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Abstract: Retinal degenerative diseases such as age-related macular degeneration (AMD) represent
a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for
maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal
degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular
AMD, they are only effective at an early stage and cannot prevent eventual progression or allow
recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment
strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the
best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy
medicinal products (ATMPs) are a group of innovative and complex biological products including
cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products.
Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing
field of research because it offers the potential to replace damaged retinal cells for long-term treatment
of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal
disease may be hampered by the body’s response and problems associated with inflammation in the
eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based
therapies for treatment of AMD along with their applications. We also aim to provide a brief overview
of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target
tissue and describe biomechanical properties required for optimal delivery. We describe different
fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence
(AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold
fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities
for developing innovative platforms to deliver therapeutic agents to the target tissues.

Keywords: age-macular degeneration disease; artificial intelligence; cell-therapy; drug delivery;
gene-therapy; 3D printing; retinal degeneration disease; scaffold

1. Introduction

Age-related macular degeneration (AMD) is a progressive, multifactorial neurodegen-
erative disease of the macula and is a leading cause of irreversible blindness, affecting 1 in
8 people 60 years of age or older in the Western world [1]. AMD affects over 200 million
individuals worldwide and is expected to affect close to 300 million people by 2040, which
presents a significant public health concern and a substantial economic burden [1]. As
global life expectancy increases, the socioeconomic burden of AMD is expected to become
even greater in the future [2]. AMD is classified into three clinical stages of early, intermedi-
ate and late (or advanced) stage. The early and intermediate stages of the AMD disease are
usually asymptomatic and characterised by the accumulation of insoluble extracellular ag-
gregates called drusen (yellowish subretinal deposits made of proteins, lipids, and cellular
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debris), and the presence of abnormal pigments [3]. Late stage AMD is an advanced form
of the disease that is characterised by geographic atrophy (GA) and neovascularisation [4].

AMD is further classified into two groups based on the absence or presence of neovas-
cularisation: non-exudative or non-neovascular (‘dry’) AMD and exudative or neovascular
(‘wet’) AMD [5]. Wet AMD is an advanced form of dry AMD which is characterised by the
formation of fragile new blood vessels from the choroid into the retina. Several therapeutic
options have been explored for the treatment of both wet and dry AMD, but only a few of
them have entered clinical trials. These therapeutic approaches include antioxidant therapy,
drug treatment targeting multiple pathways (angiogenesis, complement and inflamma-
tory pathways), advanced therapy medicine (such as cell and gene therapy), as well as
retinal implants [6].

The aim of this article is to provide an up-to-date review of recent progresses in
development of advanced therapy medicinal products (ATMPs) for the treatment of AMD,
including both scaffold and non-scaffold-based approaches. The properties of a scaffold
such as porosity, permeability, biocompatibility, and fabrication methods have a major
influence on the control of cell migration and growth [7]. Therefore, we aim to provide an
overview of various methods and biomaterials that have been used in scaffold fabrication.
Figure 1 shows an overview of scaffold fabrication and the delivery methods of cell-based
and gene-based approaches for retinal degenerative disease. We will first describe the
pathogenesis of AMD and available treatment options. We will then discuss different
strategies for fabricating 3D scaffold-based cell therapies. We believe that 3D bioprinting
offers superior benefits over other fabrication methods, and it is possible to apply artificial
intelligence (AI) in scaffold optimization, which could eventually revolutionise retinal
tissue engineering.
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Figure 1. Overview of scaffold fabrication and the delivery methods of cells-based and gene-based
approaches for the retinal degeneration disease. (A) Subretinal implantations, performed in the
operating room, allows for direct delivery of RPE sheet as a cell suspension into the subretinal space,
(B) Suprachoroidal injection is a nonsurgical method to deliver therapeutic suspension into a virtual
space between the sclera and choroid, (C) Subretinal injection delivers RPE cell suspension under
the sensory retina using a micro-needle and (D) Intravitreal injection method is applied in an office
setting to deliver vectors to the vitreous cavity.

2. Pathogenesis of AMD and Treatment Options

Several factors are believed to play a role in the pathogenesis of dry AMD including
genetics, oxidative stress, inflammatory [8], environmental [9] and ischaemic factors [10]. The
formation of drusen is, however, considered as the hallmark for the earlier stages of dry
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AMD [11]. If drusen become enlarged and undergo confluence, it may transform into drusenoid
which can cause detachment of the retinal pigment epithelium (RPE) (Figure 2) [12,13].
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Figure 2. Diagram showing the structure of the retina, the RPE and choroid in the dry and wet forms
of AMD. Late AMD is characterised by drusen formation, neovascularisation, disruption of Bruch’s
membrane as well as RPE cell damage and death [14].

RPE is a monolayer of non-regenerative polygonal cells functioning as a barrier between
the underlying Bruch’s membrane/choriocapillaris complex and the photoreceptors [15].
The RPE plays a crucial role in maintaining the integrity of photoreceptors (PR) and its
dysfunction is implicated in a broad spectrum of degenerative retinal disorders such
as AMD. The RPE cells keep retinal ganglion cells alive by facilitating the exchange of
nutrients and water [16]. Photoreceptor cell death occurs as a result of separation of the
photoreceptor cells from the underlying RPE cells and choroidal vessels [17] leading to
irreversible blindness, given that the retina does not have endogenous stem cells to replace
these damaged cells [18].

Drusen contains several proinflammatory factors such as complement components
and tumour necrosis factors (TNF-α) [19]. Activation of complement pathway and the
membrane attack complex (MAC) is suggested to play a critical role in the development
of AMD and GA [20]. Elevated level of MAC in the outer layer of Bruch’s membrane has
been identified as another hallmark of early stage AMD [21]. In addition, oxidative damage
arising as a result of smoking, UV light exposure, oxidative stress, and mitochondrial
damage to the retina, have all been suggested as key players in driving the progression
of AMD [22]. Production of reactive oxygen species (ROS) and free radicals such as
superoxide, hydrogen peroxide and hydroxyl radicals in the RPE lead to chronic oxidative
stress and hence damage to the retina, however, the mechanisms have not been fully
understood yet [23].
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Accumulation of ROS results in overproduction of lipofuscin and β-amyloid [24].
A vicious circle is initiated where overexpression of inflammatory factors lead to increased
production of reactive oxygen intermediates which reduce the bioavailability of antiox-
idants that are considered as a therapeutic option [25]. Anti-inflammatory agents such
as immunosuppressants (e.g., corticosteroids or methotrexate), anti-TNF-α biologics and
nonsteroidal anti-inflammatory drugs (NSAIDs) have also been considered as therapy
options to inhibit progression of dry-AMD [26].

Furthermore, clinical studies have demonstrated that dietary antioxidants including
zinc, carotenoids, flavonoids, and resveratrol, may serve as potential therapeutic interven-
tions to prevent damage induced by ROS or even reverse vision loss [27]. As described in
the age-related eye disease study (AREDS), a dietary intake with high levels of antioxidant
vitamins and minerals, has the potential to decrease the risk of progression to advanced
AMD in certain patients [28]. Results from several observational studies in AREDS sug-
gest that increased dietary intake of omega-3 fatty acids and/or lutein and zeaxanthin is
associated with an increase in macular pigment optical density [29].

Experimental evidence on different ω3 Polyunsaturated fatty acids (PUFAs) has docu-
mented the beneficial effects of docosahexaenoic acid (DHA) in modulating antioxidant
gene expression in RPE cells under high glucose-like conditions [30]. In another study,
DHA induced a potent antioxidant response by reducing lipases and β-oxidation enzymes
and activating the Nrf2/Nqo1 signalling cascade, which is involved in the formation of
reductive coenzyme NADH [31]. However, the AREDS2 randomized clinical trial sug-
gested that adding DHA to the ARDES formula did not significantly reduce the progression
of AMD [32,33].

Idebenone (IDB) has anti-apoptotic and cytoprotective effects on RPE cells under
oxidative stress conditions, as confirmed by in vitro studies. These studies suggest that
pre-treatment with IDB mediates the overexpression of Nrf-2 by increasing the level of Bcl-
2 and decreasing the level of mitochondrial ROS levels, thus protecting against oxidative
damage [34]. OT-551 is another novel molecule with antioxidant properties that protects
against light-induced degeneration in RPE cells by downregulating the overexpression of
the protein complex nuclear factor (NF)-kappa B [35].

The thickness of the Bruch’s membrane and the associated hypoxic conditions lead to
overexpression of VEGF, which can give rise to angiogenesis and neovascularisation [34].
Currently, a variety of intravitreal anti-VEGF biologics, including monoclonal antibod-
ies, antibody fragments, and bispecific antibodies have been used in the clinic for early
stages of wet and/or neovascular AMD (nAMD) [36]. The approved anti-VEGF drugs
include ranibizumab (Fab fragment, Lucentis®), aflibercept (Fc-fusion protein, Eylea®) and
brolucizumab (scFV fragment, Beovu®) and faricimab (bispecific antibody consists of Fab
fragment and modified Fc region, VabysmoTM). Bevacizumab, anti-VEGF full antibody,
has also been used off-label to treat wet-AMD [37]. Although antibody-based medicines
targeting VEGF, have revolutionised the treatment of neovascular (or ‘wet) AMD, anti-
VEGF therapy is still far from perfect due to pharmacokinetic and compliance issues [38].
Currently, there is no effective treatment available to prevent or treat non-exudative (or
‘dry’) AMD [39].

To summarise, several therapeutic approaches are being investigated focusing on:
(1) disease prevention, including antioxidant and visual cycle modulators, (2) halting dis-
ease progression, including drugs with anti-inflammatory, oxidative stress, mitochondrial
enhancer, β-amyloid inhibitor and neuroprotective properties, and/or (3) vision restoration,
including cell and gene therapy. While there are extensive reviews describing therapeutic
options to address (1) and (2) in detail, which are listed in Table 1, we focus on vision
restoration and the use of advanced therapy medicine in this review.
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Table 1. List of potential treatment options in clinical trials for dry-AMD, focusing on disease
prevention and halting disease progression.

Disease
Prevention

Product Category Product Name Study Phase Mechanism of Action Method of Delivery

Antioxidant

AREDS
[28] Phase III vitamin supplement Oral

OT-551
[40,41] Phase II vitamin supplement Eye drop

Visual cycle
modulators

(Prevent drusen
formation)

ACU-4429
[42] Phase II/III

Inhibits the formation of 11-cis-retinal
to slow the rate of retinoid

metabolism and A2E generation
Oral

Fenretinide [43] Phase II
Synthetic retinoid (vitamin A); reduce

accumulation of lipofuscin through
binding to its carrier protein

Oral

C20-D3-vitamin
A (ALK-001)

[44]
Phase III

A modified form of Vitamin A to
decrease toxic by-product formation
through reducing A2E biosynthesis

Oral

Halting
Disease

Progression

Anti-inflammatory
drugs

(anti-complement
pathways)

Eculizumab
[45] Phase III

A monoclonal antibody to inhibit the
complement protein C5, preventing

MAC formation
IV

Lampalizumab
[46] Phase III A monoclonal antibody to inhibit

complement factor D Intravitreal

Avacincaptad
pegol (Zimura)

[47]
Phase II/III Anti-complement factor 5, preventing

MAC formation Intravitreal

Pegcetacoplan
(APL-2)

[48]
Phase II

Complement C3 inhibitor and
prevents downstream activation

of C3b
Intravitreal

LFG316
[49] Phase II A monoclonal antibody to inhibit the

complement protein C5 Intravitreal

Oxidative stress Risuteganib
[50] Phase II

An integrin inhibitor of
αVβ3/αVβ5 and α5β1 to target
multiple oxidative stress factors

Intravitreal

Mitochondrial
enhancer

Elamipretide
[51] Phase III

A small mitochondrially targeted
tetrapeptide to reduce the production

of toxic ROS and stabilize
cardiolipin levels

Subcutaneous

β-amyloid inhibitors

GSK933776
[52] Phase II An anti-amyloid

βmonoclonal antibody IV

RN6G
[53] Phase II

A humanized antibody to inhibit
accumulation of amyloid β-40

and β-42
IV

Neuroprotection

Ciliary nerve
trophic factor

[54]
Phase II

Protects rod photoreceptors and
retinal cones by improving

morphology of photoreceptor
mitochondria and

reduingoxygen consumption

Intravitreal

Brimonidine
tartrate

[55]
Phase II An alpha2-adrenergic receptor agonist Intravitreal

3. Advanced Therapy Medicines for Treatment of AMD

Although various pharmacological treatments are available for the treatment of AMD,
the ideal treatment still does not exist. Advanced therapy medicinal products (ATMPs) are a
group of complex and innovative biological products made for human use, consisting of cell
therapy medicinal products (CTMPs), gene therapy medicinal products (GTMPs) and tissue
engineered products (TEPs) [56]. The eye represents an ideal target for the application of
ATMPs for several reasons. Firstly, it has relatively small dimensions, meaning that a small
quantity of ATMP may be sufficient for effective treatment. Secondly, its compartmentalized
anatomical structure can limit the distribution of therapeutic agents to non-target tissues.
Thirdly, different administration methods to deliver ATMPs and examination of therapeutic
outcomes is possible. Lastly, eye’s immunologically privileged status limits the movement
of immune cells and molecules from the blood into the eye and aids in the development of
ATMPS because it allows for the introduction of foreign substances (i.e., cells and gene) into
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the eye without triggering an immune response [56]. The field of ATMP development for
ocular diseases is currently at the forefront of innovation as it offers the potential to identify
novel therapeutic approaches for the treatment of eye conditions which were previously
considered to be untreatable. Table 2 contains a summary of the cell- and gene-based
approaches currently undergoing clinical trials for treatment of AMD.

Cell therapy medicinal products are being developed to treat AMD by exploiting the
immune-privileged environment of the subretinal space. Two mechanisms have been sug-
gested, including replacing or regenerating the damaged RPE cells and introducing cells that
can exert a supportive paracrine effect on photoreceptor function and survival [57,58]. Current
research is focused on determining optimal transplantation targets (RPE, photoreceptors,
choroidal endothelial cells), time and methods of administartion. Induced pluripotent
stem cells (iPSCs), human embryonic stem cells (hESCs) and human umbilical cord (hUC)-
derived cells are being used as cell sources [59]. Intravitreal injection of cell-based therapies
has been studied, but the results have been inconclusive [60]. Sub-retinal injection of
cell suspensions or cells cultured into a monolayer in vitro, has also been attempted as
a method for delivering cells to the back of the eye. RPE cells injected in the form of a
suspension have several drawbacks, such as tendency of RPE towards de-differentiation,
rosette formation and efflux of cells into the vitreous cavity, problems that are not present
in scaffold-based implants [59].

Transplantation of healthy RPE cells seeded in carefully crafted biomimetic scaffolds
can better mimic morphology of native tissues and aid in the restoration of visual func-
tion [61]. The ideal scaffold will have to be non-immunogenic, mechanically robust but
also sufficiently thin to allow exchange of nutrients and metabolites between the retina and
choriocapillaris [61]. A scaffold-based approach can also enable cells to maintain a basal
and apical polarisation via tight junctions before they are implanted [62]. Transplantations
using various types of scaffolds have demonstrated enhanced cell survival and improved
organisation of RPE cell populations [58]. A wide range of biomaterials have been used
to engineer scaffolds for retinal tissue engineering. Although a scaffold-based approach
may ensure better cellular performance in terms of physiology and cell survival (when
compared to cell suspensions), some limitations remain. Delivery of RPE-scaffold materials
into the subretinal space will necessitate the use of carefully designed instruments to min-
imise trauma [63]. In addition, formation of scars by microglia on various scaffolds has also
been documented as a result of change in RPE cell’s phenotype and behaviour through the
SMAD3 pathway [64]. Furthermore, several scaffolds have not been evaluated in vivo, and
managing batch-to-batch variability and biomechanical properties can be challenging [61].
One significant challenge in retinal tissue engineering is establishing appropriate neural
connections between the RPE implant and the native cellular environment. Recent develop-
ments in biomaterials science and stem cell research, as well as feedback from clinical trials,
can assist in tackling the problems involved in creating clinical-grade CTMPs for AMD.

A number of clinical trials are currently underway to evaluate the effectiveness of
cell-based therapy for the treatment of AMD. One such therapy is OpRegen®, in Phase1/2a
for patients with progressive dry-AMD, which composed of RPE cells derived from human
embryonic stem cells. The therapy is administered as a cell suspension in a single surgery
to the subretinal space [65]. The primary goals of this study are to assess the proportion
of patients in whom OpRegen® can be delivered to the subretinal region, and to evaluate
the safety of the procedure [65]. Another trial sponsored by the National Eye Institute,
is investigating an autologous induced pluripotent stem cell (iPSC) therapy for the treat-
ment of dry AMD. This approach involves generating iPSCs from somatic cells extracted
from a patient with geographic atrophy, differentiating the iPSCs into RPE grown on a
poly lactic-co-glycolic acid (PLGA) scaffold in vitro, and transplanting the RPE/scaffold
construct into a small region in the subretinal space of the same patient, with the goal of
rescuing the overlying neurosensory retina from further degeneration [66]. However, the
results of these trials are yet to be published based on long-term assessments. Cell-based
therapy has shown promise as an alternative treatment for preventing the progression of
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macular degeneration, but further trials are needed to determine their safety and efficacy.
The use of hESCs for such therapies carries the risk of uncontrolled replication and teratoma
formation [67]. Additionally, immunosuppressants are required to prevent implant
rejection [68]. Human umbilical cord-derived cells (hUC) have limited differentiation capac-
ity, while induced pluripotent stem cells (iPSCs) pose logistical challenges [38]. Surgical im-
plantation procedures also carry an additional element of risk and there are safety concerns
that need to be addressed. Assessing the effectiveness of transplants in cell therapy trials is a
major challenge [67].

Gene therapy medicinal products (GTMPs) have also attracted the attention of re-
searchers in the field of ocular therapeutics. Gene therapy involves introducing healthy
genes to replace non-functioning or deficient proteins in patients’ cells using biological
gene delivery vehicles or “vectors”. The therapeutic genes can be injected underneath the
retina or directly into the vitreous body [69]. Gene-based therapy has the potential to offer
sustained delivery of therapeutic agents in a single treatment [69]. For gene therapy to be
effective, the vector must not cause an immune response or toxicity and must be able to
sustain transgene expression [70]. Concerns about potential immune response to the vector
used, are a significant issue in the development of GTMPs as it could negatively impact
native tissues and lead to poor therapeutic outcomes. A variety of viral and non-viral
vectors have been used in gene therapy; recombinant viral vectors remain the preferred
delivery vehicledue to their stability and therapeutic efficacy [71]. However, the use of
lentivirus-mediated gene therapy is limited due to the risk of insertional mutagenesis and
poor transduction of retinal cells [72]. Recombinant adeno-associated viral vectors (AAVs)
are widely recognised as versatile vectors for gene-based therapy, especially for retinal gene
supplementation. They have a prolonged expression profile and high efficiency in transduc-
tion of multiple cell types [57], with low immunogenicity and vector-related toxicity [57].
Unlike lentiviral vectors, AAVs are predominantly non-integrating [73] and their small,
single-stranded DNA genome of approximately 4.7 kb and capsid organisation greatly facil-
itate genetic modification, thereby enabling customisation of their properties [70]. AAVs are
also available in multiple serotypes and their genome can persist as an episomal concatemer
in transduced cells, resulting in long-lasting expression of the transgene in non-dividing
retinal cells [57]. Early-phase gene therapy clinical trials for AMD using AAVs have shown
promising results, and more clinical trials are expected in the near future.

A biotechnology company called SparingVision is currently developing SPVN06, an
AAV-based gene therapy product that could potentially counteract the degeneration of cone
photoreceptors in dry age-related AMD by restoring RdCVF, a neurotrophic factor secreted
by photoreceptor cells in the retina, and by promoting RdCVFL, a potent antioxidant which
protects retinal cone cells against damage caused by oxidative stress [74]. SparingVision
has recently obtained FDA clearance for its IND application for SPVN06 and has also
submitted a clinical authorisation application to the French regulator (ANSM). Several
other gene therapies are also currently undergoing clinical trials. Phase 1 of a clinical trial
for a gene therapy called HMR59, sponsored by Janssen Research & Development LLC,
was recently completed for the treatment of both wet and dry AMD. This gene therapy
can permanently alter retinal cells to upregulate expression of a soluble form of CD59.
The soluble recombinant version of CD59 is capable of protecting retinal cells from the
destructive effects of membrane attacking complex (MAC) [75]. Another example of an
ongoing gene therapy trial for AMD is GT005, which is currently being sponsored by
Gyroscope Therapeutics. Similar to HMR59, this therapy also targets MACs, however
it relies on upregulation of complement factor I (CFI) protein to stabilise an overactive
complement system [76].

Whilst gene therapy represents an ideal option for treating a debilitating condition like
AMD, a number of challenges still remain in identifying therapeutic targets and designing
efficient gene delivery vectors. The route of vector administration is also a major determi-
nant of the efficacy of gene therapies [70]. Three principal modes of delivery are routinely
used, namely intravitreal, subretinal and suprachoroidal. Although the overwhelming
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majority of research groups utilise AAV vectors, a number of concerns have been raised
over their ability to successfully transduce cells after intravitreal injection [77]. Although
intravitreal injection is routinely used in clinical practice to deliver anti-angiogenic agents
to treat neovascularisation associated with wet AMD, the majority of currently available
AAVs have poor rates of penetration into the outer retina when administered intravitre-
ally [72]. Subretinal delivery may be more effective for diseases affecting the RPE, however,
it carries additional risks such as cataract formation, retinal damage and potentially vision
loss [75]. Subretinal injection can separate the photoreceptor layer from the supporting
RPE layer, leading to impaired function and reduced rate of survival even in healthy
retinas [76]. Furthermore, overall effectiveness may be constrained by the fact that sub-
retinally injected AAV vectors only transduce a low proportion of outer retinal layer cells
that are closely in contact with the subretinal bleb [76]. It must also be taken into account
that the current capacity of AAV vectors is limited to 4.7 kb, unless a dual/triple vector is
employed [77]. Suprachoroidal delivery has also been investigated; in this method the thera-
peutic agent is injected into the suprachoroidal space between the choroid and the sclera [72].
This approach holds great promise for less invasive delivery to retina, however there are
concerns about undesirable immune responses and penetration through multiple layers
of tissue [72].

Several early-phase clinical trials have shown promising results, however, translating
gene and cell therapies from the laboratory to the clinic remains a significant challenge.
While gene therapies could potentially have a substantial impact on the treatment of AMD,
their long-term effectiveness has been hindered by the body’s response and issues related to
ocular inflammation which could lead to vision loss. Currently, AAV-based gene therapies
are limited to targeting long-lived cells [73]. Moreover, evaluating AAV vector performance
using in vitro models is not ideal, and results obtained from small animal models may
not be reproducible in human trials [78]. Bioprocessing and economical production of
gene and cell therapies with adequate critical quality attributes also pose major challenges
to getting such products to patients and realising the full potential of advanced therapy
medicinal products.

Table 2. List of ATMPs currently undergoing R&D and clinical trials for treatment of AMD. Cell-
based therapy includes both scaffold-based and scaffold-free approaches. While subretinal route is
the main route of administration for both cell and gene therapy, other delivery methods have also
been investigated.

Methods Product Name Study Phase Therapeutic Agent (s) Method of Delivery

Scaffold-free
OpRegen [65] Phase IIa

Human embryonic stem
cell (hESC)-derived RPE

cells

Subretinal administration as a cell suspension
either in ophthalmic Balanced Salt Solution Plus
(BSS Plus) or in CryoStor® 5 (Thaw-and-Inject,

TAI)

RPESC-RPE-4W
[79] Phase I/IIa

Allogeneic RPE stem
cell (RPESC)-derived

RPE cells

Subretinal administration; RPESC-RPE cell
obtained after 4 weeks of differentiation
(RPESC-RPE-4W). The RPESC-RPE-4W

progenitor stage cell has shown increased
engraftment and vision rescue compared to more

mature RPE cell products

AlloRx [80] Phase I

Cultured allogeneic
adult umbilical cord

derived mesenchymal
stem cells

Intravenous and sub-tenon administration; It has
the potential to reduce inflammation through

activation of anti-inflammatory biochemical and
cellular pathways

Scaffold-based

iPSC-derived
RPE/PLGA

transplantation
[66]

Phase I/IIa iPSC-derived RPE

Subretinal administration; iPSCs are
differentiated into RPE, which is grown as a

monolayer on a thin poly lactic-co-glycolic acid
(PLGA) scaffold

CPCB-RPE1 [81] Phase I/II
Human embryonic stem
cell (hESC)-derived RPE

cells

Subretinal administration; Implant is designed to
replace the RPE and Bruch’s membrane in the eye

that degenerate in AMD

Cell-Based
Therapy

PF-05206388 [82] Phase I
Human embryonic stem

cell derived retinal
pigment epithelium

Subretinal administration; Monolayer of RPE cells
immobilized on a polyester membrane It is a
living tissue equivalent, which is designed to

remain in situ life-long
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Table 2. Cont.

Methods Product Name Study Phase Therapeutic Agent (s) Method of Delivery

ADVM-022 [83] Phase I
AAV.7m8 gene vector

carrying a coding
sequence for aflibercept

Intravitreal administration: One-time IVT
administration of ADVM-022 provides durable
expression of therapeutic levels of intraocular

anti-VEGF protein (aflibercept)

FT-003 [84] Phase I AAV vector

Intravitreal administration FT-003 has the
potential to treat AMD by providing durable
expression of therapeutic levels of intraocular

protein

4D-150 IVT [85] Phase I/II

AAV-based gene
therapy carrying
miRNA targeting

VEGF-C and
codon-optimized

sequence encoding
aflibercept

Intravitreal administration: Dual-transgene gene
therapy designed to inhibit four distinct

angiogenic factors to prevent angiogenesis and
reduce vascular permeability.

BD311 [86] Phase I

Integration-deficient
lentiviral vector (IDLV)

expressing VEGFA
antibody

Suprachoroidal administration: Gene is delivered
to the RPE cells to express the VEGFA antibody to

neutralizes the VEGFA activity in the posterior
segment

Gene-Based Therapy

RGX-314 [87] Phase II

AAV8 vector that
contains a gene to

encode for a
monoclonal antibody

fragment to neutralizes
VEGF

Subretinal administration: RGX-314 is being
developed as a potential one-time treatment for

wet AMD

4. Fabrication Strategies for Scaffold-Based Retinal Implants

Although cell and gene therapies have demonstrated great promise, their translation
from bench to bedside remains a significant challenge. Tissue engineering (TE) offers an
alternative approach for treating AMD by developing tissue engineered products (TEPs)
that can replace dysfunctional RPE and restore its function, thus halting the progression
of the disease [88]. TE for RPE regeneration requires scaffolds with suitable properties
that allow cellular interactions, proliferation, and differentiation to take place, whilst
preventing undesirable host immune responses and inflammation. Designing a 3D scaffold
with adequate structural parameters and bioactivity is integral to achieving this goal [89].
Intuitively, the scaffold should be able to mimic the native extracellular matrix (ECM)
activity of target tissues, provide structural support and a temporary matrix [90]. Table 3
provides a summary of the most important properties of an ideal scaffold: biocompatibility,
biodegradability, tuneability and self-healing properties [91]. Scaffolds may be seeded with
different types of cells (e.g., stem cells, progenitor cells, differentiated cells, etc.) or can
also be implanted directly to guide functional tissue regeneration in dysfunctional tissues.
From an engineering perspective, it is essential that scaffold properties and their regulatory
functions are integrated within scaffold design in a reproducible manner, so that tissue
regeneration can be induced at the site of implantation [92]. Due to the highly complex
nature of biological systems, replicating natural processes and bioengineering tissues with
the aid of a scaffold is a challenging task.

Table 3. Desirable characteristics of a tissue-engineered scaffold.

Scaffold Property Biological Significance Refs

Biocompatibility

(1) Provide a normally functioning matrix to enable cell adhesion,
proliferation and ECM generation

(2) Maintain cellular viability within scaffold and at the site of implantation
(3) Following implantation, TE construct must not give rise to adverse

immunological response (e.g., inflammation, fibrotic scarring, immune
rejection, impaired healing)

[93,94]
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Table 3. Cont.

Scaffold Property Biological Significance Refs

Biodegradability

(1) Regeneration of fully functional tissue should coincide in time with the
complete degradation and resorption of the scaffold

(2) The rate of degradation should kinetically match with the changing
microenvironment during the regeneration process

(3) Biodegradation can have a critical role in the provision of pathways for
angiogenesis and metabolite diffusion, as well as release of therapeutic
agents loaded into the scaffold

[95–97]

Mechanical properties

(1) Scaffold must fulfil key mechanical functions of tissue that is being
replaced

(2) Mechanical properties should ideally be consistent with implantation
site to enable mechanotransduction and minimise native tissue damage

(3) Scaffold should have sufficient mechanical integrity to allow surgical
handling during implantation (unless delivered by injection)

[96,97]

Scaffold architecture

(1) Scaffold should mimic the architecture of the native tissue (e.g., Bruch’s
membrane) as closely as possible to allow remodelling to take place

(2) Architecture should display sufficient interconnectivity and porosity to
allow the transfer of nutrients/waste products and facilitate adequate
cellular penetration and migration

[98–100]

Manufacturing technology
(1) The ideal scaffold needs to be manufacturable to GMP standards
(2) Amenable to scalable and cost-effective bioprocessing [100]

A thorough understanding of fundamental scaffold characteristics and functions is
crucial for developing an effective scaffold fabrication strategy. The type of biomaterial used
for scaffold fabrication is another important parameter in scaffold design. The selection of
biomaterials plays a key role in determining the biomechanical properties of the scaffold and
its ability to interact with native tissues in a biologically appropriate manner, rather than
acting as an ‘inert body’ [101]. Natural, syntheticand hybrid biomaterials have been used
to fabricate scaffolds for retinal tissue engineering. Natural biomaterials such as collagen,
gelatin, alginate and hyaluronic acid [61] are commonly used. Synthetic materials including
PCL, PDLLA PLGA, PTMC Parylene-C, have also been explored [62]. Decellularised
tissues and thermo-responsive polymers are being investigated as well [102]. However,
selection an appropriate fabrication technology for engineering 3D scaffolds remains a
significant challenge [103].

Various techniques have been developed for manufacturing 3D scaffolds, including
electrospinning, freeze-drying and 3Dbioprinting [104]. The electrospinning technique has
the advantage of providing an environment with fibre diameters down to the nanometre
scale to facilitate cell attachment. Electrospinning requires a syringe pump, electrostatic
force, and metallic collector to generate fibres [105]. As shown in Figure 3, a very high
voltage is applied simultaneously to a metallic needle filled with polymeric solution that
is placed at the tip of the syringe via surface tension. The electric field and the potential
difference between terminals result in the repulsion of electric charges, followed by drawing
out of polymers and deposition onto a collector [105]. A variety of synthetic and natural 3D
nanofibrous polymers, such as a biomimetic nanofibrous scaffold comprising type I collagen
with 1,1,1,3,3,3-hexafluoro-2-propanol, have been fabricated using the electrospinning
method [106]. Despite its advantages, electrospinning still has some major limitations such
as inadequate mechanical properties, use of toxic solvents, poor control over cell density,
insufficient cell infiltration and non-homogenous cell distribution [107].
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Figure 3. Schematic illustration of different techniques for manufacturing 3D tissue scaffold and
optical, SEM images of the printing constructs [108–110].

The freeze-drying (lyophilization) method is another commonly used technique in
regenerative medicine for creating water-soluble polymer scaffolds through the process
of sublimation [110]. The process of freeze-drying consists of three main stages: (1) pre-
freezing, which involves forming an interpenetrating network of ice crystals by freezing
a suspension of the water-soluble polymer at extremely low temperatures in the range of
−70 ◦C to −80 ◦C, (2) primary drying, during which the bulk of ice crystals is removed
under low pressure by sublimation (3) secondary drying, which involves the extraction of
unfreezable, bound and associated water via a desorption process, leading to the formation
of a highly porous scaffold (Figure 3) [111]. Freeze-drying is a convenient and simple
technique to fabricate porous cell scaffolds, however, construction of a suitable scaffold
shape with controllable microarchitecture from natural biomaterials remains a significant
challenge with this method. In addition, the high rate of rehydration during freeze-drying
process could lead to changes in cell diameter due to swelling of the cell wall, resulting in
dramatic structural changes [112].

More recently, 3D bioprinting has shown great potential in tissue engineering for scaf-
fold fabrication, by integrating living cells (bioink) and biomaterials directly or indirectly
together using layer-by-layer approach [113]. To date, 3D bioprinted constructs have mainly
been classified into two forms: acellular and cellular constructs. In acellular bioprinting,
scaffold fabrication occurs without cellular material, which is only incorporated after the
printing process is complete. In contrast, cellular bioprinting involves incorporating cells
and other biological agents within the biomaterial during the fabrication process [114].
The bioink is a critical aspect of 3D bioprinting, as it must be highly biocompatible and
bioprintable [108]. Three distinct approaches have been used for fabricating artificial
Bruch’s membrane in TE using various 3D bioprinting methods: extrusion-based (EBB),
droplet-based and laser-assisted bioprinting [111]. Compared to other techniques, EBB ben-
efits from greater versatility, less process-induced cell damage, and the ability to precisely
deposit very high cell densities through computer-aided design (CAD), making it ideal for
printing more geometrically complex scaffolds with ease of customisation [115].
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5. Conclusions and Future Perspective

The human retina is a highly complex tissue that serves as a key component of both
the eye and central nervous system. Any damage to retinal cells including photoreceptor
cells, can lead to permanent vision loss because the retina lacks an endogenous stem cell
population to replace degenerated and/or damaged cells. AMD is a retinal degenerative
disease that affects around 20 million people in the US alone, and it is projected that approx-
imately 300 million worldwide will have the disease by 2040. Although treatment options
exist for the neovascular form of AMD to prevent and halt progression of the disease, op-
portunities for restoring vision are limited once photoreceptor cells become dysfunctional.
Advanced therapies represent an emerging field of research which seek to develop cell-
and gene-based therapies to treat and potentially cure degenerative diseases such as AMD.
Different products for both cell- and gene-based approaches are currently in clinical trials
for treatment of both AMD and GA, however, no product has so far reached the market and
received FDA approval. This must be due to challenges in selecting the appropriate gene
and/or cell types, designing suitable delivery vehicles and ensuring ocular tolerability.
Natural polymers also have their own limitations in terms of processability and mechanical
properties. Changes in the constituents of natural polymers can lead to accumulation of
debris in Bruch’s membrane and eventual cell death.

Recently, scaffold-based approaches for treating retinal degenerative diseases have
provided a promising avenue to halt or prevent disease progression in AMD. Nevertheless,
different biomaterials and methods of scaffold fabrication can have a significant impact on
product success. The freeze-drying method is a primary step that is simple and convenient
for making porous structures but has limitations such as (i) poor reproducibility, (ii) poor
mechanical properties and (iii) less controllable microstructures and properties. Electro-
spinning technology has the ability to control fibre diameter and provide a high surface
area for cell attachment. However, this method requires the use of toxic organic solvents
during processing which can have an adverse effect on cell viability. 3D-bioprinting repre-
sents a more attractive scaffold fabrication method with potential advantages of superior
physical characteristics, cell adhesion, better control of scaffold microstructures and overall
improved mechanical properties, compared to freeze drying.

Multi-objective optimisations are, however, required to identify suitable printing con-
ditions for 3D bioprinting (e.g.: print speed, pressure, layering and spacing) and material
composition (percentage of cells to bioink) to achieve optimal mechanical and porous
constructions properties. This requires extensive experimentation time that is resource-
demanding. Artificial intelligence (AI) and machine learning (ML) methods have already
been applied to solve problems in scientific research and represent potentially transforma-
tive resources to support researchers in the field of regenerative medicine. In the context
of 3D bioprinting, an ML-based supervised learning framework could take the material
composition and the printing parameters as input to (i) to enable optimisation of scaffold
properties, (ii) assess the quality of the prints and (iii) optimise printability of the material.
Given the appropriate training datasets, a machine learning algorithm could generate
an accurate prediction model for efficient scaffold fabrication and provide a quantitative
evaluation of scaffold printability for specific anatomical sites, such as the human retina.
We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication will
revolutionise retinal tissue engineering and open up a world of new opportunities for
developing novel drug delivery platforms for the treatment of retinal diseases.
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