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Abstract

The flow of resources across nodes over time (e.g. migration, financial transfers, peer-to-
peer interactions) is a common phenomenon in sociology. Standard statistical methods
are inadequate to model such interdependent flows. We propose a hierarchical Dirichlet-
multinomial regression model and a Bayesian estimation method. We apply the model to
analyse 25,632,876 migration instances that take place between Turkey’s 81 provinces from
2009 to 2018. We then discuss the methodological and substantive implications of our results.
Methodologically, we demonstrate the predictive advantage of our model compared to its
most common alternative in migration research, namely the gravity model. We also discuss
our model in the context of other approaches, mostly developed in the social networks
literature. Substantively, we find that population, economic prosperity, the spatial and
political distance between the origin and destination, the strength of the AKP (Justice
and Development Party) in a province and the network characteristics of the provinces
are important predictors of migration, while the proportion of ethnic minority Kurds in a
province has no positive association with in- and out-migration.

Keywords: Hierarchical Bayesian modelling; Dirichlet-multinomial regression; Markov
chain Monte Carlo; Migration; Turkey

1 Introduction

Flows of items such as people, resources, and information across a finite number of units such as
places, institutions, and individuals over time constitute a common type of data in sociology and
the wider social sciences. While migration is one of the most frequent types of such flows, other
examples include financial transfers between institutions or individuals, passengers through
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transportation systems, mobility tables, and the number of times participants trust or allocate
a fixed resource to others during an experiment. Due to the highly interdependent nature of such
situations, certain modelling problems arise (e.g. destinations ‘compete’ over a fixed amount of
flow) which are not straightforward to address with standard statistical models (Block et al.,
2022).

Here we first aim to contribute methodologically to the analysis of such dynamic flows. We
frame our model within a migration context. Indeed we developed our model with a motivation
to analyse real-world migration data. Nevertheless, our model can be applied to other situations
that similarly involve dynamic discrete flows across a finite number of units. One of the most
widely used methods of analysing migration flows is the so-called gravity model (Barthélemy,
2011; Karemera et al., 2000; Expert et al., 2011). In this model, the (logarithm) of the number
of people migrating from i to j is modelled as a function of the characteristics of i and j, and
the distance between i and j. However, this approach does not account for the fact that when
a person migrates from i to j, they mechanistically cannot migrate to another destination k.
Likewise, the characteristics of k may affect migration from i to j, too. For example, k can
be a competitor of j in receiving migration from i. This dependence in migration probabilities
across destinations is ignored in the gravity model, while it is taken into account in our model.

In this study, we propose a Dirichlet-multinomial model, which is an extension of a class
of econometric discrete choice models (Guimaraes and Lindrooth, 2007; Alamá-Sabater et al.,
2017). Our model differs from those existing choice models in the treatment of non-migration.
The existing models base their estimates conditional on migration taking place. We believe
that any inference about the causes of migration would be problematic if one ignores those who
choose to not move. This is because in that case, observations for which the causes of migration
might have been present but did not generate migration, i.e., non-migration counts, are omitted.
In other words, ignoring non-migration results in ‘selection on the dependent variable’. In our
model, the probabilities of migration to the available destinations as well as the probability of
not migrating are directly modelled as functions of the covariates. We further extend our model
with random intercepts for provinces to account for the longitudinal nature of migration flows.
We fit our model within the Bayesian framework via a Markov chain Monte Carlo (MCMC)
algorithm.

There is a long array of models that are developed mostly in the social networks literature
which can also be applied to dynamic flows. These include Stochastic Actor Oriented Mod-
els (Snijders, 1996, 2001), Dynamic Network Actor and other similar Relational Event Models
(Stadtfeld and Block, 2017; Stadtfeld et al., 2017b; Block et al., 2019), Exponential Random
Graph Models (Lusher et al., 2013) and its various extensions and forms (Westveld and Hoff,
2011; Desmarais and Cranmer, 2012; Almquist and Butts, 2014; Krivitsky and Handcock, 2014;
Krivitsky and Butts, 2017; Block et al., 2022), Latent Space and Latent Factor Models (Hoff
et al., 2002; Minhas et al., 2019). Some of these models are theoretically flexible and very gen-
eral but may be difficult to adapt to the specific case; others are computationally demanding.
The application of some will require significant programming. Nevertheless, those models offer
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a powerful way of dealing with relational data. We believe that our approach provides a rela-
tively straightforward and natural way to deal with dynamic flows, at the same time offering
computational simplicity while taking into account key features of the data. We discuss simi-
larities and differences between our model and those network models in Section 2.2. We believe
that we contribute to the methodological literature by enriching the methodological arsenal for
dealing with dynamic flows.

We also aim to contribute substantially to the migration literature. Various determinants
of voluntary migration have been identified in this literature (Boyle et al., 1998). These include
characteristics of the origin and the destination such as economic prospects (Borjas, 1999; Levy,
2010), immigration legislation (Palmer and Pytlikova, 2015); and characteristics of the origin-
destination pair such as linguistic, cultural and physical distance (Levy, 2010; Windzio, 2018;
Expert et al., 2011) between the origin and the destination. Migration can be international
as well as intra-national. Yet, the migration literature is based mostly on international migra-
tion and hence the dynamics of internal migration, particularly in non-Western countries are
understudied (Kuhn, 2015; Bell and Muhidin, 2009). The focus on international migration is
understandable, for it seems highly consequential in shaping public opinion and politics (Chan
et al., 2020; Gimpel and Schuknecht, 2001). The scarcity of research on internal migration,
however, is surprising. Internal migration may not be as economically advantageous for the
migrant or topical as international migration is. However, it is far less costly and risky. Conse-
quently, compared to international migration, much larger shares of populations are affected by
internal migration, particularly in non-Western countries (Kuhn, 2015). For example, accord-
ing to the official statistics, in 2018 a total of 323,918 people emigrated abroad from Turkey,
our study context, whereas in the same year 3,057,606, nearly ten times more, moved from one
Turkish province to another. Internal migration is thus a strong determinant of local population
structures, and it is important to understand its drivers.

We contribute to the migration literature by addressing this gap. Using a unique dataset
compiled from the administrative, registry, and survey data, we analyse the dynamics of more
than 25 million migration instances between the 81 provinces of Turkey from 2009 to 2018.
Almost all empirical work on internal migration in Turkey, however scarce, was conducted
with data spanning until 2000 (Gedik, 1997; Filiztekin and Gökhan, 2008; Yazgi et al., 2014).
The more recent work is descriptive and focuses on larger inter-regional migration (Akın and
Dökmeci, 2015). Turkey has gone through a large economic, demographic, and political trans-
formation in the meantime (Aksoy and Billari, 2018), which has affected migration too (Çoban,
2013). It is thus unknown if these earlier insights into Turkey’s internal migration apply to more
recent migration patterns. Internal migration in Turkey is relevant for Europe too. Turkey’s as-
cension to the European Union (EU) has stalled. One of the fears as to the expansion of the EU
is large-scale immigration (Strasser, 2008). Understanding the determinants of inter-province
migration in Turkey will help predict the extent of potential migration from Turkey to Europe
and its likely destinations within the EU, should Turkey ever be part of the EU (Filiztekin and
Gökhan, 2008).
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Overall, by providing novel insights into the internal migration of Turkey and a conve-
nient model of migration flows, our study contributes to the literature both substantively and
methodologically.

2 A model of migration flows

We now describe our model in a migration context. Note, however, that our model can be
applied to many other settings with minimal adjustment, e.g. provinces below can be replaced
by individuals or institutions, and migration can be replaced by the number of financial transfers
or interactions. In fact, in many of those alternative settings, one could directly proceed with
modelling the Ht(i, j)’s below. The migration case needs a slight adjustment, as we will describe
now, for the stock of people who could migrate but did not is dynamic due to changes in births
and deaths.

Assume that we have n > 1 provinces and T > 1 consecutive years and that for each year we
have data on the population of and migration between the provinces. Specifically, we observe

Pt(i) = the population of province i at the beginning of year t

for all i = 1, . . . , n and t = 1, . . . , T ; and

Ht(i, j) = the number of people who migrated from province i to province j in year t

for all 1 ≤ i, j ≤ n pairs with i ̸= j, respectively. Let us define

Et,t+1(i) := Pt+1(i)−

Pt(i)−
∑
j ̸=i

Ht(i, j) +
∑
j ̸=i

Ht(j, i)

 , i = 1, . . . , n,

which is the net change in population for province i after taking into account the inter-province
migration during year t. The net change captures births, deaths, and people who are registered
in the system for the first time for any other reason. Taking the net change into account, we
define the adjusted population of province i for year t as

Xt(i) := Pt(i) + Et,t+1(i) = Pt+1(i) +
∑
j ̸=i

Ht(i, j)−
∑
j ̸=i

Ht(j, i), i = 1, . . . , n.

We consider this adjusted population to find the number of people who did not migrate from
province i during year t as

Ht(i, i) = Xt(i)−
∑
j ̸=i

Ht(i, j), i = 1, . . . , n.

Therefore, given the assumptions, we can summarise the relation between the quantities Ht(i, j)s
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and Xt(i)s as

Xt(i) =
n∑

i=1

Ht(i, j), i = 1, . . . , n. (1)

As a prelude to our proposed model, let us assume for now the existence of a probability of
migrating from province i to province j in year t, denoted by ρt(i, j), and that ρt(i, j) is same
for all citizens in province i. This yields a multinomial distribution for (Ht(i, 1), . . . , Ht(i, n))

for each t and i, specified as

(Ht(i, 1), . . . , Ht(i, n)) ∼ Multinomial(Xt(i); ρt(i, 1), . . . , ρt(i, n)).

A multinomial regression can be constructed by modelling ρt(i, j) as a function of the factors
about provinces i and j individually, as well as the factors about the relation between i and
j. Generically, we assume that there are du ≥ 1 and dv ≥ 1 factors that affect the likelihood
of migrating from and to a province, respectively. Those factors can vary across the years and
provinces, hence are denoted by ut(i) ∈ Rdu and vt(i) ∈ Rdv , respectively. Note that some
factors can both push and pull migration (e.g. (un)employment) and hence appear both as ut(i)
and vt(i). Furthermore, for each (i, j) pair we also have dz ≥ 1 factors of sort zt(i, j) ∈ Rdz

defined as pair-level factors that may affect migration from i to j. Those factors altogether
determine the probability ρt(i, j) of migrating from i to j in year t as

ρt(i, j) =
exp{θ0 + θ1 · ut(i) + θ2 · vt(j) + θ3 · zt(i, j)}

1 +
∑

j′ ̸=i exp{θ0 + θ1 · ut(i) + θ2 · vt(j′) + θ3 · zt(i, j′)}
.

Here, (θ0, θ1, θ1, θ3) is the vector of model parameters. The components θ1 ∈ Rdu , θ2 ∈ Rdv , and
θ3 ∈ Rdz correspond to the sending (→), the receiving (←), and the joint (pair-level) factors
(↔), respectively. The scalar component θ0 ∈ R is the ‘base’ parameter, which solely determines
the probability of migration at all when all factors are zero. Finally, exponentiation is used to
ensure that we have positive terms. The resulting model is an instance of the multinomial
logistic regression model (Theil, 1969).

A limitation of the above expression may be the deterministic relation between the factors
and the migration probability ρt(i, j). We would like to allow for variability in those probabil-
ities, such that even under the same factor values the probabilities ρt(i, j)s may differ across
province-year pairs, for example, due to unsystematic residual factors that our model may fail
to cover (Nelson, 1984). This can be done by modelling the probabilities using a Dirichlet dis-
tribution for each of those province-year pairs. Specifically, we let ρt(i, j)s be random variables
themselves, with (ρt(i, 1), . . . , ρt(i, n)) having a Dirichlet distribution independently for each t

and i, that is,
(ρt(i, 1), . . . , ρt(i, n)) ∼ Dirichlet(αt(i, 1), . . . , αt(i, n)).

This time, it is the parameters of the Dirichlet distribution that we model via regression.
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Figure 1: Left: Dirichlet-multinomial model, Right: Multinomial model

Specifically,

αt(i, j) =

exp{θ0 + θ1 · ut(i) + θ2 · vt(j) + θ3 · zt(i, j) + θ4} i ̸= j

exp{θ4} i = j.
(2)

The resulting model is a Dirichlet-multinomial regression. Observing the expected probabilities

E(ρt(i, j)) =
αt(i, j)∑n

j′=1 αt(i, j′)
,

we note that, in this model, the vector (θ0, θ1, θ2, θ3) lends itself to a similar interpretation as in
the multinomial logistic regression model introduced earlier. The extra scalar parameter θ4 ∈ R
is present in each αt(i, j), hence does not affect the expected probabilities. The parameter θ4

instead captures the variances of the probabilities – the larger θ4, the smaller the variances.
Due to its flexibility, we proceed with the Dirichlet-multinomial regression model described

above. Note that, from an inference perspective, the Dirichlet-multinomial specification does not
introduce additional complications compared with the multinomial logistic specification. As it is
well known, after integrating out ρt(i, j)s, Ht(i, j)s follow a Dirichlet-multinomial distribution,

(Ht(i, 1), . . . , Ht(i, n)) ∼ Dirichlet-multinomial(Xt(i);αt(i, 1), . . . , αt(i, n)), (3)

which can easily be computed.
Figure 1 (left) depicts the Dirichlet-multinomial model for a single province and single

time step. According to the Dirichlet-multinomial model, people’s decisions within a province
are dependent even when conditioned on θ and the covariates. This is because, given θ and
the covariates, the same random migration probability vector ρt(i, :), drawn from Dirichlet
distribution, applies to all individuals in the same province, introducing a positive dependency
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among their choices. This is in contrast to the simpler multinomial model (Figure 1, the model
on the right), where the decisions are independent given θ.

It is possible to quantify the mentioned dependency in the Dirichlet-multinomial model in
terms of closed-form conditional distributions. For example, given that an individual I1 has
migrated to province j from province i during time period t, the probability distribution of the
decision of another individual I2 follows a categorical distribution with

Pr(I2 migrates i→ k|I1 migrates i→ j) =


αt(i,j)+1

1+
∑n

j′=1 αt(i,j′)
if k = j

αt(i,k)
1+

∑n
j′=1 αt(i,j′)

if k ̸= j
, k = 1, . . . , n.

As another example, given t among P > 0 individuals the migration counts to the n provinces
are A1:n = a1:n (so that a1+ . . .+ an = P ), the probability distribution of the migration counts
B1:n of R > 0 other individuals in the same province are jointly distributed as

B1:n|(R,A1:n = a1:n) ∼ Dirichlet-multinomial(R;αt(i, 1) + a1, . . . , αt(i, n) + an)

Both examples indicate positive dependency among the individuals’ decisions in the same
province at the same time period.

The presence of positive dependency between the decisions may be considered another pos-
itive feature of the Dirichlet-multinomial model, as it captures the possibility that individuals
living in the same province may be influenced by each other in deciding to migrate to a particu-
lar destination or not migrate, for example through peer effects or familial migration decisions.
Furthermore, the strength of this dependency is determined by θ4: it decreases as θ4 increases.
Hence, we can gauge the amount of within-province interpersonal influence by estimating θ4

using the data.

Hierarchical specification: Our data are multilevel, that is, migration from i to j for all i
and j are observed over the T > 1 years. Accordingly, we expand the specification in (2) to
address this multilevel structure by assuming that the base parameter θ0 is a random variable
defined at the province level (i.e. a ‘random intercept’). More specifically, we modify equation
(2) as

αt(i, j) =

exp{θ0(i) + θ1 · ut(i) + θ2 · vt(j) + θ3 · zt(i, j) + θ4} i ̸= j

exp{θ4} i = j.
(4)

Next, by our aim of Bayesian inference, we build up the prior distributions for the model
parameters introduced so far. The parameters θ1, θ2, θ3, and θ4 are assumed a priori indepen-
dent and have priors θi ∼ ηi, i = 1, . . . , 4. Further, independently from θ1, θ2, θ3, and θ4, the
base parameter θ0(i) for each i = 1, . . . , n are also assumed independent with a common normal
distribution

θ0(i)
i.i.d.∼ N

(
µ0, σ

2
0

)
, i = 1, . . . , n. (5)

The parameters µ0 and σ2
0 are themselves treated as random variables, that are independent
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with µ0 ∼ N (µh, σ
2
h) and σ2

0 ∼ IG(ah, bh), where the latter is the inverse-Gamma distribution
with shape and scale parameters ah and bh, respectively. We assume that the hyperparameters
µh, σ2

h, ah, and bh are known.
The full parameter vector of the resulting hierarchical model is the (1 + 1 + n + du + dv +

dz + 1)× 1 vector
θ = (µ0, σ

2
0, θ0(1), . . . , θ0(n), θ1, θ2, θ3, θ4).

This completes the description of our model of migration in a closed system. We refer to our
model whose Dirichlet-multinomial parameters are given by (4) as a hierarchical specification,
for it models the base parameter θ0(i) as random across provinces.

Note that one could expand the model above by making θ0(i), the base parameter, a poly-
nomial function of time, of order db ≥ 0. In that case, the base parameter could be expressed
as

θ0(i) =

db∑
k=0

θ0,k(i)t
k,

where the polynomial coefficients for province i would be modelled as random with

ϑi := (θ0,0(i), . . . , θ0,db(i))
i.i.d.∼ N (µ0,Σ0) , i = 1, . . . , n,

and µ0, Σ0 would be multivariate random variables with suitable priors, such as µ0 ∼ N (µh,Σh)

and Σ0 ∼ W−1(νh,Ψh), the inverse-Wishart distribution with νh degrees of freedom and the
scale matrix Ψh. With db = 1, for example, we would have a model with ‘random slopes’ of
time.

In our implementations, we will not present results with this polynomial specification. Our
results below will be restricted to the ‘random intercept’ specification where the base parameters
are random across provinces as in (5). This is mainly because province log populations, which
are included in the model as predictors, are increasing almost as a linear function of time,
rendering the estimation of a separate time slope unnecessary and numerically difficult. We
did fit specifications with linear as well as quadratic random time slopes which did not make
noticeable differences in our models, apart from creating convergence problems. That being said,
the polynomial specification for the base parameter may be useful in other applications; hence
we will describe our inference method below by keeping general and considering the polynomial
specification.

2.1 Inference

Before presenting the study context and data, we describe our inference method. To quantify
the uncertainties in the estimation of θ conveniently, we aim for Bayesian inference of θ given
the data

D = {Ht(i, j); i, j ∈ {1, . . . , n}, t ∈ {1, . . . , T}}.
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Note that the (adjusted) province populations {Xt(i) : t = 1, . . . , T ; i = 1, . . . , n} are implicitly
contained in D also, thanks to the relation given in (1). More specifically, we aim to find the
posterior distribution for the hierarchical model

p(θ|D) ∝ p(θ)p(D|θ).

Here, θ = (µ0,Σ0, ϑ1, . . . , ϑn, θ1, θ2, θ3, θ4) is the parameter vector with the hierarchical speci-
fication for the polynomial coefficients of the province-dependent base parameters; p(θ) is the
probability density of the prior distribution given by

p(θ) =

 4∏
j=1

ηj(θj)

[
n∏

i=1

N (ϑi;µ0,Σ0)

]
N (µ0;µh,Σh)W−1(Σ0; νh,Ψh);

and p(D|θ) is the likelihood given by a product of Tn Dirichlet-multinomial probabilities as

p(D|θ) =
T∏
t=1

n∏
i=1

p(Ht(i, :)|αθ
t (i, :)), (6)

where the superscript θ over αθ
t (i, :) is used from now on to indicate the dependency on θ

explicitly and p(Ht(i, :)|αθ
t (i, :)) is the Dirichlet-multinomial probability

p(Ht(i, :)|αθ
t (i, :)) =

Xt(i)!Γ
(∑n

j=1 α
θ
t (i, j)

)
Γ
(
Xt(i) +

∑n
j=1 α

θ
t (i, j)

) n∏
j=1

Γ
(
Ht(i, j) + αθ

t (i, j)
)

Ht(i, j)!Γ
(
αθ
t (i, j)

)
where Γ(·) is the gamma function.

As the posterior distribution is analytically intractable, we develop an MCMC algorithm
(see e.g. Tierney (1994)) to sample from the posterior distribution. The developed MCMC
algorithm is an instance of Metropolis-Hastings-within-Gibbs (MHwG). The parameter vector
θ is divided suitably into disjoint blocks of components, and those blocks are updated in turn by
either a Gibbs move (if sampling from the full conditional distribution of the block is possible)
or a Metropolis-Hastings move (otherwise). We describe this process in detail in Algorithm 1,
where the aforementioned blocks are taken as

{θ1}; {θ2}; {θ3}; {θ4}; {ϑ1, . . . , ϑn}; {µ0}; {Σ0}.

We note some important remarks on the computational complexity of Algorithm 1. While up-
dating each of {θ1}; {θ2}; {θ3}; {θ4}, a product of nT Dirichlet-multinomial distributions, each
with n categories, is computed in the numerator and the denominator of the acceptance ratio.
Given the rest of the components and the observations, the variables ϑ1, . . . , ϑn are condition-
ally independent, therefore they can be updated in parallel, each requiring the computation of
T Dirichlet-multinomial distributions, each with n categories, in the numerator and the denom-
inator of the acceptance ratio. Finally, the blocks {µ0} and {Σ0} can be updated in turn with
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Gibbs moves since their full conditional distributions have closed forms, thanks to conjugacy.
Algorithm 1: MHwG for the Dirichlet-multinomial model with the hierarchical spec-
ification for its province-dependent base parameters

Input: Migration counts Ht and external factors ut, vt, zt for t = 1, . . . , T ;
hyperparameters µh, Σh, νh, Ψh, prior distributions ηj for j = 1, . . . , 4,
proposal distributions qj for j = 1, . . . , 4, initial value θ(0)

Output: Samples θ(0), . . . ,θ(K)

1 Start with θ(0).
2 for k = 1, 2, . . . do
3 Set θ = θ(k−1).
4 for j = 1, 2, 3, 4 do
5 Propose θ′j ∼ qj(θ

′
j |θj)

6 Construct the proposed parameter vector θ′ by replacing θj by θ′j in θ.
7 Update θ by replacing θj by θ′j with acceptance probability

min

{
1,

qj(θj |θ′j)ηj(θ′j)
∏T

t=1

∏n
i=1 p(Ht(i, :)|αθ′

t (i, :))

q(θ′j |θj)ηj(θj)
∏T

t=1

∏n
i=1 p(Ht(i, :)|αθ

t (i, :))

}
;

otherwise, keep θj as before.
8 for i = 1, . . . , n do
9 Propose ϑ′

i ∼ q0(ϑ
′
i|ϑi).

10 Construct θ′ by replacing ϑi by ϑ′
i in θ.

11 Update θ by replacing ϑi by ϑ′
i with acceptance probability

min

{
1,

q0(ϑi|ϑ′
i)N (ϑ′

i;µ0,Σ0)
∏T

t=1 p(Ht(i, :)|αθ′
t (i, :))

q0(ϑ′
i|ϑi)N (ϑi;µ0,Σ0)

∏T
t=1 p(Ht(i, :)|αθ

t (i, :))

}
;

otherwise, keep ϑi as before.
12 Sample µ0 ∼ N (µpost,Σpost) where Σpost =

(
Σ−1
h + nΣ−1

0

)−1 and
µpost = Σpost(Σ

−1
h µh +Σ−1

0

∑n
i=1 ϑi).

13 Sample Σ0 ∼ W−1
(
νh + n,Ψh +

∑n
i=1(ϑi − µ0)(ϑi − µ0)

T
)

14 Store the new sample

θ(k) = (µ0,Σ0, ϑ1, . . . , ϑn, θ1, θ2, θ3, θ4),

2.2 Related methodology

Our model’s closest relative is the one proposed by Guimaraes and Lindrooth (2007). Guimaraes
and Lindrooth (2007) develop a Dirichlet-multinomial regression as an extension of the multi-
nomial logistic regression within a discrete choice random utility framework. They use this to
model counts from different groups to multiple destinations (e.g. hospital choice of different
groups of patients) whereby for each group multinomial probabilities for the destinations are
modelled independently with a Dirichlet distribution. Note that our model can also be inter-
preted from a random utility framework. Consider, for example, the migration decisions of
the actors at province i at time t. The quantity αt(i, j) given in (2) can be interpreted as the
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deterministic part of a random utility an actor gets, had they moved from i to j at time t. The
Dirichlet-multinomial model corresponds to the assumption that each actor makes the choice
that maximises their utility, where the log-utility for the k’th actor at province i at time t had
they moved to province j is in the form

αt(i, j) + νt(i, j) + ut(i, j, k).

Here, νt(i, j), j = 1, . . . , n are the i.i.d. random utility components that affect identically all
individuals at province i at time t, and, independently from those, ut(i, j, k), j = 1, . . . , n, k =

1, . . . , Xt(i) are the i.i.d. random utility components at the individual level. (See Guimaraes and
Lindrooth (2007) for the specific forms of the distributions of those random utility components.)
In fact, the province-level random utility component νt(i, j), j = 1, . . . , n, can be interpreted
as the source of the positive dependency between the decisions of the actors within the same
province, which was mentioned earlier.

This Dirichlet-multinomial regression model is used by Alamá-Sabater et al. (2017) to ex-
plain immigration to different parts of Spain from various regions outside of Spain. Our model
and the model of Alamá-Sabater et al. (2017) have critical differences. Firstly, Alamá-Sabater
et al. (2017) aim to explain how much migration a certain factor ‘pulls’, hence only focus on
factors of the receiving regions, (corresponding to our vt(j)s, or the ← factors). Whereas, in
this study, we consider migration on a matrix of provinces. Consequently, our model includes
factors in sending (→) and receiving (←) nodes as well as pair-level covariates (↔). A sec-
ond crucial difference between our model and the model in both Guimaraes and Lindrooth
(2007) and Alamá-Sabater et al. (2017) is that our model accounts for people who have not
migrated, while the latter two omit ‘self-edges’. Alamá-Sabater et al. (2017) model the flows of
immigration to different provinces in Spain, conditional on immigration taking place. Likewise,
Guimaraes and Lindrooth (2007) omit those who do not decide to migrate at all. We believe
that an omission of self-edges and no-choice cases would create a serious issue in our setting,
for in that case the analysis would be restricted to the cases for which a positive outcome is
observed. A further difference between our model and those in Guimaraes and Lindrooth (2007)
and Alamá-Sabater et al. (2017) is that our model is hierarchical, allowing a random intercept.
Finally, while Guimaraes and Lindrooth (2007) and Alamá-Sabater et al. (2017) implement
maximum likelihood estimation, we use Bayesian inference to quantify the uncertainties in our
estimates effectively.

A common and notable feature of our model and those above is that they rely on the
assumption of independence of irrelevant alternatives (IIA). This assumption implies that the
ratio of the probabilities of a single actor moving from i to j and from i to k ( ρt(i,j)

ρt(i,k)
) depends

only on the features of i, j, and k and is independent of the features of all other destinations.
Note that the IIA is about the ratio of two probabilities. The plain probability of moving to
a particular destination does depend on the features of all possible destinations in our model.
While the IIA assumption can be violated in practice, there are existing, however imperfect,
diagnostic tests (Cheng and Long, 2007). There are also extensions of the discrete choice models
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that relax this assumption (see, e.g. Benson et al. (2016)). An accepted practice is to use models
that rely on IIA when the alternatives are plausibly distinct and independently weighed by the
decision maker (Benson et al., 2016) and we believe the decision to migrate to a particular place
plausibly fits these criteria.

The most common alternative model that is used to analyse migration is the co-called
gravity model (Karemera et al., 2000; Barthélemy, 2011; Expert et al., 2011; Poot et al., 2016).
In this model, the logarithm of the number of people moved from i to j at time T is simply
regressed on the features of i and j such as population and some measure of the distance
between i and j. The estimation is straightforward, for it can be performed within the standard
maximum likelihood framework that is used for regression modelling. The disadvantages are as
follows. Firstly, the model does not incorporate systemic effects, for example, origin populations
constrain the total size of out-migration which is not directly incorporated in the model (Poot
et al., 2016). In addition, destinations compete for migration, for if an individual migrates to
j, they simultaneously cannot migrate to k. Naturally, then the properties of k should also
affect the decision to migrate to j which are typically ignored in the gravity model. Note that
this is a more binding assumption than the IIA discussed above which is about the ratio of two
probabilities. Furthermore, non-migration (zero cell counts or the diagonals–those who stay)
is mostly omitted in this model, conditioning the estimates on migration having taken place
and creating a selection on the dependent variable, just as in the models of Guimaraes and
Lindrooth (2007) and Alamá-Sabater et al. (2017) discussed above. Nevertheless, this is a very
popular model of migration, hence we will compare the predictive power of our model with that
of the gravity model below.

A class of models which share the Bayesian nature of our model and also deal with migration
can be found in Azose and Raftery (2015) and Azose and Raftery (2018). The main aim of those
models is to forecast country-level future net migration based on past migration via an auto-
regressive hierarchical model. Azose and Raftery (2018) improve those forecasts by developing a
procedure that estimates cross-country correlations in net migration rates. Those models differ
from ours, in that explaining the determinants of migration is not part of their purpose.

The literature on social networks, too, offers a long list of statistical models that can be
applied to flows. A canonical model is the Exponential Random Graph Model (ERGM) (Lusher
et al., 2013) which takes the entire data as a network of nodes (e.g. provinces) and edges (e.g.
migration flows). In ERGMs, the whole network is modelled as a function of node, edge, and
network-level covariates. ERGM enjoys greater generality than our model; because, using it,
one can naturally include various local or global network statistics as explanatory variables and
incorporate complex contemporaneous dependencies in the data (i.e. network dependencies in a
cross-sectional measurement). The standard ERGM deals with binary edges and cross-sectional
settings, so it cannot be directly applied to our problem. ERGM, however, has been extended
to deal with longitudinal data (Krivitsky and Handcock, 2014) and with count or multi-layered
networks (Block et al., 2022; Krivitsky et al., 2020; Krivitsky and Handcock, 2014; Krivitsky,
2012) and the more general weighted edges as in Generalised Exponential Random Graph
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Models (GERGM) (Desmarais and Cranmer, 2012).
While an ERGM type of model would be very flexible and general, it can be challenging

to perform inference in ERGMs (Almquist and Butts, 2013, 2014), particularly for various
generalisations of it. The major challenge may be having to sample the whole network (typically
several times) at every iteration, which can only be done approximately, for example by using
Gibbs sampling, unless the network is very small–note that we also use a Gibbs sampler, but
in our case, the inference is much simpler as we will elaborate shortly. Consequently, while
ERGM is generalised to deal with longitudinal data and weighted edges, most applications
are constrained to either longitudinal binary networks, cross-sectional networks with weighted
edges, or relatively small networks. Indeed, ERGMs have been applied to the study of migration
flow networks (Windzio, 2018; Windzio et al., 2021; Leal, 2021). However, likely due to those
computational complexities, the authors had to simplify the flows so that an ERGM can be
fitted. For example, Windzio (2018); Leal (2021) dichotomise flows, Windzio et al. (2021) use
valued edges but ordinal categories are imposed to migration flows and the data are analysed
only cross-sectionally even though they are longitudinal. Block et al. (2022) develop a weighted
ERGM for mobility networks, but the application is restricted to cross-sectional observations.
Abramski et al. (2020) successfully applies the GERGM developed by Desmarais and Cranmer
(2012) to study refugee migration patterns, but the setup is again simplified with only 12
countries and a cross-sectional analysis. We have also tried to implement an ERGM for count
edges (Krivitsky, 2012; Krivitsky et al., 2021) to our data. Unfortunately, it failed to converge
even for a single year of our migration data, let alone the 10 years our data spans.

A further issue that needs to be tackled in an ERGM-type model is that the total flow of
out-migration is bounded by the population of the origin, and this constraint may be difficult
to implement in an ERGM. In our model, these ‘row-sums’ are naturally handled through the
Dirichlet-multinomial distribution.

We must add that there are exciting recent developments in the ERGM literature, especially
the pseudo-likelihood parameter estimation procedures for weighted ERGMs (Huang and Butts,
2021) and its applications to migration networks (Huang and Butts, 2022) are fast developing.
These developments can alleviate the computational and other practical constraints for count
data and make ERGMs more feasible for the study of migration flows.

Another class of models that are developed in the social networks literature that have some
similarities with our model comprise the Stochastic Actor-Oriented Model (SAOM) (Snijders,
2001), the Dynamic Network Actor Model (DyNAM) (Stadtfeld and Block, 2017), the Relational
Event Model (REM) (Butts, 2008) and other similar models (Almquist and Butts, 2014). These
models are designed to analyse longitudinal dynamic binary network data, though extensions for
count data exist (Stadtfeld et al., 2017a). In the actor-based SAOM and DyNAM, two processes
are modelled separately: the timing of an event (e.g. a tie to be formed), and the target of the
event (e.g. whom a person sends a tie) which is modelled with a multinomial specification. In
the tie-based REM, the timing and the position of an event (e.g. which two nodes are connected)
are modelled simultaneously. In our model, the exact timing of migration is unknown, apart
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from it taking place during a given year. Moreover, many migration flows take place during
a given year. To apply the dynamic network models discussed here, however, one needs to be
able to calculate the conditional distribution of the migration data of a year given the state of
variables in the previous year. This is not available in our case, since we do not know the times
of individual migration events and integrating them out is analytically intractable. One can
only approximate those conditionals, making this class of models inconvenient for us to apply
in our case.

There is a final class of models, developed again mainly in the social networks literature.
These include latent space (Hoff et al., 2002; Hoff and Ward, 2004) and latent factor models
(Minhas et al., 2019). Most recently, and perhaps most relevantly, Minhas et al. (2019) describe
a latent factor model in which cell outcomes in a matrix (e.g. migration flows in our case) are
modelled as a function of the sender and proposer characteristics plus a latent factor matrix. The
elements of this matrix are the sender and receiver latent factors multiplied by a sender-receiver
pair parameter. This latent multiplicative factor captures higher-order dependence structures
which are not explained by the observed covariates included in the model. Minhas et al. (2019)
then propose a Bayesian estimation procedure which assumes certain prior distributions for the
parameters, including the elements of the latent factor matrix. This class of models is very
flexible too. Applications, however, are often restricted to binary data, though an extension
to the multinomial and count data is possible. In addition, diagonals are often not modelled
explicitly (see, e.g. Minhas et al. (2019) and it is not straightforward to constrain the row-sums
which are bounded in our data by the province populations.

Overall, we argue that the methodology and the modelling approach of these relational and
network models are too general for our problem. In contrast, our specific model is directly
related to the migration (and other similar) flows and can be derived from a small number
of assumptions (such as Multinomial probabilities and independence of the actors in different
provinces). For example, staying within the notation in our manuscript, the SAOM in Snijders
(1996) takes (Ht, Zt) as the state and assumes that this is a Markov process. Ht corresponds
to the relation matrix in SAOM, and Zt the exogenous variables. However, in our model,
(Ht, Zt) is not a Markov process, in that Ht depends on the cumulative effect of the previous
H1:t−1’s, since those sum up to the populations. In this sense, our model is similar to the
model discussed by Hanneke et al. (2010) which conditions the current network on the earlier
network realisations. Consequently, the parameters of our model can be inferred with a fairly
standard MCMC algorithm, see Algorithm 1. This convenience is due to the assumption in our
model that out-migration in two different provinces are independent, conditional on covariates
which include factors related to migration in the previous year (however, recall that our model
addresses the dependency of migration decisions among people who live in the same province).
This assumption is plausible in the migration context: when a person in province i is deciding
to migrate to a certain province j (or not to migrate at all) at time point t, this decision
is likely independent of another person’s decision in province k ̸= i at the same time-point,
provided that we take key relevant factors into account. Note that in our model a person’s
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decision in province i can depend on another person’s decision in province j that was made in
the previous year, for we include factors that are functions of past migration as predictors of
future migration. For example, if we think that a person in province i is more likely to migrate
to province j if others from other provinces also migrate to j, we can include this dynamic in
the model explicitly as we will do below by adding a popularity measure of a province. Hence,
we can ameliorate possible misfits due to the conditional independence assumption by including
relevant covariates in the model. Also note that in our model a person’s decision in province
i can depend on another person’s decision in the same province and time period, due to the
Dirichlet-multinomial specification as discussed above.

We should also add that the conditional independence assumption of our model is less
problematic, the more frequent the temporal measurements are. We have annual migration
data here, which we believe is frequent enough given that most migration decisions are not
made on a whim. If, however, the researcher has only cross-sectional data or data that are
collected very infrequently, such as decades apart, then complex dependencies in migration
flows between actors from different provinces may not be captured in our model. In such cases
with cross-sectional data or data collected decades apart, however, the researcher would have a
simpler data structure for which the more complex count ERGM-type models may work better.

We believe that those models developed in the social networks literature reviewed above are
rich, very general, flexible; and in principle can be applied to the type of data we have here,
especially given the rapidly developing work on estimation in valued ERGMs. A systematic
comparison of all possible alternative modelling approaches, however, is beyond the scope of
the current study.

3 Determinants of migration

We now move on to the substantive discussion of the expected drivers of migration and describe
the Turkish context to which our data belongs.

Migration is a complex phenomenon with multiple causes, hence there is no single theory
for it. A non-exhaustive list of the determinants of voluntary migration can be grouped into
economic, demographic, geographical, cultural, and social network factors (Boyle et al., 1998).
In classical economic theory, income maximisation relative to the costs of moving is a key driver
of migration (Borjas et al., 1992). Economic prospects, such as a high per capita income,
employment opportunities, or wages thus should pull migrants. Conversely, poor economic
prospects should push migration.

Migration flows are also shaped by population. The larger the population of the origin and
the destination, the larger will be the flow between the two (Barthélemy, 2011; Levy, 2010).
This prediction is due to the empirical regularity that flows correlate positively with stocks in
either direction (Poot et al., 2016). A large population means that there is more capacity to
send and receive migrants.

While the increasing population may increase migration flows, the spatial distance between
the origin and the destination constrains it. Next to the gravity model, spatial network models,
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too, show that distance affects ties between individuals, see, e.g. Butts et al. (2012). The effect
of spatial distance operates via various channels (Schwartz, 1973). First, it directly increases
the cost of moving, a key factor in the economic model of migration too. Second, it hinders
maintaining contact with friends and family in the origin, hence imposing also a ‘psychological’
cost on migration. Third, the larger the spatial distance, the lower the information flow between
the origin and the destination. A lower information flow means that it is more difficult to hear
about available opportunities at the destination. The combined effect of population and spatial
distance on migration is sometimes referred to as the ‘gravity law’ whereby the ‘mass’ (i.e.
population) of the origin and the destination relative to the spatial distance between the two
determines flows (Barthélemy, 2011; Levy, 2010).

The ‘gravity law’ focuses exclusively on spatial distance but it is known that cultural or
linguistic distances constrain migration too. The similarity between the origin and the desti-
nation concerning language and religion, for example, improves the labour market integration
of migrants (Van Tubergen et al., 2004; Windzio, 2018). Furthermore, cultural similarity fa-
cilitates migration due to homophily (McPherson et al., 2001), and by reducing discrimination
and acculturation costs for migrants (Van Tubergen et al., 2004).

Finally, social networks are highly consequential for migration (Massey and España, 1987).
This is true for the social network of the individual migrant (Massey and España, 1987) as well
as macro-level network features of the origin and the destination (Windzio, 2018; Levy, 2010).
Knowing people who migrated previously reduces the cost of migration for the prospective
migrant. The social network in the destination can introduce the prospective migrant to possible
employers, suggest places to live, offer information on vacancies, and provide social support
which reduces the psychological costs of migration (Massey and España, 1987). These effects
make migration self-perpetuating: the more migration there is from i to j, the more migration
is expected to take place from i to j in the future (Massey, 1990).

One would expect the reverse to be true as well: the more migration there is from i to j,
the more migration is expected to take place from j to i too. In other words, one expects a
reciprocity effect. This is firstly due to return migration (Borjas and Bratsberg, 1996; Danchev
and Porter, 2018). But once a link is established between i and j through large-scale migration,
natives in j will be introduced to the opportunities and the networks in i as well. This may
facilitate migration from j to i even among the natives of j.

Betweenness centrality (Freeman, 1977) and in-degree assortativity (Newman, 2002) are
other network characteristics that are expected to affect migration. The betweenness centrality
of a node in a network indicates how many (weighted) shortest paths pass through the node. A
high level of betweenness centrality of an area implies that the area acts as a migration hub. This
also means that there is high diversity, for people from different origins come to the area and
likewise go to different destinations. This may offer new economic opportunities that attract
further migration. Indeed, Damelang and Haas (2012) show using an instrumental variable
design that in Germany cultural diversity enhances the labour market success of immigrants.

Finally, if two provinces i and j have attracted migration from similar other provinces, as
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measured by in-degree assortativity, one expects more migration to take place between j and
k too. This is because in that case both j and k will include networks of people from similar
origins. This will, in turn, facilitate information flow and reduce the costs of migration between
j and k.

The aforementioned factors are expected to affect migration generically, international as well
as intra-national. Below we discuss what we know about internal migration in Turkey.

3.1 Internal migration in Turkey

Historically, Turkey has sent a large number of emigrants to Europe. Most research has thus
focused on Turkish immigrants’ integration into Europe. Since the 1980s, however, emigra-
tion from Turkey to Europe has decreased (İçduygu and Sert, 2009). Far larger shares of the
population migrate internally. Our data show that annually around 2.5 million people migrate
between the 81 provinces of Turkey. Annual emigration abroad, on the other hand, is around
250 thousand.

Work on the determinants of internal migration in Turkey is scarce (Koramaz and Dökmeci,
2017b). Most of the existing research is carried out by urban planners whose main focus is on
spatial issues (Filiztekin and Gökhan, 2008). Also, almost all existing studies analyse data up
to the year 2000, i.e. the last year a population census was conducted. Studies that make use
of more recent migration data are mainly descriptive; for example, Akın and Dökmeci (2015)
classify the 12 regions of Turkey based on inter-regional migration patterns.

Gedik (1997) shows that starting from the 1980s the vast majority of migration in Turkey
takes place from city to city as opposed to rural to urban. This pattern is also confirmed by Evcil
et al. (2006). As expected, economic factors such as per capita Gross Domestic Product (GDP),
wages, industrial workforce, and unemployment rates are found to be important determinants
of migration (Filiztekin and Gökhan, 2008; Gezici and Keskin, 2005). Evcil et al. (2006) argue
that GDP differentials are one of the most important drivers of internal migration.

In line with the ‘gravity law’, populations in the origin and destination are found to be
positively associated with migration flows (Filiztekin and Gökhan, 2008; Gezici and Keskin,
2005). The findings on the second component of the gravity law, namely spatial distance,
are equivocal. Gedik (1997) argues that beyond the immediate neighbouring cities, the effect
of spatial distance on migration is minimal. Koramaz and Dökmeci (2017a), however, report
that after peaking at a distance of 200-400 kilometres, migration decreases rapidly as spatial
distance increases. Koramaz and Dökmeci (2017a) also report that in provinces in the East,
most of which have large shares of Kurds, the effect of spatial distance is less pronounced.

Earlier studies also indicate the importance of social networks. Gedik (1997) shows that
previous migrants who are friends or relatives from the same area are as effective forces as
economic factors in facilitating migration. Filiztekin and Gökhan (2008) use the stock of earlier
migration between i and j as an indicator of a network effect and register a strong effect of
this earlier stock on future migration. To our knowledge, no study looks at further social
network characteristics of Turkey’s provinces, such as betweenness centrality, reciprocity, and
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assortativity.
Other important social forces may affect internal migration in Turkey. The first is politics.

Aksoy and Billari (2018) and Aksoy and Gambetta (2021) show that provinces and districts that
are ruled by Erdoğan’s AKP (Justice and Development Party) are more efficient in providing
local services and social assistance than those controlled by the opposition. This can potentially
lead to ‘welfare migration’ from opposition to AKP municipalities. Aksoy and Billari (2018)
do not find evidence for such welfare migration, but migration is not their focus and hence
their analysis is rather descriptive. Political polarization is also rife in Turkey. A recent poll
shows that a vast majority of participants (78%) do not “approve of their daughter marrying
a supporter” of a party other than their own (Erdoğan and Semerci, 2017). We are not aware
of any previous work that systematically focuses on the effect of politics and political distance
on migration in Turkey. Yet, we expect Turkey’s political divides to play an important role in
migration decisions.

A further potentially important factor is ethnicity. There are sizeable Kurdish populations
living in the large cities of Turkey. This is due to both economic as well as forced migration.
Violent conflicts in the 1990s resulted in the forced displacement of Kurds (Ergin, 2014). Kurds
tend to have higher levels of unemployment, poverty, and fertility (Koc et al., 2008) which are
factors that traditionally push people to migrate. Due to historical and political reasons, data
on ethnicity in Turkey are scarce, so much so that no population census since 1965 includes a
question on ethnicity (Koc et al., 2008). Hence, it is unknown if Kurdish migration is particularly
high, once economic factors and population are accounted for. In this study, we will provide
the first comprehensive test.

4 Data and descriptive results

4.1 Data and variables

We compile a new dataset for this study as described below. All variables are at the province
level and there are 81 provinces. All variables are obtained from the Turkish Statistical Insti-
tute (TurkStat), except the proportion of Kurds in a province, which is estimated from two
representative surveys.

4.1.1 Dependent variable: migration counts

The number of individuals who moved from one province to another in a given year is available
from TurkStat from 2009. These data come from Turkey’s Address Based Population Regis-
tration System (ABPRS) which replaced the census in 2007. By law, each Turkish citizen is
required to be registered at a single primary address. Any change in one’s primary address is
required to be updated in ABPRS within 20 working days, online or in-person. Not complying
results in penalties. There are other incentives to keep the primary address up-to-date, for
example, school access is determined by residence and any official communication takes place
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via the registered address. Migration that is not yet registered in the system is not captured by
these data. Hence, our dependent variable should be interpreted as ‘official’ internal migration.

We also calculate the number of people who did not migrate. We do so by subtracting net
migration (out- minus in-migration) from the population of a province in a year. We also apply
a correction by adjusting for the number of births, deaths, or those who register for the first
time in the province in a given year (see section 2 above and the part leading up to equation
(1) there).

This gives us an 81×81 matrix for each year from 2009 to 2018, with off-diagonals indicating
the number of people migrating between provinces, and the diagonals indicating those who stay.

4.1.2 Explanatory variables

We predict migration with the following explanatory variables. In our model, all dynamic (i.e.
time-varying) explanatory variables are lagged by one year.

As indicators of economic prospects, we obtain annual provincial GDP per capita and the
unemployment rate. Unemployment rates are only available at the Nuts-2 level which comprises
26 large regions.

As the elements of the ‘gravity law’, we use annual population in and the spatial distance
between provinces. Spatial distance is measured as the driving distance in kilometres between
province centres.

To measure the ‘political distance’ between provinces, we calculate the absolute difference
in vote shares of the political parties in the 2004, 2009, and 2014 mayoral elections. Political
distance is a dynamic variable.

We calculate the following network characteristics using the (one-year lagged) migration
matrix. The self-perpetuating nature of migration is captured by the number of people migrated
from i to j in the previous year and by total in-migration in j, i.e. popularity (or equivalently
weighted in-degree). Reciprocity for migration from i to j is calculated as the number of migrants
from j to i in the previous year. Betweenness centrality of a province is calculated as the
normalised number of geodesics (shortest paths) going through a province in the migration
network. In-degree assortativity is operationalised as the correlation between the migration
in-flows of i and j. The higher this correlation between two provinces, the more similar the
provinces are in terms of the origin and flows of incoming migrants, so this variable can be
interpreted as in-flow similarity too.

We also obtain the proportion of municipalities in a province that is controlled by the AKP
after the 2004, 2009, and 2014 elections as a dynamic variable. This variable has a [0 1] range
corresponding to the provinces in which AKP controls none and all of the municipalities in a
province in a given year.

Finally, we estimate the percentage of Kurds in a province as a dynamic variable. There is
no official data on ethnicity, so we use Turkey’s Demographic and Health Survey 2008 and 2013
waves (Koc et al., 2008). Both surveys are representative and sample women of reproductive age
(15 to 49) (Hacettepe University Institute of Population Studies, 2013). The survey includes a
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question about the respondent’s mother tongue using which we identify if someone is Kurdish.
We use the 2008 and 2013 waves to estimate the proportion of Kurds in a province in and before
those years.

To facilitate estimation and interpretation, we normalise all explanatory variables, except
time, to the [-1 1] range, by centring around the mean and dividing by the maximum of the
absolute of the centred values, hence one of the −1, 1 boundaries is attained. In this way, the
coefficients of those factors will be about a change associated with a change from the average
value to the absolute maximum observed value of a factor. Finally, we worked with popularity,
population, previous year, and reciprocity in the log domain.

4.2 Descriptive results for migration

Figure 2 shows out- and in-migration in the 81 provinces of Turkey. The figure shows the
absolute level of migration, migration as the percentage of the number of inhabitants at the
start of the year, and the 2018-2009 difference in the latter. The figure shows that large
provinces, such as İstanbul, Ankara, İzmir, Adana, and Antalya have high levels of out- and
in-migration (see Figure 3 for province names). This is in line with gravity law. There is almost
a perfect correlation between out- and in-migration levels across provinces.

Migration as a percentage of the number of inhabitants, however, shows a different pattern.
Proportional to their populations, large provinces (e.g. İstanbul, Ankara, İzmir, Adana, and
Antalya) have relatively low migration. Smaller provinces in the centre-east, such as Gümüşhane
and Tunceli have the highest migration per capita. The difference between absolute and relative
migration will become important when we present our model estimates below.

The changes displayed in Figure 2 (bottom panels) show that, on average, the change in
out-migration per capita is rather stable. However, it is slightly negative in some places and
slightly positive in others, the largest change is in Gümüşhane.

Figure 2 shows only the origins and destinations of migration. Figure 3 shows absolute
migration flows. In Figure 3 we omit small flows for clarity. These small flows will be part
of the analyses in Section 5. Figure 3 shows that İzmir, Anlatya, Tekirdağ, Ordu, Tokat, and
Ankara are popular destinations, especially for those from İstanbul. There are also local clusters,
such as Şanlıurfa, Konya, Gaziantep, Adana and Mersin that attract and send migrants.

Finally, Figure 4 shows the bi-variate correlations for the one-way (i.e. variables defined
for a province–‘node’ characteristics) and two-way factors (i.e. variables defined for a pair of
provinces–‘edge’ characteristics). As expected, many predictors are correlated. Below we will
analyse how these factors are associated with migration flows, our dependent variable, after
describing our model of migration in detail.

5 Results

In this section, we provide the results of the implementation of our methodology using the
migration data described in Section 4. The experiments were performed in MATLAB, version

20



36

38

40

42

25 30 35 40 45

long

la
t

8k

22k

60k

160k

Out−migration 
(absolute, 09−18 average)

36

38

40

42

25 30 35 40 45

long

la
t

4

6

8

10

Out−migration 
(per 100 inhabitants, 09−18 average)

36

38

40

42

25 30 35 40 45

long

la
t

0

2

4

6

Out−migration per 100 
(18−09 difference)

36

38

40

42

25 30 35 40 45

long

la
t

8k

22k

60k

160k

In−migration 
(absolute, 09−18 average)

36

38

40

42

25 30 35 40 45

long

la
t

4

6

8

10

In−migration 
(per 100 inhabitants, 09−18 average)

36

38

40

42

25 30 35 40 45

long

la
t

0

3

6

9

In−migration per 100 
(18−09 difference)

Figure 2: Absolute, per 100, and change in per 100 between 2018 and 2009 in out- and in-migration
per province.

R2021b. All data and the code that produce the results below are available (anonymised
for peer-review) at https://github.com/SocNetMigration/MigNet-MATLAB-code.git. This
replication package also includes guidelines for preparing other data for our model.

5.1 Model estimates

We implemented the sampling method in Algorithm 1 to estimate θ. We use non-informative
priors for θ described in Appendix A. Algorithm 1 is run for 5×105 iterations, and the posterior
distributions are estimated based on the draws obtained during the last 80% of the iterations
(following a burn-in). Convergence is confirmed by visual inspection of the history of the draws
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Figure 3: Migration flows between provinces.
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Figure 4: Sample correlation matrix for the one-way and two-way factors

from the chain.
Figure 5 shows the box plots for the estimated marginal posterior distributions of the coeffi-

cients for our predictors of migration. Table 1 displays the means, standard deviations, and 90%
credible intervals of those parameters, and additionally of the random intercept and the ‘scale’
parameter of the Dirichlet-multinomial model (see (2) and (4)). Furthermore, the correlation
structure in the posterior distribution for θ1, θ2, θ3 is shown in Figure 6. Appendix B.1 includes
the histograms of the posterior distributions of the parameters.

The correlation structure in the posterior in Figure 6 is in line with the correlation matrix
of the predictors given in Figure 4. A comparison of these two figures shows the typical trend
that a positive correlation between two predictors yields a negative correlation between their
coefficients in the posterior, and vice versa, as expected. This justifies the general cautionary
rule that applies to almost all multivariate models that the effects of correlated predictors should
not be considered in isolation from each other.
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Figure 5: Box plots of marginal posterior distributions of factor coefficients in the hierarchical (ran-
dom intercepts across provinces) Dirichlet-multinomial model described. See Table 1 for the posterior
distributions of the intercepts.

Table 1: Means, standard deviations, and 90% credible intervals for the marginal posterior
distributions of the parameters of the Dirichlet-multinomial model with the hierarchical speci-
fication.

Parameter mean std 90% Cred. Int. Parameter mean std 90% Cred. Int.

GDP → 0.0088 0.0155 (-0.0175 0.0335) GDP ← 0.2698 0.0060 ( 0.2601 0.2796)
Unemp. → 0.0406 0.0079 (0.0279 0.0533) Unemp. ← -0.0286 0.0055 (-0.0372 -0.0192)

AKP → -0.0742 0.0044 ( -0.0816 -0.0671) AKP ← -0.0124 0.0028 (-0.0167 -0.0078)
Popularity → 0.5691 0.0237 (0.5310 0.6078) Popularity ← -0.1511 0.0164 (-0.2064 -0.1538)
Population → 0.2935 0.1187 (0.0899 0.4920) Population ← 0.1419 0.0141 (0.1177 0.1642)

Between. → 0.3358 0.0334 (0.2876 0.3892) Between. ← 0.1408 0.0199 (0.1083 0.1727)
Kurd → -0.0642 0.0090 (-0.0785 -0.0487) Kurd ← -0.0305 0.0039 (-0.0370 -0.0240)

Polit. dist. ↔ -0.0376 0.0040 (-0.0441 -0.0310) base mean -8.4527 0.1286 (-8.6645 -8.2419)
Spat. dist. ↔ -0.0213 0.0037 (-0.0275 -0.0152) base var. 1.3366 0.2274 (1.0079 1.7467)
Prev. year ↔ 3.2927 0.0153 (3.2675 3.3177) Scale 10.5472 0.0064 (10.5368 10.5576)

Reciprocity ↔ 1.9850 0.0140 (1.9616 2.0079)
In-flow sim. ↔ 0.0982 0.0040 (0.0916 0.1048)

The results are also mostly in line with theory. Unemployment (→) in the sender province
is positively associated with out-migration and unemployment (←) in the target has a negative
association with in-migration. While GDP (→) in the sending province does not seem to have
a strong association with out-migration, GDP (←) in the target is strongly and positively
associated with in-migration.

Regarding the elements of the ‘gravity law’, a large population (→) is associated with a
higher probability of out-migration–the posterior mean of its coefficient is 0.29. Population
(←) in the target also has a very strong positive association with in-migration. We also find a
negative association between spatial distance (↔) and migration. These results are in line with
the ‘gravity law’.

We also find a negative association between provincial political distance (↔) and migration.
Interestingly, the size of the coefficient for political distance is slightly higher than that for
spatial distance.

As expected, network characteristics are strongly associated with migration. Migration from
i to j in the previous year (↔) is a very strong predictor of current migration. Its coefficient is
the largest of all. Interestingly, the popularity (←) of a province (total in-migration) in a given
year is associated negatively with in-migration the next year, net of all other factors controlled
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Figure 6: Posterior correlation matrix

in the model.
We also find strong reciprocity (↔): the larger the migration from j to i in a given year, the

larger the migration from i to j the next year. Betweenness centrality of a province in a given
year also makes a province attractive the next year (←). Likewise, betweenness centrality (→)
of the origin is associated strongly and positively with out-migration. Hence, central provinces
seem to act as hubs, attracting and initiating further migration. In-flow similarity (↔), which
captures in-degree assortativity, is associated positively with migration too.

Interestingly, we find that the strength of the AKP in a province is negatively associated with
both out-migration (→) and in-migration (←), although its coefficient is small in both cases.
This shows that migration both out of and into AKP-dominated regions is low. Together with
the strong negative coefficient for political distance, this finding further indicates the negative
association of political divides with migration.

Finally, the proportion of Kurds in a province is associated negatively with both out-(→)
and in-migration (←). Although its coefficients are low in the absolute sense, negative values are
inconsistent with the common belief that migration is a Kurdish phenomenon. Note, however,
that the outcome is all migration from and to a province, Kurdish or otherwise. Hence, the
evidence here is indirect. Nevertheless, if Kurds were much more mobile than Turks and other
ethnicities as the common belief suggests, one would expect a positive effect of the proportion
of Kurds in a province on out-migration.

The coefficients for ← and ↔ factors can be interpreted in terms of relative probabilities of
attracting migration from a given province. For example, suppose that the maximum observed
GDP value is normalised to 1 (recall that all factors are centred around the mean and normalised
to the [−1, 1] range). Then the mean of the posterior of the coefficient for “GDP ←” suggests
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that, from a given province, the probability of migration to a province with the highest GDP per
capita is 31% higher (exp(0.27) = 1.31) than the probability of migration to an average province
ceteris paribus. Likewise, the probability of migration to the spatially farthest province is 2%
lower (exp(−0.02) = 0.98) than that to an average province (provided that the maximum spatial
distance has been normalised to 1). The coefficients for → factors can be interpreted in terms
of the relative probability of migration to any province versus not migration. For example, one
unit increase in unemployment (e.g. the change from average to maximum observed value) in
province i is associated with a 4% (exp(0.04) = 1.04) increase in relative migration probability
from i, ceteris paribus.

Table 1 also shows the mean and the variance of the intercept which is random across
provinces. They show that there is considerable variability in the levels of out-migration prob-
abilities across provinces, the largest in Bayburt and the smallest in Istanbul. Figure 7 shows
the posterior distribution of the intercepts per province, estimated with our hierarchical speci-
fication. These provincial variations somewhat match the descriptive statistics given in Figure
2, although they are not equal because these intercepts are obtained after controlling for the
predictors of migration.
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Figure 7: Box plots of the marginal posterior distributions of random intercepts for provinces in the
hierarchical specification of the Dirichlet-multinomial model.

Additional estimation results: Some scholars argue that controlling for the lagged depen-
dent variable accounts for path dependency or autocorrelation of residuals in panel regressions,
though it may also bias downwards the coefficients for other explanatory variables (Keele and
Kelly, 2006). This potential issue has been shown to apply to temporal ERGMs, too (Block
et al., 2018). To address this potential issue, we fitted our models after excluding variables
that are calculated from past migrations. These variables are popularity, betweenness, previous
year, reciprocity, and in-flow similarity. The results after excluding these variables are given in
Appendix B.2.

These additional results show that including the measures based on migration in the previous
year in the model generally does not suppress the coefficients of the other variables. In fact,
for some variables, the estimated coefficients are somewhat smaller after excluding the lagged
measures (e.g. AKP ←). Coefficients do increase, in absolute value, for some variables (e.g.
GDP→, Kurd←) after excluding lagged variables. But because of a lack of general suppression
of coefficients due to including in the model measures based on lagged values of migration, we
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Table 2: Mean squared prediction errors for the Dirichlet-Multinomial model and the grav-
ity model with random intercepts for provinces (DM and Grav-re, respectively) and with a
global single intercept (DM0 and Grav0) for different outcomes (log counts or counts, diagonals
excluded or included).

Outcome Diagonals DM Grav-re DM0 Grav0

log-counts excluded 0.1273 0.1227 0.1327 0.1242
included 0.1257 0.1212 0.1311 0.1227

counts
(×106)

excluded 0.0927 0.1054 0.1096 0.1165
included 1.0847 1.5478 1.8661 2.1104

conclude that the above issue is not particularly problematic in our case. Note that one expects
differences in the coefficients of variables that are estimated before and after the inclusion of
lagged migration variables due to the conditional nature of the Dirichlet-multinomial regression,
which we observe too. Additionally, as shown in Table 3 in Appendix B.3, the exclusion of
lagged measures reduces the predictive performance substantially, further suggesting the need
for including them in the model.

5.2 Comparison with the gravity model in terms of predictive power

The gravity model assumes a linear regression for the non-diagonal log-migration counts. Al-
though the essential factors of the gravity model are population and distance, one could easily
include other one-way and two-way factors in the model. Therefore, for fairness in comparison,
we constructed a gravity model that includes all the factors considered in our model. This
corresponds to the following relation for i, j ∈ {1, . . . , n}; i ̸= j, and t ∈ {1, . . . , T},

logHt(i, j) = θ0(i) + θ1 · ut(i) + θ2 · vt(j) + θ3 · zt(i, j) + et(i, j),

where the sum on the right-hand side serves as the base parameter as before, et(i, j) are un-
correlated deviation terms, assumed to have zero mean and common variance, and ut(i), vt(j),
and zt(i, j) are as defined before. (Wherever Ht(i, j) = 0, which happens only in 31 out of
81 × 81 × 81 = 65610 cells, we substituted it with a 1 to avoid log 0.) We fitted two ver-
sions of this model: first, with a global θ0(i) = θ0 which is constant across provinces, and
the second in which θ0(i)’s are “random effects” which are assumed to be normally distributed
across provinces. The latter version matches with the Dirichlet-Multinomial model we discuss
above which also has “random effects” for provinces. To facilitate comparison we also fit a
Dirichlet-Multinomial specification with a global θ0.

We compared the gravity model and the Dirichlet-Multinomial model in terms of their
out-of-sample predictive performances with the following process. Recall that the total data
consists of 10 consecutive years between 2009 and 2018. For every single year, we excluded
its migration data and used the rest of the years for training the model. The training results
are then used to predict the migrations in the excluded year. For the Dirichlet-Multinomial
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model, we ran Algorithm 1 (or variants of this for the global and random effects intercepts) to
obtain samples from the posterior distribution of θ given the training data, and we predicted
the migration counts in the test year by the Monte Carlo estimation of their expectations
with respect to their posterior predictive probability distribution. For the gravity model, the
maximum likelihood estimates for the parameter vector, obtained from the training data, were
substituted for calculating the expectation of logHt(i, j) for the test year t. Moreover, for
the gravity model, for a test year t, the non-migration counts, i.e., Ht(i, i), i = 1, . . . , n are
predicted by Pt(i) −

∑n
j=1,j ̸=i Ĥt(i, j), where Ĥt(i, j) is the predicted value for Ht(i, j). The

prediction results for the ten test years are then used to calculate squared errors [(predicted
- observed)2] and averaged over the 10 years. We calculate separate mean squared errors for
migration counts with and without the diagonals. This is because in a typical gravity model
diagonals are excluded.

The results show that the Dirichlet-Multinomial model has better performance than the
gravity model in predicting migration counts. Prediction errors for the Dirichlet-Multinomial
for count outcomes are consistently lower than that for the gravity model both when we include
and exclude the diagonal (non-migration) values in the predicted outcome. When the log-counts
are considered the gravity model performs slightly better than the Dirichlet-Multimonial. This
suggests that the gravity model is generally mispredicting large flows. As an aside, the mean
absolute error of our hierarchical model for all counts including non-migration is only 108.6 which
corresponds to less than 0.05% of the standard deviation of migration counts. This shows that
our model predicts migration flows reasonably well. Also note that random province-specific
intercept parameters improve the performance, and hence those random effects do not lead to
over-fitting.

We also compared the predictive performance of our method with that of a simpler variant
which excludes variables based on the previous year’s migration flows (see Table 3 in Appendix
B.3). The results show that the exclusion of lagged measures hampers predictive performance
substantially, pointing to the need of including them in the model as we do.

5.2.1 Baseline probability of migration and the predictive accuracy of the gravity
model

The results above show that our model outperforms the gravity model in predicting migration
counts. We conjecture that one of the main reasons for the relatively poor performance of
the gravity model in predicting migration counts is the following. The gravity model fails to
capture the mechanistic relationship between migration out-flows to different targets from the
same origin, for example, due to competition between different targets for a constant number
of possible migrants from a given origin. This drawback increases as the share of a population
that migrates relative to those that do not migrate increases. This is because the smaller the
share of the people in an origin that do not migrate (hence the larger the share of those who
migrate), the larger the (negative) correlation between migration flows to different destinations,
and since the gravity model does not capture those correlations naturally, the lower should be
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the predictive accuracy of the gravity model.
To demonstrate the mechanism explained above and help understand the predictive perfor-

mance of the gravity model vis-a-vis ours better, we carry out a Monte Carlo simulation, where
we test the predictive performances of the Dirichlet-multinomial model and the gravity model
on simulated data sets. In our simulation, we randomly generate migration flows using two sep-
arate processes. In the first process, we generate migration flows from the Dirichlet-multinomial
model with 10 origins to those 10 destinations for 5 time periods. In generating those flows, we
randomly simulate the origin populations (from the Poisson distribution with a mean of 1000,
independently for each origin) and 3 →, 3 ← and 2 ↔ factors, and draw migration counts from
the respective Dirichlet-multinomial distributions as in (3). We fix θ1 = (1, 1, 1), θ2 = (1, 1, 1),
and θ3 = (1, 1) and control the baseline out-migration probability by varying a common θ0

parameter for all origins. (For simplicity, we do not add sender random effects in the data gen-
eration process.) We vary θ0 from −5 to 0 with increments of 0.5 and generate 10 datasets for
each unique θ0 value. Note that the parameter θ0 controls the level of negative correlation be-
tween out-migration counts. As θ0 increases, the negative correlation between the out-migration
counts increases.

Note that in the simulation above our aim is to understand better how the predictive ac-
curacy of the gravity mode depends on the baseline probability of out-migration, rather than
comparing our model with the gravity model in all possible data generation scenarios. Never-
theless, because we generate the migration counts from a Dirichlet-multinomial model, one may
argue that the data generation process does not do justice to the gravity model. Hence, in a
second process we generate migration counts from a multivariate normal distribution obtained
by randomly ‘perturbing’ the Dirichlet-multinomial model. Specifically, for every t and i, let
the mean vector and covariance matrix of Dirichlet-Multinomial(Xt(i);αt(i, 1), . . . , αt(i, n)) be
mt,i and St,i. We sample the counts as

(Ht(i, 1), . . . , Ht(i, n)) ∼ N (mt,i, St,i), where St,i ∼Wishart(St,i/n, n), (7)

that is, we distort the covariance matrix to deviate from the Dirichlet-multinomial model while
still keeping the negative correlation among the counts. The counts drawn from the multivariate
normal distribution are then rounded to the nearest integers and truncated at the zero lower
bound. Finally, we readjust the population according to the final values of the counts. As in the
first process, in this second process, too, θ0 controls the level of negative correlation between
out-migration counts.

For both processes, we then calculate mean squared errors as we did above, that is by leaving
out one time period in training the gravity and the Dirichlet-multinomial model and predicting
flows in the left-out period. For the gravity model, we also add the population as a factor.

Figure 8 shows the results of our Monte Carlo simulations. The figure confirms our conjecture
as to the reasons for the gravity model’s relatively poor predictive performance. As the baseline
probability of migration increases (corresponding to larger θ0), the predictive power of the
gravity model vis-a-vis the Dirichlet-multinomial model decreases, for both of the two data
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generation processes we described above. These results imply that as the ratio of migrants
relative to non-migrants from a given province approaches zero, the predictive accuracy of the
Dirichlet-Multinomial and the gravity model converge. This is an important observation that we
will return to in the final section, for the predictive drawbacks of the gravity model may be less
problematic if, in a particular application, the migration counts (flows) relative to non-migrant
counts (stocks) are low.
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Figure 8: Predictive performance of the gravity model relative to the Dirichlet-multinomial model
on simulated data. Top row: Data are simulated from the Dirichlet-multinomial model. Bottom
row: Data are simulated from the normal distributions, as in (7). The parameter θ0 captures the
baseline probability of migration and as this probability increases so does the negative correlation between
migration to different destinations, and the predictions of the gravity model worsen.

6 Discussion and conclusions

In this study, we propose a Dirichlet-multinomial model and a Bayesian inference method to
analyse the interdependent flows. We apply the developed methodology to analyse the dynamic
migration flows of the 81 provinces of Turkey from 2009 to 2018. Our study offers methodological
and substantive contributions to the literature.

On the methodological front, our Dirichlet-multinomial model alleviates several shortcom-
ings of the popular models applied to migration flows. The advantages of our model are as
follows. First, it naturally captures systemic effects. That is, our model incorporates, unlike
the gravity model, the effects of the characteristics of all alternative destinations on a decision
to migrate to a specific destination. Second, in our model, non-migration is accounted for. The
alternative to ignoring non-migration and conditioning the results on migration having taken
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place, which is a common practice in the literature, results in the so-called selection on the
dependent variable. Third, our model adheres to the natural boundary of migration and the
mechanistic relationship between migration and non-migration. That is, out-migration and in-
migration change the populations of the origin and the destination, and the total number of
out-migration cannot exceed the population of the origin in a given period. Our model natu-
rally incorporates these phenomena. Fourth, our model lends itself to an estimation method that
is computationally much simpler than many of its alternatives. The computational simplicity
allows us to expand our model with a hierarchical specification that captures variations in the
baseline of and potentially also longitudinal changes in migration probabilities.

To demonstrate those advantages, we carried out an out-of-sample prediction comparison of
our model vis-a-vis the gravity model, one of the most common models used in the migration
literature. The gravity model ignores systemic effects, and it typically ignores non-migration as
well as the mechanistic relationship between populations, non-migration, and migration flows.
We showed that our model consistently outperforms the gravity model in predicting migration
flow counts.

We also showed through Monte Carlo simulations that the predictive accuracy of the gravity
model worsens as the ratio of migrants to non-migrants increases. Conversely, as the ratio
of migrants to non-migrants approaches zero, the predictive accuracy of the gravity model
converges with that of our model. This implies that when migration is a much rarer event
compared to non-migration, the gravity model would perform reasonably well.

Note that while we framed our model within a migration setting, and indeed we developed
it to understand migration flows and their determinants, the model is more general. It can be
applied to any other setting that involves discrete dynamic flows between a finite number of
origins and destinations.

We should note that there are several models developed in the social networks literature, that
are very general and flexible and, in principle, can also be applied to dynamic flows with some
adjustments. These include Exponential Random Graph Models and their various extensions
for count data or longitudinal data; relational event models, dynamic network actor models,
stochastic actor-oriented models, and latent space and latent factor models. We discussed
those models in detail and compared them with ours. While they are indeed very powerful and
flexible, we argued that they may be too general for our problem at hand. Our method provides
a straightforward approach to model dynamic flows while offering computational simplicity and
at the same time taking into account key features of and dependencies in the data.

The computational simplicity of our model rests on the assumption that migrations from
different origins at a given time point are independent, conditional on the covariates which
can include those that are based on previous migration flows. Note that this conditional inde-
pendence assumption is about decisions in different provinces, our model incorporates possible
positive correlations between migration decisions within the same province. We believe that
this assumption is not unrealistic in our longitudinal context. When an individual is deciding
to migrate or not in a given time-point, they may not consider or indeed be aware of the migra-
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tion decisions of others outside their provinces at the same time point. Moreover, dependencies
among migration probabilities that may violate this assumption can be explained away, to a
certain degree, by including in the model the predictors that are the likely causes of that depen-
dence. For example, if one expects a ‘herding’ dynamic for migration (i.e. people in different
provinces imitating each other in migrating to a specific destination) this factor can be added to
the model, by adding a destination popularity factor based on previous migration flows into the
destination, as we do in our analysis. In other words, because we have longitudinal data, we can
condition current flows on earlier flows, which makes the conditional independence assumption
more plausible.

We also note that our model allows further extensions. One particular direction is the
following. In our hierarchical specification, we include random intercepts for out-migration
(i.e. for sending provinces). One can include such random effects for the receiving provinces,
too. This would result in a cross-classified model (Snijders and Bosker, 2011, Chapter 13).
In fact, we have fitted this cross-classified version. The parameter estimates as well as the
predictive performance of our model hardly changed. At the same time, however, the receiver
random effects increased the computational complexity of the model substantially. This is
because, in a cross-classified model, each of the n random intercepts of the receiving provinces
would affect the Dirichlet-multinomial probabilities for all provinces. Thus, the acceptance
probability in the estimation which is needed to accept or reject a proposed update for each of
those parameters would require the computation of the whole product in (6). Note that this is in
stark contrast with the update of the intercept of the sending provinces, for which we calculate
a single Dirichlet-multinomial probability for each t in the numerator and the denominator of
the acceptance ratio, see Algorithm 1. Because receiver random effects were inconsequential to
our results and the predictive performance of our model, we decided to proceed without the
receiver random effects. Nevertheless, they could be incorporated should the researcher sees a
need to do so.

Overall, we contribute to the literature methodologically by providing a viable alternative
for analysing migration and other types of flows.

Our study also offers substantive contributions to the migration literature. Far greater shares
of populations are affected by internal migration than by international migration. Most past
research, however, focuses on the latter. Using a new dataset and a model, we analyse inter-
provincial migration in Turkey. Our results largely confirm the existing theories of migration:
economic prospects, population, spatial distance, and network characteristics shape the flow of
internal migration in Turkey. We also offer several novel findings.

Firstly, we register that political distance between provinces (measured using electoral re-
sults) is negatively associated with migration flows. This negative association is even stronger
than that between spatial distance and migration. Moreover, we find that the strength of the
AKP (Justice and Development Party) in a province is negatively associated with out- and
in-migration. These findings together imply that political divisions in the country contribute
to the sorting of province populations as well. This association between politics and migration,
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in turn, may accelerate further the political polarisation between the provinces of Turkey which
is already rife.

We also provide, to our knowledge, the first systematic test of whether the proportion
of Kurds in a province is associated with migration. Kurds are affected by higher levels of
unemployment and poverty and have higher fertility. These factors are traditionally associated
with migration. Indeed there has been large-scale Kurdish migration to western parts of Turkey.
Our analysis, however, shows that conditional on the factors we include in our model, the share
of Kurds in a province has a small negative association with migration. While these findings
should be interpreted with caution, as the independent variable is the share of Kurds in a
province while the outcome is migration across all ethnic groups, a lack of positive coefficient
suggests that internal migration in Turkey is not a predominantly ‘Kurdish phenomenon’.
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A Prior and proposal distributions

In the hierarchical specification, θ1, θ2, θ3, and θ4 are assigned flat priors (ηi(θi) ∝ 1), while for
the hyperparameters of the mean and covariance of the prior distribution of ϑi’s we set µh = 0

and σ2
h = 100, νh = 1 and Ψh = 1. We use a Metropolis-Hastings update for θ1, θ2, θ3. The

proposal distributions are set as qj(θ
′
j |θj) = N (θ′j ; θj , 0.025

2 × C−1
j ), where

• C1 is the sample covariance matrix calculated from {ut(i) : i = 1, . . . , n; t = 1, . . . , T},
• C2 is the sample covariance matrix calculated from {vt(i) : i = 1, . . . , n; t = 1, . . . , T},
• C3 is the sample covariance matrix calculated from {zt(i, j) : i, j = 1, . . . , n; t = 1, . . . , T},

We use a random walk Metropolis-Hastings to update θ4 and ϑis also, with q0(θ
′
4|θ4) = N (θ′4; θ4, 10

−4)

and q0(ϑi|ϑi) = N (ϑ′
i;ϑi, 10

−4).

B Additional numerical results

B.1 Histogram of the parameters of the hierarchical Dirichlet-Multinomial
model

Figure 9 shows the histograms for θ1, θ2, θ3, and θ4 (the ‘scale’ parameter) obtained from 5×105

samples for the hierarchical Dirichlet-multinomial model. Figure 10 shows the same for µ0 and
Σ0, the mean and variance parameters for the province-specific intercepts.

Figure 9: Histograms for θ1, θ2, and θ3 for the hierarchical Dirichlet-multinomial model.

B.2 Excluding explanatory variables based on past migration

Figure 11 shows the box plots of marginal posterior distributions of factor coefficients in the
hierarchical Dirichlet-multinomial model, after excluding variables that are based on lagged
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Figure 10: Left: Histograms for (µ0,Σ0), the mean and variance parameters for the province-specific
intercepts, and θsc, the ‘scale’ parameter, for the hierarchical Dirichlet-multinomial model.

values of migration. These coefficients do not show a general suppression effect for those reported
in the paper which are adjusted for lagged measures. Figure 12 shows the posterior correlations
of these parameters. Figure 13 shows the posterior distributions of the intercepts per province.
Figure 14 (left) shows the histograms for θ1, θ2, and θ3. Figure 15 shows the histograms for
(µ0,Σ0) (left) and θ4, the ‘scale’ parameter (right).

-1 -0.5 0 0.5 1

GDP -->

Unemployment -->

AKP -->

Population -->

Kurd -->

0 0.5 1 1.5 2

GDP <--

Unemployment <--

AKP <--

Population <--

Kurd <--

-0.6 -0.4 -0.2

Political distance <-->

Spatial distance <-->

Figure 11: Box plots of marginal posterior distributions in the hierarchical Dirichlet-multinomial model
described, after excluding variables that are based on lagged values of migration.

B.3 Predictive performance of the variants of the Dirichlet-multinomial model

Table 3 shows the prediction results for the hierarchical Dirichlet-multinomial model and its sim-
pler variants. Those simpler variants are a non-hierarchical specification with a single common
base parameter instead of random province bases, and a specification that excludes variables
based on the previous year’s migration flows. Comparing the errors in the first and the second
columns with the last, we can see that not regressing on the past data considerably reduces the
predictive performance. Also, comparing the errors in the first and the third columns, we can
see that the random province-specific base parameters improve the performance. The latter
observation suggests that the inclusion of province-specific base parameters does not lead to
overfitting, hence capturing a genuine aspect of the true phenomenon.
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Figure 12: The posterior correlation matrix of factor coefficients in the hierarchical Dirichlet-
multinomial model, after excluding variables that are based on lagged values of migration.

Figure 13: Box plots of the marginal posterior distributions of random intercepts for provinces in the
hierarchical Dirichlet-multinomial model, after excluding variables that are based on lagged values of
migration.

Table 3: Predictive performance (mean squared predictive errors) of the hierarchical Dirichlet-
multinomial model and its simpler variants

Predicted value Diagonals DM-hier DM
common θ0

DM-hier
wo past

log counts excluded 0.1273 0.1327 0.8566
log counts included 0.1257 0.1311 0.8460

counts(×106) excluded 0.0927 0.1096 0.7395
counts(×106) included 1.0847 1.8661 3.0924
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Figure 14: Histograms for θ1, θ2, and θ3 obtained from 5× 105 samples for the hierarchical Dirichlet-
multinomial model, after excluding variables that are based on lagged values of migration.

Figure 15: Histograms for (µ0,Σ0) (left) and θ4 (right) for the hierarchical Dirichlet-multinomial model,
after excluding variables.
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