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A B S T R A C T   

Motor imagery (MI) in combination with neurofeedback (NF) is a promising supplement to facilitate the 
acquisition of motor abilities and the recovery of impaired motor abilities following brain injuries. However, the 
ability to control MI NF is subject to a wide range of inter-individual variability. A substantial number of users 
experience difficulties in achieving good results, which compromises their chances to benefit from MI NF in a 
learning or rehabilitation context. It has been suggested that context factors, that is, factors outside the actual 
motor task, can explain individual differences in motor skill acquisition. Retrospective declarative interference 
and sleep have already been identified as critical factors for motor execution (ME) and MI based practice. Here, 
we investigate whether these findings generalize to practicing MI NF. 

Three groups underwent three blocks of practicing MI with NF, each on two subsequent days. In two of the 
groups, MI NF blocks were followed by either immediate or delayed declarative memory tasks. The control group 
performed only MI NF and no specific interference tasks. Two of the MI NF blocks were run on the first day of the 
experiment, the third in the morning of the second day. Significant within-block NF gains in mu and beta fre
quency event-related desynchronization (ERD) where evident for all groups. However, data did not provide 
evidence for an impact of immediate or delayed declarative interference on MI NF ERD. Also, MI NF ERD 
remained unchanged after a night of sleep. 

We did not observe the expected pattern of results for MI NF ERD with regard to declarative interference and a 
night of sleep. This is discussed in the context of variable experimental task designs, inter-individual differences, 
and performance measures.   

1. Introduction 

The acquisition of new movements or improving existing motor skills 
is a significant part of everyday life. It is known that motor acquisition is 
mainly achieved by repeatedly physically executing the target move
ments, incorporating the external sensory input, and adapting subse
quent movement attempts (Adams, 1971; Hikosaka et al., 2002; 
Willingham, 1998). In addition to this motor execution (ME) practice 
loop, motor acquisition can be supported by motor imagery (MI) (e.g., 
Guillot et al., 2013; Ruffino et al., 2017). MI is a dynamic mental state, 

which involves a systematic internal simulation process to rehearse a 
target movement without overtly executing it (Decety, 1996; Di Rienzo 
et al., 2016). The neural simulation of action theory provides a theo
retical framework for the interplay between ME and MI (Jeannerod, 
2001). It postulates that imagined movements are functionally equiva
lent to executed ones not only in terms of overt motor stages, as e.g., 
motor planning, but also with regard to the underlying neural networks 
(for a critical review, see O’Shea and Moran, 2017). Remarkably, the 
activation of these specific networks strongly depends on the MI strat
egy, i.e., the activity of sensorimotor areas is predominantly induced by 
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kinaesthetic MI (internal perspective) and less by visual MI (external 
perspective) (Annett, 1995; Hétu et al., 2013; Neuper et al., 2005; Sti
near et al., 2006). 

MI practice is suitable to facilitate the acquisition of new motor skills 
and the improvement of already existing motor skills in healthy subjects 
(Kraeutner et al., 2018; Schack et al., 2014; Wriessnegger et al., 2018). 
Furthermore, MI practice is considered as a promising tool to comple
ment motor rehabilitation interventions after a brain injury, such as 
stroke, by facilitating the relearning of lost motor skills (Bajaj et al., 
2015; Maier et al., 2019; Malouin et al., 2013). To overcome the lack of 
sensory feedback in MI and so to enhance its positive effects, MI can be 
combined with neurofeedback (NF). 

NF serves as a channel for feeding back information about brain 
activation resulting from MI to the subject and can be utilized to 
enhance adaptive activation patterns (Braun et al., 2016; Ietswaart et al., 
2011; Zich et al., 2015a), motor skill acquisition, and motor recovery 
(for a review, see Pichiorri and Mattia, 2020). Paradigms that combine 
MI and NF are typically controlled by event-related (de)synchronization 
(ERD/S), reflecting task related power changes of rhythmic brain ac
tivity recorded within the mu (8–12 Hz) and beta (13–30 Hz) frequency 
range over sensorimotor areas contralateral to the target limb. Specif
ically, during MI (similar to ME) power decreases (ERD) and post 
movement power increases (ERS), relative to a given baseline (Cheyne, 
2013; Lopes da Silva & P furtscheller, 1999; Pfurtscheller and Aranibar, 
1979). 

The active self-regulation of the ERD/S evoked during MI, and the 
closely interrelated ability to control an MI NF, can be considered as 
skills that can be acquired and that are subject to principles of learning 
(Lotte et al., 2015; Lotte et al., 2013). For ME and MI skill acquisition it 
has been shown that they are influenced by task context (Brown and 
Robertson, 2007; Debarnot et al., 2012; Debarnot et al., 2011a; Schlatter 
et al., 2020). Based on this it can be hypothesized that also for acquiring 
MI NF control, the context in which MI NF practice takes place matters 
(e.g., Daeglau et al., 2020a; Roc, Pillette, N’Kaoua and Lotte, 2019). 

Very little is known about what aspects of task context relevant for 
ME or MI skill acquisition are also of relevance for acquiring MI NF 
control (for a review, see Daeglau et al., 2021). The present study 
focused on the context factors declarative interference through a sub
sequent non-motor task and a night of sleep (e.g., Brown and Robertson, 
2007; Debarnot et al., 2012; Debarnot et al., 2011b), both of which are 
so far unexplored for MI NF control. Debarnot et al. (2012) found that 
declarative interference after MI practice of a finger tapping task 
negatively affects subsequent physical task performance. This finding 
was based on the hypothesis that the explicit memory trace induced by 
MI practice may rely more heavily on the declarative than the proce
dural memory system (Debarnot et al., 2012). The impairment in 
physical task performance was observed both over intervals of sleep and 
wakefulness. Notably, this contrasts with ME practice, where declarative 
interference similarly impairs the consolidation of a motor task over 
wakefulness, whereas sleep has been shown to support performance 
recovery (Brown and Robertson, 2007; but see, Rothkirch et al., 2018). 
Studies on the role of sleep in ME motor skill acquisition and without 
specific interference tasks have indicated that sleep following ME skill 
acquisition leads to additional gains in the practised motor skill (for a 
review, see King et al., 2017). Other studies however challenge this 
notion (Brawn et al., 2010; Hotermans et al., 2006; Nettersheim et al., 
2015). Using a finger-tapping task, Nettersheim et al. (2015) showed 
that the supposedly sleep related gain is not really a gain but rather a 
stabilisation of task performance at the early boost level. The early boost 
describes an offline gain in performance that can be measured around 
5–30 min after the motor task and then decays over the next 4–12 h of 
wakefulness (Brawn et al., 2010; Hotermans et al., 2006). Gains in 
performance following a sleep period have also been reported for MI 
practice (Debarnot et al., 2011b; Debarnot et al., 2009a; Debarnot et al., 
2009b). This has been interpreted as follows: motor consolidation and 
associated delayed offline gains in ME performance acquired through MI 

practice profit from sleep or even depend on it. Yet it seems possible that 
this interpretation needs to be reconsidered, and that also for MI skill 
acquisition sleep does not result in an additional gain but rather in a 
consolidation at the early boost level. Supporting this assumption, an 
early boost can also be found for MI skill acquisition (Debarnot et al., 
2011a). 

To date, it has not been studied whether declarative interference 
affects MI NF skill acquisition and if so, how the effect would evolve over 
a night of sleep. Also, it is unknown whether MI NF skill acquisition is 
subject to an early boost and subsequent decay effects. Providing evi
dence for any of those effects could help to optimally schedule MI NF 
interventions and therefore aid patients to receive the best possible 
treatment. In the present study, three groups underwent three MI NF 
blocks each, which took place over two consecutive days. In the two 
experimental groups, two of the three MI NF blocks were arranged such 
that each MI NF block was followed by tasks tapping declarative 
memory resources (immediate interference) or such that the interfer
ence tasks followed a day of wakefulness (late interference). In the 
control group MI NF blocks were combined with control tasks and no 
explicit declarative interference task was performed (no interference). 
ERD of the MI NF blocks was used as a quantifiable feature for describing 
MI NF performance related to MI NF skill acquisition. Regarding im
mediate declarative interference, we hypothesized it to have an adverse 
impact on MI NF performance compared to no interference, as evident in 
reduced contralateral ERD within the mu and beta frequency range in 
the group receiving immediate declarative interference. We additionally 
hypothesized that after a night of sleep these adverse effects of declar
ative interference on MI NF ERD would not be reversed. Further, 
regarding late interference, we expected to observe an early boost in MI 
NF ERD from the first to the second MI NF block that would not be 
affected by late interference but rather remain stable after a night of 
sleep. 

2. Material and methods 

2.1. Participants 

We collected data from 66 healthy, young participants. All partici
pants reported normal or corrected-to-normal vision. None of the par
ticipants reported a current or previous history of psychiatric or 
neurological conditions or use of psychoactive medication. As indicated 
by the Edinburgh Handedness Inventory (Oldfield, 1971), all partici
pants were right-handed. Participants did not participate in previous MI 
NF studies. Explicit information about the purpose of the conducted 
experiments were not provided. Participants were informed about MI 
processes in general and specifically about the characteristics of visual 
and kinaesthetic MI. Every participant read and signed an institutionally 
approved consent form prior to the experiment. A total of 13 data sets 
were discharged from analyses. Three data sets were discarded due to 
technical issues during data collection, six data sets due to participant’s 
early drop out, one data set due to non-compliance to task instructions 
(i.e., moving during MI blocks), and three data sets because post-hoc 
analysis of self-report questionnaires indicated that participants did 
not comply with the general instruction to stay drug free between the 
three experimental sessions. 

The final sample consisted of 53 participants with three sessions 
each. Final group sizes were 17 participants in group late-interference (14 
women, aged 20–32 years, M and SD: 24.3 ± 3.5 years), 19 participants 
in group immediate-interference (17 women, aged 21–35 years, M and SD: 
25.1 ± 3.9 years) and 17 participants in group no-interference (10 women, 
aged 23–32 years, M and SD: 25.8 ± 2.5 years). 

The study protocol was approved by the Commission for Research 
Impact Assessment and Ethics of the University of Oldenburg. 
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2.2. Study layout 

The study design is illustrated in Fig. 1A. The study consisted of three 
experimental sessions spread across two successive days. Two sessions 
were run in the morning of the first and the second day (8:30–12:00), 
and one in the evening (18:00–21:30) of the first day. Sessions consisted 
of a combination of three out of four different blocks (motor imagery, 
interference, control, break). Motor imagery or MI blocks consisted of 
one run MI without NF (referred to as training run because data 
collected here were used to train the classifier used in NF), preceding 

two MI NF runs (for details see section 3.3.1 Motor Imagery Neuro
feedback Paradigm). Interference blocks encompassed four different 
cognitive demanding non-motor tasks (for details see section 3.3.2 
Interference-, Break- and Control-Blocks). In control blocks and break 
blocks participants passively watched a nature documentary. Each block 
lasted about 30 min. 

Participants were assigned in alternation on a rolling basis to either 
group late-interference, group immediate-interference or group no-interfer
ence. The first experimental session of group late-interference comprised 
two blocks of MI NF (MI1, MI2), separated by a break block. For group 

Fig. 1. Experimental Hierarchy. A. Study Design. The first session in the morning of day 1 began with a block of MI NF practice (MI1) followed by a break of 30 min 
(watching a documentary). Afterwards group late-interference performed another block of MI NF practice (MI2), group immediate-interference completed a block of 
declarative non-motor interference (I1) and group no-interference continued watching the documentary as a control condition. Participants then followed their daily 
life routine. However, daytime naps or excessive sport activities were not allowed, which was monitored by an activity tracker. In the evening of the same day, group 
late-interference completed its first interference block (I1), while group immediate-interference and group no-interference completed their second MI NF block (MI2). 
After a break group late-interference and group immediate-interference had their second interference block (I2) and group no-interference proceeded with its control 
condition. After a night of sleep all groups returned for a final session with a single block of MI NF practice (MI3). B. Flowchart MI NF block. Each MI block 
encompassed three runs consisting of 40 trials each (20 left hand, 20 hand right trials). After the training run, where no feedback was provided, NF parameters 
common spatial patterns (CSPs), classifier, and border were calculated and set for the second run (MI NF1). After this first feedback run (MI NF1), the NF parameters 
were renewed and set for the third run (MI NF2). For offline evaluation, the event-related-desynchronization (ERD) was calculated from EEG data obtained from MI 
NF 1 and MI NF 2 and averaged (MI NF ERD). C. Representative single subject CSPs. CSPs shown are based on left hand and right-hand trials of one MI run. D. 
Structure of a left-hand motor imagery (MI) neurofeedback (NF) trial. Each trial began with a baseline period of 5 s showing the outline of a small circle. 
Afterwards a fixation cross displayed for 3 s indicated the imminent start of the MI task period. The onset of a graphic comprising 3 different shades of blue indicated 
the beginning of the task period (duration 5 s). The location of the graphic indicated which hand to use for MI. During the NF runs a white ball moved along the 
horizontal (LR for left vs. right MI) and vertical (BaseL for baseline vs. left MI) axes according to the classifier output magnitudes. In the training runs the ball 
remained motionless in the centre of the screen. The inter-trial-interval (ITI) comprised 0–4 s connecting to the next baseline period. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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immediate-interference it consisted of a block of MI NF (MI1), a break 
block, and an interference block (I1), and for group no-interference of one 
block of MI NF (MI1), a break block and a control block. Participants 
were instructed to follow their regular daily routine in-between sessions, 
except for taking naps and exhausting sport activities. Adherence to 
these instructions was monitored using an actigraphy watch (Motion
Watch8, CamNtech Ltd., Cambridgeshire, UK) and queried by the ex
perimenters. We did not explicitly control for declarative interference 
tasks since we were solely interested in effects of immediate declarative 
interference in this study. The second experimental session was per
formed in the evening of the first day. For group late-interference it 
covered two blocks of interference (I1, I2) and a break block in-between, 
for group immediate-interference one block of MI NF (MI2), a break block 
and an interference block (I2) and for group no-interference one block of 
MI NF (MI2), a break block and a control block. Participants were 
instructed to get at least 8 h of sleep, which was confirmed by the 
actigraphy watch. The third experimental session was conducted the 
next morning and consisted of a single block of MI NF (MI3) for all three 
groups. 

In both morning sessions, participants completed the Stanford 
Sleepiness Scale (SSS; Hoddes et al., 1972) questionnaire, which pro
vides a subjective measure of alertness. The SSS is a 7-point scale, with 1 
being the most alert state. The SSS was applied to ensure an adequate 
state of alertness prior to each session for all participants. For each of the 
three sessions, participants had to rate their current alertness at least a 4 
(“Somewhat foggy, let down”) but not below for their dataset to be 
included in analysis. Prior to the first experimental session the short 
version of the kinaesthetic and visual imagery questionnaire (KVIQ; 
Malouin et al., 2007) was conducted to emphasize the difference be
tween visual and kinaesthetic MI (see Table S1 supplemental material 
for details). After MI NF blocks participants rated their motivation on a 
visual analogue scale, and perceived vividness and easiness of MI on a 
5-point Likert scale. Participants further completed the Pittsburg Sleep 
Quality Index to assess sleep quality and quantity (PSQI; Buysse et al., 
1989) and the Epworth Sleepiness Scale (ESS; Johns, 1991) to assess 
their ‘daytime sleepiness’. The PSQI examines retrospectively over a 
period of four weeks about the frequency of sleep disturbing events, the 
assessment of sleep quality, the usual sleeping times, sleep latency and 
duration, the intake of sleep medication and daytime sleepiness. A total 
of 18 items are used for quantitative evaluation and assigned to seven 
components, each of which ranges from 0 to 3. The total score is the sum 
of the component scores and can vary from 0 to 21, whereby a higher 
score corresponds to a lower quality of sleep. The ESS is a 
self-administered questionnaire covering eight questions. Participants 
had to rate their usual chances of dozing off or falling asleep while 
performing eight different activities (4-point scale: 0–3). The ESS score 
ranges from 0 to 24. The higher the ESS score, the higher that person’s 
average sleep propensity in daily life, or their ‘daytime sleepiness’. As 
part of a different research question, participants also performed a limb 
lateralization task (LLT; Ter Horst, V an Lier and Steenbergen, 2010) and 
the nine-hole-peg test (NHPT; Kellor et al., 1971). 

Participants were instructed to be free of drug, alcohol, and caffeine 
for 24 h prior to and during each experimental session. 

2.3. Experimental procedure 

2.3.1. Motor Imagery Neurofeedback Paradigm 
A previously established MI NF paradigm (Braun et al., 2017; Meekes 

et al., 2019) showing reliably changes in NF performance measures both 
within a session (Zich et al., 2017a) and over several days (Zich et al., 
2015b; Zich et al., 2017b) was adapted for the present study. In the 
present implementation, in each MI block participants performed one 
run of MI without NF (referred to as training run) followed by two runs 
of MI NF (cf. Fig. 1B). Each run had a duration of about 10 min. The 
imagined movement was sequential thumb to finger opposition either 
with the left or the right hand starting with the little finger. Prior to the 

first run, the movement was demonstrated by the experimenter. The 
participant was verbally instructed to copy the movement and practice it 
with both hands until they felt sufficiently familiarized. Movements 
were performed at a rate of about 1 Hz. Participants were instructed to 
hold this pace during kinaesthetically performing MI. In the training 
run, that is, the first MI run of each MI block, no NF was presented. The 
EEG data recorded in the training run were used to set up the NF pa
rameters for the NF in the second MI run. In turn, EEG data acquired in 
the second MI run served for calibrating the parameters used for the NF 
in the third MI run. Each MI run including the training run consisted of 
20 left and 20 right hand trials presented in pseudo-randomized order. 

Stimulus presentation was controlled with OpenViBE 0.17.1 (Renard 
et al., 2010). The NF was based on the adapted Graz MI protocol as 
implemented in OpenViBE (Renard et al., 2010; Zich et al., 2015a). Each 
trial began with a baseline period of 5 s showing a small, outlined circle. 
The circle was replaced by a fixation cross displayed for 3 s, indicating 
the imminent start of the MI task period. The start of the MI task period 
was signalled by a blue graphic displayed in addition to the fixation 
cross. The blue graphic was placed either on the left or right half of the 
screen (see Fig. 1D. The on-screen location of the blue graphic signalled 
the hand to be used during the MI task period. Each task period had a 
duration of 5 s. In the last two MI blocks NF was included in the task 
period. The NF was visualized as a white ball moving along two di
mensions on either the left or right half of the screen. The horizontal 
position of the ball reflected the degree of ERD lateralization, the ver
tical position the degree of contralateral ERD (see Fig. 1D). The exact 
horizontal and vertical positions of the ball were determined by the 
output of two classifiers. One classifier reflected the difference between 
contralateral and ipsilateral EEG activity and the other between baseline 
and contralateral EEG activity (see section EEG analysis for details). 
Participants were informed that navigating and maintaining the ball in 
the upper left or right corner of the screen, depending on the location of 
the graphic, reflected an appropriate task performance. The NF screen 
was updated at a frequency of 16 Hz. During the inter-trial interval, the 
screen showed a small, outlined circle presented pseudo-randomly for 
0–4 s (increments of 1 s). Participants were instructed to sit still but 
relaxed with their eyes open. NF borders, representing the maximum 
reachable edges on screen for both the vertical and horizontal di
mensions of the NF, were kept constant within a run and defined as the 
upper quartile of the classifier output from the previous run. 

2.3.2. Interference-, break- and Control-Blocks 
Declarative interference blocks had a duration of 30 min and 

comprised four different non-motor tasks: a word list recall, an n-back 
task, a face-name matching task, and a modified version of the Paced 
Auditory Serial Addition Test (PASAT; Gronwall, 1977). This is in 
contrast to other studies (e.g., Debarnot et al., 2012; Rothkirch et al., 
2018). 

Where only a single task was used but here served to ensure that 
participants would stay engaged over the whole period. Interference 
tasks were chosen to cover a wide range of declarative memory associ
ated abilities. All declarative interference tasks covered working mem
ory resources, which have been proposed to be closely related to 
declarative memory (Botvinick, Carter, Braver, Barch, & Cohen, 2001; 
Buckner, Kelley, & Petersen, 1999) and to demand attention processes, 
which are crucial resources for both memory formation and retrieval as 
well as MI NF practice (Moran & O’Shea, 2020). Additionally, the 
Names-Faces-Task is an associative memory task, testing the ability of 
participants to recall unrelated pairs of items Sperling et al., 2003. The 
PASAT requires arithmetic capabilities Cragg et al., 2017. 

For the word list recall task, lists of 24 words were presented visually 
three times. Words were presented for 3 s without an inter-trial-interval. 
Participants were instructed to remember as many words as possible. 
After a break of 15–20 min, participants had to identify remembered 
words among distractor words via a button press as fast and accurate as 
possible. Wordlists were retrieved from Salvidegoitia and colleagues 
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(Piñeyro Salvidegoitia et al., 2019; CELEX online lexical database, Max 
Planck Institute for Psycholinguistics, 2001, available at http://celex. 
mpi.nl/). 

The n-back task consisted of one training block (eight trials) to 
familiarize participants with the task followed by two blocks (120 tri
als). Participants had to indicate whether the current letter was identical 
to the previous one (1-back task) as fast and accurate as possible. Each 
letter was presented for 600 ms. 

The face-name matching task was designed based on the corre
sponding subtest from the memory assessment scales (MAS; Williams 
et al., 1991). The procedure started with a learning phase, where par
ticipants were successively presented 20 faces in combination with a 
name (each 5 s). They were asked to remember each name-face com
bination. Thereafter, they were shown one of the 20 faces at once and 
three names at the bottom, one being the correct name and two previ
ously learned but incorrect names. Participants were asked to indicate 
the location of the correct name via a button press on the keyboard. This 
procedure was repeated for all 20 faces. Images for the faces were 
retrieved from pics.stir.ac.uk. 

The PASAT was conducted following the instructions in the manual 
(Gronwall, 1977) except that digits were not presented verbally but 
visually for 2 s each without ISI. A total of 122 digits were presented in 
two blocks. Participants were asked to add up the last two digits and say 
the result out loud. As soon as the next number was shown, it had to be 
added to the previous one again. 

Each interference task was performed once per interference block. To 
minimize task familiarization effects across sessions various versions 
were created for all interference tasks. Interference tasks were presented 
in pseudo-randomized order across participants within each interfer
ence block. Results were not of interest for the present study, but they 
were recorded and are reported in the supplemental material (Table S3). 

Break and control blocks consisted of 30-min sections of various 
nature documentaries each with male narrators and ambient music, but 
no visible human interaction. The same set of documentaries was shown 
to all participants, but each documentary was shown to each subject 
only once. All tasks were controlled by customized scripts implemented 
in Presentation software (Version 17.0, Neurobehavioral Systems, Inc., 
Berkeley, CA, USA, RRID:SCR_002521). 

2.4. Data acquisition 

EEG data were acquired from 65 sintered Ag/AgCl electrodes using 
an equidistant infracerebral electrode layout with a central frontopolar 
site as ground and a nose tip reference (Easycap, Herrsching, Germany). 
In addition, bipolar surface EMG was recorded from both hands and 
arms by placing sintered Ag/AgCl electrodes over the muscle belly and 
the proximal base of the Flexor digitorum superficialis and the Abductor 
pollicis longus with reference and ground on the collarbone. Both EEG 
and EMG data were recorded using a BrainAmp amplifier system (Brain- 
Products, Gilching, Germany). Data were obtained with an amplitude 
resolution of 0.1 μV and a sampling rate of 500 Hz with online analogue 
filter settings of 0.016–250 Hz. Electrode impedances were maintained 
below 10 kΩ for the EEG and below 100 kΩ for the EMG before data 
acquisition. Data acquisition was performed using the OpenViBE 
acquisition server 0.17.1. In addition, resting state EEG recordings of 2 
min each were obtained before and after each session using BrainVision 
recorder software (Version 1.20.0506, Brain-Products GmbH, Gilching, 
Germany). 

2.5. Data analysis 

2.5.1. Online processing 
Online EEG data analyses for providing NF comprised three parts and 

was performed after the first and second MI run (i.e., training run and MI 
NF1). In the first and second part of the analyses subject-specific pa
rameters for the subsequent MI NF blocks were determined by means of 

common spatial pattern (CSP) analysis in MATLAB (Version 9.3; Math
Works, Natick, MA, USA, RRID:SCR_001622), and classifier training and 
border computation in OpenViBE (Renard et al., 2010). The third part 
encompassed the actual NF delivery during the second and third 
experimental runs through OpenViBE using the results of the previous 
parameter estimation. 

For the CSP analysis, EEG data from the central 49 channels were 
high-pass filtered at 8 Hz (finite impulse response, filter order 826) and 
subsequently low-pass filtered at 30 Hz (finite impulse response, filter 
order 220) using EEGLAB toolbox Version 14.1.1 (Delorme and Makeig, 
2004) for MATLAB (Version 9.3; MathWorks, Natick, MA, USA, RRID: 
SCR_001622). This filter range was set to encompass the sensorimotor 
rhythms mu (8–12 Hz) and beta (13–30 Hz), to which the neural 
correlate of interest, the event-related desynchronization or ERD, is 
highly specific to (Cheyne, 2013; Lopes da Silva and Pfurtscheller, 
1999). Epochs were extracted from 0.5 to 4.5 s relative to MI onset, 
separately for left- and right-hand trials. Segments containing artifacts 
were rejected (EEGLAB function pop_jointprob.m, SD = 3) and the 
remaining data submitted to a CSP analysis pipeline (Ramoser et al., 
2000). CSP analysis is a common approach to obtain spatial filters 
optimized for the detection of power differences between two classes (i. 
e., left vs right hand MI) by maximizing the variance of the signal for one 
class (i.e., left hand MI) while simultaneously minimizing the variance 
of the signal for a second class (i.e., right hand MI). For each class, of the 
three filters with the highest variance segregation for the class the most 
neurophysiologically plausible filter was selected, and the filter co
efficients of the two selected CSPs (one for each class) were submitted to 
OpenVibe. Exemplary single subject CSPs for one MI NF run are shown 
in Fig. 1C. 

For the classifier training in OpenVibe (Bougrain & Serrière, 2016; 
Renard et al., 2010), EEG raw data were spatially filtered using the 
selected CSPs and temporally filtered using a 4th-order Butterworth 
band-pass filter (8–30 Hz, 0.5 dB pass band ripple). Epoching in left- and 
right-hand MI periods was done from 0.5 to 4.5 s relative to the onset of 
MI and, also relative to MI onset from − 7 to − 3 s for the corresponding 
baseline intervals. The resulting intervals were subdivided into 1 s time 
bins overlapping by 0.9375 s. The logarithmic power of the 
band-pass-filtered 1 s time windows represented the features for linear 
discriminant analysis classification using sevenfold cross-validation 
(Fisher, 1936). For the online NF, two classifiers per active side were 
trained: either left motor imagery vs. baseline (BaseL) or right motor 
imagery vs. baseline (BaseR), representing the vertical component of the 
feedback (contralateral ERD), and left motor imagery vs. right motor 
imagery (LR), controlling the horizontal component of the feedback 
(degree of lateralization). Based on the results of the cross-validation 
three border values were calculated, corresponding to the upper quar
tiles of the three classification distributions. These border values were 
used to determine the range of the display for the horizontal and vertical 
axis for the online NF. CSPs, classifiers and borders were updated for the 
second MI NF run of a MI NF block based on data of the first MI NF run. 
Obtained parameters were applied to the respective successive run. 

The reported online classification accuracy corresponds to the per
centage of trials that have been correctly classified, relative to the 
number of total trials per class for each MI run (Bougrain & Serrière, 
2016). Since differences in online classification accuracies within each 
block were not of interest and to provide a stable estimate of online 
performance, we averaged across MI NF runs for each block (see 
Table S2 supplemental material, for details). Online classification ac
curacies (M ± SD) were for group late-interference MI NF block 1 69.2 ±
6.3%, MI NF block 2 69.4 ± 5.7% and MI NF block 3 70.6 ± 6.2%, for 
group immediate-interference MI NF block 1 70.3 ± 8.0%, MI NF block 2 
70.2 ± 6.4% and MI NF block 3 70.1 ± 7.3 %, and for group no-inter
ference MI NF block 1 66.3 ± 6.4%, MI NF block 2 69.6 ± 5.9 and MI NF 
block 3 67.4 ± 6.1%. With 40 trials per MI NF run, online classification 
accuracies were significantly above the chance level of 62.5 % (Com
brisson and Jerbi, 2015). 
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2.5.2. Offline analysis 

2.5.2.1. EMG analysis. EMG data were filtered with a cut-off frequency 
of 25 Hz using a high-pass finite-impulse response filter with a hamming 
window (filter order: 264). Noise removal was conducted via wavelet 
denoising (wavelet signal denoiser toolbox, MathWorks, Natick, MA, 
USA) with a Daubechies 4 (dB4) wavelet. EMG data were then 
segmented from − 9 s relative to +7 s. For each trial, the standard de
viation and the 250-samples centred moving standard deviation were 
calculated. Trials in which the moving standard deviation exceeded the 
standard deviation of the trial by the factor 2.5 at any point were 
considered to contain movement artifacts and excluded from further 
analyses (M and SD: 49 ± 35.6 trials, range: 1–141 trials for a total of 
360 trials). 

2.5.2.2. EEG analysis. EEG data were preprocessed with the EEGLAB 
toolbox Version 14.1.1 (Delorme and Makeig, 2004) for MATLAB 
(Version 9.3; MathWorks, Natick, MA, USA). For artifact correction in
dependent components analysis (ICA) was performed. The EEG data of 
all three runs within one experimental block, i.e., training, MI NF1 and 
MI NF2, were appended for further processing. Identification of 
improbable channels was conducted using the EEGLAB extension tri
mOutlier (https://sccn.ucsd.edu/wiki/EEGLAB_Extensions) with an 
upper and lower boundary of two standard deviations of the mean 
standard deviation across all channels (channels identified M and SD: 
1.9 ± 0 channels, range 0–4 channels). Channels exceeding this 
threshold were removed accordingly. A copy of the data was first 
low-pass filtered (40 Hz, FIR, hamming window, filter order: 166), 
down-sampled to 250 Hz and high-pass filtered (1 Hz, FIR, hamming 
window, filter order: 414). Afterwards data were segmented into 
consecutive 1-s epochs and segments containing artifacts were removed 
(EEGLAB functions pop_jointprob.m, pop_rejkurt.m, both SD = 3). 
Remaining data were submitted to the extended infomax ICA to estimate 
the unmixing weights of 45 independent components. The unmixing 
matrix obtained from this procedure was applied to the original unfil
tered EEG dataset for selection and rejection of components representing 
stereotypical artifacts. Components reflecting eye, muscle and heart 
activity were identified using ICLabel (Pion-Tonachini et al., 2019), and 
by the Eye-Catch approach (Bigdely-Shamlo et al., 2013) and controlled 
by visual inspection. Components flagged as artifacts were removed 
from further analysis. Artifact corrected EEG data were low-pass filtered 
with a finite-impulse response filter and a cut-off frequency of 30 Hz 
(hamming window, filter order 220, Fs = 500 Hz), and subsequently 
high-pass filtered with a finite-impulse response filter and a cut-off 
frequency of 8 Hz (hamming window, filter order 826, Fs = 500 Hz). 
After the data were re-referenced to common average, and bad channel 
signals were replaced by spherical interpolation. Data were segmented 
from − 7 s to 9 s relative to the start of the task interval, separately for left 
and right trials, and baseline corrected (− 6 to − 4 s). Artefactual epochs 
as indicated by the joint probability within each of the experimental 
runs (EEGLAB function pop_jointprob.m, pop_rejkurt.m, both SD = 3) 
and epochs flagged by the EMG analysis (see 2.5.2.1 EMG Analysis) were 
discarded from further analyses. In parallel to the online analysis, EEG 
data were reduced to the central 49 channels. CSP filters were calculated 
offline following the same procedure as described for the online EEG 
analysis, except that data based on all three MI runs was used. Likewise, 
two filters were selected, one for left and one for right hand MI. 
Contralateral activity was obtained by multiplying CSP filters with 
corresponding trials (i.e., right filters with right trials EEG data, left 
filters with left trials EEG data) and ipsilateral activity by multiplying 
CSP filters with respective opposite trials (i.e., right filters with left trials 
EEG data, left filters with right trials EEG data). Thereafter, task-related 
event-related desynchronization (ERD) was extracted following the 
procedure proposed byLopes da Silva and Pfurtscheller (1999). Since 
hemispheric differences were not of interest in the present study, 

relative ERD contralateral to the target hand was averaged for left- and 
right-hand trials. On average, a total of 31.1 ± 4.5 trials per subject and 
condition (range 24–40 trials) were used for analysis. For the statistical 
analyses, contralateral relative ERD was averaged within MI runs across 
a time window of 0.5–4.5 s with respect to the onset of the MI task in
terval. For the evaluation of MI NF runs, contralateral relative ERD was 
additionally averaged across MI NF1 and MI NF2, resulting in MI NF 
ERD. MI NF ERD served as the sole feature of MI NF performance for 
statistical analyses. The acquisition of the MI NF skill was accordingly 
expected to be expressed as stronger MI NF ERD over MI blocks. 

2.6. Statistical analyses 

Questionnaire data (motivation, tiredness, MI vividness/easiness, 
sleep scores) and MI NF ERD of the first MI block were analysed by 
means of separate Bayes ANOVAs with between-subject factor group to 
ensure that groups were initially comparable in these measures. 

To confirm the effect of NF on MI ERD, we performed paired t-tests 
within each group and block comparing the training run MI ERD with MI 
NF ERD, obtained from both MI NF runs. This was followed by a mixed 
3x3-ANOVA with group as between-subject factor and block as within- 
subject factor to explore how the NF-related gain in MI ERD evolved 
over time. The dependent variable in this analysis was the difference 
between training run (MI ERD) and both NF runs (MI NF ERD) within 
one block. 

Hypotheses were tested in planned comparisons. Frequentist statis
tics were used whenever a difference was expected, Bayes statistics were 
used when no difference was expected. For interference it was hypoth
esized that immediate declarative interference has an adverse impact on 
MI NF performance compared to no interference. This was tested with an 
independent samples t-test between MI NF ERD of block 2 of group 
immediate-interference and MI NF ERD of block 2 of group no-interference. 

We further hypothesized that after a night of sleep the expected 
adverse effects of declarative interference on MI NF performance would 
not be eliminated, that is, we hypothesized that for group immediate- 
interference MI NF performance would not be higher after a night of 
sleep. This was tested with a Bayes paired t-test between MI NF blocks 2 
and 3 of group immediate-interference. 

For group late-interference we expected to observe an early boost 
effect in MI NF performance as well as a consolidation of this perfor
mance level after a night of sleep. This was tested in a repeated measures 
ANOVA comprising MI NF blocks 1–3 for group late-interference. The 
ANOVA was complemented by a Bayes paired t-test between MI NF 
block 2 and MI NF block 3. 

In case that sphericity was violated Greenhouse–Geisser–correction 
was applied as implemented in the R-package ez (Version 4.4–0; Law
rence, 2016). Post hoc comparisons were conducted using two-tailed 
t-tests. Multiple pairwise comparisons were corrected for by the 
Holm-Bonferroni method according to the number of performed tests 
(Holm, 1979). All numerical values are reported as mean ± SE, except 
where otherwise stated. Effect sizes are reported as Eta-squared (η2) for 
ANOVAs and Cohen’s d (d) for t-tests. Confidence intervals (CI) were 
calculated using 90% for η2 and 95% for d (Steiger, 2004). If Frequentist 
statistics showed non-significant results, they were followed up by Bayes 
statistics to test the confidence in the Null hypothesis (Keysers et al., 
2020; Quintana and Williams, 2018). 

All Frequentist statistics were conducted as implemented in RStudio 
(Version 1.1.463; Team, 2018). All Bayes statistics were performed with 
the free software JASP (Version 0.9.2.0; JASP Team, 2019) using default 
priors to make as less assumptions about the data as possible, reporting 
Bayes Factor (BF10) and for interaction effects Bayes Factor inclusion 
(BFinclusion). 

3. Results 

The baseline and task period time-courses of MI NF ERD for all 
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groups and MI NF blocks are shown in Fig. 2. Clear ERD responses could 
be confirmed for all groups and blocks. 

Fig. 3 shows individual MI NF ERDs split by group and MI blocks. 
Descriptively, at the group level, MI NF ERD did not differ significantly 
over MI NF blocks nor between groups. At the single subject level dif
ferences across MI NF blocks were present but showed a high variability 
overall and no clear within-group pattern. 

3.1. Group characteristics 

Questionnaire scores were compared using Bayesian ANOVAs to 
ensure comparability across groups, whereby null hypotheses (H0) 
postulate no differences between the groups. Regarding initial motiva
tion there was moderate evidence1 for no difference between groups 
(BFgroup = 0.26, error% = 0.04; M ± SD: late-interference: 70.12 ±
20.2%; immediate-interference: 69.84 ± 18.8%; no-interference: 76.65 ±
13.6%), meaning that the data are approximately 3.9 times more likely 
to occur under H0 than under H1. 

The same held for the initial tiredness level (BFgroup = 0.26, error% 
= 0.04; M ± SD: late-interference: 41.65 ± 17.7%; immediate-interference: 
38.26 ± 20.2%; no-interference: 33.06 ± 22.4%) also providing moderate 
evidence for no initial difference between groups, meaning that the data 
are approximately 3.9 times more likely to occur under H0 than under 
H1. 

For MI vividness we found anecdotal evidence for no initial differ
ence between groups (BFgroup = 0.39, error% = 0.02; M ± SD: late- 
interference: 2.97 ± 0.5; immediate-interference: 3.13 ± 0.5; no-interfer
ence: 3.32 ± 0.9) and for MI easiness moderate evidence for no differ
ence between groups (BFgroup = 0.24, error% = 0.03; M ± SD: late- 
interference: 2.85 ± 0.8; immediate-interference: 3.11 ± 0.7; no-interfer
ence: 3.21 ± 1.1), meaning that the data are approximately 2.6 and 4.2 
times more likely to occur under H0 than under H1, respectively. 

Further, we found marginal anecdotal evidence for no difference in 
initial Stanford sleepiness scale (SSS; BFgroup = 0.99, error% = 0.01; M 
± SD: late-interference: 2.18 ± 0.7; immediate-interference: 2.42 ± 0.5; no- 
interference: 2.00 ± 0.4) and moderate evidence for no difference be
tween groups regarding sleep quality (PSQI; BFgroup = 0.19, error% =
0.03; M ± SD: late-interference: 5.47 ± 2.5; immediate-interference: 4.90 
± 2.6; no-interference: 5.06 ± 1.35), meaning that the data are about 1.01 
and 5.3 times more likely to occur under H0 than under H1, respectively. 

To ensure comparability between groups regarding initial MI NF ERD 
a 1x3 Bayes ANOVA with between-subject factor group (three levels: 
late-interference, immediate-interference, no-interference) and MI NF ERD 
obtained from MI NF block 1 as dependent variable was conducted. The 
resulting BF of 0.65 suggested anecdotal evidence for H0, that is no 
initial difference between groups in MI NF ERD, meaning that the data 
are approximately 1.5 times more likely to occur under H0 than under 
H1. 

3.2. MI NF gain and MI NF performance over blocks 

To examine the effect of NF on MI ERD, we performed paired t-tests 
within each group and block to compare the training run MI ERD with 
MI NF ERD within the same block (cf. Fig. 4). For each block and group 
the MI induced ERD was significantly stronger in the MI NF runs 

compared to the training run (see Table 1 for details). 
To explore how this NF gain evolves over blocks and across groups, 

we performed a 3x3 mixed ANOVA with group as between-subject factor 
(three levels: late-interference, immediate-interference, no-interference), MI 
NF block as within-subject factor (three levels: 1, 2, 3). MI ERD NF gain, 
i.e., the difference between training run MI ERD and MI NF ERD, was the 
dependent variable. We did not find significant effects (group: F2,50 =

0.37, p = .69, η2 = 0.02, 90% CI [0 0.08]; block: F1.77,100 = 0.25, p = .75, 
η2 = 0.01, 90% CI [0 0.03]; group x block: F3.54,100 = 0.69, p = .58, η2 =

0.03, 90% CI [0 0.06]). As this exploratory ANOVA did not indicate 
significant effects, an additional Bayes ANOVA was conducted with the 
same parameters to determine the degree of evidence for the null hy
pothesis. It provided moderate evidence for no differences between 
groups and blocks as well as for the absence of an interaction effect 
(BFgroup = 0.22, error% = 0.80; BFblock = 0.08, error% = 1.47; BFInclusion 
= 0.11), meaning that the data are approximately 4.6, 12.5 and 9.1 
times more likely to occur under H0 than under H1, respectively. 

3.3. Effect of immediate declarative interference on MI NF ERD 

To test whether performing interference tasks immediately after an 
initial block of MI and MI NF reduced MI NF ERD in a subsequent block 
of MI and MI NF, for the second MI NF block (MI2) MI NF ERD was 
compared between groups immediate-interference and no-interference in 
an independent samples t-test. We did not find a significant effect (t1,34 
= 0.58, p = .57, d = 0.19, 95% CI [− 0.46 0.85], post-hoc power 0.083, 
for post hoc power curves see supplemental materials; all power calcu
lations with G*Power 3.1).; immediate-interference: M = − 35.64%, SD =
16.77%, no-interference: M = − 32.01%, SD = 20.77%). To determine the 
degree of evidence for this null-effect, an additional Bayes t-test was 
conducted with the same parameters. The Bayes t-test indicated that 
evidence for no difference in MI NF block 2 between both groups was 
anecdotal (BF = 0.37, error% = 0.01), meaning that the data are 
approximately 2.7 times more likely to occur under H0 than under H1. 
Thus, our data provide no evidence for the hypothesis that immediate 
interference after MI NF practice reduced MI NF ERD after a period of 
wakefulness. 

There was no evidence for an adverse effect of immediate declarative 
interference on MI NF ERD after a period of wakefulness. Nonetheless, 
the Bayes paired t-test between MI NF blocks 2 and 3 of group immediate- 
interference was run as planned to confirm that there was also no change 
after a night of sleep. Results again suggested no difference in MI NF 
ERD (BF = 0.32, error% = 0.03; moderate evidence for no difference 
between MI NF blocks 2 and 3, meaning that the data are approximately 
3.1 times more likely to occur under H0 than under H1.). 

3.4. Early boost and effects of sleep on contralateral MI NF ERD 

To test for an early boost effect for MI NF ERD and, if present, its 
stability over a night of sleep, a 1x3 repeated measures ANOVA with MI 
NF block (three levels: 1, 2, 3) as within-subject factor and MI NF ERD as 
dependent variable was performed for group late-interference. We did not 
find a significant effect (F2,32 = 0.09, p = .91, η2 = 0.01, 90% CI [0 0.03], 
post-hoc power 0.13). Bayes paired t-tests were performed in addition to 
the planned ANOVA to indicate the strength of evidence for this null- 
finding. Evidence for no difference between blocks was moderate for 
both MI NF blocks 1 and 2 (1 vs 2: BF = 0.25, error% = 0.01) and MI NF 
blocks 2 and 3 (2 vs. 3: BF = 0.26, error% = 0.01), meaning that the data 
are approximately 4 and 3.8 times more likely to occur under H0 than 
under H1. Hence, our data do not provide evidence for an early boost 
effect in MI NF ERD nor for a change in MI NF ERD following a night of 
sleep. 

4. Discussion 

This study investigated the effects of declarative interference on MI 

1 A Bayes factor (BF) of 1 corresponds to no evidence for either H1 or H0. 
Bayes factors <1 indicate that the data provide evidence in favor of H0. 
Commonly used categories are: BF 1/3–1 ‘anecdotal evidence for H0’; BF 1/ 
10–1/3 ‘moderate evidence for H0’, BF 1/10–1/30 ‘strong evidence for H0’, BF 
1/30–1/100 ‘very strong evidence for H0’ and BF < 1/100 ‘extreme evidence 
for H0’. BF > 1 indicate evidence ranging from ‘anecdotal’ to ‘extreme’ in favor 
of H1. The original label for 3 < BF < 10 was “substantial evidence”, which was 
changed by Lee and Wagenmakers (2013) to “moderate”. “Anecdotal” was 
formerly known as “Barely worth mentioning”. 
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NF ERD as a measure of MI NF performance and aimed at studying the 
stability of the effects after a night of sleep. Three groups underwent 
three MI NF blocks each on two consecutive days. Groups differed 
regarding the presence and timing of a set of declarative interference 
tasks. We expected an adverse impact of immediate declarative inter
ference on MI NF ERD that would not recover after a night of sleep. We 
further anticipated an early boost for MI NF ERD, and if present, we 
expected a consolidate of the MI NF ERD at this early boost level after a 
night of sleep. A significant NF effect was present in all three groups and 
blocks, i.e., ERD was significantly stronger in the MI NF runs when 
compared to the training run without NF. Inconsistent with our hy
potheses, we found no evidence for an impact of immediate declarative 
interference on MI NF ERD nor for an early boost effect for MI NF ERD. 
The hypotheses regarding the stability of both effects over a night of 

sleep thus became baseless. 
Consistent with previous MI NF studies, we found that MI NF resulted 

in a significantly stronger ERD compared to a training run without NF 
(see e.g., Darvishi et al., 2017; Zich et al., 2015). This feedback effect 
was present for all groups in all MI blocks, suggesting that task-related 
feedback reliably enhances MI ERD, independent of the implementa
tion of interference (i.e., immediate, late or no interference) or time of 
day in this study. However, neither the feedback effect or MI ERD NF 
gain nor MI NF ERD did visibly increase over the course of three MI 
blocks. This apparent absence of a practice effect over time contrasts 
with the findings of several other studies (e.g., Foldes et al., 2020; 
McWhinney et al., 2018; but see Perronnet et al., 2017; Zich et al., 2015; 
Kober et al., 2015; Vernon, 2005), though reports in line with the pre
sent study’s null-finding exist as well. Although observed effect sizes are 

Fig. 2. MI NF ERD time courses. MI NF ERD time courses are shown for groups late-interference (blue), immediate-interference (orange) and no-interference (green) for 
each MI block. Grey areas indicate the baseline (− 6 to − 4 s before task onset) and the statistically analysed MI interval (0.5–4.5 s after task onset). Data are averaged 
across MI NF runs within a block. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Single subject MI NF ERD data split by group and MI block. Each dot represents the single-subject ERD power value averaged across MI NF runs within a 
block. Data distribution is estimated using kernel density estimations as implemented in the van Langen open-visualizations repository (van Langen, 2020). Wider 
sections represent a higher probability that a data point of the population will take on the given value. Lower probability is reflected by narrower sections. 
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rather small to basically non-existent, which rules out to draw firm 
conclusions about this study’s findings, we discuss possible explanations 
in the following. 

One factor limiting MI ERD NF gain and an increase in MI NF ERD 
with repeated MI NF practice in the present study may be the break 
block. The break block consisted of nature documentaries and followed 
MI blocks in all three groups. Watching nature documentaries is a 
common control task in (motor) skill acquisition associated studies 
(Bassolino et al., 2014; Friedrich and Beste, 2020; Ruffino et al., 2019; 
Ruffino et al., 2017). In the present study it was also integrated in the 
experimental group procedure as neutral break occupation. However, a 
recent study on physical practice suggests that watching a documentary 
over a prolonged duration as a break occupation or control condition 
might be problematic. Hachard and colleagues observed that unex
pectedly, their control condition of watching a documentary had 
adverse effects on performance in subsequent balance control tests in 
young, healthy participants (Hachard et al., 2020). The authors discuss 
that participants’ reduced performance in balance control following the 
control condition could be due to a deleterious effect of prolonged 
sitting. While this reasoning cannot be applied to the present study, an 
alternative explanation was that watching the documentary induced 
mental fatigue. MI ERD NF gain did however not deteriorate but 
remained rather stable between MI blocks, arguing against this 

possibility. It is however conceivable that participants got distracted by 
the content of the break documentaries or became drowsy, and that this 
interfered with the consolidation of the memory trace for the preceding 
experience of learning to or being able to control the NF with MI. To the 
best of our knowledge no MI NF literature is available to support this 
speculation and thus, no firm conclusions can be drawn at this point. 
Further studies are necessary to systematically study the interplay of MI 
NF task and control or break tasks. 

Immediate declarative interference did not reduce subsequent MI NF 
ERD when compared to no interference. This result is contrary to our 
expectation but was statistically confirmed by a Bayes analysis indi
cating that MI NF ERD in the second MI block did not differ between a 
group exposed to declarative interference tasks and a group not exposed 
to these tasks. To the best of our knowledge, no other study has inves
tigated the impact of declarative interference on MI NF ERD. However, 
the finding of no effect contrasts with recent studies reporting impaired 
motor consolidation after MI and ME practice following declarative 
interference, as reflected in reduced physical task performance (Brown 
and Robertson, 2007; Debarnot et al., 2012; but see Rothkirch et al., 
2018). Reasons for this difference might be closely related or even 
identical to the reasons leading to another unexpected outcome, i.e., the 
lack of evidence for an early boost effect on MI NF ERD. Bayes analysis 
showed moderate evidence for the absence of an early boost effect. Here, 
as before, a direct comparison to other MI NF ERD studies is not possible 
due to a lack of published research. But the result clearly contrasts with 
previous ME and MI practice studies showing early boost effects for both 
(Debarnot et al., 2011a; Nettersheim et al., 2015). One aspect contrib
uting to the deviating results could be the different dependent variables, 
i.e., MI NF ERD versus physical task performance, and characteristics of 
these variables, such as test-retest reliability. Another aspect could be 
unspecific interference through the documentaries used to fill the break 
block in the present study. If unspecific interference is an issue, it may 
not only affect MI ERD NF gain over time as discussed above, but also the 
MI NF ERD early boost and specific, declarative interference effects. 

An alternative explanation for the discussed dissociation between the 
findings of previous studies on ME and MI practice and the present one is 
task difficulty. It is conceivable that our results differ from the afore
mentioned studies both regarding interference effects and the early 
boost effect because of the applied motor task. Studies reporting effects 
of interference and early boost typically concentrate on motor sequence 
learning tasks with a resulting increase in motor execution performance 
(e.g., Brown and Robertson, 2007; Debarnot et al., 2012; Debarnot et al., 
2011b). In contrast, we opted for a simple thumb-to-finger-opposition 
task that has been validated in the context of MI NF for young healthy 
and older healthy participants (e.g., Nikulin et al., 2008; Zich et al., 
2017). This task might however have been too simple to yield measur
able ERD effects of interference and early boost in healthy young par
ticipants. Indeed, the search for MI paradigms suitable for NF research is 
an ongoing challenge. Research to date is mostly conducted in healthy, 
often young volunteers. Yet NF interventions, in particular in the 

Fig. 4. MI ERD for training and NF blocks. Shown are MI (NF) ERDs separate 
for MI blocks and groups (means ± one standard error). For all combinations of 
block and group, a strong NF effect is evident in the much stronger ERD in the 
NF compared to the training runs. However, the NF effect (difference between 
NF and training runs) is comparable between groups and MI blocks. 

Table 1 
Paired t-tests between training and MI NF runs per block for each group.  

group blocks t p d 95% CI N Mtrain SDtrain MNF SDNF      

lower upper      

late-interference 1 3.60 .002 0.83 0.29 1.34 19 − 16.4 13.7 − 36.0 22.5 
2 5.77 <.001 1.32 0.69 1.93 19 − 14.4 12.7 − 35.6 16.8 
3 4.65 <.001 1.07 0.49 1.63 19 − 19.2 19.2 − 37.8 19.0  

immediate-interference 1 5.15 .001 1.25 0.60 1.88 17 − 17.3 12.5 − 35.4 12.8 
2 3.03 .008 0.73 0.19 1.26 17 − 21.7 15.8 − 35.0 13.5 
3 2.89 .008 0.70 0.16 1.22 17 − 18.6 17.7 − 34.3 12.4  

no-interference 1 4.78 <.001 1.16 0.53 1.77 17 − 9.4 14.9 − 25.3 14.5 
2 4.86 <.001 1.18 0.54 1.79 17 − 11.4 20.2 − 32.0 20.8 
3 4.87 <.001 1.18 0.54 1.79 17 − 10.2 20.4 − 26.0 19.9  
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neurorehabilitation field, are targeted at clinical, often older pop
ulations. Tasks showing practice gains in young and healthy volunteers 
tend to have little every-day relevance or are conceptualized for a spe
cific audience e.g., athletes (Mulder et al., 2004; Paris-Alemany et al., 
2019). Attempts have been made to implement more complex tasks that 
are both feasible for basic research in non-clinical populations and that 
have every-day relevance. An example illustrating this is a visuo-motor 
reach and grasp paradigm with varying levels of difficulty (Allami et al., 
2014; Daeglau et al., 2020b). Though the visuo-motor reach and grasp 
paradigm addresses task complexity and generalizability; it brings about 
new challenges. So do the variable trial durations that result from the 
setup complicate the calculation and interpretation of the ERD. 
Furthermore, more complex tasks also mean an increase in cognitive 
load during MI. This increase reduces cognitive resources available for 
processing and incorporating NF while doing MI, creating yet another 
challenge for future research. 

The design of this study regarding the stability of MI NF ERD effects 
over a night of sleep was inspired by previous studies investigating how 
motor or motor imagery practice effects evolve over a night of sleep 
(Debarnot et al., 2011b; Debarnot et al., 2009a; Debarnot et al., 2009b). 
T. With the present design, we would have been able to test our hy
potheses regarding the early boost and the interference MI NF ERD ef
fects after a night of sleep. The design would however not have allowed 
unequivocal conclusions regarding the role of sleep for any difference 
observed between Day 1 and Day 2 MI NF ERDs. For this, a 
matched-control wake group would be a prerequisite, for instance in a 
sleep deprivation design or a nap/ no nap design (for a review, see King 
et al., 2017). 

Based on experimental groups, MI NF ERD did not change with MI 
NF practice. In line with this, single subject MI NF ERD shows a 
remarkable variability over time. Yet nonetheless, visual inspection of 
MI NF ERDs indicates that all experimental groups contained partici
pants that did not increase their MI NF ERD over MI blocks at all, par
ticipants that improved from Block 1 to Block 2 but lost that gain after a 
night of sleep, and participants improving continuously over the three 
blocks. This variation can be seen as indication that individual factors 
play a major role for MI NF skill acquisition (Ahn & Jun 2015; Daeglau 
et al., 2020b; Jeunet et al., 2015; Roc et al., 2019; Zapala et al., 2019). 
These individual factors might be more important than the context 
factors sleep, and declarative interference studied here, or they might 
interact with them. Future studies should therefore strive to consider 
individual in addition to context factors instead of looking at both 
separately. 

5. Conclusion 

In the present study, we did not observe the expected effects of 
interference on MI NF ERD or an early boost, and therefore could not test 
how either effect evolved over a night of sleep. As previously shown, the 
interplay of MI (NF) and performance increase is complex (Dickhaus 
et al., 2009; Lotte et al., 2019; Vidaurre and Blankertz, 2010). Context 
factors are likely contributing to this complexity. In order to better un
derstand their role, it is inevitable to continue to systematically depict 
common and differing features of MI, MI NF, and ME skill acquisition. 
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