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Structural variants shape the genomic landscape and clinical
outcome of multiple myeloma
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Deciphering genomic architecture is key to identifying novel disease drivers and understanding the mechanisms underlying
myeloma initiation and progression. In this work, using the CoMMpass dataset, we show that structural variants (SV) occur in a
nonrandom fashion throughout the genome with an increased frequency in the t(4;14), RB1, or TP53 mutated cases and reduced
frequency in t(11;14) cases. By mapping sites of chromosomal rearrangements to topologically associated domains and identifying
significantly upregulated genes by RNAseq we identify both predicted and novel putative driver genes. These data highlight the
heterogeneity of transcriptional dysregulation occurring as a consequence of both the canonical and novel structural variants.
Further, it shows that the complex rearrangements chromoplexy, chromothripsis and templated insertions are common in MM with
each variant having its own distinct frequency and impact on clinical outcome. Chromothripsis is associated with a significant
independent negative impact on clinical outcome in newly diagnosed cases consistent with its use alongside other clinical and
genetic risk factors to identify prognosis.
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INTRODUCTION
The transcriptional abnormalities giving rise to inter-patient
variability in the outcome of multiple myeloma (MM) are driven
by acquired genetic hits. Many of these events have been
identified using next generation sequencing, which has success-
fully defined relevant single-nucleotide variants, indels and copy
number abnormalities in newly diagnosed myeloma (NDMM)
[1, 2]. However, much less is known about the role of structural
events, which mostly occur in the non-coding regions and are best
characterised by whole genome sequencing.
Deciphering the genomic architecture of myeloma is key to

identifying novel disease drivers and to gain insights into the
mechanisms underlying myeloma initiation and progression.
Structural variants (SV) are generally defined as regions of DNA,
approximately 1 kb or larger, that can include inversions, balanced
translocations or genomic imbalances (insertions and deletions), and
can be divided into simple and complex events depending on the
number of breakpoints or chromosomes involved. A significant
body of evidence points towards the importance of chromosomal
rearrangements in MM but their full consequences on chromatin
structure, topologically associated domains and transcriptional
networks have yet to be fully explored.
Until now the best characterized of the structural events in

MM are the primary translocations to the immunoglobulin
gene (Ig) loci, which lead to oncogene overexpression by

hijacking the super-enhancer sites located at these loci. These
recurrent structural variants place the Ig super-enhancers in
proximity to one of five oncogenes generating the t(4;14)[NSD2
FGFR3/IGH](15%), t(11;14)[CCND1/IGH](20%), t(14;16)[IGH/MAF]
(5%), t(6;14)[CCND3/IGH], and t(14;20)[IGH/MAFB] [1]. Second-
ary SVs are also thought to play a key role in MM disease
progression and the best characterized of these occur at 8q24,
the site of MYC.
In other non-hematologic cancers, SVs have been noted to be

complex and to involve more than two sites. These complex
events have also been seen in MM but their clinical significance
has been uncertain [3]. Molecular characterisation of such
complex structural events has identified focal copy number
changes at the breaks, which can involve either gain or loss of
copy number. These complex SVs have been termed chromoplexy
when there is associated copy number loss and templated
insertion when there is copy number gain [4]. A further complex
event chromothripsis (“chromosome shattering”) is defined by
localized clustered rearrangements associated with loss of
heterozygosity and copy number oscillation [5]. In a recent report
mapping SVs in a whole genome dataset of MM, we showed that
the incidence of chromothripsis, complex templated insertion
(affecting > 2 chromosomes), chromoplexy, is approximatively 24,
19, and 10% [6]. Both chromothripsis and templated insertion may
affect expression levels but much remains to be understood about
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the full contribution of structural events to the patterns of gene
deregulation and clinical outcome of MM.
Gene expression within plasma cells, as in all specialized cells, is

controlled by a set of super-enhancers, the activity of which is
constrained by the three-dimensional structure of the nucleus.
Under normal conditions, gene expression is constrained by both
nuclear structure and localised chromatin organisation in the form
of topologically associated domains (TADs) [7]. These genomic
features are formed from CTCF binding sites and are important in
mediating local interactions regulating gene expression. Disrupt-
ing normal TAD boundaries by cancer acquired structural events,
with or without copy number change, impacts gene expression as
can acquired changes in histone methylation such as H3K36 and
H3K27 as a consequence of NSD2 upregulation by a t(4;14) [8]. The
availability of chromatin immunoprecipitation (CHiP) sequencing
data has been used to identify myeloma specific super-enhancers
and High Chromosome Contact (Hi-C) sequencing provide an
opportunity to determine TAD structures and understand how
acquired simple and complex structural events impact gene
expression and clinical outcome. In this analysis, we have taken
account of TAD structures and plasma cell specific super-
enhancers [9], to investigate the role of transcriptional deregula-
tion by structural variants.

METHODS
Sequencing analyses
Long-insert whole-genome sequencing (LIWGS). Whole genome sequencing
dta from 812 CoMMpass samples was aligned to hg19 using BWA (v. 0.7.17)
[10] and deduplicated using samblaster (v. 0.1.24) [11]. Copy number was
called with Control-FREEC (v. 11.4) [12] and structural events with Manta
(v. 1.4.0) [13]. Complex structural events were called as previously described
on 752 patients [6]. Telomere length was estimated in both tumors and in the
germline using Telomerecat with standard settings [14].

Exome sequencing. Exome data for 659 samples corresponding to a subset
of the CoMMpass LIWGS cases were used, as described previously [15].

RNA sequencing. A subset of 643 samples from the CoMMpass study had
RNA sequencing available [16]. These samples where aligned to hg38
using STAR (2.5.1b) [17] and quality controlled using QoRTS (v1.2.42) [18]
with alignment and quantification of gene read count with Salmon (v0.7.2)
[19]. Normalization of counts and differential gene expression analysis was
performed using DESeq2 (v1.14.1) [20]. Gene set enrichment analysis was
performed using the R package fgsea (v1.6.0) [21].

TAD identification
Hi-C data was obtained for the U266 and RPMI-8226 cell line from Wu et.
al and was processed as published. To identify disruption of TAD
boundaries and associated gene upregulation we used calls from Manta
and assigned them to within a TAD structure as defined by the Hi-C data,
from published cell line data. We identified neo-TAD formation and
compared expression of genes within the TADs depending on the
presence of a rearrangement containing a gene that was significantly
upregulated compared to all other genes using an ANOVA test with FDR
adjusted p values (p < 0.05) [22].

Statistical analysis
The distribution of variants between different subtypes of MM was
evaluated, using Fisher’s exact test or Kruskal-wallis test. Stepwise Cox
regression in both directions, based on Akaike information criterion
(AIC), using classical risk factors estimated the effects of significant
covariates for time-to-event outcome. The final Cox model consisted
only of statistically significant factors at a level of p < 0.05. An additional
bootstrap was performed using the rms package (B= 100) and
corrected indices (Dxy and r2) computed. Correlation between mutated
genes, cytogenetic abnormalities, complex rearrangements, and clinical
features using Bayesian inference was determined using the program
“JAGS” and the R-interface Bayesmed. The probability of the observed
data under the null hypothesis versus the alternative hypothesis or
Bayes factor (BF) was computed. BF > 1 was considered significant.

BF 1–3, 3–20, 20–150, and > 150 were considered weak, positive, strong
and very strong associations respectively. Further details may be found
in the Supplemental material.

RESULTS
Simple and complex structural variations are common
features of the NDMM genome and have distinct molecular
associations
Using the CoMMpass LIWGS dataset (n= 812), Supplemental Table 1,
we determined the sites of structural breaks using Manta [23]. We
show that the median number of SVs events per case was 31 (range
2–327) with a median of 25 intrachromosomal (0–323) and inter-
chromosomal 6 (0–166). There were more structural events in cases
with a t(4;14) than in cases with t(11;14) (χ2= 38, p= 5.987e-10) and
in cases that cases that lacked canonical translocations (χ2= 10,
p= 0.001), Fig. 1A.
The median number of SV across the canonical translocations

groups was 38 (IQR 14–84) for t(4;14), 25 (2–63) for t(11;14), 38
(23–91) for t(14;16), and 38 (6–93) for t(14;20) [24]. Hyperdiploid
(HRD) samples (Kruskal wallis test, χ2= 5.5, p= 0.01) had fewer
breakpoints than non-HRD samples, Fig. 1B. Samples with both
mono and bi-allelically inactivated TP53 had more SV than the
wild type (20 (2–87) versus 27 (9–94) and 38 (14–161), χ2= 23,
p= 8.66e-06), Fig. 1C; samples with RB1 inactivation had more
mutations than those that did not (29 (2–85) vs. (35 (4–98),
χ2= 8.2, p= 0.004), Fig. 1D.
We found a negative correlation between tumor telomere

lengths (TTL), a marker of DNA instability, and the number of SV
and a small positive correlation with leucocyte telomere length
(LTL) that is of uncertain significance, Supplemental Figs. 1–2. We
did not identify a correlation between the number of SV and the
exomic mutational rate but did identify a positive correlation
between the number of SV and the proportion of the APOBEC
mutational signature, Supplemental Fig. 3. These data suggest a
background of DNA instability and DNA repair deficiency
contribute to the extent of SV’s.
A group of 10% (n= 84) of cases were identified as having an

excess of structural events, using an elbow test with a median of
102 (78–292) versus 30 (2–76) breakpoints per sample, Supple-
mental Fig. 4. This group correlated with TP53 mutations
(cor= 0.13, BF= 6.2), del(1q) (cor= 0.14, BF= 15), del(12p)
(corr= 0.15, BF= 71), and del(17p) (corr= 0.17 BF= 396), Supple-
mental Fig. 5. Interestingly, 37% of these patients had neither TP53
inactivation, RB1 inactivation, or short TTL ( < 4.100kB) suggesting
the full range of biological variants contributing to structural
complexity remain to be fully defined, Supplemental Fig. 6A. Only
one of these patients had an ATM mutation.
Complex rearrangements were evaluated in 752 cases. Chro-

mothripsis was seen in 33%, of t(4;14), and 12% of t(11;14);
chromoplexy in 19% of t(4;14), and 5% of t(11;14), respectively and
templated insertion in 19% of t(4;14) and 36% and t(11;14).
The prevalence of chromothripsis was higher among patients

with a TP53 mutation (r= 0.22, BF= 12692), del(17p) (r= 0.21,
BF= 91754), del(12p) (r= 0.17, BF= 575), del(1p) (r= 0.14, BF=
25), del(6q) (r= 0.12, BF= 2.3), del(16q) (r= 0.11, BF= 1.7), del
(13q) (r= 0.1, BF= 1.15). The prevalence of chromothripsis was
lower in patients with t(11;14) (r=−0.14, BF= 25), KRAS and NRAS
mutations (r=−0.11 and −0.15 and BF= 2.6 and 63, respec-
tively). 35% of patients with chromothripsis did not have a
detectable mutation in RB1, TP53 or have short telomeres,
Supplemental Fig. 6B.
The prevalence of chromoplexy was higher among patients with

a FGFR3 mutation (r= 0.12, BF= 4), DSCAML1 mutation (r= 0.15,
BF= 33), HYDIN mutation (r= 0.15, BF= 66), del(17p) (r= 0.12,
BF= 4.2), del(13p) (r= 0.13, BF= 6.9), del(6q) (r= 0.16, BF= 99),
del(8p) (r= 0.13, BF= 6.9), del(10p) (r= 0.14, BF= 18), and t(4;14)
(r= 0.11, BF= 11). 23% of chromoplexy patients, did not have
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detectable events at RB1, TP53 inactivation or short telomere
length, Supplemental Fig. 6C.
The prevalence of templated-insertion was higher among patients

with HRD (r= 0.13, BF= 10), and marginally lower in patients with
DMD mutations (r=−0.11, BF= 1.1), HMCN1 mutations (r=−0.11,
BF= 1.8), t(4;14) (r=−0.15, BF= 37), del(13q) (r=−0.15, BF= 39),
del(14q23) (r=−0.15, BF=−28), and del(1p) (r=−0.11 BF= 1.5),
Supplemental Fig. 5. 48% of templated-insertion cases, did not have
detectable events at RB1, TP53 inactivation or short telomere length,
Supplemental Fig. 6D.
Combined these data suggest that SV are not evenly distributed

among MM patients with t(11;14) cases having relatively bland
genomes with fewer SVs. Complex SVs, t(4;14), TP53 and RB1
altered cases are associated with multiple SV and complex
rearrangements. A significant proportion of cases had no evidence
of DNA repair pathway mutations consistent with the existence of
other potentially important pathways yet to be associated with
these events. Templated insertions were not associated with these
markers of DNA instability suggesting they are generated via a
different mechanism.

Canonical translocation breakpoints are clustered and
deregulate multiple genes
We show that the sites of recurrent translocation breakpoints are not
evenly distributed throughout the genome. Hotspots identified
include 14q32 (IGH), 2p (IGK) and 22p (IGL) together with canonical
rearrangements to chromosome 4p16 (NSD2/FGFR3), and 11q13
(CCND1). In addition, we found recurrent rearrangement to four
additional sites (FAM46C, TXNDC5, FOXO3, MYC) that contained
super-enhancers and provide alternatives for gene deregulation, as a
consequence of chromosomal rearrangement, in addition to the
super-enhancers of the Ig loci. These sites include previously
described sites and additional novel sites of interest.
On chromosome 1, a chromosome recurrently associated with

the adverse outcome we identified SERTAD2 at 1p14, TENT5C at
1p36, MCL1 at 1q21.3 and NTRK1 at 1q21.1. On chromosome 6
there were clusters of SV at 6p2.1, 6p24, 6q21, and 6q24 with the
sites of TXNDC5 and FOXO3 being the most frequently affected.
On chromosome 15q21 the site of B2M and 15q24 the site of ULK3

we also noted to recurrent SV. On chromosome 19, the two sites
were found at 19p13, the site of KLF2 and 19p12, the site of
ZNF675. These novel recurrent sites occurred at low frequency
(<3% of cases) and share the common feature of all containing
genes that have important functions in plasma cells and
previously described plasma cell super-enhancers, Fig. 1D.

Complex SV’s occur at early disease stages but display some
changes overtime
To gain insights into the pathogenic role of complex rearrange-
ments in mediating disease progression we studied 38 paired
samples obtained from presentation and relapse derived from the
CoMMpass data set. We show using a paired t-test suggested that
relapsed samples have more SV than at diagnosis, Supplemental
Fig. 7. Thus suggesting that the frequency of SV increases
between diagnosis and relapse.
When looking at complex events, they were detected in 16 paired

cases at presentation and relapse (42%); in eleven they were
detected at both time points and in five they were acquired at
relapse, Fig. 2. In one of these cases, when the raw data was
analysed, we found evidence for low levels the clone in the
presenting sample, suggesting it was actively selected for consistent
with a role as a driver. The acquisition of a complex events can play
a role in relapse as illustrated by a case where relapse was associated
with a significant excess of novel structural events, Supplemental
Fig. 8. We did not find examples of cases where the structure of SV
events changed dramatically at relapse consistent with them being
relatively stable once formed.
These findings suggest that complex chained rearrangements

occur throughout the natural history of MM but are predominantly
present at diagnosis and are relatively early and stable molecular
events. The observation that they are selected for (increase in
clonal fraction) and gain additional breakpoints suggest they
provide a selective advantage.

Structural variants affecting TAD boundaries are associated
with gene deregulation
To identify the range of genes recurrently dysregulated by super-
enhancers, we identified all TADs using the U266 and RPMI-8226

t(6;14)t(14;16) t(4;14)t(14;20)t(11;14)
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Fig. 1 Distribution of SV across the genetic subgroups of NDMM (n= 812). A Violin plot suggesting t(4;14) have more SVs and t(11;14)
fewer SVs. B Violin plot suggesting HRD samples have fewer SVs than nHRD samples. C Violin plot suggesting there are more SV in both
monoallelic and biallelic TP53 inactivated cases. D Violin plot suggesting SVs are associated with RB1 alterations. E Plot displaying the number
of translocations according to their chromosomal location highlighting hotspots of interest (genes in green).
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cell lines and mapped the breakpoints previously defined by
Manta. We then compared the expression of genes within the
TADs between patients that had evidence of TAD-TAD rearrange-
ment and those that did not. Changes were considered significant
if they occurred in five or more cases, had a median expression >2
in at least one group, and had an FDR corrected ANOVA test with
p < 0.05, Fig. 3-Supplemental Fig. 9.
Looking at the RPMI-8266 defined we identified canonical

translocation partners (CCND1, NSD2, MAF) and genes that had
previously been described as important in B-cell biology, such as
CCND3, CCND2, and PAX5, Fig. 3. In addition to the deregulated
genes routinely associated with the canonical translocations, we
identified additional deregulated genes contained within rearranged
TADs. The best example of this is in the t(4;14) cases where we show
an upregulation of local gene expression including LETM1, NELFA,
C4orf48, NAT8L, POLN, or ZFYVE28 in all cases (n= 75), Supplemental
Fig. 10. We also see a set of downregulated genes, corresponding to
regions of copy number loss, mainly located on 14q including TRAF3
and MAX, previously described as a tumor suppressor, 11q including
BIRC2, and TMEN123, and 1p including both FAF1 and RNF11.
Combined, these data suggest that translocations frequently
deregulate more than a single oncogene, Supplemental spreadsheet.
Looking at the U266-defined TAD, we identified significantly

over-expressed genes including the canonical Ig translocation
partners FGFR3, CCND1, MAF, and NSD2. The analysis also
identified genes predicted by the known biology of MM including
CCND2, PAX5, and CCND3. Other overexpressed genes identified
include SCRNA23 (within the NSD2 locus), NTRK1, HMGB, SAMD7,
NEAT1, NAV1, MYCNOS, UTP18, LAG3, NME1, NME2, PTMS, UHRF1,
GPR162, CERCAM, ZNF185, KCNK7, and FAM214A. We also see a set
of downregulated genes, corresponding to regions of copy
number loss, mainly located on chromosome 14q including

TRAF3, previously described as a tumor suppressor, 11q, including
BIRC2, TMEN123, 13q (RB1), and 16q (NUBP2) and 9q (GALNT12),
Supplemental Fig. 9.
MAP3K14 (NIK) is recurrently impacted by translocations in this

data set allowing us to determine the impact of the breakpoint
site in relationship to TAD structure. We mapped the sites of
breakpoints in relationship to the TAD boundary and expression
level and demonstrate a significant difference in expression
change based on translocation into or outside of the TAD
boundary, Supplemental Fig. 11. This result supports the notion
that not all translocations in the vicinity of a gene are
pathologically relevant and those breaking a TAD boundary are
more likely to deregulate expression

The impact on outcome of complex structural events
We determined the impact of complex rearrangements on the
survival of patients in the complete dataset (n= 752) after a median
follow-up of 5.39 (5.07–5.45). The survival results show that only
chromothripsis was associated with an adverse outcome in both
progression-free survival (PFS, HR 1.49 (1.13–1.95), p= 0.004) and
Overall Survival (OS, HR 1.79 (1.3–2.3), p= 5.68e−5). Patient with
chromothripsis involving more than three chromosomes did
significantly worse in terms of overall survival (HR 2 (1.2–3.3),
p= 0.007) than those involving fewer chromosomes.
To look at the interaction between events we determined the

impact of complex SVs on prognosis in 595 patients with a full
clinical data set in the CoMMpass data and an updated follow-
up. We identified chromothripsis in 23% (n= 137), chromoplexy
in 10% (n= 58), and templated insertion in 37% (n= 219).
In a multivariate analysis including chromothripsis and classical
MM risk factors, such as bialleleic TP53 inactivation, t(4;14),
amp(1q) and ISS we show that the presence of chromothripsis

Fig. 2 Complex SV comparison between Presentation and Relapse A. Gain of complex SV. A t(8;11) at presentation becomes a t(6;8;11) at
relapse. B Stable complex SV. A t(3;5;6;15) at presentation is also detected at relapse. C Gain of multiple complex SVs. A relatively simple
presentation sample gains multiple complex SVs at relapse including a t(2;7;15), t(1;6;12), and t(1;2;3;4;5;15;17;20).
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retains its independent impact on prognosis alongside amp(1q),
biallelic TP53 inactivation, and ISS3 for OS and amp(1q) and ISS3
for PFS, Fig. 4.
Interestingly, the group carrying a high structural load was

associated with an adverse outcome with a median PFS of
21.5 months (CI 18.3–29.9) compared to a median of 39.3 months
(CI 35.9–43.3 p= 0.0001) and a 5 year-OS of 49% (CI 37–65%)
compared to a median 66% (63–70% p= 5e-4), Supplementary
Fig. 12.

Molecular associations with chromothripsis
To identify biological features that may be associated with
complex rearrangements we carried out a gene set enrichment
analysis (GSEA) by comparing the expression of patients with
chromoplexy, chromothripsis, and template insertion.
Across each of these groups, there was an enrichment for

Oxidative phosphorylation, G2M and E2F cell cycle targets
consistent with a proliferative phenotype. Other pathways
consistently upregulated include MYC targets and MTORC1
signalling. We also noted a downregulation of inflammatory
response and proinflammatory cytokines such as TNF-ά signalling
and IL6 across three groups.
When considering template insertion, apoptosis, glycolysis,

KRAS signalling and the P53 pathway were downregulated. The
later were particularly interesting as there TI are not associated
with TP53 inactivation. On the other hand, MYC targets and UPR
pathways were significantly upregulated in comparison to the
other groups. INF-ά and γ were increased in patients with
chromothripsis. Other increased pathway include Pi3K and
MTOR signalling. Finally, DNA repair was upregulated in
chromothripsis and templated insertion but not the chromo-
plexy group, Fig. 5. Combined, these data show that the three
groups are differentiated by their expression signature.
Although they are all associated with highly proliferative
signatures, chromothripsis seems to be associated with a more
inflammatory phenotype.
To address these differences further, we performed a network

analysis and identified patterns of deregulation and detected co-
expression of NSD2 and HDAC1, CCND1 and RB1, MAF and MYB,
Supplemental Table 2. These data show that beyond structural

events an underlying functional effect in gene expression patterns
may contribute to their aetiology and outcome.

DISCUSSION
The analysis paints a picture of the MM genome that is
substantially impacted by structural variants (SVs) that are
frequent and contribute significantly to the interpatient variability
in biology and clinical outcome. The distribution of SVs through-
out the genome is non-random predominantly involving the Ig
loci, the strong enhancers of which upregulate a series of
canonical oncogenes directly attributed to the etiology of MM.
In addition to the Ig loci we identified a limited number of
recurrent loci that appear to also act as donors of super-enhancers
deregulating genes at alternative receptor sites throughout the
genome. Using TAD/TAD rearrangements, we detected both
predicted and novel genes deregulated by SVs. Using MAP3K17
we show that SVs that break TAD boundaries have a greater
impact on gene deregulation. Further we show that more than
one gene may be impacted by the same apparent translocation
based on subtle differences in the site of the breakpoints further
contributing to the complexity of gene deregulation in MM and
variation in clinical outcomes.
We show that complex structural events are frequent in MM

with the most common being templated insertions involving
amplification of regional sequences and gene overexpression.
The least frequent subtype of complex rearrangements, chro-
moplexy, involves deletion of sequence and loss of gene
expression does not seem to impact the outcome in this dataset.
Chromothripsis involves focal regions of gain or loss and has a
significant impact on clinical behavior and could potentially
contribute to clinical risk scores.
The current prognostic score in MM is based on clinical and

biochemical features and uses the serum beta-2-microglobulin
value and albumin level, known as the international staging
system (ISS) [25]. This prognostic score has been enhanced by
incorporating cytogenetic features including del(17p), (R-ISS) and
by del(17p) and gain(1q) (R2-ISS)[D'Agostino M, Cairns DA,
Lahuerta JJ, Wester R, Bertsch U, Waage A, Zamagni E, Mateos
MV, Dall'Olio D, van de Donk NWCJ, Jackson G, Rocchi S,
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Salwender H, Bladé Creixenti J, van der Holt B, Castellani G,
Bonello F, Capra A, Mai EK, Dürig J, Gay F, Zweegman S, Cavo M,
Kaiser MF, Goldschmidt H, Hernández Rivas JM, Larocca A, Cook G,
San-Miguel JF, Boccadoro M, Sonneveld P. Second Revision of the

International Staging System (R2-ISS) for Overall Survival in
Multiple Myeloma: A European Myeloma Network (EMN) Report
Within the HARMONY Project. J Clin Oncol. 2022 May 23:
JCO2102614. doi: 10.1200/JCO.21.02614. Epub ahead of print.

Fig. 5 Result of the Gene Set Enrichment Analysis comparing chromothripsis, chromoplexy and templated insertion. GSEA analysis
suggest some pathway are predominantly upregulated (red) or downregulated (blue) in some subsets.
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PMID: 35605179]. More recently mutational features have been
introduced in the “Double-Hit” group that takes account of bi-
allelic inactivation of TP53 [26]. Improving further on such
prognostic scores has been difficult because of the lack of
recurrent variables that are sufficiently penetrant to impact clinical
risk. The integration of chromothripsis into the ISS has the
potential to address this deficiency because not only does it have
a strong independent impact on patient’s prognosis, but it is also
prevalent enough to contribute significantly to clinical risk.
Further, we have shown that it may be feasible to detect
chromothripsis in clinical samples using mutational signatures of
copy number profiles [27]. The adverse prognostic impact of
chromothripsis we describe in MM is consistent with results from
other cancers where it has a strong negative impact on outcome.
There is significant inter-patient variability in the distribution of

chromothripsis in MM with some cases having relatively focal
events against the backdrop of an otherwise quiet genome,
whereas in others chromothriptic breakpoints may co-occur with
other complex events in the background of a highly rearranged
genome. The impact of this type of variation needs to be explored
further in future analyses.
The mechanistic basis for the adverse impact of chromothrip-

sis on prognosis is uncertain. The molecular features of the
events almost certainly significantly impact TAD structure and
gene expression patterns with oscillations in copy number
massive loss of chromosome fragments impacting distinct
regions of the chromosomes. The net result of these features is
both the activation oncogenes and inactivation of tumor
suppressor genes [6]. Consistent with this hypothesis we have
shown that chromothripsis is responsible for the simultaneous
alterations of multiple genes.
While the time at which structural variants develop remains

elusive current evidence would suggest that they are primary
events in most cases, however, in some instances, additional
breakpoints and structural complexity may be acquired overtime.
The full relationship of structural variation to acquired DNA repair
deficiency (TP53, RB1, and telomere attrition) is yet to be fully
explored but the relationship is likely to be important.
Beyond structural variants, other mechanisms of gene dysre-

gulation could be operating to mediate changes in gene
expression. The most relevant changes we identified are mediated
via epigenetic alterations such as those influencing TAD
architecture leading to altered expression, but these are largely
unexplored as yet in MM [28–30] Understanding the role played
by such epigenetic change is likely to add important new
understandings into MM biology.
The other important feature of chromothripsis the genetic

background on which it develops. We show strong associations
with RB1, TP53 and telomere attrition suggesting the importance
of DNA repair mechanisms. Using gene set enrichment analysis we
show that cases carrying these complex rearrangements have
associations with distinct expression patterns consistent with
them occurring in the context and leading to distinct cellular
phenotype. Gene set enrichment analyses of the association of
chromothripsis, chromoplexy and templated insertions shows
both distinct and common features between the different lesions.
Across each of these groups, there was an enrichment for G2M
and E2F cell cycle targets consistent with a proliferative
phenotype and some specific evidence for deregulated pathway
in some subgroups only.
In this work, we show that structural events contribute

significantly to the pathogenesis and variability in the clinical
outcome of MM. In particular, chromothripsis is an important
molecular variable that is associated with adverse clinical
outcome. The ability to detect chromothripsis in clinical samples
would allow us to substantial enhance clinical risk scores and
more reliably predict prognosis. Using the presence of chromo-
thripsis as a tool to identify high-risk cases suitable for further

investigation may allow us to gain further insights into the biology
driving the adverse outcome for potential therapeutic targeting.
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