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Abstract

Background: Prostate cancer (PCa) is a clinically heterogeneous disease. The cre-

ation of an expression‐based subtyping model based on prostate‐specific biological

processes was sought.

Methods: Unsupervised machine learning of gene expression profiles from pro-

spectively collected primary prostate tumors (training, n = 32,000; evaluation,

n = 68,547) was used to create a prostate subtyping classifier (PSC) based on basal

versus luminal cell expression patterns and other gene signatures relevant to PCa
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biology. Subtype molecular pathways and clinical characteristics were explored in

five other clinical cohorts.

Results: Clustering derived four subtypes: luminal differentiated (LD), luminal

proliferating (LP), basal immune (BI), and basal neuroendocrine (BN). LP and LD

tumors both had higher androgen receptor activity. LP tumors also had a higher

expression of cell proliferation genes, MYC activity, and characteristics of homol-

ogous recombination deficiency. BI tumors possessed significant interferon γactivity

and immune infiltration on immunohistochemistry. BN tumors were characterized

by lower androgen receptor activity expression, lower immune infiltration, and

enrichment with neuroendocrine expression patterns. Patients with LD tumors had

less aggressive tumor characteristics and the longest time to metastasis after sur-

gery. Only patients with BI tumors derived benefit from radiotherapy after surgery

in terms of time to metastasis (hazard ratio [HR], 0.09; 95% CI, 0.01–0.71; n = 855).

In a phase 3 trial that randomized patients with metastatic PCa to androgen

deprivation with or without docetaxel (n = 108), only patients with LP tumors

derived survival benefit from docetaxel (HR, 0.21; 95% CI, 0.09–0.51).

Conclusions: With the use of expression profiles from over 100,000 tumors, a PSC

was developed that identified four subtypes with distinct biological and clinical

features.

Plain language summary

� Prostate cancer can behave in an indolent or aggressive manner and vary in how

it responds to certain treatments.

� To differentiate prostate cancer on the basis of biological features, we developed

a novel RNA signature by using data from over 100,000 prostate tumors—the

largest data set of its kind.

� This signature can inform patients and physicians on tumor aggressiveness and

susceptibilities to treatments to help personalize cancer management.

K E Y W O R D S

biomarkers, gene expression, gene expression profiling, genetics, humans, pathology, prognosis,

prostatic neoplasms, tumor

INTRODUCTION

Prostate cancer (PCa) results in more than 375,000 deaths world-

wide on an annual basis and represents a clinically and biologically

diverse disease process.1–5 A substantial heterogeneity of prognosis

exists even within subgroups of PCa defined by clinicopathologic

features.6,7 As we move beyond clinicopathologic characteristics,

advanced PCa care has entered an era of precision oncology in which

individualized treatment courses might be determined on the basis of

tumor molecular characteristics.8 Efforts to molecularly characterize

earlier stage disease include landmark work from The Cancer

Genome Atlas (TCGA), which defined several tumor subtypes.2

However, this work was limited by a small sample size without broad

representation of clinicopathologic features, and was largely based

on tumors from patients of European ancestry. Additionally, with

advances in our understanding of identifiable factors and biological

processes defining molecular subtypes for PCa,9–11 new efforts to

comprehensively subclassify PCa using large, diverse cohorts are

warranted.

Within breast cancer, a molecular subtyping method (formerly

Prediction Analysis of Microarray 50 [PAM50]) based on molecular

features that distinguish basal from luminal cell of origin is widely

used in clinical practice for patients with early‐stage, hormone

receptor–positive tumors and helps predict treatment susceptibil-

ity.12,13 We hypothesized that molecular signatures using PCa‐
specific cell‐of‐origin features could delineate molecular subtypes

with distinct biological processes and treatment susceptibilities.

To that end, here we used gene expression profiles from over

100,000 primary prostate tumors collected prospectively to create

and characterize an expression‐based prostate subtyping classifier
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(PSC) on the basis of molecular features defining cell of origin and

pathways specific to PCa. We then associated PSC subtypes with

previously validated signatures for cancer biological processes and

began to evaluate differential treatment susceptibilities using multi-

ple independent cohorts in exploratory analyses.

MATERIALS AND METHODS

Patients

Seven independent tumor and patient cohorts were used for the

development and characterization of a PSC in exploratory analyses

with respect to genomic signatures, molecular pathways, and clinical

end points. The first two cohorts were based on deidentified gene

expression profiles obtained prospectively from clinical usage of the

Decipher prostate genomic classifier between October 2017 and

February 2022 (Veracyte Inc, San Diego, California). These tumors

were divided into two cohorts: a model training cohort (n = 32,000)

and an evaluation cohort (n = 68,547; Tables S1 and S2). For all

analyses after model creation, the training and evaluation cohorts

were combined into the Decipher Genomics Resource for Intelligent

Discovery (GRID) cohort. Ordering criteria for the genomic classifier

exclude prior treatment with hormone therapies or radiotherapy.

These tumor samples were obtained by either prostate biopsy or

radical prostatectomy. All tumors were prospectively gathered in the

GRID (NCT02609269).14

Data were also obtained from large, retrospective cohorts from

the Johns Hopkins Medical Institute (JHMI; n = 498; Table S3). This

cohort included patients who underwent radical prostatectomy with

no additional treatments until the end of follow‐up or metastatic

recurrence. Details on this cohort can be found in prior work.15 Re-

cords from another retrospective cohort were obtained from indi-

vidual patient data generated in a prior meta‐analysis with long‐term

follow‐up (META855; n = 855; Table S4).16 This was used to test the

model’s associations with time to metastasis after radical prosta-

tectomy with or without adjuvant radiation. In the E3805 CHAAR-

TED trial, patients with metastatic, hormone‐sensitive PCa were

randomized to androgen deprivation therapy (ADT) with or without

six cycles of docetaxel.17 Results from this phase 3 trial showed that

the addition of docetaxel improves overall survival. A subset of tu-

mors from patients in this trial underwent gene expression profiling

(CHAARTED cohort; n = 108; Table S5) and comprised a fifth

cohort.18 From this subset, PSC subtypes were correlated with

response to docetaxel. A retrospective cohort of Asian patients from

the National Cancer Centre Singapore (NCCS) was assessed to

compare the frequency of PSC subtypes between Asian patients and

White and Black patients from the JHMI (Table S6).19

Finally, data from patients with PCa in TCGA (n = 491; Table S7)

were downloaded from the cBioPortal for a seventh cohort.20,21

Serum prostate‐specific antigen (PSA) values for TCGA were down-

loaded from the Broad Institute.22 Data from this cohort were used

to associate the PSC with genomic change characteristics of

homologous recombination deficiency (HRD). Immunohistochemistry

data from Saltz et al. (n = 330)23 were used to associate the PSC with

percent tumor‐infiltrating lymphocyte fraction.

Expression data

The expression assay data for the two GRID cohorts, the META855

cohort, and the CHAARTED cohort were derived from the Human

Exon 1.0 ST oligonucleotide microarray (Thermo Fisher, Santa Clara,

California) to measure the expression of 46,050 genes and noncoding

RNA transcripts. Microarray processing was performed in a Clinical

Laboratory Improvement Amendments‐certified clinical operations

laboratory (Veracyte Inc). Microarrays were normalized by using

single‐channel array normalization.24 Expression data from the JHMI,

NCCS, META855, TCGA, and CHAARTED cohorts were quantile

matched to the GRID cohorts on the basis of pathologic stage,

Gleason group, and age.25

Model creation

All machine‐learning methods for tumor clustering, model develop-

ment, and model training and citations for expression signatures used

for clustering can be found in Supplemental Methods, Tables S8–S11,

and Figures S1 and S2. We selected an a priori list of genes and gene

signatures on the basis of processes relevant to PCa biology and

treatment susceptibilities including a signature for a luminal versus

basal cell of origin.26 This was done as opposed to using the complete

list of gene expression levels to achieve the primary objective of

creating a signature that could classify tumors in clinically meaningful

ways. An unsupervised analysis using a previously validated expres-

sion signature for basal versus luminal benign prostate cells was used

for the initial clustering among these selected signatures and genes

(Table S9). A radar plot was created to visually compare PSC sub-

types based on an ad hoc grouping of expression‐based signatures

categorized as reflections of cancer hallmarks (Supplemental Data).27

Statistical tests

Time‐to‐event end points were shown graphically using the Kaplan–

Meier method. Multivariable Cox regressions were used to compare

time to failures. Within the JHMI cohort, time to metastasis after

radical prostatectomy was assessed by adjusting for grade group, log‐
transformed serum PSA, patient‐defined race, and stage at prosta-

tectomy. Time to metastasis in patients who did and did not receive

radiotherapy after prostatectomy was assessed in META855 by

adjusting for age at diagnosis, grade group, PSA, and stage at pros-

tatectomy. In the CHAARTED cohort, overall survival was assessed

by adjusting for age, Eastern Cooperative Oncology Group (ECOG)

functional status, prior local treatment, disease volume, and doce-

taxel receipt. These Cox regressions were repeated for comparison
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to the PAM50 model. For the analysis in CHAARTED, this was limited

to patients with non–luminal A and luminal A tumors because of prior

work that suggested this group derived more benefit from doce-

taxel.18 The statistical significance of differences in continuous and

categorical variables between groups was assessed using Kruskal–

Wallis and Pearson X2 tests, respectively. Given the exploratory na-

ture of our work, no adjustments for multiple hypothesis testing were

performed, all tests were two sided, and all analyses were performed

using R version 3.6.2.

RESULTS

PSC model definition

A panel of eight genes and 13 gene expression signatures relevant to

PCa carcinogenesis from expert curation of the literature was used

as seed features in an unsupervised hierarchical clustering solution

for a training cohort consisting of 32,000 genome‐wide expression

profiles from biopsy and radical prostatectomy samples spanning the

clinical spectrum of localized disease (Supplemental Results and

Figures S3 and S8). The categories of seed features included those

related to androgen receptor (AR) activity, basal–luminal cell of

origin, tumor cell proliferation, and the tumor‐immune microenvi-

ronment. Four distinct prostate subtypes were arrived at in the

training cohort: luminal differentiated (LD), luminal proliferating (LP),

basal immune (BI), and basal neuroendocrine (BN). The final PSC

model (Figure 1A) showed substantial luminal and basal class change

as compared to the PAM50 breast cancer model in the combined

training and evaluation GRID cohort (Figure 1B).12,13 Distinct PCa‐
specific findings within the subtypes were also noted. The BN sub-

type showed a high frequency of RB loss, whereas a low frequency of

PTEN loss was seen in the BI subtype. The lowest levels of a p53

mutation signature were observed in the LD class (Figure 1C). ERG

fusion was relatively stable across different subtypes, whereas BN

tumors were significantly enriched for an SPOP mutation signature

(Figure 1C).28 Intriguingly, the BN class also had increased expression

of neuroendocrine biology signatures for PCa (Figure 1D and

Figure S9).29 TCGA subtypes based on multiomic analyses including

DNA, RNA, and protein expression data in 333 tumors did not show

an obvious association with the PSC but was limited by sample size

(Figure S10).2

Molecular pathways defining subtypes

PSC classes were compared on the basis of signatures that repre-

sented relevant molecular pathways in PCa (Figure 2A). In general,

the luminal subtypes tended to harbor higher levels of androgen

receptor transcriptional activity and expression of prostate‐specific

membrane antigen (PSMA; FOLH1) as well as prostate luminal

genes such as KLK2, KLK3 (PSA), and KLK4. The hallmark of cancer

MYC activity signature 1 (enriched with genes related to cell cycle

and DNA repair processes) was higher in LP tumors, whereas MYC

activity signature 2 (enriched with RNA processing and ribosomal

biogenesis) was higher in BN tumors (Table S9). LP tumors had higher

F I G U R E 1 Prostate subtyping classifier compared to other subtypes. (A) The final prostate subtyping classifier groupings are
differentiated by the biomarkers used to cluster tumors for model development. (B) There was substantial class change between the breast
cancer model PAM50 and the prostate subtyping classifier model. (C) Subtypes differed by relevant copy number losses and mutations on the

basis of previously validated expression signatures. (D) The basal neuroendocrine subtype resembled phenotypically neuroendocrine tumors
on the basis of expression patterns. p values are from Kruskal–Wallis tests. All data here are from the Genomics Resource for Intelligent
Discovery cohort. BI indicates basal immune; BN, basal neuroendocrine; LD, luminal differentiated; LP, luminal proliferating.
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levels of the hallmark for PI3K/mTOR activity. BI tumors tended to

have more interferon γ activity, and accordingly immunohistochem-

istry analyses in TCGA showed that these tumors tended to have a

greater proportion of tumor‐infiltrating lymphocytes (Figure 2B). LP

and BI tumors tended to have more tumors with characteristics

suggestive of HRD on the basis of a previously validated expression

signature (Figure 2C)30 and DNA‐level genomic changes observed in

TCGA (Figure 2D).

PSC and clinicopathologic correlates

Consistent with prior work that demonstrated differences in tumor

expression profiles by race,31 Asian and Black patients tended to

harbor more BN tumors compared to White patients (Figure S11).

Similarly, serum PSA values (at diagnosis or preoperative) showed

variance across PSC class, with BN harboring a lower PSA distribu-

tion whereas both luminal subtypes had higher baseline PSA distri-

bution (Figure S12a). Patients with LD tumors tended to harbor a

lower frequency of non–organ‐confined disease, and a higher pro-

portion of LD had lower grade disease (Figure S12b,c). On the basis

of three commercially available prognostic test scores,32 LD tumors

had the lowest median scores (genomic risks 1–3; Table S6) and were

characterized by cancer hallmarks associated with a higher degree of

cellular differentiation, more similar to nonneoplastic luminal cells

(Supplemental Data),27 which suggested that overall, LD tumors had

the least aggressive tumor biology (Figure 3). Accordingly, in the

JHMI cohort, patients with LD tumors experienced a favorable time

to metastasis after radical prostatectomy compared to patients with

LP and BI tumors (Figure 4A and Table S12).

Notably, LP tumors had the highest levels of genomic risk,33 a

signature for cell cycle proliferation genes (Figure 3A and Table S8).33

F I G U R E 2 Molecular pathways defining the prostate subtyping classifier. (A) The prostate subtyping classifier model differentiated tumors
on the basis of relevant molecular pathways in the Genomics Resource for Intelligent Discovery (GRID) cohort (Kruskal–Wallis test). (B) The
percentage of tumor samples occupied by tumor‐infiltrating lymphocytes was highest in the basal immune tumors on the basis of

immunohistochemistry data from The Cancer Genome Atlas (Kruskal–Wallis test; numbers are medians). (C,D) Luminal proliferating and basal
immune tumors characteristically resembled tumors with homologous recombination deficiency on the basis of (C) an expression signature in
the GRID cohort (X2 test) and (D) genomic characteristics from The Cancer Genome Atlas (p values are from Kruskal–Wallis tests; numbers are

medians). AR indicates androgen receptor; BI, basal immune; BN, basal neuroendocrine; HRD, homologous recombination deficiency; HRD‐P+,
homologous recombination deficiency prostate cancer signature; IFNG, interferon γ; LD, luminal differentiated; LP, luminal proliferating;
PSMA, prostate‐specific membrane antigen; TIL, tumor‐infiltrating lymphocytes.
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F I G U R E 3 Clinical transcriptomic biomarkers and prostate subtyping classifier. (A) Luminal differentiated tumors tended to harbor lower
gene expression risk scores. Luminal proliferating tumors were predicted to be more responsive to taxane chemotherapy compared to the

other subtypes, whereas basal immune tumors were predicted to be the least responsive to androgen deprivation therapy. Basal immune
tumors were predicted to be the most responsive to radiotherapy (p values are from Kruskal–Wallis tests). (B) A radar plot visually compares
tumors on the basis of cancer hallmarks. Plotted are the means or inverse means of the percentile ranks of various signatures

(Supplemental Data) with the center to outer edge representing the 0th to 100th percentile. All data here are from the Genomics Resource for
Intelligent Discovery cohort. ADT indicates androgen deprivation therapy; BI, basal immune; BN, basal neuroendocrine; LD, luminal
differentiated; LP, luminal proliferating; RT, radiotherapy.

F I G U R E 4 Clinical outcomes associated with the prostate subtyping classifier. (A) Patients with luminal differentiated and basal

neuroendocrine tumors experienced the longest time to metastatic recurrence after radical prostatectomy. Note that in the Johns Hopkins
Medical Institute natural history cohort (no hormone therapy or radiotherapy before metastatic onset), patients with luminal differentiated
tumors did not differ from those with basal neuroendocrine tumors significantly, but few patients in this cohort were classified with basal

neuroendocrine tumors with only two metastatic events. (B) In patients with metastatic hormone‐sensitive prostate cancer who were
randomized to androgen deprivation with or without docetaxel, patients with luminal proliferating tumors benefited from chemotherapy
whereas those with other prostate subtyping classifier subtypes did not. (C) Patients with basal immune tumors benefited from adjuvant
radiotherapy after prostatectomy in a retrospective cohort whereas patients with other prostate subtyping classifier subtypes did not (all

hazard ratios are from the multivariable Cox regressions in Tables S10–S12). ADT indicates androgen deprivation therapy; BI, basal immune;
BN, basal neuroendocrine; HR, hazard ratio; JHMI, Johns Hopkins Medical Institute; LD, luminal differentiated; LP, luminal proliferating; PSC,
prostate subtyping classifier; RT, radiotherapy.
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Consistent with this finding, LP tumors were associated with the

greatest predicted sensitivity to docetaxel chemotherapy (a micro-

tubule inhibitor) on the basis of an in vitro drug response expression

signature derived from the Cancer Cell Line Encyclopedia and NCI‐
60 resources (Figure 3A, Table S8, and Supplemental Methods).

Clinical support for these in silico findings were obtained in an

exploratory analysis of the CHAARTED phase 3 trial that randomized

patients with metastatic, hormone‐sensitive PCa to ADT or ADT with

docetaxel. Patients with LP tumors experienced greater overall sur-

vival benefit from the addition of docetaxel compared to the other

PSC types (Figure 4B and Table S13).

BI tumors were associated with the lowest predicted response to

ADT but were notably predicted to be more responsive to radio-

therapy compared to the other PSC classes on the basis of the

postoperative radiation therapy outcomes score (Figure 3 and Ta-

ble S8). In the META855 cohort,16 only patients with BI tumors

appeared to benefit from radiotherapy after radical prostatectomy in

terms of time to metastasis (Figure 4C and Table S14a–c).

In broad comparison, the outcomes for patients stratified by

PAM50 subgroups in the JHMI, CHAARTED, and META855 cohorts

produced less significant or nonsignificant hazard ratios compared to

those of the PSC (Tables S15–S17). In particular, the observed

treatment effects are larger with the PSC model as compared to

PAM50. For example, the hazard ratio for the docetaxel treatment

effect in PSC LP tumors is 0.21 (95% CI, 0.09–0.51; p < .001),

whereas with the cognate PAM50 luminal B tumors it is 0.44 (95%

CI, 0.24–0.81; p = .008). This suggests that the PSC is identifying a

group of patients with greater sensitivity to the addition of docetaxel

than does PAM50. Similar results were observed after radical pros-

tatectomy (JHMI cohort) and radiation after surgery (META855

cohort).

DISCUSSION

PCa is a heterogeneous disease even in the early localized stage. For

localized PCa, there are multiple seemingly equivalent therapies

(surgery and radiation) but clinical experience informs us that not all

patients benefit similarly from these treatments.6,7 Similarly, in more

advanced PCa there are now a number of Food and Drug

Administration–approved systemic therapies without the needed

evidence guiding preferential use or sequencing of these agents.34

Efforts to subclassify tumors on the basis of relevant biological

processes could provide meaningful avenues to personalize treat-

ment. Prior subclassifying methods have been limited in clinical

application or simply prognosticated tumor aggressiveness.2,35–37

Here, we use an unsupervised machine‐learning approach that le-

verages gene expression profiles from over 100,000 tumors to create

and evaluate a PCa classification that, similar to other epithelial tu-

mors, can be defined to a large degree by a tumor’s similarity to the

biology of normal basal or luminal cells. This fundamental aspect of

PCa tumor biology may be clinically relevant to disease progression

after surgery, sensitivity to radiation, and response to systemic

treatments. The PSC may therefore provide a clinically implement-

able means to advance personalized PCa management using a

currently available clinical test.

Previous work classified PCa on the basis of cell of origin by

using a model created for breast cancer.38,39 As part of the current

PSC development, we used a previously validated expression

signature for basal versus luminal benign prostate cells (Zhang

et al.)26 and subsequently showed substantial class change between

the breast‐ and prostate‐specific models. Furthermore, gene signa-

tures used in combination with the basal versus luminal signature

were used as seed features to create the PSC model via an unsu-

pervised approach and included processes relevant to both PCa

biology and currently used or investigated treatments (Table S9).

Many treatments active in metastatic PCa have been tested in the

adjuvant PCa setting. Future attempts to move other late‐stage

treatments to earlier lines of care, prevent relapse, and cure more

men could be informed by PSC subgroups and biologically directed

precision treatments.

Although the subclassification of early‐stage PCa on the basis

of molecular processes can help characterize tumors, there is often

limited translatability to clinical practice.40 Many commonly used

gene expression risk scores use RNA expression to prognosticate

tumor aggressiveness but do not predict treatment responses.35–37

The PSC stratifies tumors not only by innate aggressiveness but

also by other aspects of tumor biology that may predict response

to treatments commonly used for PCa. Within the META855

cohort, only patients with BI tumors derived a benefit from the

addition of radiotherapy after prostatectomy. It is unknown

whether this is because of BI tumors being more likely to have

local recurrences and benefit from adjuvant prostate radiation or

greater inherent sensitivity to radiation. The latter is consistent

with the in silico prediction of being more responsive to radio-

therapy based on a previously validated signature (Table S8). By

using specimens from the ECOG‐ACRIN E3805 CHAARTED trial,

only patients with LP tumors appeared to benefit from the addition

of docetaxel to ADT in the setting of metastatic hormone‐sensitive

PCa. PSC subtypes also differed by immune content, HRD charac-

teristics, and expression of PSMA, PI3K/AKT/mTOR, and MYC ac-

tivity. Each of these measures may prove relevant in helping select

given patients for the various systemic therapies currently used for

metastatic PCa.41–44 Tumor biology classification schemes such as

the PSC may have the potential to provide granular predictions

related to differential treatment efficacy, but much additional work

to validate the hypothesis generating the results presented here is

still needed.

Accordingly, limitations to this work include the need for addi-

tional external clinical validation. Data from the five clinical cohorts

evaluated in exploratory analyses here provide some assessment of

the clinical implications for the PSC. Among the clinical cohorts, some

PSC subtypes were uncommon, which potentially led to small sample

sizes that could not detect significant differences in outcomes. Future

work should apply the PSC to prospective cohorts with varying

treatment arms to assess differential treatment efficacy on the basis
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of subtype. Exploratory analysis from the E3805 CHAARTED trial is

limited by sample size as previously described in Hamid et al.18 The

main limitations include the bias related to the partial sample of the

trial patients whose tumors were profiled (e.g., the distribution of the

burden of metastatic disease) and the potential molecular differences

between the metastatic tumors and the primary tumors that were

analyzed. The GRID cohort is based on the commercial use of a

prognostic genomic classifier for PCa and was skewed toward more

unfavorable‐risk tumors. Thus, generalizability to favorable‐risk tu-

mors may be limited. However, favorable‐risk tumors less often

require additional treatments beyond surveillance after standard

definitive treatments. Additionally, important demographic informa-

tion such as race is not well annotated in the GRID cohort.

In conclusion, by using the largest collection of prostate tumors

with expression data, we introduce a method to classify PCa on the

basis of prostate‐specific luminal versus basal cell‐of‐origin biology.

The PSC differentiates tumors on the basis of molecular processes

relevant to PCa biology and potential treatment susceptibilities,

which may broaden its application as a tool for personalizing treat-

ment. Evaluation of the PSC in prospective cohorts will confirm its

ability to predict differential treatment efficacy.
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