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Incomplete spectrum QSM using
support information

Patrick Fuchs* and Karin Shmueli

Department of Medical Physics and Biomedical Engineering, University College London, London,

United Kingdom

Introduction: Reconstructing a bounded object from incomplete k-space data is

a well posed problem, and it was recently shown that this incomplete spectrum

approach can be used to reconstruct undersampled MRI images with similar

quality to compressed sensing approaches. Here, we apply this incomplete

spectrum approach to the field-to-source inverse problem encountered in

quantitative magnetic susceptibility mapping (QSM). The field-to-source problem

is an ill-posed problem because of conical regions in frequency space where

the dipole kernel is zero or very small, which leads to the kernel’s inverse

being ill-defined. These “ill-posed” regions typically lead to streaking artifacts in

QSM reconstructions. In contrast to compressed sensing, our approach relies on

knowledge of the image-space support, more commonly referred to as the mask,

of our object as well as the region in k-space with ill-defined values. In the QSM

case, this mask is usually available, as it is required for most QSM background field

removal and reconstruction methods.

Methods: We tuned the incomplete spectrum method (mask and band-limit) for

QSM on a simulated dataset from the most recent QSM challenge and validated

theQSM reconstruction results on brain images acquired in five healthy volunteers,

comparing incomplete spectrum QSM to current state-of-the art-methods:

FANSI, nonlinear dipole inversion, and conventional thresholded k-space division.

Results: Without additional regularization, incomplete spectrum QSM performs

slightly better than direct QSM reconstruction methods such as thresholded k-

space division (PSNR of 39.9 vs. 39.4 of TKD on a simulated dataset) and provides

susceptibility values in key iron-rich regions similar or slightly lower than state-

of-the-art algorithms, but did not improve the PSNR in comparison to FANSI or

nonlinear dipole inversion. With added (ℓ1-wavelet based) regularization the new

approach produces results similar to compressed sensing based reconstructions

(at su�ciently high levels of regularization).

Discussion: Incomplete spectrum QSM provides a new approach to handle the

“ill-posed” regions in the frequency-space data input to QSM.

KEYWORDS

QSM, compressed sensing, incomplete spectrum, dipole inversion, Fourier transform,

regularization, magnetic susceptibility

1. Introduction

The magnetic susceptibility of tissue χm is related to perturbations in the magnetic field

1B0 through convolution with the unit dipole field. These local field perturbations can be

calculated from the phase variationsmeasured in gradient-echomagnetic resonance imaging

(MRI). In theory, reconstructing the underlying magnetic susceptibility from the local field

perturbations requires deconvolution with the unit dipole field or dipole kernel. This is an

ill-posed inverse problem because the dipole kernel contains zeroes on a conical surface in

the frequency domain which lead to streaking artifacts in quantitative susceptibility mapping

(QSM).
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Over the years many different approaches to regularize this

ill-posed problem have been proposed (Wang and Liu, 2015;

Deistung et al., 2017; Shmueli, 2020): from direct approaches such

as thresholding the dipole kernel (Shmueli et al., 2009; Schweser

et al., 2013), to using iterative reconstruction methods (Wu et al.,

2012; Kee et al., 2017; Milovic et al., 2018; Polak et al., 2020), and,

most recently, deep-learning-based approaches (Bollmann et al.,

2019; Jung et al., 2020, 2022).

Our approach to deal with this ill-posed region in frequency

domain is to remove the affected data from the reconstruction.

The QSM field-to-source inversion algorithm then needs to

handle reconstructing the susceptibility from data that are

incomplete in frequency domain (k-space: the MRI frequency

domain). Reconstructing images from incomplete k-space data

is often performed using compressed sensing (CS), where prior

information on the sparsity of the image, in a (wavelet) transform

domain, is used to aid reconstruction.

In contrast to CS, our approach does not rely on the

incoherence of aliasing artifacts, but, rather, on a priori knowledge

of the image-space support (more commonly referred to as the

mask) of our object. Reconstructing a bounded object from

incomplete k-space data is a well posed problem (Fuks, 1963;

Papoulis, 1975), and it was recently shown that this incomplete

spectrum (IS) approach can be used to reconstruct undersampled

MRI images with similar quality to compressed sensing approaches,

as shown by Rhebergen et al. (1997) and den Bouter et al. (2021).

In the case of QSM, the support information required for

this incomplete spectruma approach is readily available as a binary

mask as it is almost always used to remove background field

contributions, and can generally be calculated from the magnitude

images, see, for example, Smith (2002), Schweser et al. (2017), and

Kiersnowski et al. (2022). No additional assumptions or priors are

needed for the proposed approach. Our objective is to reconstruct a

full magnetic susceptibility distribution (with a known mask) from

incomplete k-space data. Here, we aimed to test this approach in

QSM using both a numerical phantom and data acquired in five

healthy volunteers. We investigated the effect of using different

masks and band-limits (defining the incomplete region in k-

space) on the reconstructed susceptibility maps using a numerical

phantom. Using the volunteer data we compared our approach to

conventional QSM reconstruction algorithms.

2. Theory: incomplete spectrum QSM
reconstruction

We use the method first proposed in den Bouter et al. (2021)

for MRI image reconstruction, which is a conjugate-gradient-

least-squares (CGLS) algorithm applied to solve the normal

equation of a space-limited and frequency-restricted Fourier

transformation. In other words, instead of using the inverse fast

Fourier transformation (FFT) to invert the Fourier transform

equation

k = Fx, (1)

where k are the data in frequency domain, x are the data in image

space and F is the (forward) Fourier transform, we limit the extent

of x (through a mask, or support matrix Sx in image space) and

restrict the frequency components of k (through a band limit or

support matrix Sk in frequency domain). Then our space-limited

and band-limited Fourier transform equation is

Skk = SkFSxx. (2)

It is important to note that we choose the mask Sx such that

Sxx = x, or, in other words, so that the mask contains the support

of the datawhose frequency domain we are attempting to reconstruct.

The normal equation of this model can then be solved for x using

CGLS, as described in den Bouter et al. (2021).

In QSM, the local field perturbations, 1b0 are related to

the underlying magnetic susceptibility distribution χm through

convolution with a dipole kernel d, first shown by Salomir et al.

(2003) and Marques and Bowtell (2005)

1b0 = d ∗ χm. (3)

When transformed into frequency domain, this becomes an

elementwise product according to the convolution theorem. This

can be written as a matrix multiplication

b = FHDFχ , (4)

where F is the forward Fourier transform matrix and FH
(

= F−1
)

is the inverse Fourier transform matrix, D is a diagonal matrix

containing the Fourier transformed dipole kernel coefficients and

b and χ are column vectors with the local field and magnetic

susceptibility values, respectively.

One might think that it would be straightforward to compute

the magnetic susceptibility by a simple deconvolution approach.

However, this is, unfortunately, not possible as this inverse problem

is not well posed because the dipole kernel D contains zeros on

a conical surface in frequency domain. A simple approach to

regularizing this problem is, for example, thresholding the kernel,

i.e., replacing values in D that are too small with the signed

threshold value, see Shmueli et al. (2009). Here, we use band

limiting in the frequency domain to limit the frequency samples to

include only the regions where the dipole kernel D has sufficiently

large values, and the inverse is well-defined. Our initial equation for

the susceptibility is

Fχ = D−1Fb, (5)

where the susceptibility distribution χ is the source of the local

magnetic field perturbations b. These are usually derived from

the measured phase through multi-echo phase combination, phase

unwrapping and background field removal, as described in Shmueli

(2020), and as will be specified in the Section 3. Here, we space-limit

(Sχ ) and band-limit (Sk) Equation 5 as

SkFSχχ = Skν, (6)

where ν = D−1Fb are our “input data” in the frequency domain.

It is worth noting that the mask is strictly binary and a diagonal

matrix in this formulation, which means SχSχ = Sχ . In QSM this

requirement is achieved through the background field removal step,

where all field contributions from susceptibility sources outside
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of a pre-defined mask are removed from the (total) measured

field perturbations (inside the mask). On the right-hand side of

Equation 6 Sk excludes the ill-posed regions close to the cone at

the magic angle. Therefore, we can relate our full discrete Fourier

transform to the limited transform using

Fχ = FSχχ = SkFSχχ + (I − Sk)FSχχ , (7)

where I is the identity matrix, which leads to

Fχ = Skν + (I − Sk)FSχχ . (8)

Taking the inverse Fourier transform FH of both sides gives

χ = FHSkν + FH
[

(I − Sk)FSχχ
]

. (9)

Left multiplying Equation 9 with the mask Sχ , and transferring

the second term to the left hand side gives

(I − SχF
H

[

(I − Sk)FSχ

]

)Sχχ = SχF
HSkν. (10)

It can be easily verified, as in den Bouter et al. (2021), that

by defining the space-limited and band-limited discrete Fourier

transform matrix A = SkFSχ , the above equation simplifies to the

normal equation

AHAχ = AHν. (11)

Which can then be solved in a least squares fashion, see, for

example, Strang (2019), so using, for example, a CGLS algorithm.

2.1. Comparison to compressed sensing
QSM reconstruction

In compressed sensing the optimization problem typically has

a cost function of the form

FCS(χ) = ‖Skν − SkFχ‖2 + λ ‖9χ‖1 , (12)

where 9 is an appropriate sparsifying (often wavelet) transform,

first described for MRI by Lustig et al. (2007).

As is well known, any solution that minimizes the least squares

function

FIS(χ) =
∥

∥Skν − SkFSχχ
∥

∥

2
(13)

satisfies the normal Equation 11 as well. We can therefore use

this form to compare the approaches. Here, we include the full

expression for the space-limited and band-limited discrete Fourier

transform matrix A(= SkFSχ ) to illustrate its similarity with the

compressed sensing framework. It should be noted that, though

masking is often applied in iterative QSM reconstructions, this is

the first time that the mask-based background field removal unique

to QSM is leveraged to generate conditions through which the

masking turns the problem into a well-posed integral equation.

To compare QSM reconstruction performance between the

compressed sensing and incomplete spectrum approaches, we

added the additional sparsity-promoting regularization term

λ‖9χ‖1 to our incomplete spectrum optimization procedure

(see Equation 12) in a “regularized incomplete spectrum”

reconstruction. This was implemented in the Julia programming

language using the “RegularizedLeastSquares” package, which

is closely related to the MRI-specific work by Knopp and

Grosser (2021). The sparsifying transform used in the “regularized

incomplete spectrum approach” was a Daubechies wavelet with

2 vanishing moments (db2) (Vonesch et al., 2007), which

is commonly used for this purpose (Majumdar and Ward,

2012).

3. Methods

3.1. Numerical phantom

To validate the incomplete spectrum QSM reconstruction

method, we used a numerical phantom. This means that there

was a known ground-truth susceptibility distribution so the QSM

reconstruction error could be computed. Rather than using a

reconstructed susceptibility map as a ground truth (which could

lead to an “inverse crime” (Marques et al., 2021), we used the

QSM reconstruction challenge 2.0 dataset from the QSMChallenge

2.0 Organization Committee et al. (2021) (see Figure 2), simulated

using a comprehensive model.

The input to this method was the Sim2 dataset’s local field

map with signal to noise ratio SNR1. As the unwrapped, local field

map was available, no additional pre-processing (i.e., background

field removal) was necessary for susceptibility calculation. The

brain mask used was the ground-truth mask provided with the

dataset.

3.2. In vivo MRI acquisition

Since the simulated phantom is a high-resolution, high SNR

data set, we also tested the performance of the incomplete spectrum

method using brain images acquired in vivo. The in vivo dataset

used is from Karsa et al. (2019), a gradient recalled echo acquisition

at 3 Tesla with 1 mm isotropic resolution in five healthy volunteers.

This was a 5 echo acquisition with echo times TE1 = 3ms, 5.4 ms

echo spacing, 20◦ flip angle, TR = 29 ms, and pixel bandwidth =

270 Hz. Before susceptibility calculation, these data were processed

according to the pipeline described in Karsa et al. (2019), described

briefly here: the total field map was calculated from the multi-

echo data using non-linear complex fitting (Liu et al., 2013). The

total field map was then unwrapped using Laplacian unwrapping

(Schweser et al., 2013), followed by background field removal with

projection onto dipole fields (PDF) (Liu et al., 2011). The brain

mask for background field removal was generated by combining a

mask from the FMRIB Software Library’s brain extraction tool (FSL

BET) (Smith, 2002) (applied to the last-echo magnitude image)

with amask obtained by thresholding the inverse noisemap derived

from the non-linear fitting (Liu et al., 2013) as proposed by Karsa

et al. (2020).
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FIGURE 1

Challenge dataset ground truth frequency spectrum (A), together with incomplete spectrum reconstructed k-space (C), using the incomplete

spectrum method with the (XSIM-optimal) band limit given in (B). All data are absolute (e.g., |ν|) and slices are longitudinal (sagittal) in the frequency

domain, and with the same grayscale (0 . . .100 [a.u.]). The band limit boundaries, although much less stark than in (A), are still visible in the

reconstructed spectrum, which may explain the doubling of streaking artifacts around the calcificaiton in incomplete spectrum QSM reconstructions

in Figures 7, 8. The corresponding image space sagittal slice of (C) can be found in Figure 3D.

3.3. Choice of supports

The simulated numerical phantom dataset was used to

investigate the effect of the choice of mask Sχ and band-limit Sk
on the incomplete spectrum QSM reconstruction.

To illustrate the effect of the band limit on incomplete spectrum

reconstruction, in Figure 1 we present a sagittal “slice” in k-space

of: the k-space data (ν) input into conventional QSM algorithms,

the band limit (Sk), and the k-space of the incomplete spectrum

QSM reconstruction (Fχrecon) corresponding to this band-limit.

The reconstructed spectrum shows that the single streak in the

input spectrum, which typically results in similar streaks in image

space, is essentially split into two streaks at the boundaries of

the discarded k-space, after being “filled-in” by the incomplete

spectrum approach.

3.3.1. Band-limit
As the purpose here was to choose a frequency domain support

to exclude the regions where the QSM inverse problem is ill-posed,

the frequency domain was divided into regions where the inverse

problem is well-posed and ill-posed following the work of Schweser

et al. (2012) and Wu et al. (2012). Fourier space was split into three

regions according to the values of the dipole kernel. The well-posed

region was defined as the kernel being larger than a threshold twell
or |D| > twell, and the ill-posed region was defined as |D| smaller

than a threshold till or |D| < till, where till ≤ twell. We chose to

limit the frequency domain to the well-posed regions, and do not

consider a transition region between the thresholds for simplicity,

therefore till = twell. We investigated the relationship between

QSM reconstruction quality and frequency domain support (in

terms of choice of twell) using the simulated dataset. The image-

space support was fixed to the challenge numerical phantom mask

described above. The threshold value twell was varied linearly from
1
3 down to 1

1000 in 100 steps. Note that we chose 1
3 as the maximum

threshold for the dipole kernel D because, although the absolute

value ofD has a maximum of 2
3 , using this as a maximum threshold

value would result in a mask of all zeros which would exclude all

the data from the inverse problem.

3.3.2. Mask
As previously mentioned, for this incomplete spectrum

approach to work, we require both an image space support (or

mask) as well as a frequency domain support (or band-limit). As

an image space support Sχ , it is straightforward to use the mask

that is conventionally used for background field removal in QSM

(Schweser et al., 2017). In the case of brain imaging, which is a

typical application of QSM, a brain mask can be readily calculated

by thresholding one of the magnitude images or applying more

sophisticated tools such as FSL BET (Smith, 2002) and noise-based

thresholding (Karsa et al., 2020).

We investigated the effect of dilating and eroding the given

binary mask by a few voxels to test the sensitivity of the incomplete

spectrum QSM reconstruction to the mask Sχ . In the numerical

phantom simulation, we have perfect knowledge of the tissue

boundaries and the support of our image-space susceptibility

distribution. However, in real life the edges of this mask may not

be perfectly determined. Therefore, using the numerical phantom,

we explored both erosion as well as dilation of this support.

The erosion and dilation were performed with a spherical kernel,

ranging in diameter from 1 to 8 voxels. This led to an effective

change in the support from −8 to +8 voxels. In this investigation

the “optimal” band-limit as determined for the original brain mask

(see below) was used. Note that in all cases, the input local field map

(b) was masked using the samemask (Sχ ) as used by the incomplete

spectrum algorithm otherwise the underlying assumption for this

approach (i.e., Sχχ = χ) would be violated, and this mask was also

used when computing the error metrics. We did not have to worry

about incorporating erroneous information into the reconstruction

as the local phase information is available throughout the domain,

since there are no background fields in the simulation.

In the above investigations of the choice of supports (Sχ and Sk)

with the numerical phantom, we calculated both the susceptibility

tuned XSIM metric from Milovic et al. (2019) used in the QSM
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TABLE 1 Reconstruction methods that were compared with the incomplete spectrum approach on the in vivo dataset and their parameters tuned for

optimal PSNR in the numerical phantom.

Method Abbreviation Parameters XSIM PSNR

Thresholded k-space division TKD Threshold = 2
3

0.88 39.4

Fast nonlinear susceptibility

inversion

FANSI λTV = 1 · 10−4 ,

λTV = 1 · 10−5

0.92,

0.94

45.8,

43.7

Nonlinear dipole inversion NDI Early stopping 0.90 40.2

Compressed sensing CS λℓ1 = 1 · 10−5 ,

9 : Daubechies 2

0.89 40.6

Incomplete spectrum IS twell = 0.25 0.88 39.9

Regularized IS IS reg twell = 0.25,

λℓ1 = 1 · 10−5 ,

9 : Daubechies 2

0.89 39.7

Note that the regularized incomplete spectrum approach used the same parameters as the compressed sensing (CS) reconstruction. The XSIM and optimal PSNR in the numerical phantom are

given for each reconstruction method. The bold values indicate the best performing algorithms for the respective metric.

FIGURE 2

Mid-plane slices of the ground truth magnetic susceptibility distribution of the QSM challenge dataset (QSM Challenge 2.0 Organization Committee

et al., 2021). ROIs used in the analysis are denoted overlaid on the midplane slices. The colormap of the susceptibility distribution is identical to that

of the other presented reconstructions, i.e., between –0.1 and 0.1 ppm.

challenge 2.0 (QSM Challenge 2.0 Organization Committee et al.,

2021), as well as the peak signal to noise ratio (PSNR) given by

Korhonen and You (2012). The XSIM metric is defined as

XSIM(x, y) =
∑

ROI

(

2µxµy + K1

) (

2σxy + K2

)

(

µ2
x + µ2

y + K1

) (

σ 2
x + σ 2

y + K2

) , (14)

where µi is the window mean, and σi is the window variance

(and covariance for σij). K2 and K1 are constants tuned to K1 =

0.01,K2 = 0.001 for susceptibility maps. To provide greater

sensitivity to structural and local variance errors than other global

metrics. We used this XSIM metric specifically because it has

been shown to be more resistant to “metric hacking”, i.e. tuning

hyperparameters to improve performance with respect to a specific

image quality metric, as shown in Milovic et al. (2019) and QSM

Challenge 2.0 Organization Committee et al. (2021).

3.4. QSM reconstruction comparison

The incomplete spectrum QSM reconstruction was applied in

vivo with the threshold value optimized on the QSM Challenge

dataset. In both datasets the novel incomplete spectrum method

(as well as a compressed sensing regularized version of it) were

compared to four different QSM reconstruction methods chosen

from different categories of susceptibility calculation algorithms:

• Thresholded k-space division (TKD) (Shmueli et al., 2009),

with point spread function correction for susceptibility

underestimation as described by Schweser et al. (2013), was

selected as a direct method.

• Non-linear total variation regularization (FANSI) (Milovic

et al., 2018) and non-linear dipole inversion (NDI) (Polak

et al., 2020) were selected as iterative methods with and

without explicit regularization, respectively.

• A generic regularized least squares based compressed sensing

reconstruction was used (Lustig et al., 2007).

In the numerical phantom the parameters

of these reconstruction methods were tuned

as follows, and the results can be found in

Table 1.

3.4.1. Parameter optimization for QSM
reconstructions

For TKD the theoretical optimum threshold of 2
3 was used.

NDI uses automatic stopping, which requires no tuning. The
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FIGURE 3

The e�ect of the band-limit Sk on the incomplete spectrum QSM reconstructed in the numerical phantom. On the left are the peak signal to noise

Ratio (PSNR) and XSIM metrics for various threshold values twell, computed on the QSM challenge 2.0 dataset 2, with noise level 1 (A, C). On the right

are the corresponding optimal reconstructions (with the threshold for optimal PSNR (top) and XSIM (bottom) in a central sagittal slice (B, D). The

orange arrow points at a streaking artifact which is successfully suppressed at the higher regularization of the PSNR optimal value.

FIGURE 4

Comparison between XSIM-optimal and PSNR-optimal reconstructed susceptibility values (using the incomplete spectrum approach) for deep gray

matter regions of interest in the challenge phantom. Red lines are ground truth susceptibility values, and vertical black lines signify 3 standard errors.

compressed sensing and FANSI reconstructions were tuned in

the numerical phantom using a parameter sweep to determine

the regularization weights for optimal PSNR. For the CS

reconstruction, the same band-limit (Sk) as for the incomplete

spectrum approach was used, and only the regularization weight

was tuned (using a parameter sweep) for optimal PSNR. This same
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FIGURE 5

E�ect of dilation and erosion of the brain mask or image support Sχ on the incomplete spectrum QSM reconstructed in the numerical phantom.

Input data were masked with the same mask Sχ as that used in the reconstruction. On the left-hand side, PSNR (A) and XSIM (B) values are plotted for

masks eroded and dilated by di�erent numbers of voxels. The right-hand side shows incomplete spectrum QSM reconstructions with a mask eroded

by 5 voxels (C) and a mask dilated by 5 voxels (D).

CS regularization weight was applied to regularize the incomplete

spectrum method for ease of comparison.

3.4.2. Region of interest comparison
The mean susceptibility in the globus pallidus, caudate,

putamen, red nucleus, thalamus, and substantia nigra were

compared across all six different reconstruction methods (i.e.

the incomplete spectrum approach, the regularized version, TKD,

NDI, nlTV and compressed sensing) with the tuned regularization

parameters in Table 1. Segmentations of these regions of interest

(ROIs) were available for the simulated dataset (see Figure 2), and

a segmentation performed using MRI cloud (Miller et al., 2014)

was used for each of the volunteer datasets (see Figure 9). ROI

mean susceptibility values were compared to the ground truth

susceptibility in each ROI and averaged literature values from Bilgic

et al. (2012) and Santin et al. (2017) for the numerical phantom and

healthy volunteers, respectively.

4. Results

4.1. Choice of supports

The results of the band limit analysis can be found in

Figures 3A, C with the sagittal slice of the PSNR-optimal and

XSIM-optimal incomplete spectrum QSM reconstructions shown

in Figures 3B, D for comparison. These show the effect on the

reconstruction of changing the threshold twell, which changes

the size of the well-posed k-space region. The PSNR-optimal

reconstruction shows slightly less pronounced streaking artifacts

than the XSIM-optimal reconstruction: See for example, the

orange arrow in Figures 3B, D. However, the PSNR-optimal

reconstruction is smoother and has much lower contrast than the

XSIM-optimal reconstruction (Figures 3B, C). This loss in contrast

is highlighted when comparing the two reconstructions in the six

brain regions of interest, as shown in Figure 4. Based on these

results, the XSIM-optimal threshold twell = 0.25 was used for the

reconstructions of the in-vivo datasets. The results of the space-

limit Sχ investigation, where the effect of erosion and dilation of

the mask are analyzed, are shown in Figure 5.

4.2. Parameter optimization for QSM
reconstructions

The PSNR-optimal regularization weight for FANSI was 1·10−4

but this gave over-regularized reconstructions (i.e. smoothed and

with loss of contrast) for the in-vivo dataset, and was therefore

reduced to the XSIM-optimal weight of 1 · 10−5 which gave

acceptable reconstructions with minimal streaking artifacts. Both
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FIGURE 6

Reconstructed susceptibility values of the simulated dataset for deep gray matter regions of interest. Red lines are ground truth susceptibility values,

and vertical black lines signify 3 standard errors. IS, Incomplete spectrum (twell = 0.25); ISreg, Regularized IS (Same parameters as IS & CS); CS,

Compressed sensing (9 : Daubechies 2, λℓ1 = 1 · 10−5); NDI, Nonlinear Dipole Inversion (w. automatic stopping); FANSI, Fast Nonlinear Susceptibility

Inversion (λTV = 1 · 10−5); TKD, Thresholded k-space division (λ = 2/3; w. PSF correction).

regularization weights are included in Table 1 for reference. The

regularization parameters giving optimal PSNR for each method

in the numerical phantom are all shown in Table 1. These

regularization parameters, tuned in the numerical phantom, were

used to reconstruct all the in-vivo volunteer data.

4.3. QSM reconstruction comparison

The XSIM and PSNR metrics for all reconstruction methods

on the challenge phantom data as well as their parameters can be

found in Table 1. These metrics show that the incomplete spectrum

approach is more accurate, with fewer streaking artifacts than the

direct TKD approach. However, the incomplete spectrum approach

performs slightly worse than the regularized iterative FANSI and CS

methods. The performance of the algorithms are slightly different

according to the XSIM and PSNR metrics. Adding regularization

to the IS method offers minor improvement to XSIM at the cost of

PSNR.

Figure 6 shows a comparison of ROI mean susceptibility values

in the simulated phantom for the different QSM reconstruction

methods. For reference, ground truth ROI susceptibility values are

given by the horizontal red lines.
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FIGURE 7

A Comparison of Incomplete Spectrum QSM with Conventional QSM Reconstruction Methods in a representative healthy volunteer. Coronal (A–F)

and sagittal (G–L) and slices are shown to highlight streaking artifacts. The incomplete spectrum reconstruction (A, G) used the XSIM-optimal

regularization weight determined from the challenge dataset, (twell = 0.25). PSNR/XSIM optimal regularization parameters for the other QSM

methods are given in Table 1. The reconstructions are ordered as incomplete spectrum (A, G), regularized incomplete spectrum (B, H), compressed

sensing (C, I) (top row). Followed by TKD (D, J), FANSI (E, K), and NDI (F, L). The orange arrow highlights a streaking artifact that is reduced by the

added regularization in the regularized incomplete spectrum reconstruction (B).

The XSIM-optimal threshold of twell = 0.25 was used in

the in vivo reconstructions, as it provided higher contrast and

less smooth susceptibility maps than the PSNR optimal threshold.

All six QSM reconstruction methods are visually compared in

Figure 7, where we have displayed sagittal and coronal slices to

emphasize QSM contrast between brain structures typically of

interest as well as the level of streaking artifacts. Figure 8 shows

difference maps between our proposed incomplete spectrum QSM

reconstruction method and the conventional QSM reconstruction

methods investigated. The difference maps show that most of the
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FIGURE 8

Di�erences between incomplete spectrum and conventional QSM reconstructions in the same representative healthy volunteer as shown in

Figure 7. The reconstructions are ordered as incomplete spectrum (A, G), regularized incomplete spectrum (B, H), compressed sensing (C, I) (top

row). Followed by TKD (D, J), FANSI (E, K), and NDI (F, L).

differences between the conventional QSM reconstructions and the

incomplete spectrum reconstruction seem to be residual streaking

susceptibility differences and not anatomical artifacts although

some deep-brain gray-matter regions appear brighter in the IS

QSM, particularly compared with NDI, highlighted by orange

arrows in Figures 8F, L.

In Figure 9 the ROI segmentation of a representative healthy

volunteer is shown. And Figure 10 shows a comparison of ROI

mean susceptibility values, averaged over all five volunteers,

for the different QSM reconstruction methods. For reference,

literature ROImean susceptibility values are given by the horizontal

red lines.
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FIGURE 9

Mid-plane slices of the incomplete spectrum reconstruction of the same representative healthy volunteer presented in Figures 7, 8. ROIs segmented

using MRI Cloud and used in the analysis are overlaid. The colormap of the susceptibility distribution is identical to that of the other presented

reconstructions, i.e., between –0.1 and 0.1 ppm.

5. Discussion and conclusions

Here, we demonstrated a new incomplete spectrum QSM

reconstruction approach based on excluding “ill-posed” regions

from the frequency domain. Without additional regularization,

incomplete spectrum QSM reconstruction showed lower levels of

streaking artifacts compared to direct QSM reconstruction and

similar accuracy to state-of-the art QSM reconstruction algorithms.

5.1. Numerical phantom

Investigations in the numerical phantom from the QSM

challenge showed that there is a frequency-space band limit Sk that

is optimal for this dataset Figure 3, which is relatively robust (a

50% reduction of the threshold resulted in a 7.1 % decrease in the

PSNR metric, and decreased the XSIMmetric by 2.8%). This XSIM

optimal threshold value of twell = 0.25 seems high, as it fills in

almost two thirds of k-space. The results, however, do not indicate

over-regularization (through the loss of anatomical contrast or

smoothing), and the incomplete spectrum method provided high-

quality reconstructions in vivowithout requiring additional tuning,

further supporting its robustness.

Masking, although non-trivial (Smith, 2002), is already an

integral part of most QSM pipelines i.e., for background field

removal (Schweser et al., 2017). This means that finding an image

support Sχ suitable for this incomplete spectrum approach is

straightforward. Investigating the effect of eroding and dilating

the mask in the numerical phantom showed that using a mask

that was slightly larger than the brain region of interest does

not negatively affect the QSM reconstruction (actually increasing

PSNR in Figure 5). It should be noted, however, that a larger mask

slows down the convergence of the method. The reconstruction

converged more than twice as fast for 8 voxels of erosion with

respect to the original mask: 7.3 seconds compared to 16.2 seconds

with no erosion. The decrease in the XSIM metric compared to the

PSNR metric as the mask is dilated highlights XSIM’s increased

sensitivity to local variance error (in this case outside of the

original brain mask). Visually, neither the eroded nor the dilated

reconstructions feature artifacts related to the choice of mask (see

Figures 5C, D), which demonstrates the IS method to be relatively

robust to masking (provided the background field removal was

successful for the given mask).

Comparing the reconstructions in the numerical phantom

(see Table 1 and Figure 6) we find that the incomplete spectrum

performed slightly better than the direct TKD method but

worse than the conventional state-of-the-art methods. Since the

compressed sensing approach used such a small ℓ1 penalty term,

adding the same regularization term to the incomplete spectrum

reconstruction did not improve the metrics, although there is

a visual difference between the regularized and unregularized

IS reconstructions in vivo (see Figures 7A, B, 8). The ROI

based analysis (Figure 6) shows a slight underestimation by

the incomplete spectrum approach of the mean susceptibility

in the globus pallidus (GP), caudate, red nucleus, thalamus

and substantia nigra, compared to conventional methods except

for the compressed sensing reconstruction which consistently

underestimated the mean susceptibility in these ROIs. Overall,

NDI performed the best on the challenge phantom as it provides

ROI mean susceptibility values closest to the ground truth values

except in the substantia nigra (Figure 4). This is not reflected in the

XSIM and PSNR metrics (Table 1) nor in the in-vivo dataset ROIs

(Figure 6), where NDI generally gave the lowest and least accurate

reconstructed mean susceptibilities of the algorithms compared.

The “doubling” of the streaking artifact as observed, for

example, around the calcification in the top of the brain in

the simulated dataset, seems to be a side-effect of the way the

incomplete spectrum method reconstructs the missing frequency

domain information as illustrated in Figure 1. It is not as apparent

in vivo, most likely because this dataset has a lower overall SNR.

Since this IS method fills in k-space information between cones at

two angles centered on the origin it replaces more high frequency

than low frequency information, leading to aminor denoizing effect

(observable as smoothing, specifically when comparing the in vivo

TKD and incomplete spectrum reconstructions).

Since the incomplete spectrummethod presented here does not

rescale regions of the frequency domain (like TKD), it does not

directly change the point spread function of the operator, and no

rescaling of the output susceptibility map should be necessary [as

was proposed for TKD by Schweser et al. (2013)]. This is supported

by the incomplete spectrum results on the simulated dataset where
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FIGURE 10

Reconstructed susceptibility values for deep gray matter regions of interest in the 5 volunteer datasets. Red lines are averaged literature values from

Bilgic et al. (2012) and Santin et al. (2017), and vertical black lines signify 3 standard errors. IS, Incomplete spectrum (twell = 0.25); ISreg, Regularized IS

(Same parameters as IS & CS); CS, Compressed sensing (9 : Daubechies 2, λℓ1 = 1 · 10−5); NDI, Nonlinear Dipole Inversion (w. automatic stopping);

FANSI, Fast Nonlinear Susceptibility Inversion (λTV = 1 · 10−5); TKD, Thresholded k-space division (λ = 2/3, w. PSF correction).

no scaling in contrast was observed for higher levels of (intrinsic)

regularization (although a slight loss in contrast due to smoothing

was observed, as in the comparison between XSIM-optimal and

PSNR-optimal reconstructions shown in Figures 3, 4).

5.2. In vivo reconstructions

Figure 10 shows that, in vivo, the incomplete spectrum

approach gave ROI mean susceptibility values similar to those

from commonly used, state-of-the-art algorithms i.e., NDI and

nlTV. This suggests that the incomplete spectrum method did not

systematically overestimate or underestimate the susceptibilities in

these ROIs. Inmost of the ROIs, the incomplete spectrum approach

gave susceptibility values between those from nlTV and TKD. The

compressed sensing reconstruction gave the lowest susceptibility

values in all ROIs. The literature values were larger than the values

reconstructed by all algorithms in the caudate, putamen, substantia

nigra (and globus pallidus) perhaps because the healthy volunteers

were relatively young compared to the subjects included in the

studies cited here andmay, therefore, have had a lower iron content

and a lower susceptibility in these deep-brain gray matter ROIs
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than the subjects in the cited studies (Li et al., 2014, 2023; Zhang

et al., 2018).

With additional ℓ1 wavelet regularization, the incomplete

spectrum QSM reconstruction more closely resembles the

compressed sensing QSM (Wu et al., 2012) (Figures 7A–C, G–I,

8B, C, H, I). At high levels of regularization the regularized

incomplete spectrum and compressed sensing reconstructions

become identical, as expected from their similar cost functions

(see Equations 12, 13), and illustrated in Supplementary Figure S1.

Adding the regularization to the incomplete spectrum approach

leads to less pronounced streaking (as illustrated by the orange

arrow, Figures 7A, B). However, regularization adds another

parameter to the method which then requires tuning, as opposed

to the original implementation which is less sensitive to twell
initially tuned on the numerical phantom. Further, it has been

shown that band-limiting based on thresholding the dipole

kernel as performed in this incomplete spectrum approach leads

to correlated artifacts (Wu et al., 2012) thereby violating the

assumptions of compressed sensing (i.e. uncorrelated artifacts).

Therefore, additional regularization using this compressed sensing

term is disadvantageous compared to the original unregularized

incomplete spectrum approach.

The biggest limitation of the incomplete spectrum QSM

reconstruction approach lies in the input data ν = D−1Fb, which

is the directly deconvolved phase information. Streaking artifacts

are introduced by multiplication with the inverse dipole kernel

D−1 and the incomplete spectrum method then “corrects” for

these. Future work will involve applying the incomplete spectrum

method to reconstructed susceptibility maps, to provide additional

“correction” of the spectrum where applicable. This could lead to

frequency domain correction schemes that would work in tandem

with conventional iterative methods to improve the robustness

to noise, or artifacts that can be identified in specific regions of

frequency domain (such as streaking). This technique provides

a new tool for filling in missing regions of frequency space, or

correcting “ill-posed” or noisy frequency-space regions with a

suitable band-limit in QSMmaps by using an image space mask.
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