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Abstract: The main objective of electrical-property tomography (EPT) is to retrieve dielectric tissue
parameters from B̂+

1 data as measured by a magnetic-resonance (MR) scanner. This is a so-called
hybrid inverse problem in which data are defined inside the reconstruction domain of interest.
In this paper, we discuss recent and new developments in EPT based on the contrast-source
inversion (CSI) method. After a short review of the basics of this method, two- and three-dimensional
implementations of CSI–EPT are presented along with a very efficient variant of 2D CSI–EPT called
first-order induced current EPT (foIC-EPT). Practical implementation issues that arise when applying
the method to measured data are addressed as well, and the limitations of a two-dimensional
approach are extensively discussed. Tissue-parameter reconstructions of an anatomically correct
male head model illustrate the performance of two- and three-dimensional CSI–EPT. We show
that 2D implementation only produces reliable reconstructions under very special circumstances,
while accurate reconstructions can be obtained with 3D CSI–EPT.

Keywords: electromagnetic inverse scattering problems; magnetic resonance imaging; electrical-property
tomography; nonlinear optimization; contrast-source inversion

1. Introduction

The conductivity and permittivity values of different tissue types are of great importance in a
variety of medical applications. In magnetic-resonance (MR) safety [1] and hyperthermia-treatment
planning [2], for example, conductivity tissue profiles are required to determine the specific absorption
rate (SAR). Conductivity may also serve as a biomarker in oncology or in acute-stroke imaging [3].
Permittivity is important since it affects the spatial distribution of the transmitted electromagnetic field
responsible for spin excitation.

Typically, tissue conductivity and permittivity values are measured ex vivo for a particular range
of frequencies [4]. Other methods require elaborate hardware, such as electrical impedance tomography
(EIT) [5] or microwave-imaging methods [6]. The objective of electrical-property tomography (EPT)
is to retrieve these dielectric tissue values in vivo using an MR scanner and standard measurement
protocols [3,7]. Specifically, with an MR scanner, the so-called B̂+

1 -field, defined as B̂+
1 = (B̂x + jB̂y)/2,

can be measured at a particular frequency of an operation called the Larmor frequency. This frequency
is proportional to the magnitude of static background field B0 via relation f = γ B0, where γ =

42.577 MHz T−1 is the proton gyromagnetic ratio divided by 2π, leading to MR operating frequencies
of 128 and 298 MHz for a 3 and 7 T scanner, respectively.
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Reconstruction of dielectric tissue parameters is based on the measured B̂+
1 -field, and what

sets EPT apart from other more common inversion and imaging problems is that the measured
B̂+

1 -field has its support inside the reconstruction domain. The EPT reconstruction problem therefore
belongs to the class of so-called hybrid inverse problems [8], and several EPT techniques have been
proposed to reconstruct the conductivity and permittivity profiles based on these internal B̂+

1 data.
Loosely speaking, these techniques can be divided into local differential-based approaches (see, e.g.,
References [9–12]) and global integral-based approaches (see e.g., References [13–18]). Combinations
of local and global methods have been developed as well [19,20].

In this paper, we focus on a global integral-based EPT reconstruction method called contrast
source inversion (CSI)–EPT, where a CSI approach [21–23] is taken to solve an EPT reconstruction
problem. In particular, in CSI–EPT, the reconstruction problem is formulated as an optimization
problem in which an objective function is iteratively minimized. This objective function consists of a
term that measures the mismatch between modeled and measured data (data mismatch), and a term
that measures the discrepancy in satisfying Maxwell’s equations within the reconstruction domain
using a global integral field representation (consistency mismatch). Including the second consistency
term in the objective function is crucial to the performance of CSI, as shown in Reference [24].

Minimization of the objective function is carried out by iteratively updating a contrast function,
which describes the dielectric constitution of the body part of interest, and a so-called contrast source,
which is the product of the contrast function and the electric-field strength. Updating takes place
by fixing one variable and updating the other. More precisely, the contrast function is first fixed,
the contrast source is updated, and subsequently the contrast source is fixed and the contrast function
is updated.

The CSI–EPT method was originally introduced in Reference [14], where it was shown that
CSI–EPT is able to reconstruct strongly inhomogeneous conductivity and permittivity profiles within
the center slice of an object placed in the center of a body coil in a 3 T MR scanner. The method was
initially implemented for E-polarized electromagnetic fields in two-dimensional (2D) configurations in
which the electrical field is parallel to the bore axis (z-axis) and the magnetic field is purely transverse,
because it is significantly less complex than full three-dimensional implementation. The use of a 2D
approach was justified since it was shown that the electromagnetic field in the midplane of a birdcage
coil essentially has an E-polarized field structure [25]. An efficient alternative to CSI–EPT, first-order
induced-current EPT or foIC-EPT, was presented in Reference [20] as well. This method exploits the
structure of the two-dimensional E-polarized field to efficiently reconstruct the tissue profiles in the
midplane of the transmit coil. The foIC-EPT method is significantly faster than CSI–EPT and produces
reconstructions in real time with essentially the same quality as 2D CSI–EPT.

The CSI–EPT method has recently been extended to three-dimensional (3D) configurations in
Reference [26]. With this 3D implementation of CSI–EPT, volumetric conductivity and permittivity
profiles are obtained, and it is no longer necessary to restrict the reconstruction domain to the midplane
of a transmit coil. Moreover, 3D CSI–EPT is based on vectorial 3D Maxwell equations and no
(E-polarized) field structure is assumed to be present as in the case of a 2D approach. Unfortunately,
computation times dramatically increase compared with 2D CSI–EPT and foIC-EPT and, depending
on the configuration, it may take 3D CSI–EPT hours or even days to converge even on dedicated
high-performance computers or servers. Apart from possible preconditioning techniques that may be
applied to accelerate the convergence of 3D CSI–EPT, 2D CSI–EPT or foIC-EPT may be preferable in
practice, since reconstruction times are significantly shorter compared with 3D approaches.

In this paper, we thoroughly investigate this issue and compare reconstructions obtained with
2D CSI–EPT, foIC-EPT, and 3D CSI–EPT. Reconstruction artifacts in the conductivity and permittivity
profiles, the modeled B̂+

1 -field, and the internal electric field are carefully studied. Our analysis shows
that only under very special conditions is a 2D approach justified. Even if the electromagnetic field has
an E-polarized field structure in the midplane of the transmit coil, imposing a two-dimensional field
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structure is generally too limiting an approximation unless the body part of interest and transmit coil
strictly satisfy the longitudinal invariance condition.

This paper is organized as follows. In Section 2, the 2D and 3D CSI–EPT method is briefly
reviewed, and the governing integral representations are presented. A variant of 2D CSI–EPT, foIC-EPT,
is also presented, and a detailed analysis of the performance of all three reconstruction methods is
presented in Section 3 using a realistic head model from Virtual Family [27]. A discussion with
conclusions can be found in Section 4. Finally, we note that the position vectors in 2D and 3D are
denoted by ρ and x, respectively, and we use an exp(+jωt) time convention.

2. Theory

As mentioned above, the CSI–EPT algorithm operates on two unknowns and is based on two
fundamental equations. Specifically, the unknowns in CSI–EPT are contrast function χ̂ andthe contrast
source ŵ, and the fundamental equations are the data equation and object or state equation.

The contrast function describes the dielectric contrast of the body with respect to free space and is
given by χ̂(x) = εr(x)− 1− jσ(x)/ωε0, where εr(x) and σ(x) are, respectively, the unknown relative
permittivity and conductivity profiles of the body, ε0 is the permittivity of free space, and ω is the
Larmor frequency of operation. The contrast function has bounded domain Dbody that is occupied
by the body as its support, that is, the contrast function vanishes for x /∈ Dbody. Finally, we note that
the contrast function is dimensionless, and that its real part is determined by the permittivity profile,
while its imaginary part is determined by the body’s conductivity profile.

The contrast source in CSI–EPT is defined as ŵ = χ̂Ê, where Ê(x) is the electric-field strength.
Note that it is common to refer to ŵ as a contrast source even though it is expressed in volts per meter
and is actually scaled electric-field strength. The electric-field strength is obviously also unknown,
since the dielectric constitution of the body is unknown. Even though this field is not of primary
interest in EPT, CSI–EPT does provide electric-field reconstructions that may be used to reconstruct the
local time-averaged power density that is dissipated into heat [1].

To arrive at the two fundamental equations of CSI–EPT, we set up a scattering formalism
in which we make use of the linearity of Maxwell’s equations and exploit the fact that the body
occupies a bounded domain Dbody. In particular, we first determine the electromagnetic field that is
present inside an empty birdcage coil. In practice, this so-called background field is computed using
electromagnetic-simulation software and we denote it by {Êb, B̂b}. We note that the assumption is
made here that external currents are impressed and field-independent. Consequently, antenna loading
is not directly taken into account. The total electromagnetic field in presence of the body is denoted by
{Ê, B̂}, and using the linearity of Maxwell’s equations this field can be written as

{Ê, B̂} = {Êb, B̂b}+ {Êsc, B̂sc}, (1)

where {Êsc, B̂sc} is the scattered electromagnetic field due to the presence of the body. For this field,
we have the integral representations

B̂sc(x) =
∫

x′∈Dbody

ĜBJ
(x, x′) · ŵ(x′)dV and Êsc(x) =

∫

x′∈Dbody

ĜEJ
(x, x′) · ŵ(x′)dV, (2)

where ĜEJ and ĜBJ are essentially the electric current to the electric field and electric current to
magnetic field Green’s tensors of the background medium. Note that these are the Green’s tensors of a
homogeneous background medium, and the presence of the coil is not taken into account. Explicit
expressions for these tensors are given below.
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Having these integral representations at our disposal, we can now present the basic CSI–EPT
equations. We start with the equation that relates the measured B̂+

1 -field to the contrast source.
In particular, using the integral representation for the scattered magnetic field of Equation (2), we have

B̂+;sc
1 (x) =

B̂sc
x + jB̂sc

y

2
=

1
2

∫

x′∈Dbody
∑

k=x,y,z

[
ĜBJ

xk(x, x′) + jĜBJ
yk(x, x′)

]
ŵk(x

′)dV, (3)

which can be written more compactly as

B̂+;sc
1 (x) = Gdata{ŵ}(x) for x ∈ Dbody, (4)

where linear data operator Gdata is implicitly defined in Equation (3). Equation (4) is known as the data
equation and relates unknown contrast source ŵ to the scattered B̂+

1 -field. Note that this scattered field
is known, since B̂+;sc

1 (x) = B̂+
1 (x)− B̂+;b

1 (x) and the total B̂+
1 -field is known through measurements,

while background field B̂+;b
1 (x) is known through simulations. The real phase is generally not known

in practice, and tranceive-phase approximation is often used, which can lead to reconstruction artefacts
at higher frequencies [28].

The second basic CSI–EPT equation, called the object or state equation, is obtained from the
integral representation for the scattered electric field as given by the second equation of Equation (2).
Using the definition of the scattered electric field Êsc = Ê− Êb, this integral representation can be
written as

Ê(x)−
∫

x′∈Dbody

ĜEJ
(x, x′) · ŵ(x′)dV = Êb(x) (5)

and multiplying the above equation by contrast function χ̂, we arrive at

ŵ(x)− χ̂(x)
∫

x′∈Dbody

ĜEJ
(x, x′) · ŵ(x′)dV = χ̂(x)Êb(x) for x ∈ Dbody, (6)

which can be written more compactly as

ŵ(x)− χ̂(x)Gbody{ŵ} = χ̂(x)Êb(x) for x ∈ Dbody, (7)

where linear operator Gbody is implicitly defined in Equation (6).
To summarize, the two fundamental unknowns in CSI–EPT are contrast function χ̂ and contrast

source ŵ, and the basic CSI–EPT equations are the data Equation (4) and the object Equation (7).
Now, suppose we have available an approximation for the contrast function and contrast source.

We denote these approximants by χ̃ and w̃, respectively, and, in order to measure how well these
approximations satisfy the data and object equations, we introduce the data and object residuals as

r̂d(x) = B̂+;sc
1 (x)− Gdata{w̃}(x) for x ∈ Dbody, (8)

and
r̂o(x) = χ̃(x)Êb(x)− w̃(x) + χ̃(x)Gbody{w̃}(x) for x ∈ Dbody, (9)

respectively, and measure their magnitudes using L2-norms

‖r̂d‖2
body =

∫

x∈Dbody

|r̂d(x)|2 dV and ‖r̂o‖2
body =

∫

x∈Dbody

|r̂o(x)|2 dV. (10)

In CSI–EPT, these norms are used to define objective function

F(χ̃, w̃) =
‖r̂d‖2

body

‖B̂+;sc
1 ‖2

body

+
‖r̂o‖2

body

‖χ̃Êb‖2
body

(11)
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and the goal is to find a contrast function and contrast source that minimizes this objective function.
We note that including the two-norm of the object residual in the objective function (second term on
the right-hand side of Equation (11)) is crucial to the success of CSI, since it has been shown that a
contrast-source inversion approach without this term produces unsatisfactory results in general [24].

In CSI–EPT, finding the desired contrast function is now realized by minimizing the objective
function in a “fix-one-minimize-for-the-other” approach. The iterative process continues until a
predefined maximum number of iterations or specified tolerance level of the objective function has
been reached. Specifically, the basic CSI–EPT algorithm is as shown in Listing 1.

Listing 1. Contrast-source inversion–electrical-property tomography (CSI–EPT).

• Given initial guesses χ̃[0] and w̃[0] for the contrast function and contrast source, respectively,
• For k = 1, 2, ...

1. Fix the contrast to χ̃[k−1] and update the contrast source according to the update formula

w̃[k] = w̃[k−1] + α[k]v[k].

2. Compute the corresponding electric-field strength Ê[k] according to (cf. Equation (5))

Ẽ[k](x) = Êb(x) + Gbody{w̃[k]}(x).

3. Knowing contrast source w̃[k] and corresponding electric-field strength Ẽ[k], determine
contrast function χ̃[k] from constitutive relation w̃[k] = χ̃[k]Ẽ[k] by solving
least-squares problem ‖χ̃Ẽ[k] − w̃[k]‖2

body for minimum norm contrast function χ̃.

4. Stop if objective function is smaller than user-specified tolerance level, or if maximum
number of iterations have been reached.

• End.

Polak–Ribière update directions are usually taken for update direction v[k] in Step 1 of
the algorithm, but Fletcher–Reeves or Hesteness–Stiefel update directions may be used as well.
To determine these update directions, the gradient of F(χ̃[k−1], w̃) with respect to w̃ at w̃ = w̃[k−1] is
required. Explicit expressions for this gradient and corresponding step length α[k] can be found in
Reference [23], for example.

Note also that, with Equation (5), the object residual can be written as r̂o = χ̃Ẽ− w̃ and, in Steps 2
and 3, we find minimum-norm contrast function χ̃ for which ‖r̂o‖2

body is minimized. This contrast
function is generally sensitive to small perturbations in w̃ at locations where the magnitude of the
electric field strength is “small.” To suppress this effect, we can alternatively update the contrast
function at every iteration according to update formula

χ̃[k] = χ̃[k−1] + β[k]u[k], (12)

with u[k] the Polak–Ribière update direction for the contrast function, and β[k] its corresponding
update coefficient. Such an approach usually has a regularizing effect and typically leads to smoother
reconstructions.

2.1. Object and Data Operators in Three-Dimensional CSI–EPT

In three dimensions and with air as a background medium, the integral representations for the
scattered fields, as given by Equation (2), take on form
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B̂sc(x) = j
ω

c2
0
∇× Âsc(x) and Êsc(x) = (k2

0 +∇∇·)Âsc(x), (13)

where c0 is the electromagnetic-wave speed in vacuum, k0 = ω/c0 the wave number in vacuum,
and Âsc is the vector potential given by

Âsc(x) =
∫

x′∈Dbody

Ĝ(x− x′)ŵ(x′)dV, (14)

with Ĝ the three-dimensional Green’s function of the vacuum background domain given by

Ĝ(x) =
exp(−jk0|x|)

4π|x| . (15)

Note that the nabla operators act on position vector x and not on integration variable x′.
Three-dimensional object operator Gbody can easily be identified from the second part in Equation (13).
For data operator Gdata, however, we have to substitute the x and y components of the scattered
magnetic flux density in Equation (3) to obtain

B̂+;sc
1 =

ω

c2
0

(
∂+ Âsc

z − ∂z Â+;sc) , (16)

where ∂+ = 1
2 (∂x + j∂y) and Â+;sc = 1

2 (Âsc
x + jÂ+;sc

y ). From the above expression for the scattered
B̂+

1 -field, the 3D data operator Gdata can be identified. Note the particular structure of this operator:
scattered B̂+

1 -field originates from a difference between the transverse variations of the longitudinal
vector potential (∂+ Âsc

z ) and the longitudinal variations of the transverse vector potential (∂z Â+;sc).

2.2. Object and Data Operators in Two-Dimensional CSI–EPT

In various papers (see Reference [25], for example) it has been reported that the radio-frequency
(RF) field in the midplane of a birdcage coil is essentially E-polarized, meaning that the electric-field
strength only has a longitudinal component (Ê = Êziz), while magnetic -flux density only has x and
y components (B̂ = B̂xix + B̂yiy). Additionally, in a two-dimensional configuration that is invariant
in the z direction, external electric current densities with longitudinal components only generate
E-polarized fields. Identifying the currents in the rungs of the birdcage coil with these z-directed
external current sources and denoting the slice through the object that coincides with the midplane of
the birdcage coil by Sbody, it makes sense to assume that within this midplane the RF field is essentially
two-dimensional and E-polarized with integral representations for the scattered fields given by

B̂sc(ρ) = j
ω

c2
0
∇T × Âsc(ρ), and Êsc(ρ) = k2

0Âsc(ρ), (17)

where ρ is the position vector in the midplane of the birdcage coil, ∇T = ix∂x + iy∂y is the transverse
nabla operator, and

Âsc(ρ) =
∫

ρ′∈Sbody

Ĝ(ρ− ρ′)ŵ(ρ′)dS (18)

is the vector potential in two dimensions (and is thus expressed as a two-dimensional integral as
opposed to the three-dimensional integral in the 3D case) with

Ĝ(ρ) = − j
4

H(2)
0 (k0|ρ|) (19)

the Green’s function of the two-dimensional homogeneous background medium (air) and H(2)
0

is the Hankel function of the second kind and order zero. In this two-dimensional case, object
operator Gbody can easily be identified from the second part of Equation (17) and does not contain
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a gradient-divergence operator as in the three-dimensional case. For 2D data operator Gdata, we
have to substitute the x and y components of the magnetic-flux density as given by the first part of
Equation (17) in the definition of the B̂+

1 -field to obtain

B̂+;sc
1 =

ω

c2
0

∂+ Âsc
z . (20)

From this expression, 2D data operator Gdata can now easily be identified. Comparing the
two-dimensional field representation of Equation (20) with its three-dimensional counterpart of
Equation (16), we observe that longitudinal spatial variations are absent in the two-dimensional case.
Moreover, the vector potentials in both expressions are different, since this quantity is computed using
Equation (18) in the two-dimensional case, while the three-dimensional vector potential is given by
Equation (14). Differences between two- and three-dimensional CSI–EPT reconstructions are discussed
further in Section 3.

2.3. Simplified Two-Dimensional CSI–EPT—foIC-EPT

In two dimensions, the CSI–EPT algorithm can be simplified by exploiting the particular structure
of E-polarized RF fields. To make this simplification explicit, we first introduce differentiation operator
∂− = 1

2 (∂x − j∂y) and note that operators ∂− and ∂+ essentially factor two-dimensional Laplacian
∆ = ∂2

x + ∂2
y as

∆ = 4∂−∂+ = 4∂+∂−. (21)

Now, as a first step, we substitute the second part of Equation (17) in Equation (20) to obtain

B̂+;sc
1 (ρ) =

1
ω

∂+Êsc
z (ρ). (22)

Subsequently, we use the definition of the scattered fields to write the above expression as

B̂+
1 (ρ) = B̂+;b

1 (ρ) +
1
ω

∂+Êz(ρ)−
1
ω

∂+Êb
z (ρ) (23)

and, since B̂+;b
1 (ρ) = 1

ω ∂+Êb
z (ρ), this simplifies to

B̂+
1 (ρ) =

1
ω

∂+Êz(ρ). (24)

If we now act with the ∂− operator on this equation, we obtain

∂− B̂+
1 =

1
4ω

∆Êz (25)

and since Êz satisfies ∆Êz − jωµ0 Ĵind
z = 0 with

Ĵind
z = (σ + jωε)Êz, (26)

we arrive at
Ĵind
z =

4
jµ0

∂− B̂+
1 . (27)

This last equation shows that, in two dimensions, induced current density is obtained (accounting for
multiplication by 4/jµ0) by acting with the ∂− operator on the total B+

1 -field. The simplified CSI–EPT
method is therefore called a first-order-induced current EPT method, since a first-order differentiation
of the B+

1 -field essentially immediately results in an image of the induced current density.
As shown in Reference [20], after the induced current density is obtained, the corresponding

electric-field strength can be computed by solving a specific integral equation defined on Sbody.
With the electric-field strength now known, the conductivity and permittivity profiles within the slice



J. Imaging 2019, 5, 25 8 of 19

can be obtained from Equation (26). The overall first-order induced current density EPT algorithm can
be summarized as presented in Listing 2.

Listing 2. First-Order Induced Current EPT Algorithm (foIC-EPT).

• Given the measured B̂+
1 -field in the midplane of the birdcage coil:

1. Determine the induced current density using Equation (27).

2. Determine the corresponding electric-field strength by solving a specific integral equation
(Equation (12) in Reference [20]).

3. Knowing the induced current density and the electric-field strength, determine conductivity
and permittivity profiles using Equation (26).

Further details about this algorithm can be found in Reference [20]. Finally, we note that the
above algorithm is a direct noniterative EPT method and, as opposed to CSI–EPT, requires the solution
of a system of equations (Step 2) to arrive at the reconstructed conductivity and permittivity profiles.
Fortunately, as demonstrated in Reference [20], this system of equations can efficiently be solved using
iterative solvers such as the generalized minimal residual (GMRES) method [29] and, typically, only a
small number of iterations is required to reach a prescribed error.

3. Methods and Results

To illustrate the performance of foIC-EPT and two- and three-dimensional CSI–EPT,
we reconstructed the conductivity and permittivity profiles of the head of anatomical human-body
model Duke from Virtual Family [27] (see Figure 1a,b), from noisefree B̂+

1 -data. The head model
consists of 124 × 100 × 109 isotropic voxels with side lengths of 2 mm. The model was placed
inside an ideal high-pass birdcage coil (see Figure 1a) consisting of 16 rungs, each having a width of
25 mm. The coil has a radius of 150 mm, is 195 mm long, and is driven in quadrature at 128 MHz,
which corresponds to the operating frequency of a 3 T MRI system. The shield surrounding the coil
has a radius of 180 mm and length of 200 mm. Commercial EM simulation software (XFdtd, v.7.5,
Remcom State College, PA, USA) was used to obtain the background field {Êb, B̂b} as generated by
the high-pass birdcage coil. Finally, to investigate the difference between two- and three-dimensional
conductivity and permittivity reconstructions, we also considered a longitudinally uniform “head
model” in which the center slice was simply repeated in the longitudinal direction, thereby creating a
model with no variations in the longitudinal z direction within the head (see Figure 1c).

(a) (b) (c)

Figure 1. Birdcage coil and head models. (a) High-pass birdcage coil with the head model placed
inside, (b) Duke head model from Virtual Family [27], and (c) longitudinally uniform head model
obtained by repeating the center slice in the longitudinal direction.
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3.1. Two-Dimensional CSI–EPT and foIC-EPT

The CSI–EPT method was originally implemented for two-dimensional configurations in
Reference [14] to study its potential as an EPT reconstruction method and to test if the method can
handle strongly inhomogeneous tissue profiles. Let us therefore start with a purely two-dimensional
reconstruction problem in which we attempt to reconstruct conductivity and permittivity profiles
within the center slice of the head model shown in Figure 2a. In this two-dimensional setting, we took
the background field in the midplane of the realistic birdcage coil shown in Figure 1a as the 2D
background field. The reconstructed conductivity and permittivity profiles obtained after 5000
iterations of the two-dimensional CSI–EPT method are shown in Figure 2b. It took the algorithm
approximately 86 s on an Intel i7-6700 CPU (Intel, Santa Clara, CA, USA) operating on Windows 7 with
Matlab 2016a (Mathworks, Natick, MA, USA) to arrive at these reconstructions, and we terminated the
algorithm after 5000 iterations since the objective function had already dropped below a 1.53× 10−5

tolerance level at that point and essentially no significant improvements were obtained. In addition,
the foIC-EPT reconstruction profiles of conductivity and permittivity are shown in Figure 2c, and the
errors of CSI–EPT and foIC-EPT conductivity and permittivity reconstructions are shown in Figure 2d,e,
respectively. We observed that the quality of the foIC-EPT reconstructions was similar to CSI–EPT
even though it took foIC-EPT only a fraction of a second to produce these reconstructions (see Table 1
for details).

Table 1. Mean and standard deviation of reconstructed electrical properties in different tissue that are
apparent in the center slice of the head models using 2D CSI–EPT and foIC-EPT in a two-dimensional
setting. Units of σ and εr are in siemens per meter and permittivity of free space, respectively.

Conductivity (σ) Relative Permittivity (εr)

True 2D CSI–EPT foIC-EPT True 2D CSI–EPT foIC-EPT

Fat 0.07 0.13 ± 0.10 0.18 ± 0.10 12.37 17.23 ± 7.89 19.27 ± 7.15
Red marrow 0.16 0.11 ± 0.06 0.15 ± 0.03 13.54 11.08 ± 2.52 13.68 ± 1.47
Bone 0.07 0.14 ± 0.15 0.21 ± 0.14 14.72 19.09 ± 8.05 21.73 ± 6.90
Eye lens 0.31 0.54 ± 0.11 0.78 ± 0.09 42.79 48.86 ± 5.26 51.52 ± 1.44
Nerve 0.35 0.74 ± 0.30 0.77 ± 0.26 44.07 51.49 ± 8.74 47.33 ± 7.42
Connective tissue 0.50 0.47 ± 0.12 0.44 ± 0.13 51.86 46.48 ± 7.56 40.54 ± 7.06
White matter 0.34 0.36 ± 0.04 0.38 ± 0.04 52.53 54.33 ± 3.12 55.37 ± 3.54
Muscle 0.72 0.63 ± 0.11 0.55 ± 0.13 63.49 56.76 ± 7.28 48.30 ± 8.72
Eye sclera 0.92 0.89 ± 0.15 0.87 ± 0.13 65.00 56.78 ± 6.67 50.26 ± 5.95
Skin 0.52 0.48 ± 0.08 0.36 ± 0.09 65.44 59.00 ± 8.95 42.29 ± 8.55
Hypothalamus 0.80 0.88 ± 0.11 0.91 ± 0.11 66.78 59.48 ± 4.91 54.12 ± 4.20
Eye vitreous humor 1.51 1.46 ± 0.13 1.40 ± 0.15 69.06 66.19 ± 4.86 61.03 ± 4.95
Cornea 1.06 0.92 ± 0.13 0.83 ± 0.11 71.46 61.52 ± 9.32 52.81 ± 5.84
Gray matter 0.59 0.61 ± 0.15 0.63 ± 0.15 73.52 72.68 ± 4.18 70.54 ± 4.92
Midbrain 0.83 0.84 ± 0.17 0.88 ± 0.18 79.74 78.58 ± 10.24 81.93 ± 12.33
Cerebrospinal fluid 2.14 1.90 ± 0.29 1.75 ± 0.29 84.04 80.66 ± 8.57 76.46 ± 11.31
Mucosa 2.28 1.50 ± 0.03 1.01 ± 0.02 116.00 78.07 ± 5.17 53.83 ± 2.77
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Figure 2. Reconstruction results from 2D reconstruction methods. (a) True model, (b) reconstruction
obtained after 5000 iterations of 2D CSI–EPT, and (c) reconstruction from foIC-EPT. Respective errors
are shown in (d,e). Top row shows conductivity and bottom row shows relative permittivity.

3.2. Three-Dimensional CSI–EPT

In a two-dimensional approach, the RF field is E-polarized with electric-field strength that is
longitudinal (Ê = Êziz) and magnetic-flux density that is transverse (B̂ = B̂xix + B̂yiy). Such an
approach was shown to be reasonable for a homogeneous cylindrical phantom in a central region of
a body coil consisting of elementary center-fed dipole antennas in Reference [25]. Indeed, when the
longitudinally uniform head model of Figure 1c was placed within our birdcage coil we also observed
that the x and y components of the electric-field strength in the central transverse slice were small
compared to its z component, as illustrated in the top rows of Figure 3a–c and Figure 4a,b.
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Figure 3. Magnitude of electric-field-strength components. x, y, and z components at (a–c) the
transversal midplane, and (d–f) the slice 5 cm higher, respectively. Top and bottom row show fields in
the case of a longitudinal homogeneous and heterogeneous object, respectively.
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Figure 4. Ratios of x and y components of the electric-field strength relative to its z component. Relative
field components at (a,b) the center slice and (c,d) the slice 5 cm higher. Top row is for the longitudinally
uniform object, bottom row for the object with longitudinal variations.

However, as we move away from the center slice in the longitudinally uniform head model
of Figure 1c, the magnitude of the x and y components of the electric-field strength starts to
increase, as illustrated in the top rows of Figure 3d–f and Figure 4c,d, where the magnitude of the
electric-field-strength components is shown in a slice located 5 cm above the central slice. We observed
that even though the transverse components of the electric-field strength were negligible within the
center slice, they could no longer be neglected when 5 cm away from it.

Furthermore, for the realistic heterogeneous head model of Figure 1b, a two-dimensional
E-polarized field assumption completely failed, as shown in the bottom rows of Figures 3a–f and 4a–d.
In the slice 5 cm above the central slice, and even within the central slice itself, the x and y components
of the electric-field strength could no longer be neglected and had to be taken into account in the full
Maxwell equations to properly describe RF field behavior within the head model.

To study the effects of longitudinal spatial variations of the tissue parameters on the B̂+
1 -field,

we considered Equation (16) again and write it in form

B̂+;sc
1 = Btra + Blon, (28)

where Btra = ω
c2

0
∂+ Âsc

z and Blon = − ω
c2

0
∂z Â+;sc. Longitudinal variation term Blon is absent in a 2D

approach (see Equation (20)), since, in a 2D setting, the configuration is assumed to be invariant
in the longitudinal z-direction (∂z = 0). Figure 5, however, shows that, for both the longitudinally
homogeneous and realistic heterogeneous head model, the longitudinal variation term is significant
and cannot be ignored. Especially near the periphery of both head models, Blon contributes to the
scattered B̂+

1 -field. More specifically, within a 1 cm outer boundary layer located in the center slice,
the mean of fraction |Blon/B̂+;sc

1 | is 1.18 and 1.25 for the homogeneous and inhomogeneous head
model, respectively; in the inner region, these means are 0.51 and 0.60, and similar averages were
obtained for the slice located 5 cm above the center slice. From these observations, it is clear that
longitudinal variations of transverse vector potential Â+;sc contribute to the scattered B̂+

1 -field and
cannot be ignored.
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1Figure 5. Magnitude of scattered B̂+

1 terms. (a) Transverse variation and (b) longitudinal variation term
of the scattered B̂+

1 , and (c) contributions of Blon with regard to B̂+;sc
1 at the center slice. (d–f) Same,

respectively, at a slice 5 cm higher in the head domain. Top row is in the case of a longitudinally
uniform object, the bottom row for the head model with longitudinal variations. (b) and (e) were
neglected in the 2D approach.

Up to this point, we compared 3D RF field structures with their 2D counterparts for a
longitudinally uniform and a realistic heterogeneous head model. In a two-dimensional configuration,
however, sources are invariant in the longitudinal direction as well, and we expect that, due to the
finite extent of the birdcage coil, additional deviations in the B̂+

1 fields will be observed.
To further investigate this issue, we first determine the two-dimensional B̂+

1 -field in the central
slice, as described in Section 3.1. The magnitude and phase of this field are shown in the top and
bottom row of Figure 6a, respectively. Subsequently, we consider RF excitation by the 3D birdcage coil,
but assume that the birdcage coil, including its currents, does not vary in the longitudinal direction.
For the longitudinally uniform head model, a B̂+

1 -field as shown in Figure 6b is then obtained and
we observe that this field strongly resembles the 2D B̂+

1 -field pattern of Figure 6a. Replacing the
longitudinal invariant currents in the rungs by the exact current, but keeping the homogeneous head
model, we obtain the B̂+

1 -field pattern shown in Figure 6c. Agreement with the 2D field B̂+
1 -field

pattern clearly deteriorates, and this correspondence becomes even worse for the realistic longitudinal
heterogeneous head model as shown in Figure 6d. Since the B̂+

1 -field is used as an input for the
CSI–EPT method, accurate correspondence is obviously necessary for proper reconstruction. The 2D
CSI–EPT algorithm expects a 2D B̂+

1 -field, as shown in Figure 6a for the center head slice, but in 3D
the B̂+

1 -field from Figure 6d is present. Providing this 3D field as an input to a 2D CSI–EPT algorithm
would lead to inaccurate reconstructions in general.

To illustrate how these differences in actual fields (3D) and expected fields (2D) translate to
reconstruction errors, both two-dimensional algorithms were applied to quasi-three-dimensional data
using either 3D amplitudes or phases. Note that, in order to match 2D and 3D data, the maximum
absolute value of the B̂+

1 -field of both datasets was taken to be equal. The results are depicted in
Figure 7b–e, from which it can be observed that permittivity is particularly sensitive to 2D violations.
This reconstruction difference between conductivity and permittivity is due to the fact that conduction
currents (σÊ) influence the B̂+

1 -field to a much larger extent than displacement currents (jωεÊ) at 3 T.
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1 field obtained

in a 3D setting with longitudinal homogeneity of the object and coil, (c) of longitudinal homogeneity
of only the object, and (d) with longitudinal variations also of the object. Top row shows the B̂+

1
magnitude, bottom row the B̂+

1 phase.
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Figure 7. Reconstruction results from 2D reconstruction methods using parts of 3D B̂+
1 data. (a) True

model, (b,c) reconstruction results assuming 2D phase with 3D magnitude, and (d,e) reconstruction
results assuming 2D magnitude with 3D phase of the B̂+

1 -field in the central transverse slice from
simulations with the longitudinal invariant head model. Top row shows conductivity and the bottom
row shows relative permittivity.

The reconstructions of the conductivity and relative permittivity profiles for the full 3D case
without any further assumptions, using 3D magnitude as well 3D phase B̂+

1 data are shown for
the longitudinally uniform model in Figure 8a–f and for the realistic heterogeneous head model in
Figure 8g–l. Reconstructions are shown for the central slice profiles as well as for the profiles located
within the slice positioned 5 cm above the central slice. For comparison, 2D CSI–EPT reconstructions
based on 3D B̂+

1 data are also presented. Relative residual error (norm of the difference between
the exact and reconstructed profile normalized by the norm of the exact profile, where the norm is
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taken over the center slice) of Figure 8h is 0.7339 and 0.8263 for the conductivity and permittivity,
respectively, while the relative residual error of the conductivity and permittivity of Figure 8i is
0.3358 and 0.1587, respectively. Clearly, 2D CSI–EPT is unable to accurately reconstruct conductivity
and permittivity profiles. The 2D and 3D permittivity reconstructions are also less accurate than
conductivity reconstructions, indicating that B̂+

1 -field data acquired at 3 T are less sensitive to
permittivity variations.
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Figure 8. Reconstruction comparison of 2D and 3D CSI–EPT on 3D B̂+
1 fields after 5000 and

50,000 iterations, respectively. (a–c) true object, reconstruction with 2D CSI–EPT, and reconstruction
with 3D CSI–EPT for a homogeneous object and for the center slice. (d–f) Same as above, but for a
slice 5 cm higher. (g–l) same as (a–f), but in the case of a longitudinal inhomogeneous object. Top row
depicts the conductivity, bottom row shows permittivity.

Finally, to emphasize that 3D CSI–EPT is a fully three-dimensional volumetric reconstruction
method, we present a full 3D CSI–EPT reconstruction of the realistic head model obtained after
50,000 iterations based on 3D B̂+

1 data in Figure 9. This number of iterations was chosen due to time
constraints, since it takes approximately 110 h on an Intel i7-6700 CPU operating on Windows 7 with
Matlab 2016a.
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Figure 9. Three-dimensional visualization of a section of the 3D CSI–EPT reconstruction of the
heterogeneous Duke head model (Figure 1b) after 50,000 iterations. (a,b) True and reconstructed
conductivity, and (c,d) true and reconstructed relative permittivity. Top slice that is visible is the slice
5 cm above the transverse midplane.

4. Discussion

We investigated the performance of two- and three-dimensional CSI–EPT in reconstructing
dielectric tissue profiles based on B̂+

1 data collected inside the reconstruction slice or domain of interest.
Since these data has their support inside the reconstruction domain, EPT belongs to the class of so-called
hybrid inverse problems [8]. In CSI–EPT, reconstructing tissue parameters is posed as an optimization
problem in which an internal objective function, that is, an objective function that measures both
field and model discrepancies within the domain of interest, is minimized in an iterative manner.
Field discrepancies are measured by considering the L2-norm of the difference between modeled
and measured data, while model discrepancies are measured by an L2-norm that tells us how well a
conductivity and permittivity tissue profile, and the corresponding contrast source, satisfy Maxwell’s
equations. Including model discrepancies in the objective function is crucial to the performance of
CSI–EPT, since it has been shown that, without this term, unsatisfactory reconstruction results may be
obtained [24]. In addition to the tissue profiles, CSI–EPT reconstructs electric-field strength as well,
and may therefore also be used to predict the SAR that is induced inside the body or a body part of
interest [30], which is important for MR safety and hyperthermia-treatment planning, for example.
Finally, we also showed that, in two dimensions, an alternative noniterative and integral-based
reconstruction algorithm called foIC-EPT may be employed. This method is significantly faster
than 2D and 3D CSI–EPT, and reconstructs tissue profiles and corresponding electric-field strength
essentially in real time on a present-day standard laptop or PC (Intel i5-i7 or similar). However,
foIC-EPT is restricted to two-dimensional configurations since it exploits two-dimensional E-polarized
field structures. CSI–EPT, on the other hand, does not exploit any particular field structure and
can be extended to the vectorial three-dimensional case, turning CSI–EPT into a volumetric EPT
reconstruction method.

We carried out several comparisons between reconstructions obtained with 2D CSI–EPT, foIC-EPT,
and 3D CSI–EPT. Our simulations show that care needs to be exercised when a 2D reconstruction
approach is followed or reconstruction artefacts are obtained in the reconstructed dielectric tissue
profiles. Specifically, we showed that, by using 2D methods, erroneous reconstructions could be
obtained, since the longitudinal variations of the transverse vector potential are completely ignored
in the data model for the B̂+

1 field. Moreover, vector potential itself is computed differently in 2D
and 3D since longitudinal invariance is assumed in the 2D case. In fact, the transverse electric field
and the longitudinal magnetic field vanish in 2D as a consequence of the (assumed) invariance of the
object and external sources along the longitudinal direction. In 3D, however, all components of the
electromagnetic field are present and their contributions to the measured data and object equations
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have to be taken into account. Of course, in some situations, an E-polarized field structure may be
present in the midplane of a birdcage coil, but the scattered B̂+

1 -field is also influenced by longitudinal
variations of transverse vector potential ∂z Âz. These equations can only be simplified to 2D if we can
guarantee that longitudinal invariance or the smoothness of certain field components can be imposed
before any reconstruction algorithm is applied to the measured data. Therefore, cylindrical body parts,
such as legs or arms, could be reliably reconstructed via 2D CSI–EPT, but this at least requires further
validation through simulations and measurements using cylindrical phantom models with known
dielectric characteristics.

No assumptions on the fields are imposed in 3D CSI–EPT and reconstruction errors due to such
assumptions are therefore avoided. Moreover, 3D CSI–EPT is a volumetric reconstruction method,
and is not restricted to a specific plane within the configuration. Reliable reconstructions can be
obtained within any desired domain of interest provided that B̂+

1 data are available within this domain.
Unfortunately, computation times significantly increase when applying 3D CSI–EPT. Depending on
the number of unknowns in the EPT reconstruction problem, 3D CSI–EPT may take many iterations
to converge to the desired error tolerance, with total computation times of hours or days, even on
dedicated computers or servers. In future research, we focus on accelerating the convergence rate
of 3D CSI–EPT by including preconditioning techniques in CSI–EPT (as described in Reference [23],
for example) that exploit all a priori knowledge we have about the object or body part that needs to be
reconstructed. This knowledge can also be used to construct an accurate initial guess, thereby possibly
further accelerating CSI–EPT.

In our experiments, we used simulated B̂+
1 -field data to test the performance of 2D and 3D

CSI–EPT on strongly inhomogeneous structures, and to study the differences between two- and
three-dimensional CSI–EPT approaches. In real-world measurements, the data obviously differ from
simulated data, and CSI–EPT should be adapted so that it can handle measured B̂+

1 data. In this
respect, we identified three practical issues that need to be addressed, which are part of our current
CSI–EPT research.

First, in practice, the B̂+
1 -field is obtained in polar form through separate amplitude and phase

measurements. In both cases, the collected data are contaminated with noise. Therefore, filtering
or regularization techniques that suppress the effects of noise should be incorporated in CSI–EPT.
Initial studies show that filtering of the data allows us to handle measured data in foIC-EPT [20] and,
as demonstrated in Reference [14], total-variation (TV) regularization may suppress noise effects in
CSI–EPT. However, due to the many possible choices for the regularization parameter in this method, it
is presently not clear for which parameter or parameter range the TV CSI–EPT scheme is most effective.

Second, the phase that is measured in practice is not the phase of the B̂+
1 -field, but the so-called

transceive-phase from which the B̂+
1 -phase can be extracted. To this end, the tranceive-phase

approximation is often applied, but the validity of this approximation is not fully understood, and
may lead to reconstruction errors in conductivity and permittivity profiles [28]. Fortunately, it is
shown in Reference [31] that improved B̂+

1 phase approximations can be obtained from the tranceive
phase by incorporating an iterative-phase correction scheme in the CSI–EPT reconstruction algorithm.
This correction scheme seems to reliably retrieve B̂+

1 phase maps from the measured tranceive phase,
and leads to improved conductivity and permittivity reconstructions compared with reconstructions
that are obtained when tranceive-phase approximation is applied. We will include this phase-correction
mechanism in future CSI–EPT implementations as well. Another option is to opt for phaseless
approaches as, for example, proposed in References [32,33].

Finally, in practice, the current densities in the transmit coil that generate the incident field
depend on the present object, and we must account for this loading effect as well. Specifically,
integral representations for the fields in CSI–EPT are obtained using scattered-field formalism in
which it is assumed that current density in the transmitting antenna is impressed and independent
of the scatterer that may be present in the configuration. In practice, however, these currents do
depend on the object, and, consequently, care must be taken when we compute the background
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field in CSI–EPT. One approach is, therefore, to simulate this loading effect using a suitable coil and
body model in a commercial field solver and to extract current densities in the coil from this solver.
The background field in CSI–EPT (the field without any load) can then be computed using these
extracted currents. In this way, the loading effect encountered in practice can be incorporated in our
CSI–EPT reconstruction algorithm.

Our final aim is, of course, to turn CSI–EPT into a practical reconstruction method to obtain
accurate and reliable conductivity and permittivity tissue maps of an interior part of the human body
at MR operation frequencies. Reconstruction results based on simulated data are very promising,
and we think that, by addressing the practical issues discussed above, we will indeed make significant
progress towards a reliable EPT reconstruction method that provides us with accurate dielectric tissue
maps in practice.
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