speed entry. Extensive results are provided. Their physical implications and potential applications are discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0147309

I. INTRODUCTION

Water entry of a finite plate has many engineering applications.
One example is a surface piercing propeller (SPP) in naval architec-
ture. The hydrodynamic problem of a propeller is generally three
dimensional (3D). However, the section-by-section two-dimensional
(2D) theory is commonly used for a blade, such as the well-known lift-
ing line theory.1 In particular, when the section is sufficiently thin, it is
usually simplified as a plate of zero thickness. When a blade emerges
from water and then reenters water at high speed, its impact process
may be also modeled through section-by-section 2D and each section
may be treated as plate.2

When the plate enters water, fluid will depart from the two edges
and form a cavity behind the plate. If the gravity effect is ignored at
high speed, after sufficiently long time, the flow tends to steady. This is
similar to cavity flow in unbounded fluid domain. The analytical solu-
tion may be obtained for such a case through conformal mapping
method. Typical work includes those by Wu3 and Milne-Thomson.4

For the transient problem of water entry at earlier stage, Yim5 used a
conformal mapping method for a ventilated plate and obtained an
analytical solution under the linearized boundary condition on the
undisturbed flat free surface. Subsequently, Yim6 used this model to
further consider difference between water entry and water exit. Wang7

also used this model with linearized free surface boundary condition
for a plate with small deformation, and conformal mapping method
was once again used. The results for complete entry, which means that

the flow on the plate surface has passed its upper edge, were also pro-
vided. Wang8 further extended the work to the oblique water entry.

For the problem with the nonlinear free surface boundary condi-
tion, Chekin9 considered the self-similar flow of an inclined semi-
infinite plate, using the integral equation method in the complex plane.
The free surface in such a case is not known and is a part of the solution.
Savineau10 used the boundary element method (BEM) for a finite
curved plate. The cavity shape between the plate edge and the undis-
rupted free surface was updated during the simulation based on the
nonlinear free surface boundary condition. Faltinsen and Semenov11

used the integral hodograph method for the self-similar flow of a semi-
infinite plate without gravity effect. The solution was obtained through
iteration. It was found that their results for force coefficient and free sur-
face deformation were different from those of Wang7,8 based on the lin-
ear theory. Vinayan and Kinnas12 used the BEM together with fully
nonlinear boundary conditions to model the water entry of a plate. A
small plate was attached to the lower edge of the main plate. The shape
of the small plate was based on that of cavity in the unbounded fluid
domain.3 The purpose of the small plate was to provide a better initial
condition and avoid the numerical difficulty of free surface at the edge
of the main plate. The assumption was that the effect of the small plate
will diminish at later stage. They have undertaken simulations in the
context of SPP. Simulation of water entry of a plate related to SPP has
also been performed through a more general computational fluid
dynamics (CFD) method. Viscous flow theory is usually used, based on
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the Navier–Stokes equations. Typical work includes those by Ghadimi
and Javanmardi13 for a falling foil with flow detaching from the leading
edge and forming different types of trapped bubbles, and Javanmardi
and Ghadimi2 considered a similar case, but with the elastic effect of the
leading edge. Mesa et al.14 solved problem for the water entry of an
inclined elastic plate. Moradi et al.15 adopted a hybrid method combin-
ing the Wagner theory and the Fluent software. Khabakhpasheva and
Korobkin16 considered the water entry of an elastic plate into shallow
water. When the deadrise angle between the plate and free surface
becomes zero, the problem will turn into a horizontal plate impacting
on water surface. Typical work includes those by Iafrati and
Korobkin,17,18 Krechetnikov,19 and Sun and Wu.20

In the above work, it is common that either the model is linear,
or the plate is semi-infinite, or the gravity effect is ignored, or the entry
speed is constant. Thus, it is the purpose of the present work to con-
sider the water entry problem of a finite plate at varying speed with
gravity effect. Fully nonlinear boundary conditions on the deforming
free surface shape will be used. The boundary element method will be
adopted, which has been successfully used by the authors for related
problems.20,21 In Sec. II, we shall first outline the mathematical model
of an inclined finite plate entering into water. The governing equation
and boundary conditions are introduced based on the velocity poten-
tial theory. The stretched coordinate system used for early stage is out-
lined. In Sec. III, the boundary element method, the method for
calculation of pressure, and the treatment of flow separation from the
edges are provided. In Sec. IV, a convergence study is conducted and
comparison is made, followed by extensive simulations for oblique
entry of a finite plate at varying speed with gravity and detailed discus-
sions of the results.

II. MATHEMATICAL MODEL

We consider the problem of an inclined plate of length c impact-
ing a horizontal free surface (Fig. 1). A Cartesian coordinate system
O� x0y0 is defined. x0 is along the undisturbed free surface, y0 points
vertically upwards, and the origin is fixed at the point where the tip of
the plate touches the free surface initially. The plate has an inclined
angle c with x0 axis and a velocity U ¼ ui� vj, where u and v are the
velocity components in the x0 and y0 directions, respectively, and neg-
ative sign before v means that it is positive when the plate goes into
the water. a0 ¼ atanðv=uÞ is the angle between U and x0 axis. The
velocity U of the plate is prescribed, which can be either constant or
varying.

The fluid is assumed to be ideal and incompressible, and the flow
is irrotational. The velocity potential theory can then be used. The gov-
erning equation for the potential / can be written as

r2/ ¼ 0 (1)

in the fluid domain. On the plate surface Sb, the impermeable bound-
ary condition gives

/n ¼ unx0 � vny0 ; (2)

where n ¼ ðnx0 ; ny0Þ is the normal of the body surface, pointing away
from the fluid domain. On the free surface Sf , the Lagrangian form of
the kinematic and dynamic conditions can be, respectively, written as

dx0
dt

¼ /x0 ;
dy0
dt

¼ /y0 ; (3)

d/
dt

¼ 1
2

/2
x0 þ /2

y0

� �
� gy0; (4)

where g is the acceleration due to gravity, and the temporal derivative
d=dt is taken by following a fluid particle. In the Eulerian form, the
kinematic and dynamic conditions can be written as

@y0
@t

¼ /y0 �
@y0
@x0

/x0 ; (5)

@/
@t

¼ � 1
2

/2
x0 þ /2

y0

� �
� gy0; (6)

where the temporal derivative is taken when x0 and y0 are fixed. Away
from the plate, the fluid is assumed to be undisturbed by the plate
motion.

A particular feature of this kind of problem is that at the initial
stage, there is only a small part of the body in contact with water, or
the wetted surface is small. This part will increase as the plate moves
into the water. This means that initially the disturbed region of the
fluid is small, while within this region, the flow varies rapidly. To cap-
ture this variation, the size of a typical element used in a numerical
method must be much smaller than that of the wetted surface. Later
on, the disturbed region will increase. To continue to use small ele-
ments would mean that a large number of them would be needed.
Therefore, the element size should increase as the plate moves into
water. To achieve this more effectively, we may use the stretched coor-
dinate system method.22 Let s be the vertical distance of the plate trav-
eled into the water. We define

a ¼ x0=s; b ¼ y0=s; u ¼ /= svð Þ: (7)

This means that both the coordinates and the potential have been
amplified by s. In such a way, the size of the disturbed domain remains
more or less the same at the earlier stage when s is small and at the
later stage when s is large. The element size and the element number
can also remain more or less the same. When s is comparable to the
dimension of the plate, for example, its vertical height csin c, the com-
putation may be conducted directly in the O� x0y0 system.

Then, Eq. (1) will retain its form for u, while Eqs. (2)–(4) become

un ¼ ena � nb on Sb; (8)

dsa
dt

¼ vua;
dsb
dt

¼ vub on Sf ; (9)
FIG. 1. Sketch of problem.
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dsvu
v2dt

¼ 1
2

u2
a þ u2

b

� �
� gsb

v2
on Sf ; (10)

where e ¼ u=v ¼ 1=tana0. It should be noted that the normal deriva-
tive in Eq. (8) is taken in the ða;b) system and

@

@n

����
x0;y0ð Þ

¼ 1
s
@

@n

����
a;bð Þ

(11)

has been used. Similarly, Eqs. (5) and (6) may be written as

@sb
v@t

¼ ub � baua; (12)

@svu
v2@t

¼ � 1
2

u2
a þ u2

b

� �
� gsb

v2
: (13)

Using ds=dt ¼ v and noticing d=dt ¼ vd=ds, these two equations may
be also written as

b ¼ ub � gaua þ aua; (14)

uþ su _v
v2

þ s
@u
@s

¼ � 1
2

u2
a þ u2

b

� �
þ aua þ bub �

gsb
v2

; (15)

where over dot means the derivative with respect to time. If the gravity
effect is neglected, the flow on the plate has not passed its top tip, or
point B, and s _v

v2 is constant, then the similarity solution with @u
@s ¼ 0

would exist.18 In particular for a semi-infinite plate with _v ¼ 0, these
conditions are clearly met. This is in fact the problem considered by
Faltinsen and Semenov11 for a semi-infinite plate.

III. NUMERICAL PROCEDURE

We adopt the boundary element method to solve the present
problem. The Laplace equation in the fluid domain is first converted
into an integral equation over the whole boundary S through Green’s
identity,

A pð Þu pð Þ ¼
ð
S

lnrpq
@u qð Þ
@nq

� u qð Þ @lnrpq
@nq

 !
ds; (16)

where AðpÞ is the solid angle at the point p on the boundary, and rpq is
the distance from the field point p to the source point q. The integra-
tion in (16) is performed with respect to q. The boundary S contains
the plate surface Sb, free surface Sf , and a control surface Sc away for
the body, where the disturbance to the fluid by the plate is assumed to
be insignificant. To solve (16) numerically, S is first divided into many
small elements. As in Sun and Wu,20 Sun et al.,21 andWu et al.,22 here
the straight-line element will be used and variables are assumed to
vary linearly within each element. From (8), the normal derivative of
the potential on the plate surface Sb is known. On the free surface, the
potential is assumed to be zero initially. Subsequently, it is obtained
through time stepping based on (10) together with the free surface
shape being updated through (9). Therefore, the potential on Sf is

known. On the control surface Sc, un is set as zero since the distur-
bance is assumed to have diminished at the far field. These conditions
are imposed on the nodes of the elements, and as a result, a set of lin-
ear equations is obtained. Through the solution, the unknowns are
found at each time step.

To start the simulation, an initial condition has to be prescribed.
Physically, as only a very small region of the fluid domain is disturbed,
this is not expected to have lasting effect on the flow at the later stage.
However, numerically a proper treatment of the initial condition is
important for the simulation. Here, in the stretched system, the initial
configuration at s ¼ s0 is given in Fig. 2. On the right-hand side, the
free surface is assumed to be undisturbed. On the left, the local free
surface near the tip of the plate is assumed to be perpendicular to the
plate and then joins the undisturbed main free surface, and u ¼ 0 is
assumed on the free surface.

When the boundary integral equation is solved for the potential
at each given time step, the pressure p can then be obtained through
the Bernoulli equation. In the dimensionless form, the pressure coeffi-
cient can be written as

Cp ¼ p
qv2=2

¼ � 2/t

v2
þ ruj j2 þ 2gsb

v2

� �
; (17)

where the temporal derivative of / is taken for fixed x0 and y0. We
note that in the equation, even when the velocity potential u or / has
been obtained at each time step numerically, /t is still not explicitly
known if the solution is not self-similar. Here, we employ the
approach developed by Wu and Taylor.23,24 /t satisfies the Laplace
equation. Its free surface boundary condition can be obtained from
pressure p ¼ 0. The body surface boundary condition for /t can be
written as25

@/t

@n
¼ _unx � _vny � u

@/x

@n
þ v

@/y

@n

¼ _unx � _vny � uv
@ua

@n
þ v2

@ub

@n
: (18)

Wemay, then, define

/t ¼ v2vþ s _uv1 � s _vv2 � ev2ua þ v2ub: (19)

The auxiliary functions v, v1; and v2 all satisfy the Laplace equation in
the fluid domain. We may impose

@v
@n

¼ 0;
@v1
@n

¼ na;
@v2
@n

¼ nb (20)

on the body surface in the ða;b) system. Then, noticing Eq. (11), Eq.
(18) is satisfied in the ðx0; y0Þ system. To satisfy pressure p ¼ 0 on the
free surface, we impose

v ¼ � 1
2
ruj j2 þ gsb

v2

� �
þ eua � ub; v1 ¼ 0; v2 ¼ 0: (21)

FIG. 2. Initial configuration and condition.
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At the far field, where the disturbance diminishes, the boundary condi-
tion can be written as

@v
@n

¼ 0;
@v1
@n

¼ 0;
@v2
@n

¼ 0: (22)

The auxiliary functions can, then, be solved in the stretched coordinate
system in the same way used for u. Once they are found, the temporal
derivative of / can be obtained from Eq. (19), which can, then, be
used in Eq. (17) for the pressure.

As illustrated in Fig. 1, the flow detaches from the lower and
eventually upper edges of a finite plate or points A and B; respectively.
These two points are also on the free surface, and fluid velocity there is
assumed to be continuous. Because of the impermeable condition on
the body surface, the velocity at two points is, therefore, tangential to
the plate. The potentials at A and B are updated at each time step by
following these two points. The time derivative defined in this way can
be written as

d
dt

¼ @/
@t

þ u/x0 � v/y0 ; (23)

where d means the variation of u fixed on the plate edge. The partial
derivative/t in this equation can be obtained from the Bernoulli equa-
tion with p ¼ 0. Thus, we have

dsvu
v2dt

¼ � 1
2

u2
a þ u2

b

� �
� gsb

v2
þ eua � ub on Sf : (24)

IV. NUMERICAL RESULTS AND DISCUSSIONS
A. Convergence study and comparison

In order to test the numerical stability and accuracy of the
method in the paper, the case of a plate with infinite length entering
into water vertically is first considered. The gravity effect is neglected
or g is set as zero. The flow in such a case is self-similar and has been
considered by Faltinsen and Semenov.11 In such a case, the problem is
independent of s, and the solution can be given in the dimensionless
system ða; bÞ. s or t is merely a parameter used for stepping, and its
dimension is not essential. The simulation starts at s ¼ s0. It should be
noted that no matter how small s0 is, the vertical distance between
point A and the still water surface is always unit in the stretched

FIG. 3. Effect of the initial condition and configuration: (a) the free surface profile (c ¼ 45� and a0 ¼ 90�), (b) the pressure distribution on the plate (c ¼ 45� and a0 ¼ 90�),
(c) the free surface profile (c ¼ 30� and a0 ¼ 105�), and (d) the pressure distribution on the plate (c ¼ 30� and a0 ¼ 105�) (lm ¼ 0:03, d ¼ 1:02, ds0 ¼ 5� 10�9,
s ¼ 1:002, and k1 ¼ 20Þ.
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system. The length and the depth of the rectangular computational
domain are, respectively, set as 60 and 30 in the stretched system.
Unequal elements are distributed along the fluid boundary. The body
surface and part of the free surface between the jet tip and the plate
edge are distributed with elements with equal size, denoted as lm, and
the size of the element along the free surface away from the jet tip and
plate increases gradually at a fixed ratio d and is not allowed to be
larger than 0.5. We set the time increment as ds ¼ min ½sn�1ds0,
lm=ðk1jrujmaxÞ�, where s > 1 and k1 > 1 are fixed constants, n
means the nth time step, and jrujmax is the largest velocity of fluid
particle on the free surface. The first step ds0 at n ¼ 1 is the smallest,
and the step, then, increases at a fixed ratio s. The step is not allowed
to be larger than lm=ðk1jrujmaxÞ, or a fluid particle is not allowed to
move more than a fraction of the element length.

Figure 3 gives some snapshots of the free surface and pressure
coefficient from the mesh of typical element size being lm ¼ 0:03 and
d ¼ 1:02 at c ¼ 45� and a0 ¼ 90� and c ¼ 30� and a0 ¼ 105�, respec-
tively. The latter corresponds to oblique entry. The attack angle, which is

the angle between U and the plate AB, or 180� � c� a0, for both cases
is 45�. The calculation starts with an initial value s0 ¼ 10�5 and the con-
figuration in Fig. 2, and ds0 ¼ 5� 10�9; k1 ¼ 20, and s ¼ 1.002. l in
the figure is the length along the plate measured from the point A in

Fig. 1 in the stretched system, or l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� aAÞ2 þ ðb� bAÞ2

q
. As

the initial condition is not self-similar, we notice that in Fig. 3 that
there is an obvious transition period when s=s0 < 20. Beyond that
the transient behavior becomes far less evident and almost vanishes
completely after s=s0 � 50. In fact, the results from s=s0 ¼ 50 and
s=s0 ¼ 500 are virtually indistinguishable, which shows that the self-
similarity of the flow has been achieved. This means that at a given s0
the results at s > 50s0 are not very much affected by the initial condi-
tion at s0, or to ensure the result at a given s is not too much affected
by the initial condition, we can always set s0 < s=50. It is also inter-
esting to see at the same attack angle, the results are different at dif-
ferent c and a0, or the self-similar solution depends on them
separately.

FIG. 4. Mesh convergence study ðc ¼ 45� and a0 ¼ 90�): (a) the free surface profile and (b) the pressure distribution on the plate (s=s0 ¼ 50, d ¼ 1:02, ds0 ¼ 2� 10�9,
s ¼ 1:002, and k1 ¼ 20).

FIG. 5. Time step convergence study ðc ¼ 45� and a0 ¼ 90�): (a) the free surface profile and (b) the pressure distribution on the plate (s=s0 ¼ 50, lm ¼ 0:03 and
d ¼ 1:02).
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FIG. 6. Comparison with the results by Faltinsen and Semenov11 ðc ¼ 70� and a0 ¼ 45�): (a) free surface and (b) pressure.

FIG. 7. Comparison with the result by Vinayan and Kinnas12 ðc ¼ 77:614�, a0 ¼ 90�, and v ¼ 2:45 m=s): (a) free surface at t¼ 0.014 s, (b) pressure at t¼ 0.014 s, (c) free
surface at t¼ 0.049 s, and (d) pressure at t¼ 0.049 s.
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To investigate the mesh convergence, we set the element length
lm near the plate edge as 0.04, 0.03, and 0.02, respectively, for the case
of c ¼ 45� and a0 ¼ 90�, and the element size increases ratio
d ¼ 1:02. The free surface profile and the pressure distribution from
these three different meshes are shown in Fig. 4. A good agreement
can be seen in the figure, and this verifies that these results are mesh
independent. Unless it is specified, in the following simulations, the
minimal element length lm ¼ 0:03 and the element size increase ratio
d ¼ 1:02 are chosen.

Figure 5 gives comparison between the results at s=s0 ¼ 50 for
c ¼ 45�; a0 ¼ 90�, with two different time steps. In case 1, ds0
¼ 5� 10�9; k1 ¼ 20; s ¼ 1:002, and in case 2, ds0 ¼ 2:5� 10�9;
k1 ¼ 40; s ¼ 1:001. It can be seen that the two curves for free surfaces
are graphically indistinguishable, and those for pressure coefficients
also coincide well. This shows the time step convergence of the numerical
procedure. Unless it is specified, ds0 ¼ 5� 10�9; k1 ¼ 20; and s
¼ 1:002 are used in the following simulations.

In order to verify the accuracy of the results, we make a compari-
son first with the self-similar solution by Faltinsen and Semenov.11

The deadrise angle c is set as 70�, and the direction of U is set as
a0 ¼ 45�, which is an oblique entry. Good agreement can be seen

in Fig. 6. Vinayan and Kinnas12 also considered the problem of impact
by an inclined plate, using the boundary element method. To initiate
the simulation, they added a small plate at the tip of the main plate.
The shape of the small plate followed that of the surface of the super-
cavity, derived from the analytical solution by Wu3 for a plate in the
unbounded fluid domain. The length of the small plate is chosen to be
a small fraction of the length of the inclined plate. Initially, this is in
fact a solution for a wedge if the curvature of the small plate is negligi-
ble. After the flow has passed the edge of the small plate and the simu-
lation continues, the effect of the small plate is assumed to diminish
gradually and the solution tends to that of the inclined plate. The pur-
pose of this small plate is in fact to avoid the numerical difficulties due
to the singularity around the tip of the inclined plate, which could
affect the free surface development. The inclusion of the small plate
moves the intersection of the free surface and the body to the tip of the
small plate. The angle between the symmetry line of the wedge and the
vertical direction is 10�, and the inner angle of the wedge is 4:772�,
which corresponds to a deadrise angle c of 77:614� in the present
work. The entry velocity v is set as 2.45m/s with a0 ¼ 90�, as in their
work. Figure 7 provides a comparison between the present results and
those from Vinayan and Kinnas12 just before the flow departs from

FIG. 8. Water entry of a finite plate without gravity effect ðc ¼ 45� and a0 ¼ 90�): (a) free surface, (b) pressure, (c) force coefficient, and (d) early stage of (c).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 042112 (2023); doi: 10.1063/5.0147309 35, 042112-7

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0147309/16898013/042112_1_5.0147309.pdf

https://scitation.org/journal/phf


point B. Good agreements can be seen from the figure, except for the
local pressure at the lower plate edge, or point A. Since this is the inter-
section point with the free surface, the pressure there should be zero,
as in the present solution. The result from Vinayan and Kinnas12 is
not zero, as a small plate is used on the left and the edge is not the
intersection point with the free surface. In fact, with a small plate, local
flow at the tip is similar to that of a wedge entering water. The pressure
at the tip can be singular, and numerical result can change sharply.21

B. Finite plate

1. Constant speed without gravity effect

We undertake a detailed study for a plate with finite length c and
entering water with vertical speed v. q, c, and v are used for nondi-
mensionalization in this section. Two cases are provided. For case 1, c
is set as 45� and a0 ¼ 90�, for case 2, c ¼ 30�, a0 ¼ 105�, as in Fig. 3,
and the attack angle in these two cases is 45�. The half width and
depth of the computational domain in the present case is set as around
four times the length between the point A and the highest point of jet

tip, and gravity effect is ignored. Figures 8 and 9 provide the free surfa-
ces and pressure coefficients after the flow has departed from the
upper edge of the plate and the time history of force coefficient
cF ¼ F=ð12qv2cÞ, in which F is the total force in the direction perpen-
dicular to the plate. In the following figures, L is to denote the distance
to point A in the physical system O� x0y0.

The simulation is done in the stretched system with varying s
until s ¼ csin c. After that, the simulation is done in the physical sys-
tem. At the earlier stage during the entry, the flow is self-similar before
the flow detaches from the upper tip, or point B, and a thin jet is fully
attached to the body surface, for which the free surface shapes and
pressures are already seen in Fig. 3. Within this, period Cp does not
change with time and therefore, CF ¼ 1

c

Ð
Sb
Cpds ¼ s

c

Ð
Sb
Cpdl increases

linearly with s, as can been seen when s=c � 0:32 in Fig. 8 and s=c
� 0:22 in Fig. 9(d). After that, the attached thin jet starts leaving the
plate from point B. As the pressure in the thin jet is almost zero, depar-
ture of the thin jet from point B does not affect the linear behavior of
CF with s initially. This will continue until s=c � 0:5 in Fig. 8(d) and
s=c � 0:4 in Fig. 9(d), at which moment the jet root has detached
from the body, and CF has reached the peak. Figures 8(a), 8(b), 9(a),

FIG. 9. Water entry of a finite plate without gravity effect (c ¼ 30� and a0 ¼ 105�): (a) free surface, (b) pressure, (c) force coefficient, and (d) early stage of (c).
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and 9(b) provide snapshots of the free surfaces and pressures for
s=c > 0:5. It can be seen that the pressure drops quickly with s at first
and the decrease gradually becomes milder. Thus, CF in Figs. 8 and 9(c)
also decrease rapidly first and then mildly. As the plate further travels
down, the free surface shape near the plate gradually becomes stable
and tends to that from the steady solution of a cavity flow in the
unbounded domain obtained from Milne-Thomson4 (also see the
Appendix). Correspondingly, as s increases, the pressure in Figs. 8 and
9(b) becomes closer to that of Milne-Thomson.4 A relatively small
difference at s/c¼ 30 is still visible, due to the effect of unsteady free sur-
face motion away from the plate. It is expected that as the plate further
goes down or s/c tends to infinity, this difference would disappear.

2. Constant speed with gravity effect

We now consider the gravity effect through the Froude number
defined as Fn ¼ v=

ffiffiffiffi
gc

p
. The gravity effect depends on both the Froude

number and time. At a small Froude number, the gravity effect may
become important at very early stage, while at a large Froude number,
it becomes important only at late stage. We undertake simulations at
Froude numbers Fn¼ 0.714, 1.428, and 2.143 and provide results at

different s. Let c ¼ 45� and a0 ¼ 90�. In Figs. 10(a) and 10(b), when
s=c ¼ 2:5� 10�3, which is before flow detachment from B, the free
surfaces and pressures for different Froude numbers are close to each
other, and this is because when t or s is small, the gravity effect is
weak. However, in Fig. 10(c) when s=c ¼ 1; the gravity effect becomes
significant, and it can clearly be seen that the jet will be pulled down
by the gravity. When the Froude number is smaller, the gravity effect
is more prominent, the jet will be lower, and Fig. 10(c) reflects this
fact. Special attention should be paid to the free surface on the left-
hand side, where the jet tip bends down and forms an overturning jet.
It can be seen that the jet corresponding to Fn ¼ 0:714 almost hits the
plate at s=c ¼ 1. When it happens, a closed air bubble can be formed.
The problem beyond that can be solved by using the method in Sun
et al.,26 but it is beyond the scope of the current work. For the pressure
in Fig. 10(d), due to the gravity effect, when Fn is smaller the pressure
is larger.

For a propeller blade at a given radius, v corresponds to the blade
vertical speed and u corresponds to the water advance speed. Here, we
will investigate the variation of pressures at different u. We set e
¼ u=v ¼ 0; 0:1; 0:2; respectively, which corresponds to a0 ¼ 90�;
84:33�; 78:73�; respectively. The Froude number is 0.714. The deadrise

FIG. 10. Water entry of an inclined plate with finite length with gravity effect (c ¼ 45� and a0 ¼ 90�): (a) free surface at s=c ¼ 2:5� 10�3, (b) pressure at
s=c ¼ 2:5� 10�3, (c) free surface at s/c¼ 1, and (d) pressure at s/c¼ 1.
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angle c ¼ 45�. Here, pressure coefficient Cu is defined through the
magnitude of U or Cu ¼ Cpsin 2a0. At the earlier stage
s=c ¼ 2:5� 10�3, the gravity effect is smaller (Fig. 11). The solution is
closer to the self-similar one and the pressure is very much affected by

u. At s=c ¼ 0:5; the difference between results at different u is much
smaller. It is interesting to see at s=c ¼ 1:0, the difference is further
reduced. In fact, when the gravity is ignored, the pressure at large s=c
will tend to that in Eq. (A5), where a1 ¼ p� a0 � c. The curves from

FIG. 11. Water entry of a plate with finite length with gravity (Fn ¼ 0:714, c ¼ 45�): (a) free surface (s=c ¼ 2:5� 10�3), (b) pressure (s=c ¼ 2:5� 10�3), (c) free surface
(s=c ¼ 0:5), (d) pressure (s=c ¼ 0:5), (e) free surface (s=c ¼ 1), and (f) pressure (s=c ¼ 1).
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this equation at a0 ¼ 90�; 84:33�; 78:73� can be found to be quite close
to each other.

3. Varying speed

If we set v ¼ Atk for the case with varying speed, then we have
s _v
v2 ¼ k

kþ1, which is constant. In such a case, the solution is self-similar if
the gravity is ignored as discussed after Eqs. (14) and (15). The flow
becomes fully transient after separation from point B occurs. We set
c ¼ 45�, a0 ¼ 90�, and choose k ¼ 0; 0:5; 1 to see the effect of k on
the solution. When k¼ 0, the plate travels down with constant veloc-
ity, which has been considered previously. For the case of k ¼ 0:5, the
plate has varying acceleration, which is infinite at t ¼ 0, and then
decreases. For k ¼ 1, the plate has constant acceleration. Figure 12
gives the self-similar solution. The inertial force is related to
s _v
v2 v2 ¼ k

kþ1 v2. v2 mainly depends on deadrise angle c, as can be seen
from its boundary conditions in Eqs. (20)–(22). The coefficient k

kþ1¼ 0; 13 ;
1
2 when k ¼ 0; 0:5; 1; respectively. This indicates that the

inertial force increases with k, which is part of the reason that the pres-
sure coefficient in Fig. 12(b) is larger at larger k. The free surface in

Fig. 12(a), on the other hand, is lower at larger k. When k ¼ 0, there is
a thin jet attached to the plate. When k 6¼ 0, the jet region becomes
thicker and a hump is formed near the intersection of the body surface
and the free surface. Correspondingly, there is a local hump in the
pressure coefficient in Fig. 12(b), which is similar to what has been
observed on a wedge.21

The above case is vertical entry corresponding to a0 ¼ 90�. We
further consider the oblique entry with a0 ¼ 80� and 70�; respectively.
The free surface and the pressure coefficient Cu are provided in
Fig. 13. k is set as 0.5, and s _u

v2 ¼ es _v
v2 ¼ ek

kþ1. The deadrise angle remains
as c ¼ 45�, and therefore, the attack angle is 45�; 55�; 65�, respec-
tively. This means that the attack angle between U and the plate
increases as a0 decreases, or flow direction moves toward the normal
direction. As a result, the pressure is larger at smaller a0 or larger
attack angle, as shown in Fig. 13(b).

V. CONCLUSIONS

The problem of an inclined plate entering into calm water is
investigated through the velocity potential flow theory together with
the boundary element method and the stretched coordinate system

FIG. 12. Water entry of a semi-infinite plate without gravity ðc ¼ 45� and a0 ¼ 90�): (a) free surface and (b) pressure.

FIG. 13. Water entry of a plate with infinite length without gravity with c ¼ 45�: (a) free surface and (b) pressure.
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method. Extensive results are provided, for cases of a semi-infinite
plate and finite plate, vertical entry and oblique entry, constant speed
and varying speed, and without and with gravity effect. From these,
the following conclusions can be drawn.

(1) When simulation starts an entry distance s ¼ s0, the effect of the
initial condition will diminish around s > 50s0. For a semi-infinite
plate at a constant speed or before the flow passes the upper edge
of a finite plate, the numerical solution tends to be self-similar.

(2) For a finite plate, the flow can be self-similar before it passes
the upper edge. After the detachment, the flow is transient. As
the entry continues, the flow will eventually become steady if
the gravity is ignored and tends to the cavity flow in the
unbounded fluid domain.

(3) When the flow is self-similar, the force coefficient CF increases
linearly with the entry distance s. It remains approximately the
case even when jet on the plate has passed its upper tip and
continues until the jet root is leaving the upper edge. After that,
CF drops rapidly first and then mildly and tends to that of the
steady flow in the unbounded fluid domain when the gravity
effect is neglected.

(4) The gravity effect is weak at the initial stage. Its effect will increase
as water entry continues, and becomes significant at earlier stage if
the Froude number is lower. The gravity effect can pull down the
jet, which may hit the plate or the main free surface.

(5) For oblique entry, the self-similarity will depend on the flow direc-
tion and the deadrise angle of the plate. For steady flow of a finite
plate, it does not depend on them separately and depends on only
the angle between the flow direction and the plate.
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APPENDIX: FREE SURFACE SHAPE, PRESSURE,
AND FORCE FOR STEADY FLOW DERIVED
FROM THE SOLUTION OF MILNE-THOMSON4

Figure 14 shows a uniform stream with velocity U from infin-
ity passes a stationary plate AB, as in Milne-Thomson.4 Here,
a1 ¼ p� a0 � c, and k ¼ sin a1

2 þ 2
p. From the solution in Milne-

Thomson,4 we may obtain the following results:

(1) Free surface initiated from B, f 2 ð1;1Þ,

x � xBð Þ=c ¼ 1
kp

1
2
cos a1 f2 � 1

� 	
þ f� 1


 �
; (A1)

y � yBð Þ=c ¼ sin a1
2pk

�f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q
þ ln fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q� �
 �
: (A2)

(2) Free surface initiated from A, f 2 ð�1;�1Þ,

x � xAð Þ=c ¼ 1
kp

"
1
2
cos a1 f2 � 1

� 	
þ fþ 1

�#
; (A3)

y � yAð Þ=c ¼ sin a1
2pk

f
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q
þ ln �fþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f2 � 1

q� �
 �
: (A4)

(3) The pressure coefficient on the plate, f 2 ð�1; 1Þ,

Cp ¼ 1� fþ cos a1ð Þ
1þ cos a1fþ sin a1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

p
( )2

: (A5)

(4) The force coefficient

CF ¼ 2p sin a1
4þ p sin a1

: (A6)

REFERENCES
1J. N. Newman, Marine Hydrodynamics (The MIT Press Cambridge,
Massachusetts, 2017).
2N. Javanmardi and P. Ghadimi, “Hydroelastic analysis of surface piercing
hydrofoil during initial water entry phase,” Sci. Iran., Trans. B 26, 295–310
(2019).

3Y. T. Wu, “A free streamline theory for two-dimensional fully cavitated hydro-
foils,” J. Math. Phys. 35, 236–265 (1956).

4L. M. Milne-Thomson, Theoretical Hydrodynamics (London Macmillan & CO
LTD., London, 1962).

5B. Yim, “An application of linearized theory to water entry and water exit prob-
lem. Part 2. With ventilation,” Research and Development Report 3171 (Naval Ship
Research and Development Center, Washington, D.C., USA, 1970).

6B. Yim, “Linear theory on water entry and exit problems of a ventilating thin
wedge,” J. Ship Res. 18, 1–11 (1974).

7D. P. Wang, “Water entry and exit of a fully ventilated foil,” J. Ship Res. 21,
44–68 (1977).

8D. P. Wang, “Oblique water entry and exit of a fully ventilated foil,” J. Ship
Res. 23, 43–54 (1979).

9B. S. Chekin, “The entry of a wedge into an incompressible fluid,” J. Appl.
Math. Mech. 53, 300–307 (1989).

10M. Savineau, “A time marching boundary element method for the prediction of
the flow around surface piercing hydrofoils,” M.S. thesis (Massachusetts
Institute of Technology, 1996).

11O. M. Faltinsen and Y. Semenov, “Nonlinear problem of flat-plate entry into an
incompressible liquid,” J. Fluid Mech. 611, 151–173 (2008).

FIG. 14. A uniform flow from infinity impinges on a plate AB (Milne-Thomson4).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 042112 (2023); doi: 10.1063/5.0147309 35, 042112-12

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0147309/16898013/042112_1_5.0147309.pdf

https://doi.org/10.24200/sci.2017.20010
https://doi.org/10.1002/sapm1956351236
https://doi.org/10.5957/jsr.1974.18.1.1
https://doi.org/10.5957/jsr.1977.21.1.44
https://doi.org/10.5957/jsr.1979.23.1.43
https://doi.org/10.5957/jsr.1979.23.1.43
https://doi.org/10.1016/0021-8928(89)90026-9
https://doi.org/10.1016/0021-8928(89)90026-9
https://doi.org/10.1017/S0022112008002735
https://scitation.org/journal/phf


12V. Vinayan and S. Kinnas, “A numerical nonlinear analysis of two-dimensional
ventilating entry of surface-piercing hydrofoils with effects of gravity,” J. Fluid
Mech. 658, 383–408 (2010).

13P. Ghadimi and N. Javanmardi, “Analysis of ventilation regimes of the oblique
wedge-shaped surface piercing hydrofoil during initial water entry process,”
Pol. Marit. Res. 25, 33–43 (2018).

14J. D. Mesa, K. J. Maki, and M. T. Graham, “Numerical analysis of the impact of
an inclined plate with water at high horizontal velocity,” J. Fluids Struct. 114,
103684 (2022).

15H. Moradi, A. R. Ranji, H. Haddadpour, and H. Moghadas, “A hybrid model
for simulation of fluid–structure interaction in water entry problems,” Phys.
Fluids 33, 017102 (2021).

16T. I. Khabakhpasheva and A. A. Korobkin, “Oblique elastic plate impact on
thin liquid layer,” Phys. Fluids 32, 062101 (2020).

17A. Iafrati and A. A. Korobkin, “Initial stage of flat plate impact onto liquid free
surface,” Phys. Fluids 16, 2214 (2004).

18A. Iafrati and A. A. Korobkin, “Hydrodynamic loads during early stage of flat
plate impact onto water surface,” Phys. Fluids 20, 082104 (2008).

19R. Krechetnikov, “Origin of ejecta in the water impact problem,” Phys. Fluids
26, 052105 (2014).

20S. Y. Sun and G. X. Wu, “Local flow at plate edge during water entry,” Phys.
Fluids 32, 072103 (2020).

21S. Y. Sun, S. L. Sun, and G. X. Wu, “Oblique water entry of a wedge into waves
with gravity effect,” J Fluids Struct. 52, 49–64 (2015).

22G. X. Wu, H. Sun, and Y. S. He, “Numerical simulation and experimental study of
water entry of a wedge in free fall motion,” J. Fluids Struct. 19, 277–289 (2004).

23G. X. Wu and R. E. Taylor, “Transient motion of a floating body in steep
waves,” in 11th Workshop on Water Waves and Floating Bodies, Hamburg,
Germany, 1996.

24G. X. Wu and R. E. Taylor, “The coupled finite element and boundary element
analysis of nonlinear interactions between waves and bodies,” Ocean Eng. 30,
387–400 (2003).

25G. X. Wu, “Hydrodynamic force on a rigid body during impact with liquid,”
J. Fluids Struct. 12, 549–559 (1998).

26S. Y. Sun, G. X. Wu, and G. Xu, “Breaking wave impact on a floating body with
air bubble effect,” J. Fluids Struct. 82, 16–34 (2018).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 35, 042112 (2023); doi: 10.1063/5.0147309 35, 042112-13

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/5.0147309/16898013/042112_1_5.0147309.pdf

https://doi.org/10.1017/S0022112010001783
https://doi.org/10.1017/S0022112010001783
https://doi.org/10.2478/pomr-2018-0003
https://doi.org/10.1016/j.jfluidstructs.2022.103684
https://doi.org/10.1063/5.0031681
https://doi.org/10.1063/5.0031681
https://doi.org/10.1063/5.0007121
https://doi.org/10.1063/1.1714667
https://doi.org/10.1063/1.2970776
https://doi.org/10.1063/1.4878843
https://doi.org/10.1063/5.0013914
https://doi.org/10.1063/5.0013914
https://doi.org/10.1016/j.jfluidstructs.2014.09.011
https://doi.org/10.1016/j.jfluidstructs.2004.01.001
https://doi.org/10.1016/S0029-8018(02)00037-9
https://doi.org/10.1006/jfls.1998.0158
https://doi.org/10.1016/j.jfluidstructs.2018.06.016
https://scitation.org/journal/phf

