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Abstract— The problem of distributed state estimation of
a linear-time-invariant (LTI) system is addressed in this pa-
per. Given a directed communication network, the full state
vector can be reconstructed at an appointed node under
the assumption of an open Hamiltonian path. By a suitably
designed coordinate transformation, the initial conditions of
the subsystems can be estimated successively along the path.
Thanks to the Volterra integral operator induced by non-
asymptotic kernel functions, the estimation task at each agent
can be achieved within a predefined finite time and transmitted
to the next node. As such, the instant state vector can be
reconstructed at the end node after a finite time interval. Such a
scheme is prone to reduce the communication burden. Extensive
numerical examples are conducted to verify the effectiveness of
the proposed observer in both noise-free and noisy scenarios.

I. INTRODUCTION

In recent years, increasing number of large-scale systems
arouse the need for distributed control theory. Numerous
examples can be seen in the field of power networks,
environment monitoring, smart city, etc. The divide et impera
structure of the distributed schemes brings about advantages
in scalability and flexibility compared to the centralised
methods. Distributed state estimation is one of the funda-
mental problems in the field of distributed control as it is
significantly instrumental for state-based controller design
[1], fault diagnosis [2], attack detection [3] and so on.

The goal of distributed state estimation is to reconstruct
the full state vector of the system at a single node using
local measurement and communication with its neighbouring
nodes. Inspired by centralised frameworks, typical state esti-
mation methods have been extended to deal with distributed
systems, to name but a few, in [4], [5], [6], [7], [8]. A
distributed Kalman filter-based observer is proposed in [9]
and it was further applied to a consensus control problem
in [10]. There exist a large variety of Luenberger observer-
based distributed estimation schemes, see [11], [12], [13].
Particularly in [12], the Luenberger observer is developed to
achieve distributed consensus at each node. With successive
decomposition, the state convergence can be achieved by
a suitable weight tunning rule. Similar Luenberger frame-
works are also used in [13], in which the observability
conditions are characterised in relation to the communication
topology.A finite-time distributed observer is designed by
exploiting the homogeneity theory, which ensures the decay
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of state estimation error in a finite time. An alternative
solution method is designed in [14] that transfers the state
estimation problem into a parameter estimation problem.
The finite-time convergence is guaranteed by the dynamic
regressor extension and mixing method. Recently, a fixed-
time observer is designed in [15] based on a kernel-based
estimation method by modifying the centralised framework
in [16] and invoking multi-hop communication with min-
imised data exchange.

The aforementioned researches provide various solutions
to the distributed problems. However, the adaptive and
correction-based estimation methods rely on the quality of
communication and local calculation ability. The conver-
gence may suffer from delay and band-limited rate. More-
over, in some practical cases, full state reconstruction is not
necessary to be achieved in all nodes. To save communication
and computation resources, it is desirable to estimate the state
at several required nodes. In this paper, a distributed observer
is proposed to reconstruct the full state with instantaneous
convergence at a distinguished node. The state space of the
system is decomposed along the assumed open Hamiltonian
path ending at the appointed node. Extending the centralised
method in [17], estimators are designed for the observable
subspace for each node to obtain their initial state with fast
convergence. Collecting the information of the neighbouring
nodes through the communication path, the appointed node
is able to reconstruct the full state vector in finite time
in conjunction with the state prediction. As a result, the
requirements for communication can be relieved, making the
observer more tolerant to possible delay and limited band rate
which are unavoidable in cyber-physical systems [18], [19].

The paper is organised as follows: in the next section, the
distributed state estimation problem is described and some
preliminaries to achieve finite-time estimation are reviewed.
In Section III, the distributed state estimation algorithm is
demonstrated and its effectiveness is examined by numerical
examples as shown in Section IV. Section V gives the
conclusions and future research prospects.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Finite-time distributed state estimation

Consider a linear time-invariant (LTI) system

x(1)(t) = Ax(t), y(t) = Cx(t), (1)

with x(t) ∈ Rn, y(t) ∈ Rm the state vector and the output
respectively, and x(i)(t) denotes the ith derivative of x(t).
A ∈ Rn×n is the system matrix and C ∈ Rm×n is the output
matrix and the pair (C,A) is fully observable. The system
is measured by N distributed sensors

yi(t) = Cix(t), i ∈ {1, . . . , N}, (2)



where y(t) = [y1(t)
⊤, y2(t)

⊤, . . . , yN (t)⊤]⊤ and C =
[C⊤

1 , C⊤
2 , . . . , C⊤

N ]⊤. The pair (Ci, A) for each sensor is
not fully observable and Ci ̸= 0,∀i ∈ {1, . . . , N}, i.e. the
ith sensor is not able to reconstruct the full state vector
x(t) using only its own measurement yi(t). On the other
hand, each node corresponds to its own observable state
variables xi(t),∀i = 1, . . . , N . The set consisting of the
observable state vectors {x1(t), x2(t), . . . , xN (t)} subsumes
the full state vector x(t) recalling the fact that the overall
system is observable.

The sensors are able to communicate with their neigh-
bouring sensors, whose information flow is governed by
a directed communication graph G = {N , E ,A}, where
N = {1, 2, · · · , N} is the set sensors regarded as nodes
in G. E ⊆ N ×N is a set of edges, and A = [aij ] ∈ RN×N

denotes the adjacency matrix. The element aij is the weight
of the edge (i, j), and aij = 1 if and only if (i, j) ∈ E and
aij = 0 otherwise. Specifically, (i, j) ∈ E means that the
i-th node can send information to the j-th node, i.e., i is a
neighbour of j. The set of neighbours of node j is described
by Nj = {i : (i, j) ∈ E}.

The goal of this paper is to design a distributed state
estimation algorithm so that the state estimates x̂(t) at a
given node i ∈ N converges to the true state x(t) in finite-
time, i.e. x̃(t) ≜ x̂(t) − x(t) = 0,∀t ≥ Tc, where Tc is a
finite convergence time.

Different from the goal in [15] to achieve state reconstruc-
tion at all nodes, the task in this paper is to reconstruct the
full state at certain nodes, which is more common and eco-
nomical in practical applications. As such, the requirement
for a strong connection is weakened herein.

Assumption 1: Given the directed communication graph
G, for each node i = 1, . . . , N , there exists an open
Hamiltonian path that ends at node i and connects to all
other nodes j ∈ V\i without repetition.

B. Volterra operator and non-asymptotic kernel

In this work, the distributed state estimation is achieved
by an observability decomposition and initial state estima-
tion. Thanks to the adopted kernel-based estimation method,
which is first proposed in [17], by suitably designed kernel
functions, the initial conditions of the state variables can
be retrieved in finite time. For readers’ convenience and
to make the paper sufficiently self-contained, some key
facts instrumental to the proposed framework are recalled
subsequently. The interested reader is referred to [17], [20]
and [21] for a deeper insight on the algebra of Volterra
integral operators.

Let r(t) ∈ R, ∀t ≥ 0 be an i-th order differentiable signal.
Given a Hilbert-Schmidt (HS) Kernel Function K(·, ·) : R×
R → R, the Volterra integral operator induced by the kernel
function is

[VKr] (t) ≜
∫ t

0

K(t, τ)r(τ)dτ, t ∈ R≥0 . (3)

Consider an N -th order Bivariate Linear Non-asymptotic
Kernel (BL-NK) function K(t, τ) in the shape of

K(t, τ) = e−ω(t−τ)
(
1− e−ω(t−τ)

)N
, (4)

with ω ∈ R>0 being the tuning parameters. This type of
kernel functions are characterised by two useful features:

• It is non-asymptotic up to the n-th order i.e.
K(i)(t, t) = 0,∀i ∈ {1 . . . n − 1}, so that the Volterra
image of the signal derivative can be expressed as[

VKr(i)
]
(t) =

i−1∑
j=0

(−1)i−jr(j)(0)K(i−j−1)(t, 0)

+ (−1)i [VK(i)r] (t),

(5)

in which effects of the lower-order derivatives
r(t), r(1)(t), . . . , r(i−1)(t) are removed.

• The Volterra operators induced by this kernel can be
implemented as an LTI system, processing the available
I/O signals and producing the transformed signals as
output. To be specific, letting ξ(t) = [VK(i)r] (t), it
holds that

κ(1)(t) = Gκ(t) + Er(t)
ξ(t) = 1N+1κ(t)

(6)

with κ(0) = 0 ∈ RN+1 and where G is
a diagonal, time-invariant and Hurwitz matrix, de-
fined by G = diag(−ω,−2ω, . . . ,−(N + 1)ω), and
E = [λi,1, λi,2, . . . , λi,N+1]

⊤
, with constant elements

λi,j = (−1)j−1

(
N

j − 1

)
(jω)i, j = 1, 2, · · · , N + 1.

1N+1 is an N + 1 dimensional row vector of ones.

III. DISTRIBUTED KERNEL-BASED FINITE-TIME
OBSERVER

In this section, a distributed state estimation scheme is
proposed deploying the kernel-based observer that guarantees
finite-time convergence properties. Under Assumption 1 that
the communication graph has an open Hamiltonian path P
rooting at node i, by successive observability decompositions
as in [7] along the Hamiltonian path, there exists a corre-
sponding linear transformation zP(t) = TPx(t) and making
the transformed system a downward stair form:

z
(1)
P (t) = ĀPzP(t), ȳP(t) = C̄PzP(t), (7)

with

ĀP =TPAT −1
P

=


ĀP,11 0 0 · · · 0
ĀP,21 ĀP,22 0 · · · 0

...
...

. . .
. . . 0

ĀP,(N−1)1 ĀP,(N−1)2 · · · ĀP,(N−1)(N−1) 0
ĀP,N1 ĀP,N2 · · · ĀP,N(N−1) ĀP,NN

,

C̄P = CPTP

=


C̄P,11 0 0 · · · 0
C̄P,21 C̄P,22 0 · · · 0

...
...

. . .
. . . 0

C̄P,(N−1)1 C̄P,(N−1)2 · · · C̄P,(N−1)(N−1) 0
C̄P,N1 C̄P,N2 · · · C̄P,N(N−1) C̄P,NN

,
where (C̄P,jj , ĀP,jj) are observable ∀j = 1, . . . , N .



Let us partition the state vector and the output signal
according to the size of AP,jj and CP,jj ,∀j = 1, . . . , N
as follows

zP(t) =
[
zP,1, zP,2, · · · , zP,N

]⊤
,

ȳP(t) =
[
ȳP,1, ȳP,2, · · · , ȳP,N

]⊤
.

where zP,j(t) ∈ RnP,j , ȳP,j(t) ∈ RmP,j with
∑N

j=1 nP,j =

n and
∑N

j=1 mP,j = m. Note that the transformation TP

is determined by the Hamiltonian path ending at node i.
ȳP(t) ∈ Rm is a permutation of y(t) based on certain
path. That is to say, the path P defines an index set
{k1, k2, . . . , kN−1, i} that ordering the topological communi-
cation and it holds that ȳP,j(t) = ykj

(t),∀j = 1, . . . , N −1.
The subsequent analysis is conducted with regard to the
transformed system (7).

A. State estimation at the starting node

Considering the starting node of the chosen Hamiltonian
path whose dynamics writes

z
(1)
P,1(t) = ĀP,11zP,1(t), ȳP,1(t) = C̄P,11zP,1(t), (8)

Recalling the fact that zP,1(t) is fully observable from
the single measurement ȳP,1(t), there exists another linear
transformation that ζP,1(t) = TP,1zP,1(t) resulting in an
observer canonical form with

ζ
(1)
P,1(t) = ǍP,1ζP,1(t), ȳP,1(t) = ČP,1ζP,1(t), (9)

with

ǍP,1 = TP,1ĀP,1T
−1
P,1 =


anP,1−1,1 1 0 · · · 0
anP,1−2,1 0 1 · · · 0

...
...

. . . . . . 0
a1,1 0 · · · 0 1
a0,1 0 · · · 0 0


and ČP,1 =

[
1 0 · · · 0

]
, in which (−a0,1,−a1,1, · · · ,

−anP,1−1,1) are the coefficients of the characteristic poly-
nomial of matrix ĀP,11. For simplicity, we are assuming the
system to have a single output. Indeed, the proposed method
can be further extended to observers for multi-outputs by
further observability decomposition [22].

In this context, system (9) admits the following I/O form

ȳ
(nP,1)
P,1 =

nP,1−1∑
p=0

ap,1ȳ
(p)
P,1 (10)

Furthermore, the state variables of the realization (9) can
be expressed in terms of the output derivatives as

ζP,1(t) = ȳ
(r)
P,1(t)−

r−1∑
j=0

anP,1−r+p,1ȳ
(p)
P,1(t). (11)

where the convention
∑k

p=0{·} = 0, for k < 0 has been
used. Applying the Volterra operator induced by an nP,1th

order non-asymptoic kernel function, one can obtain

nP,1−1∑
p=0

(−1)nP,1−p−1ȳ
(p)
P,1(0)K

(nP,1−p−1)(t, 0)

+(−1)nP,1
[
V
K(nP,1) ȳP,1

]
(t)=

nP,1−1∑
q=0

aq,1

(
(−1)q[VK(q) ȳP,1] (t)

+

q−1∑
p=0

(−1)p+q−1ȳ
(p)
P,1(0)K

q−p−1(t, 0)

)
(12)

After some algebra, (12) can be rearranged as
µP,1(t) = γP,1(t)ζP,1(0) (13)

where

µP,1(t) ≜(−1)nP,1−1
[
V
K(nP,1) ȳP,1

]
(t)

+

nP,1−1∑
p=0

ap,1(−1)p [VK(p) ȳi,1] (t)

γP,1(t) ≜
[
(−1)nP,1−1K(nP,1−1)(t, 0), · · · ,K(t, 0)

]
.

In order to solve for the initial state ζP,1(0), one can aug-
ment the scalar equation by the covariance filtering method,
leading to

SP,1(t) = L −1{F (s)γ⊤
P,1µP,1(s)}(t), (14)

RP,1(t) = L −1{F (s)γ⊤
P,1γP,1}(t), (15)

where F (s) = 1
s+g is a first-order low-pass filter with zero

initial conditions with a positive g as the forgetting factor.
L denotes the inverse Laplacian transformation. Being F (s)
a linear operator, it holds that

SP,1(t) = RP,1(t)ζP,1(0). (16)

Note that the vector SP,1(t) is composed of a linear com-
bination of Volterra images with respect to ȳP,1, which can
be calculated as the output the LTI system (6) induced by
respective kernels K(t, τ). The matrix RP,1(t) is guaranteed
to be non-singular ∀t > 0, thanks to the certain shape
of the kernel function [17]. Thereby, the state observer is
formulated as

ζ̂P,1(0) =

{
R−1

P,1(t)SP,1(t), t > σ1,
0, otherwise,

(17)

where σ1 ∈ R>0 is an small-valued threshold for estimator
activation. In such case, the instantaneous state can be
calculated by

ζ̂P,1(t) = eǍP,11tζ̂P,1(0),∀t > σ1. (18)

Equivalently,

ẑP,1(t) = T−1
P,1e

ǍP,11tζP,1(0),∀t > σ1. (19)



B. State estimation at the non-starting nodes

For nodes j ≥ 2, their dynamics are described by

z
(1)
P,j(t) = ĀP,jjzi,j(t) +

j−1∑
k=1

ĀP,kjzi,k(t),

y̌P,j(t) = C̄P,jjzP,j(t).

(20)

where y̌P,j(t) ≜ ȳP,j(t) −
j−1∑
k=1

C̄P,kjzP,k(t), with zP,k(t)

received from the kth node through the Hamiltonian path.
Accordingly, there exists a linear transform ζP,j(t) =
TP,jzP,j(t) converting the system dynamics into an observer
canonical form:

ζ
(1)
P,j(t) = ǍP,jζP,j(t) + TP,j

j−1∑
k=1

ĀP,kjzP,k(t),

y̌P,j(t) = ČP,jzP,j(t),

(21)

where

ǍP,j = TP,1ĀP,jjT
−1
P,j =


anP,j−1,j 1 0 · · · 0
anP,j−2,j 0 1 · · · 0

...
...

. . . . . . 0
a1,j 0 · · · 0 1
a0,j 0 · · · 0 0

 ,

and ČP,1 =
[
1 0 · · · 0

]
. For simplicity, we stack the

input into a vector with the dimension ρP,j =
∑j−1

p=0 nP,p,
as follows

uP,j(t) = [zP,1(t)
⊤, zP,2(t)

⊤, . . . , zP,j−1(t)
⊤]⊤

≜ [uPj,1(t), uPj,2(t), . . . , uPj,ρP,j
(t)],

and define

B̌P,j ≜ TP,j

[
ĀP,1j , ĀP,2j , . . . , ĀP,(j−1)j

]
≜


bP,11 bP,12 · · · bP,1(ρP,j)

bPj,21 bPj,22 · · · bPj,2(ρP,j)

...
...

...
bPj,nj1(t) bPj,nj2(t) · · · bPj,nP,j(ρP,j)

 .

For the sake of further analysis, let us rewrite the system
(21) in the I/O form

y̌
(nP,j)
P,j (t) =

nP,j−1∑
p=0

ap,j y̌
(p)
P,j(t) +

ρP,j∑
k=1

nP,j−1∑
q=0

bPj,kqu
(q)
Pj,k(t).

(22)

The rth state variable of system (21) can be expressed as

ζP,j,r(t) = y̌
(r)
P,j(t)−

r−1∑
p=0

anP,j−r+p,1y̌
(p)
P,j(t)

−
ρP,j∑
k=1

r−1∑
q=0

bPj,k(nP,j−r+q)u
(q)
Pj,k(t).

(23)

Applying the Volterra operator VK to both sides of (22), one
can obtain
nP,j−1∑
p=0

(−1)nP,j−p−1y̌
(p)
P,j(0)K

(nP,j−p−1)(t, 0)

+(−1)nP,j
[
V
K(ni,j) y̌P,j

]
(t)=

nP,j−1∑
q=0

aq,j

(
(−1)q[VK(q) y̌P,j ] (t)

+

q−1∑
p=0

(−1)p+q−1y̌
(p)
P,j(0)K

q−p−1(t, 0)

)

+

ρP,j∑
k=1

r−1∑
q=0

bPj,k(nP,j−r+q)

(
(−1)q[VK(q)uPj,k] (t)

+

q−1∑
p=0

(−1)p+q−1u
(p)
Pj,k(0)K

q−p−1(t, 0)

)
.

The above equation can be rearranged as

µP,j(t) = γP,j(t)ζP,j(0), (24)

where

µP,j(t) ≜
ρP,j∑
k=1

r−1∑
q=0

bPj,kq(−1)q[VK(q)uPj,k] (t)

(−1)nP,j−1
[
V
K(nP,j) ȳP,j

]
(t)+

ni,j−1∑
q=0

aq,j(−1)q [VK(q) y̌P,j ] (t),

γP,j(t) ≜
[
(−1)nP,j−1K(nP,j−1)(t, 0), · · · ,K(t, 0)

]
.

Similarly to (25), by leveraging the covariance filtering
technique, one can obtain

SP,j(t) = L −1{F (s)γ⊤
P,jµP,j(s)}(t) (25)

RP,j(t) = L −1{F (s)γ⊤
P,jγP,j}(t). (26)

In consequence, the initial state of the non-starting nodes for
j ≤ 2 can be retrieved in order along the path

ζ̂P,j(0) =

{
RP,j(t)

−1SP,j(t), t > σj ,
0, otherwise, (27)

with the positive activation threshold σj ∈ R>0, verifying
σj ≥ σj−1. Then, the initial condition of system (20) can be
recovered as

ẑP,j(0) = T−1
P,j ζ̂P,j(0), (28)

By successively solving the observer equation (27) at each
node following the path P till the N th agent, it is possible
to recover the full state at the N th node with the initial
conditions, ∀t > σN

ẑP,N (t) = eĀP t[zP,1(0)
⊤, zP,2(0)

⊤, . . . , zP,N (0)⊤]⊤.

Consequently, the state vector of the original system is
retrieved at the ith node as

x̂(t) = T −1
P ẑP,N (t). (29)

It is worth noting that, the Volterra operator induced by
the BL-NK is internally stable and the mapping system
(6) is BIBO. Therefore, with the linear operations and



algebraic calculations in (13),(17), (24), (27) and (29), if
the measurement is perturbed by an additive noise, the state
estimation error is guaranteed to be bounded with respect to
bounded noise.

Remark 3.1: To recover the full state at a specific node,
only an open Hamiltonian path is required. In the case of
reconstruction in all nodes of the graph, a closed communi-
cation loop is needed.

Remark 3.2: The proposed method transfers the initial
state ẑi,j(0) among the nodes and reconstructs the instant
value locally at a specific node. In such case, the effects
of communication delay can be avoided compared to meth-
ods requiring continuous communication with instant state
ẑi,j(t). Moreover, the initial conditions are not necessarily to
be transferred at each time step. Hence, the communication
frequency can be reduced leading to a possible relief of
the communication burden. Indeed, the open-loop prediction
may cause error accumulation, especially in the presence
of model uncertainties. Nonetheless, such issues can be
mitigated by periodically resetting of the estimator.

IV. NUMERICAL EXAMPLES

In this section, the performance of the proposed distributed
observer is examined by a distributed system consisting of
three nodes:

x(1)(t) = Ax(t), y(t) = Cx(t),

where x(t) ∈ R6 and y(t) ∈ R3 and

A =


−1 0 0 0 0 0
−1 1 1 0 0 0
1 −2 −1 −1 1 1
0 0 0 −1 0 0
−8 1 −1 −1 −2 0
4 −0.5 0.5 0 0 −4


C =

1 0 0 2 0 0
2 0 0 1 0 0
2 0 5 0 0 3

 =

C1

C2

C3

.
It is readily seen that the pair (C,A) is fully observable,
while none of the pair (Ci, A) for each sensor is fully observ-
able. The communication network is given by the directed
graph shown in Fig. 1. The initial condition of the overall

1

2 3

Fig. 1. Communication topology among nodes

system is given by x(0) =
[
1 3 −2 −3 −1 2

]⊤
.

To verify the robustness of the observer, we also consider
a uniformly distributed random noise dy(t) additively con-
taminating the sensors, i.e. yd(t) = y(t) + dy(t) and the
corresponding signal-noise ratio (SNR) is 35.3 .The goal is
to estimate the full state vector x(t) locally at node 3. There
exists an open Hamiltonian path P : 1 → 2 → 3. By suc-
cessive observability decompositions, a linear transformation

zP(t) = TPx(t) can be designed such that

TP =


−0.4472 0 0 −0.8944 0 0
−0.8944 0 0 0.4472 0 0

0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

.

Consequently, the global state vector z(t) ∈ R6 are par-
titioned as zP(t) =

[
zP,1(t) zP,2(t) zP,3(t)

]⊤
, where

zP,1(t), zP,2(t) ∈ R and zP,3(t) ∈ R4, corresponding to the
partition of the system matrix.

Deploying the proposed state estimation scheme with the
kernel parameters set to N = 4 and ω = 1, the full state
vector is reconstructed locally at Node 3, as shown in Fig. 2.
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Fig. 2. Estimates of state x in noise-free scenario.
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Fig. 3. State estimation error in the noise-free scenario.

The performance of the kernel-based estimation method
is compared with the method proposed in [14]. It has been
shown that both methods are able to reconstruct the entire
state vector x(t) at a given node in finite time. As compared
in Fig. 3, the estimation error of both methods goes to zero



while the kernel-based method shows faster convergence. To
be specific, the convergence is reached immediately after the
activation while the activation time can be chosen arbitrarily
small.

In the noisy scenario, the estimation results of the two
estimators are plotted in Fig. 4. The kernel-based method
provides instantaneous convergence albeit with a slight over-
shoot at the beginning. Both methods show comparable
noise immunity whereas the proposed method has a higher
convergence rate.
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Fig. 4. Estimates of state x in the noisy scenario.

0 1 2 3 4 5

0

2

4

6

Kernel-based approach

FCT-BPEBO approach

Fig. 5. State estimation error in the noisy scenario.

V. CONCLUSION

In this paper, a distributed framework is designed under
the assumption of an open Hamiltonian path. By successive
observability decomposition, the distributed network can be
rearranged into a series of connected observable subsystems.
Making use of the Volterra operator and the non-asymptotic
kernel function, the initial condition of each subsystem can
be estimated in order based on communication through the
predefined path. Consequently, at the end of the Hamiltonian
path which is the interested node, the full state vector can
be reconstructed within a finite time interval. Moreover, the

proposed method also offers benefits in terms of avoiding
the effects of communication delay and limited band rate.
Future research efforts can be paid to addressing time-
varying graphs and resilient state estimation.
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