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Abstract— In some real-time Internet of Things (IoT) applications, the timeliness of sensor data is very important for
the performance of a system. How to collect the data of sensor nodes is a problem to be solved for an unmanned aerial
vehicle (UAV) in a specified area, where different nodes have different timeliness priorities. To efficiently collect the data, a
guided search deep reinforcement learning (GSDRL) algorithm is presented to help the UAV with different initial positions
to independently complete the task of data collection and forwarding. First, the data collection process is modeled as a
sequential decision problem for minimizing the average age of information or maximizing the number of collected nodes
according to specific environment. Then, the data collection strategy is optimized by the GSDRL algorithm. After training
the network using the GSDRL algorithm, the UAV has the ability to perform autonomous navigation and decision-making
to complete the complexity task more efficiently and rapidly. Simulation experiments show that the GSDRL algorithm has
strong adaptability to adverse environments, and obtains a good strategy for the UAV data collection and forwarding.

Index Terms— Data collection, UAV trajectory optimization, age of information, deep reinforcement learning.

I. INTRODUCTION

W ITH the increasing development of the Internet of
Things (IoT), the number of sensor nodes is grow-

ing explosively. The future application systems have stricter
requirements on the timely delivery of the data collected from
the sensor nodes [1]. For such applications, unmanned aerial
vehicles (UAVs) can help to collect data from the sensor nodes
(SNs) and then fly to the data center (DC) to deliver the
data. UAVs have the advantages of rapid deployment, strong
maneuverability and low cost [2]. Compared with the method
of multi-hop data transmission [3], the UAV can flexibly
adjust its position to improve communication environment.
This helps to save energy and extend the battery lifetimes
of the nodes. In addition, by constructing the communication
systems between UAVs and ground terminals, and between
UAVs, this helps to satisfy the needs of network services in
various scenarios in the future. These include reliable and
safe communication in public areas, network enhancement in
hotspots, data collection in smart cities and improving network
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coverage in remote areas, etc., [4]–[8].
There are some real-time applications in the IoT systems,

where the applications need to collect the surrounding en-
vironment information and monitor the status of the system
periodically [9]. Those messages help the system to make
intelligent decisions and control in a timely and effective way.
For some applications with strict time constraints, outdated
information will greatly reduce their effectiveness [10]. Due to
the energy limitations of SNs and UAVs, these devices cannot
carry out long-distance communication. According to different
data timeliness of nodes, this paper focuses on how to plan the
UAV’s flight trajectory to efficiently complete the tasks of data
collection and forwarding. In addition, the initial positions of
an UAV are different every time. This causes a problem of
great search complexity for the UAV trajectory optimization.
Furthermore, the environment states may be changed at any
time during the execution of the UAV’s mission. However,
it is difficult to solve these challenges using the traditional
optimization algorithms.

With the development of artificial intelligence (AI) technol-
ogy, machine learning algorithms have been applied to solve
some more complex problems in practice. Among them, deep
reinforcement learning (DRL) algorithms [11] have drawn lots
of attention, which enable the UAV to operate autonomously
and to deal with unpredictable conditions. However, due to
large search space, classical DRL algorithms may only find
inferior local solutions given the limited training time. To
solve the issues, this paper proposes a guided search deep
reinforcement learning (GSDRL) algorithm to find better sub-
optimal solutions efficiently. To satisfy the timeliness of high
priority nodes given the limited UAV energy, the GSDRL
algorithm helps the UAV to optimize the data collection
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strategy and autonomously plan the flight trajectory according
to the real-time environmental information.

A. Literature Review
Combined with terrestrial network communication systems,

UAVs can help to solve the problem of the weak signal local
coverage in IoT. It increases the capacity of the system, and
also promotes the development of diversified IoT applications
[12]. Thus, UAVs will play a vital important role in the next
generation mobile communication systems. The applications
of UAVs have also been widely investigated in academia
and industry. The grant-free non-coherent index-modulation
scheme combined with orthogonal frequency division multi-
plexing is investigated for applicant to unmanned aerial vehicle
(UAV)-based massive IoT access in [13]. The performance
evaluation of NOMA-enabled UAV networks is presented by
adopting stochastic geometry to model the positions of UAVs
and ground users in [14]. In addition, UAV’s trajectory is
optimized by deep reinforcement learning algorithm to collect
data from IoT nodes in a practical 3D urban environment with
imperfect channel state information in [15]. To minimize the
interruption probability of relay network, a model is built by
jointly optimizing the trajectory and the transmission power
of the UAV in [16]. These works mainly focus on the energy
consumption of the UAV and the SNs, but fail to consider the
timeliness of sensor data in IoT.

Age of information (AoI) has been introduced to evaluate
the freshness of information, which is the time it takes for
the destination node to receive the packet produced by the
source one. As a new important metric to measure the time-
liness performance of the system, the AoI has attracted much
attention about UAV-assisted data collection research. In order
to minimize the system’s AoI, a deep reinforcement learning
algorithm is presented to optimize the UAV’s trajectory in [17],
where the data collection is forwarded to the data center via a
link between the satellite and the UAV. By jointly optimizing
the flight trajectory and the energy as well as service time
allocation of packet transmission, a strategy is proposed to
reduce the mean peak age in [18]. The UAV’s flight trajectory
is optimized by a deep reinforcement learning algorithm to
minimize the SNs’ average AoI in [19]. By optimizing the
UAV trajectory, IoT devices scheduling, and channel alloca-
tion jointly, an AoI-energy-aware UAV-assisted data collection
scheme is presented in [20] to reduce the expected AoI and
energy consumption. The UAV acts as a mobile relay in
[19] and [20]. However, when the communication distance
between a BS and a sensor node (SN) is relatively far, the
UAV needs to go back and forth between the BS and SNs,
which causes a large amount of energy consumption and even
a failed communication task. Different from [19] and [20],
an energy-efficient data collection is presented to reduce the
maximum energy consumption of all SNs in [21], where the
UAV first collects the data of each SN one by one, and then
forwards the data to the BS. Although this method is easy
to be implemented, it is difficult to satisfy the timeliness
requirements of high priority SNs in some applications.

B. Contributions

The timeliness of sensor data information is different in
some IoT application scenarios. For example, very low la-
tency is required in some virtual reality (VR) applications.
However, for the forest environment monitoring, the system
can tolerate longer delays relatively. The system may fail to
meet the diversified requirements of the future services when
the traditional data collection methods are adopted. Next, the
initial position of the UAV is unfixed. For example, in the
spatial crowdsourcing system [22]–[24], the initial position
of an UAV undertaking a task is random. This brings some
new challenges to optimize the UAV’s trajectory. Besides,
during the process of data collection, the BS may ask the
UAV to repeatedly collect the message of the target nodes, or
the energy consumed by the UAV increases suddenly due to
extremely bad weather. These unpredictable factors may lead
to some dynamic environment changes during the process of
performing tasks. If the strategy of preplanned flight path is
adopted for data collection, it will reduce the task execution
efficiency and even result in a failed task due to the limited
energy. Given the limited power of the UAV and SNs, the
UAV needs to have the ability to make autonomous decisions
and navigation in adverse conditions, i.e., when and where
to collect and forward data. Using the deep reinforcement
learning (DRL) algorithm [25], an agent can obtain this ability
by continuously interactive learning from the environment.

An UAV data collection strategy based on DRL algorithm
is proposed to minimize the average AoI or maximize the
number of collected nodes. According to the environment and
the state information on the UAV, the agent can make decisions
by itself and complete the task in a specified area. Unlike the
traditional data collection methods in [19], [20] and [21], the
proposed scheme is more flexible, where the data of dynamic
number of nodes can be collected together according to the
specific environment, and then forwarded uniformly. The main
contributions of this paper are summarized as follows:

1) This paper designs a dynamic data collection strategy
based on deep reinforcement learning algorithm to effi-
ciently collect the data of different priority nodes for an
UAV with a random initial position in IoT. The UAV’s
flight trajectory is formulated autonomously to achieve
the timeliness of high priority nodes and try its best
to complete the data collection tasks of the ordinary
priority nodes given the limited energy.

2) The method of action guidance is presented to assist the
agent to find better actions quickly during the training
process. It can not only accelerate the convergence
speed of the network, also improves the system energy
efficiency.

3) The proposed scheme achieves stronger autonomous
decision-making ability to collect or forward the data
of different priority nodes according to specific environ-
ment. Experimental results show that when compared
with the fixed data collection strategy, the GSDRL
algorithm can achieve better performance. It can ensure
the timeliness of the Type II nodes, also reduces the
average AoI of nodes.
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TABLE I: Description of notations

Notations Description

PLL, PLN
The path loss line-of-sight signal model

and non-line-of-sight signal model

PLU→D
A

The average path loss
between the UAV and the DC

PD
R The received power of the DC

PSN
T The transmission power of a SN

RC , RD The UAV collection and forwarding rate
B0 The system bandwidth

Aπ(j),k The AoI of a node SNπ(j),k

Pf , P
1
h , P

2
h

The power consumed by the UAV in flying
data collecting and forwarding state

Gk Set of nk (1 ≤ nk ≤ m0) SNs
Ω Set of UAV positions

d0, dDC The UAV start and end positions

d
(1)
i ,d

(2)
i

The locations of UAV to
collect and forward the data of SNi

TM

(
dl → d

(1)
π(1),k

)
The UAV transfer time from dl to d

(1)
π(1),k

T sn
S (SNi,Θ) Data storage time in SNi

TC

(
SNπ(1),k,Θ

)
The time to collect the data of SNπ(·),k

Tuav
S

(
SNπ(·),k,Θ

)
The data storage time of SNπ(·),k on UAV

T sn
S

(
SNπ(·),k,Θ

)
The data storage time of SNπ(·),k on SN

TU

(
SNπ(·),k,Θ

) The time to forward
the data of SNπ(·),k to DC

m0 Total number of SNs
d Length of each grid

rDC Communication radius of the DC
rSN Communication radius of a SN
T0 UAV maximum endurance time

lπ(i),k Size of sensor data of SNπ(i),k

tk UAV flight trajectory for Gk

Es Total UAV energy consumed
Eu Maximum capacity of the battery

Ψh, Ψo High priority and ordinary nodes sets
|Ψh|, |Ψo| Number of SNs in Ψh and Ψo

The remainder of this paper is organized as follows: Section
II introduces the channels between the UAV and the DC,
and between the UAV and the SNs. The GSDRL algorithm
is presented in Section III. Simulation results are discussed
in Section IV. Finally, Section V summarizes the paper. The
notations are illustrated in Table I in the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The channel models are analyzed in this section. Then, we
discuss the UAV’s work mode and the corresponding power
consumption. Finally, we formulate the data collection and
forwarding model of the UAV.

A. System Model
As shown in Fig. 1, multiple SNs are randomly distributed

in a certain area. According to the data generation method
of nodes, we divide them into two types: Type I and Type
II nodes1. The data of the Type I nodes is generated by a
generate-at-will policy [18]. Only when the UAV is close
to the SN, the SN will immediately generate updated data
packets, and the data generation time is ignored. For the Type
II nodes [26], their data has been generated and cached in their
memories before the UAV departs, and the packet’s timeliness

1We assume that Type II nodes all are high priority nodes in the paper.

DC
SN

Type II nodes: Type I nodes: 

Fig. 1: A block diagram of UAV data collection and forward-
ing in IoT networks.
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Data transmission cycle of a Type I node

Data transmission cycle of a Type II node

Fig. 2: The data transmission process for a Type I node and
a Type II node.

is measured from the moment that the UAV takes off. Thus,
the AoI of the Type II nodes will increase until the UAV
forwards their data to the DC. Taking into account some actual
factors, such as certain emergencies, the UAV is dispatched to
preferentially collect the data of some special nodes and ensure
the timeliness of the nodes. So we divide these nodes into two
different sets, where the high priority nodes and the ordinary
nodes are in Set Ψh and Ψo, respectively.

A data collection cycle of a SN is shown in Fig. 2. The
UAV first flies to the vicinity of the SN, and collects its data.
Then, the data are stored in the UAV’s memory. When the
UAV moves to the vicinity of the DC, it begins to forward
the data. Different from Type I nodes, the AoI of Type II
nodes also includes the time when the data is stored in the SN
stack. We use the AoI as a metric to evaluate the freshness
of information of a SN. When the data of a SN i has been
forwarded by the UAV at time t, we can obtain the AoI of the
SN as [26]

Ai (t) = t− ui (t) , (1)

where ui (t) refers to the generation time of a packet at the SN
i. If the UAV does not complete the data collection task due to
insufficient energy, the AoI of an unloaded SN is considered
to be the maximum endurance time of the UAV in the paper.
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1) The analysis of channel model: The path loss of line-of-
sight (LoS) signal model and non-line-of-sight (NLoS) signal
model are, respectively [27],

PLL = 20 log (fc)+20 log

(
4π

vc

)
+20 log (d

UD
)+κ

LoS
, (2)

and

PLN = 20 log (fc) + 20 log

(
4π

vc

)
+ 20 log (d

UD
) + κ

NLoS
,

(3)
where fc is the carrier frequency, vc is the speed of light, dUD

the distance between the UAV and the DC, κ
LoS

is the LoS
model’s path loss, and κ

NLoS
is NLoS model’s path loss. The

probability of the LoS model is given by,

PL =
1

1 + z0 exp
(
−z1

(
180
π sin−1

(
H0

d
UD

)
− z0

)) , (4)

where H0 is the altitude of the UAV above the ground, z0 and
z1 are the parameters related to the specific environment [28].
Thus, the average path loss (dB) between the UAV and the
DC can be written as

PLU→D
A = PL × PLL + (1− PL)PLN . (5)

The received power (dBW) of the DC can be obtained as
follows:

PD
R = 10 lgPU

T − PLU→D
A , (6)

where PU
T is the transmission power of the UAV. As the

UAV has a good maneuverability, the communication distance
between the UAV and a SN is relatively shorter, and only the
LoS model is considered between the UAV and the SN. We
assume dSU to be the distance from the SN to the UAV, and
the path loss PLS→U

A can be obtained by replacing dUD with
d

SU
in (2). Thus, we can obtain the UAV receiving power

(dBW) when it is in collection state as

PU
R = 10 lgPSN

T − PLS→U
A , (7)

where PSN
T is the transmission power of a SN. In addition,

we also assume that the channel gain h follows the Rayleigh
distribution, then the probability density function (PDF) and
the cumulative distribution function (CDF) of x = |h|2 are
respectively,

f (x) =
1

Pr

exp

(
− x

Pr

)
, (8)

and
F (x) = 1− exp

(
− x

Pr

)
, (9)

where Pr is the average received power of a signal. The
collection and forwarding rate of the UAV at time t are,
respectively,

RC (t) = B0log2

(
1 +

PSN
T |h (t)|2

Pσ2

)
, (10)

and

RD (t) = B0log2

(
1 +

PU
T |h (t)|2

Pσ2

)
, (11)

where B0 is the signal bandwidth, Pσ2 is the noise power.
From the Appendix, we can obtain that the average rate
E (RC) as

E (RC)=− B0

ln 2
e

P
σ2

PSN
T

PU
R Ei

(
− Pσ2

PSN
T PU

R

)
, (12)

where Ei (•) denotes the one-argument exponential integral
function. Similarly, combining (6), (11) and (35), we can also
achieve the average rate E (RD) as

E (RD)=− B0

ln 2
e

P
σ2

PU
T

PD
R Ei

(
− Pσ2

PU
T PD

R

)
. (13)

2) UAV work mode: Given a random initial position, the
UAV will fly to a SN to collect its data. When the data
collection process of the SN is over, the UAV needs to move to
another SN to continue collecting data, or to forward the data
to the DC. The UAV will repeat the above process until the
data of all SNs are collected and forwarded successfully, or
the UAV is forced to finish its flight due to energy shortage. To
simplify the analysis of the model, this paper only considers
two modes of the UAV, namely the flight mode and the
hovering mode. The hovering mode includes data collection
and data forwarding states.
(1) Flight Mode

When the UAV is in flight mode, the power consumed by
the UAV is [29]

Pf (V ) = δ
8ρsAΩ

3R3

(
1 + 3V 2

U2
tip

)
+

(1 + k) W 3/2
√
2ρA

(√
1 + V 4

4v4
0
− V 2

4v2
0

)0.5
+ 1

2d0ρsAV
3

, (14)

where V is the flying speed of the UAV, ρ is the air density,
and the other parameters2 are mostly related to the UAV, such
as R and W are the rotor radius and the aircraft weight of the
UAV, respectively.
(2) Hovering Mode

When the UAV collects the data of a SN, the power
consumed by the UAV is [29]

P 1
h ≈ δ

8
ρsAΩ3R3 + (1 + k)

W 3/2

√
2ρA

. (15)

If the UAV forwards the data to the DC, it not only
needs to overcome its own gravity, wind and other factors,
it also consumes certain power to transmit data, so the power
consumed by the UAV is

P 2
h=P 1

h + Pc, (16)

where Pc is the transmission power.

B. Problem Formulation
An UAV can select different SNs for data collection ac-

cording to the specific environment, and forward the data
at an appropriate time. In other words, it can dynamically
select several nodes for data collection, and then forward
them together. To illustrate the process of data collection and
forwarding more clearly, we divide it into several groups and

2They can be referred to Table I in [29].
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put the SNs, which are forwarded to the DC together, into the
same group.3

There are m0 SNs scattered randomly in a certain area,
where the UAV needs to autonomously formulate its trajectory
and make decisions by itself to collect or forward the data.
We assume that given a strategy π, the UAV needs N0

times of offloading to complete the task. These SNs are
divided into N0 groups, and it is Φ = {G1,G2, · · · ,GN0}.
A group Gi=

{
SNπ(1),i, SNπ(2),i, · · · , SNπ(ni),i

}
4 consists

of ni (1 ≤ ni ≤ m0) SNs, where SNπ(j),i, 1 ≤ j ≤ ni

denotes the j-th collected node in the i-th group. During the
process of performing tasks, the UAV needs to choose some
locations to execute two different actions, namely collecting
or forwarding data. For m0 SNs, there is a position set
Ω = {d0,D1,D2, · · · ,Dm0 ,dDC}, where d0 and dDC

are the start and end point of the UAV, respectively. The
parameter Di=

{
d
(1)
i ,d

(2)
i

}
, 1 ≤ i ≤ m0 is the position set

for SNi, where d
(1)
i and d

(2)
i are locations of the UAV when

it collects data from SNi and forwards SNi’s data to the DC,
respectively. The UAV will forward the data only after the data
of all nodes in the same group are all collected. When SNi

is not the last one to be collected in the group, we will set
d
(2)
i =∅.
As shown in Fig. 3, we take SNs in the k-th group

as an example to briefly explain the data collecting and
forwarding process of the UAV. We assume that there are
nk (1 ≤ nk ≤ m0) SNs in Gk to be collected and forwarded.
It is Gk=

{
SNπ(1),k, SNπ(2),k, · · · , SNπ(nk),k

}
. At τk−1, the

UAV starts to fly from dl to d
(1)
π(1),k. The parameter dl is the

UAV position where it forwards the data of SNs in Gk−1, it
is dl=d

(2)

π(nk−1),k−1
. It takes TM

(
dl → d

(1)
π(1),k

)
seconds for

the UAV to transfer from dl to d
(1)
π(1),k, and then collects the

data of SNπ(1),i. The UAV spends TC

(
SNπ(1),k,Ω

)
=

lπ(1),k

RC

seconds to collect the data of SNπ(1),k, where RC is the
collection rate.

Next, the UAV moves to d
(1)
π(2),k to collect the data of

SNπ(2),i. For the Type II nodes, as their data have been
generated and stored in their memory, the AoI of the node
SNπ(2),k includes the time of data storage in SN. The UAV
collects the data from the remaining nodes in Gk by the same
way. The parameter Tuav

S

(
SNπ(1),k,Ω

)
is the storage time

of the data of SNπ(1),k in the UAV, and TU

(
SNπ(1),k,Ω

)
=

lπ(1),k

RD
is the time required to forward the data of the node to

the DC, where RD is the forwarding rate. When the data of
SNπ(1),k is collected, the UAV will fly from d

(1)
π(1),k to d

(1)
π(2),k

and spends TC

(
SNπ(2),k,Ω

)
seconds to collect the data of

SNπ(2),k. Similarly, the UAV continues to collecting the data
until the data of all the SNs in Gk are collected. Finally, it

3In fact, the SNs do not need to be grouped before the UAV departures. Ac-
cording to the specific conditions, the UAV will make autonomous decisions
to complete the task, including where to collect the data, where and when
to forward the data, which SNs are forwarded together, which one should
be picked up first and so on. This paper just takes the grouping method to
describe the data collection and forwarding process for the simplification of
the analysis.

4The subscript π (·) is the ordered index number of SNs.

flies from d
(1)
π(nk),k

to d
(2)
π(nk),k

and begins to forward the data.
From Fig. 2 and Fig. 3, we can also obtain the AoI of a Type
II node5

ASNπ(j),k
(Θ)=T sn

S

(
SNπ(j),k,Θ

)
+ TC

(
SNπ(j),k,Θ

)
+T uav

S

(
SNπ(j),k,Θ

)
+ TU

(
SNπ(j),k,Θ

) ,

(17)
where T sn

S

(
SNπ(j),k,Ω

)
is the data storage time in SNπ(j),k,

which starts timing from the moment the UAV takes off. In
other words, it is T sn

S

(
SNπ(j),k,Ω

)
= 0 for a Type I node.

It can be observed from Fig. 3, the UAV’s flight trajectory
is dl → d

(1)
π(1),k → d

(1)
π(2),k → · · · → d

(1)
π(nk),k

→ d
(2)
π(nk),k

.
After the data of Gk−1 is forwarded, the UAV will collect the
data of Gk. Thus, the total energy consumed Es by the UAV
is

Es =

Pf (V )Tb+

N0∑
k=1


Pf (V )TM (tk,Ω)+

P 1
h

nk∑
j=1

TC

(
SNπ(j),k,Ω

)
G(

SNπ(j),k

) (Ω)+

P 2
h

nk∑
j=1

TU

(
SNπ(j),k,Ω

)
G(

SNπ(j),k

) (Ω)




,

(18)
where Tb is the time required for the UAV to back to the DC.

The parameter TM (tk,Ω) is the flight time required for the UAV
to follow trajectory tk in Gk. The parameters TC (SNi,Ω) and
TU (SNi,Ω) are the time for the UAV to collect and forward the
data of SNπ(j),k, respectively. The parameters Pf (V ), P 1

h and P 2
h

are the UAV consumed power in different states. They have been
discussed in (14), (15) and (16).

Given the limited energy of an UAV with a random initial position,
the UAV is dispatched to collect and forward the data of the SNs
in the specified area. However, for the different priorities of nodes,
the UAV will obtain two different optimization strategies due to the
limited residual energy and the AoI requirement of Type II nodes
in Ψh. When the UAV is close to the SNs, it has the ability to
complete the task of all the nodes in Ψh and Ψo, simultaneously. It
is N = m0, so we aim to minimize the average AoI and reduce the
energy consumption by optimizing the UAV data collection strategy.
Besides, when the UAV is at the boundary of the area or far away
from the SNs, it may fail to collect the data of all the nodes. At this
time, the UAV has to give priority to completing the tasks of the high
priority nodes in Ψh and tries its best to collect the ordinary nodes
in Ψo as many as possible. So it is N < m0. Thus, according to the
environment, the objective function can be written by



 min
Ω

Ec =

(
PfTf (Ω)+

PcTc (Ω) + PuTu (Ω)

)
,

min
Ω

∑N
i=1 A(SNi)

(Ω)

N

 , N = m0


max
Ω

N = |Ψh|+
|Ψo|∑
i=1

G(SNi)
(Ω) ,

min
Ω

∑N
i=1 A(SNi)

(Ω)

|Ψh|+|Ψo|∑
i=1

G(SNi)
(Ω)

 , N < m0

(19)

5The AoI of the Type I nodes are set as T0 when the nodes have been
collected but cannot be forwarded to the DC. The AoI of the Type II nodes
that have not been forwarded are also set as T0.
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Fig. 3: The UAV data collecting and forwarding process of
the SNs in Gk.

Subject to :
C1 : A(SNi)

(Ω)=(
T sn
S (SNi,Ω) + TC (SNi,Ω)

+Tuav
S (SNi,Ω) + TU (SNi,Ω)

)
, SNi ∈ {Ψh,Ψo}

C2 : 0 ≤ A(SNj)
(Ω) ≤ T th

SNj
, SNj ∈ Ψh,

C3 : Es ≤ Eu,

C4 :
∥∥∥d(2)

i − dSNi

∥∥∥ ≤ rSNi
,
∥∥∥d(2)

i − dDC

∥∥∥ ≤ rDC , 1 ≤ i ≤ m0,

C5 : G(SNi)
(Ω) = {0, 1} .

(20)
where |Ψh| and |Ψo| are the number of SNs in Ψh and Ψo,

respectively. The parameters Tf (Ω) and Tc (Ω) are the total flight
time and data collecting time of the UAV, respectively. The parameter
A(SNi)

(Ω) is the AoI of SNi in (C1). Different from the nodes
in Ψo, the nodes in Ψh have stricter requirements for information
timeliness, the AoI of the nodes in Ψh is less than or equal T th

SNj
in

(C2). The constraint (C3) means that the total energy consumed of the
UAV Es should not exceed the maximum capacity Eu of the battery.
Besides, the constraints (C4) set the communication range between
the UAV and the DC, between SNi and the UAV, where dSN,i
and dDC are the coordinates of the SNi and the DC, respectively.
We also define an indicator function G(SNi)

(Ω) in (C5). After
the data of SNi is collected and forwarded successfully, we set as
G(SNi)

(Ω) = 1. Otherwise, it is G(SNi)
(Ω) = 0.

We assume that m0 SNs are randomly scattered in a rectangle
with an area of L × L. The region is partitioned to grids, and the
area of each grid is d × d. It is assumed that the UAV only stays
above the center of a grid when it collects data from the sensors.
For a sensor SNi, the locations of the UAV d

(1)
i and d

(2)
i all

have 2(L/d)2 possibilities. Thus, the task complexity of the UAV is
O
(
2l0(L/d)2l0

)
, where l0 = m0+N0 is the number of actions the

UAV takes. To achieve the timeliness of Type II nodes, the number of
groups N0 is also a random number due to the autonomous decision-
making by the UAV according to the environment. Therefore, it is
difficult to solve this problem using traditional trajectory optimization
methods. The data collection and forwarding process of the UAV can
be modeled as a sequential decision problem. Then, a guided search
method based DRL algorithm is introduced to solve it. In the next
section, we focus on the implementation of the proposed scheme.

III. THE GSDRL ALGORITHM

This section first introduces the basic principle of the DRL algo-
rithm and the process of network parameters to be updated. Then, a
guiding fast search algorithm is proposed to improve the convergence
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Fig. 4: The diagram of UAV data collection and forwarding
based on the DRL algorithm.

speed of the network. Next, we present the implementation process
of the proposed scheme in detail.

A. DRL Algorithm
An agent interacts with the environment in a trial-and-error way

in the DRL algorithm continually. So it obtains the optimal strategy
by maximizing the accumulation of rewards. The framework of UAV
data collection and forwarding based on DRL algorithm is shown
in Fig. 4. The basic framework of the DRL algorithms mainly
consists of two parts, an agent (UAV) and the environment. The
agent includes prediction network, target network, an optimizer, and a
replay experience pool. The agent interacts with the environment with
three parameters: state S, action A, and reward R. For the application
scenario of UAV data collection and forwarding in the paper, we
define as follows,

1) State space S: The parameter S = {s} represents the state
space of the UAV, where s = {B,C,D,Y, e, η} includes the
information about the UAV data collection, data forwarding, the AoI
of a SN, the current position of the UAV, and the residual energy. The
parameters B = {bi} ,C = {ci} are the states of the collection and
forwarding of the SNs, respectively, where bi, ci ∈ {0, 1} , 1 ≤ i ≤
m0. When it is bi=1, the data of the i-th node has been collected.
Otherwise, it means that the data of the node has not been collected.
The variable ci has a similar definition. The vector D represents the
set of the average AoI of all the SNs. The dimensions of B, C and
D are all m0. The parameter Y denotes the current position of the
UAV, and e is the remaining power of the UAV. An indicator variable
η ∈ {−1, 1} describes the work model of the UAV. For example, if
η=1, the UAV is in data forwarding state. Otherwise, the UAV is in
data collection state.

2) Action space A: The parameter A = {a} is the action set
of the UAV, where a = {E, η} and E is the current coordinate
of the UAV. According to the current environment, the UAV selects
an appropriate location for data collection or forwarding. The agent
selects an action using the greedy algorithm. Both exploration and
exploitation methods are adopted by the agent to select an action.
When the number of iterations is small, and the agent has limited
information about the environment, it will randomly choose an
action using exploration method. With the increase of the number of
interactions with the environment, the agent continues to accumulate
experience and autonomously rectifies its behavior to obtain a larger
reward. We call this approach exploitation. As the agent’s accumulat-
ed experience increases during the training process, the probability of
exploration becomes smaller, the probability of exploitation for the
agent gets larger, the convergence speed for the network becomes
faster. However, it will get a poor local solution in most cases.
Conversely, the network parameters converge slowly and the system
needs to take a long time to find a good solution.
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3) Reward R: The parameter R denotes the reward of the agent
when it interacts with the environment. During the learning process,
we need a reward to evaluate the action the agent selected. Different
actions will usually get different rewards, which stimulates the agent
to choose a better action. The reward function plays an important role
in the convergence speed of the algorithm, and also directly affects
the optimal solution. When the UAV is close to SNs to collect data,
or the DC to forward the data, the agent will get a positive reward.
Under the same conditions, if an action chosen by the agent can make
the average AoI or the consumed energy become smaller, the agent
will achieve a larger positive reward. If it choose an unreasonable
action, such as the data collection and forwarding conditions are not
satisfied, it will get a negative reward. So we define the reward as
follows:

R =

{
ϖ1χ1 +ϖ2χ2 +ϖ3χ3, f lag = 1
− (ϖ1χ1 +ϖ2χ2 +ϖ3χ3) , f lag = 0

, (21)

where ϖ1, ϖ2, and ϖ3 are weight parameters. The functions χ1,
χ2, and χ3 are, respectively,

χ1 = 1−

|Ψh|∑
j=1

A(SNj)

T0
|Ψh|∑
j=1

G
(
SNj

) , (22)

χ2 = 1−

|Ψo|+|Ψh|∑
j=1

A(SNj)

T0
|Ψo|+|Ψh|∑

j=1
G
(
SNj

) , (23)

χ3 = (1− Es

Eu
)

|Ψo|+|Ψh|∑
j=1

G
(
SNj

)
, (24)

where T0 represents the maximum endurance time of the UAV. The

expression
|Ψh|∑
j=1

A(SNj)

/
|Ψh|∑
j=1

G
(
SNj

)
denotes the average AoI

of high priority nodes in χ1. The expression
|Ψo|+|Ψh|∑

j=1
G
(
SNj

)
is the sum number of the nodes in Ψo and Ψh, the da-
ta of which have been collected and forwarded successfully,
|Ψo|+|Ψh|∑

j=1
A(SNj)

/
|Ψo|+|Ψh|∑

j=1
G
(
SNj

)
denotes the average AoI

of all the nodes in χ2. The expression (1− Es/Eu) denotes the
remaining power ratio in χ3. If it is flag = 1, it means that the
UAV is in collection or forwarding states and will obtain a positive
reward. Otherwise, the action selected by the UAV cannot satisfy the
communication conditions, so it will get a negative reward. Besides,
if the UAV fails to back to the DC, it also will get a negative reward.

By adding the experience replay pool and the target network, the
DRL algorithm tries to solve the convergence problem of the network
parameters. The samples obtained are stored in the replay pool by
the interaction between the agent and the environment. During the
training process, a batch of samples are randomly selected from the
stack for the parameters to be updated. This breaks the correlation
between the samples. According to the state s, the agent will select
an action a. After the UAV executes the action a, we will get the
next state s′. In a similar way, the UAV will select different actions
according to different states until the UAV completes the task or it
runs out of the available energy. As shown in Fig. 4, we use an
optimizer to update the parameters of the current network after each
interaction. Next, we discuss the process of the network parameters
to be updated.

B. Network Parameters Update
To maximize the long-term cumulative benefits, the agent interacts

with the environment to update the state-action value Q (s,a) by the
method of trial-and-error. The process of the updated parameters in
DRL algorithm is

Q (s,a)← Q (s,a)+β

(
R+ λmax

a′
Q
(
s′,a′

)
−Q (s,a)

)
, (25)

where β ∈ (0, 1) is learning rate, λ ∈ (0, 1) is discount factor. The
parameter s′ is the next state after the agent executes the action a.
From (25), we can get that the larger the discount factor λ, the more
significantly the Q (s,a) will be affected by the future returns. On
the contrary, it is only affected by the immediate interests. Based
on the principle of the DRL algorithms, the GSDRL algorithm uses
deep neural networks Q (s,a,w) to approach Q (s,a). To improve
the performance stability of the system, the proposed scheme also has
two networks including the target network and the current network.
They have the same structure but different parameters. The state-
action values from the target network and the current network are
Qt (s,a,wt) and Q (s,a,w), where wt and w are the parameters
of the corresponding networks, respectively. Finally, a small batch
stochastic gradient descent algorithm [30] is adopted to solve w. We
define the loss function as

L (w) = E
((

gk −Q (sk,ak,w)
)2)

=
1

N1

N1∑
k=1

(
gk −Q (sk,ak,w)

)2
, (26)

where

gk=Rk + λQt

(
s′k,max

a′
Q
(
s′k, a

′
k,w

)
,wt

)
. (27)

So the gradient of w can be obtained as follows

∇wL (w) = E
((
gk −Q (sk, ak,w)

)
∇wQ (s, a,w)

)
. (28)

The parameter w will be updated by

w← w+β∇wL (w) . (29)

As the UAV adopts a dynamic data collection and forwarding
strategy, it can collect one or more SNs before forwarding together
independently. Due to the random starting positions for the UAV,
the number of actions selected by the UAV is also different to
complete the mission every time. Thus, the search space of the task
is very large. We also discussed this issue in Section II-B. Taking
the traditional DRL algorithms, the agent may get the inferior local
solution within a limited search time. Next, in order to improve the
search efficiency, we propose a fast search algorithm to guide the
UAV’s movements.

C. Guiding Action
As the number of iterations increases, the agent continuously

learns the experience from the environment and makes corresponding
decisions based on the real-time environment. To achieve the data
timeliness of a SN, the agent usually forwards data as soon as possible
at the signal coverage edge of the DC. The agent also flies to the
signal coverage edge of a SN to collect the data. Next, we take the
UAV data collection as an example to explain the process. First, we
assume that the agent is in (x0, y0) at time t0. It will fly to the point(
x′1, y

′
1

)
at the next time t1, where it just finds an uncollected SN

in (xs, ys). In this case, the agent does not immediately perform the
data collection action. It will rectify the action with a probability
Pτ . We will further discuss it in Section IV. Next, we will explain
the process of finding the revised action. We only adjust the UAV
position, but do not modify the parameter η. In other words, we do
not alter the state of the UAV such as data collection (η= −1) or
forwarding (η=1), and just revise the UAV position. By combining
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Algorithm 1 The training process of the GSDRL algorithm.

1: Initialization: Randomly initialize all the parameters in-
cluding the current network and the target network, and
clear the replay experience pool Θ.

2: for episode i = 1 to Imax do
3: Randomly initialize the UAV’s location, state s and

the energy e = Eu.
4: for epoch j = 1 to Jmax do
5: Step 1: If Pmax < ∆× i× (j + 1), it is Pε=Pmax.

Otherwise, it is Pε=∆×i×(j + 1). The agent chooses an
action a = argmax

a
Q (s,a,w) with the probability Pε.

Otherwise, it selects a random action a.
6: Step 2: Rectify the location of the UAV with the

probability Pτ according to (30).
7: Step 3: Execute a given the state s to get the next

state s′ and the reward R.
8: Step 4: Restore {s,a, s′, R} in Θ and replace the

current state s with s′.
9: Step 5: Randomly select m0 samples from Θ, and

calculate gj according to (31).
10: Step 6: Build a loss function

1
N1

N1∑
j=1

(
gj −Q (Sj , aj ,w)

)2 and update w using the

stochastic gradient descent method.
11: Step 7: If it is i%ξ = 0, the parameters of the

target network is updated with wt = w.
12: Step 8: Terminate the episode if s′ is the terminal

state.
13: end for
14: end for

the starting point (x0, y0) with the position of the target SN (xs, ys),
the intersection point of the signal coverage boundary is obtained, x1 = x0 ± rSN

√
(xs−x0)

2

(xs−x0)
2+(ys−y0)

2 ,

y1 = y0 + ys−y0
xs−x0

(x1 − x0).
(30)

The equation (30) has two different solutions, and we only need to
choose the one with the shortest distance from (x0, y0). As the area is
meshed, we need to further quantify the solution in (30). So multiple
quantification solutions will be achieved. We can randomly select a
solution which satisfies the condition of data collection. A similar
way can also be used to revise the action in the data forwarding
state, and an optimal location for data forwarding can also be found
by replacing rSN with rDC in (30). The training and testing processes
of the GSDRL algorithm are presented in Algorithm 1 and Algorithm
2, respectively.

For the training process in Algorithm 1, the agent first clears
the experience pool Θ and randomly initializes all the parameters
including the location of the UAV, the original state s and the total
energy of the UAV e = Eu. Given s, the agent selects an action a to
affect the environment. Then, it will further obtain the next state s′

and the corresponding reward R. Next, the tuple
{
s,a, s′, R

}
will be

transferred to the pool Θ. The current state is updated with s = s′.
With an increase in the number of iterations, the parameters of the

current network will gradually converge to local optimal solutions.
To avoid this problem, the agent will select an action according to
the current network with a probability Pε, or choose a random action
with a probability 1−Pε to explore the unknow environment. When
Pε ≥ Pmax, we set Pε=Pmax. Then, the agent will rectify the action
with the probability Pτ to help in finding a better location to execute

Algorithm 2 The testing process of the GSDRL algorithm.

1: for episode i = 1 to Dmax do
2: Randomly initialize the UAV’s location, the state s and

the UAV energy e = Eu.
3: while csn ≤ m0 and Pr > 0 do
4: Choose an action a from the trained target network

in Algorithm 1 according to s.
5: Execute a and output the next state s′.
6: if FGk

== 1 then
7: Count the number of the loaded SNs csn.
8: end if
9: Update the current state wtih s = s′ and the

remaining power with Pr=Pr − Pi.
10: end while
11: end for

the mission. With the increase of the number of interactions with the
environment, the samples stored in the pool Θ increase constantly.
After the pool Θ accumulates enough samples, the agent starts to
take out N1 random ones from the pool Θ and trains the network.
The parameter gj is given by

gj =


Rj , ς = 1,

Rj + λQt

(
s, arg

a′
maxQ

(
s′,a,w

)
,wt

)
, ς = 0,

(31)
where ς describes the work state of the agent. If ς = 1, the
agent will stop searching and the episode is over. Using the mini-
batch stochastic gradient descent algorithm, the agent builds a loss

function 1
N1

N1∑
j=1

(
gj −Q

(
sj ,aj ,w

))2 with N1 samples to update

the parameter w. The current network parameter will be updated after
every interaction, while the parameter wt of the target network will
be updated after ξ interactions. This helps to enhance the stability
of network parameters. If j < Jmax, the process will re-back to the
Step 1 and continues to collect or forward the data until the task is
accomplished or the remaining energy of the UAV is exhausted.

The testing process is presented in Algorithm 2, the UAV initializes
its position randomly and clears the data in the pool Θ. The energy
is e = Eu. Then, according to its current state s, the trained network
obtained from Algorithm 1 outputs the next action a to be performed.
Then, the UAV will execute the action a to collect or forward the
data. For example, if it is FGk

= 1, which denotes the data of the
SNs in Gk all have been collected, the UAV will forward the data
to the DC and counts the number of the loaded SNs. Next, it will
update the current state s = s′ and the remaining energy Pr=Pr−Pi,
where Pi is the energy consumed to perform the action a. Using this
iterative procedure, the UAV can complete the data collection and
forwarding of the remaining SNs autonomously.

IV. SIMULATION RESULTS

In this section, we demonstrate the effectiveness of the proposed
scheme through simulation experiments. The experimental setup are
windows system 64 bits, CPU Core i7-6700 HQ, pycharm 2020,
Torch 1.13.1, numpy 1.24.1. The number of SNs is 8, which is
presented in Table II. In the paper, the positions of SNs are fixed,
where the Type I nodes are [1, 2], [1.8, 2.5], [1,-2], [0.5, -1], [-2, -3],
[-1, 1], [-2, 2], and the Type II nodes are [1.5, 1.8], [-1, -1.5]. The
location of the DC is [-2, 2]. The GSDRL algorithm achieves the best
performance when compared with the fixed collection data strategy,
Deep Q-Network (DQN) [11] and Double DQN (DDQN) [31]. In this
paper, the parameters6 related to the channel model and the training

6UAV related parameters are selected based on Table 1 in [29].
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TABLE II: Channel and UAV related simulation parameters

Parameters value

Transmission power of a SN Psn 0.1 W
Transmission power of an UAV Pc 5 W
The total energy of the UAV Eu 360000 J

Communication radius of the DC rDC 2000 m
Communication radius of a SN rSN 900 m
N-LOSS model’s path loss κNLOSS 21 dB

LOSS model’s path loss κLOSS 0.1 dB
Maximum endurance time of the UAV T0 2118 s

Number of the SNs m0 8
Length of the side of the rectangle L 6 km

Length of each grid d 300 m
Area of an UAV search region 36 km2

Speed of light vc 3× 108

Flying altitude of the UAV H0 50 m
Environment parameters z0 4.88
Environment parameters z1 0.43

Carrier frequency fc 2.5× 109 Hz
System bandwidth B0 1 MHz

Noise power spectrum density -174 dBm/Hz
Maximum tolerance AoI of the nodes T th

SNj
in Ψh 600 s

TABLE III: Simulation parameters in the GSDRL algorithm

Parameters value

Maximum number of episode Imax 50000
Maximum number of epoch Jmax 30

Number of testing times Dmax 100
Size of the pool Θ 10000

Weight parameters ϖ1, ϖ2 and ϖ3 10, 5, 10
Number of samples selected N1 200

Probability increment ∆ 0.000001
Steps of parameters to be updated ξ 200

Learning rate β 0.0001
Decay rate γ 0.9

Optimizer Adam
Activation functions ReLU/ Leaky-relu/ ReLU

Input layer (3m0 + 4)× 128
Hidden layers 128× 256, 256× 512

Output layer 512× 2(L/d+ 1)2

Maximum probability of selected
action from the network Pmax

0.9

network model are shown in Table II and Table III, respectively. To
demonstrate the training process more clearly, the original training
data is filtered by the movmean function in Matlab.

A. Channel Analysis
First, we perform an experimental simulations to verify the channel

models between the UAV and a SN, and between the UAV and the
DC. As shown in Fig. 5, as the communication distance increases, the
transmission rate decreases constantly. The transmission power of the
UAV is larger than that of the SNs, so the forwarding information
rate from the UAV to the DC is larger than that from the SN to
the UAV at the same distance. Although the UAV can fly closely
to the SN to improve the rate, the farther the UAV flies, the more
energy it consumes. Similarly, the UAV has to deal with a similar
problem when it forwards the data. Thus, the UAV needs to balance
the rate, the AoI and the consumed energy when choosing its location.
The GSDRL algorithm can easily solve this problem. Under the
constraints of the energy, it can obtain a better location according
to the environment. In addition, the simulation results match with
the theoretical results derived in (12) and (13).

B. Parameters’ Analysis
It can be observed from Fig. 6 that as the number of iterations

increases, the reward converges to be stable. From Algorithm 1, the
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Fig. 5: Rate versus distance for SN-UAV and UAV-DC with
V = 20.
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Fig. 6: The training process for different probabilities of action
selected in the GSDRL algorithm.

agent selects the actions by the network with exploitation proba-
bility Pε, while randomly choosing an action with the exploration
probability (1−Pε). It continues to learn more experience from the
environment as the number of iterations increases. It also gradually
grasps the ability to take corresponding actions based on real-
time environmental information, and improves the rewards. As Pε

increases, the agent tends to choose the actions from the network
more frequently, so the accumulated rewards also increase. But this
does not mean that the larger Pε is, the better the reward of the trained
network. When Pε becomes small, the agent will randomly choose an
action with a large probability to explore the unknown environment.
At this time, as the agent fails to make rational decisions based on
environmental information, it may result in frequent failed tasks. We
know that the agent stores the selected actions, the current states,
the rewards, and the next states into the experience pool Θ. If the
agent suffers too many failures during the training, there will be more
inferior samples stored in the pool, which causes the agent to learn
a poor strategy.

As shown in Fig. 7, when Pε increases from 0.8 to 0.9, the average
AoI of the Type II nodes does not decrease, but increases. In other
words, the system performance does not get better. The parameter Pε

becomes larger, the agent is more inclined to choose the actions from
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Fig. 7: Average AoI of the Type II nodes versus Speed
for different probabilities of action selected in the GSDRL
algorithm.

the network. Although by increasing Pε can improve the convergence
of network parameters, it also results in a local inferior solution.
Based on the above factors, we choose Pε=0.8 in this paper.

We can see from Section III.C that the agent prefers staying at
the signal edge of the target for data collection or forwarding by
taking guiding actions strategy. This helps to reduce the flight distance
and save more energy. However, there are some overlapping signal
coverage zones between multiple SNs when they are located closer
together. If we choose to revise the actions given by the network
every time, the agent may learn a relatively poor strategy. When the
UAV is at the boundary of the area or far away from the SNs, it may
fail to collect the data of all nodes due to limited residual energy.

The collection and forwarding probabilities of the nodes with
different Pτ are presented in Fig. 8. As the speed increases, the
probability curves also increase and approach 1 finally. From (19),
we can get that the UAV will prefer to collect the data of Type II
nodes to ensure their timeliness. Besides, the 0.5 curves is higher
than that of the 0.1 and 1 curves. As Pτ increases from 0.1 to 0.5,
the probability increases. However, the probability curves will reduce
when Pτ increases from 0.5 to 1. If we adjust the UAV’s action rarely,
the convergence speed is relatively slow. Conversely, if we revise the
UAV’s action very frequently, this will not be conducive to help the
UAV to find a better solution. For example, the UAV will achieve
a better result when it chooses a certain point in the signal overlap
area instead of the boundary. Thus, very frequently rectifying actions
may miss some opportunities to learn a good strategy. As a result, it
will take longer time to complete the data collection and forwarding
task. With these various factors taken into consideration, a suitable
alternative is Pτ=0.5.

C. Performance Comparison
Next, we demonstrate the superior performance of the proposed

algorithm by comparing with the DDQN algorithm, the DQN algo-
rithm, and the fixed collection data strategy. We know that for the
deep reinforcement learning algorithms, when more factors in state
s are considered, the more features of the sample are collected, the
results of network training will be better. However, there are always
too many unpredictable factors in the practical applications. Thus,
the UAV’s flight speed act as an external dynamic factor to test the
robustness of the different algorithms in this paper.

From Section III, we can get that when the conditions of receiving
or sending data for the UAV are satisfied, the agent will get a positive
reward. Otherwise, it will be punished. In other words, it will achieve
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Fig. 8: The collection and forwarding probability versus speed
with different Pτ in the GSDRL algorithm.
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Fig. 9: Training process comparison of the GSDRL, DDQN
and DQN algorithms.

a negative reward. As the number of interactions between the agent
and the environment increases, the agent continues to accumulate
more experience, and it will choose appropriate actions to obtain more
rewards based on the current environment state. The three reward
curves with different colors are obtained as shown in Fig. 9. As the
number of iterations increases, the rewards will initially increase and
then become stable. In the classic DRL algorithm, the action with the
largest Q value is selected as the next action each time. However, this
approach results in an overestimation of the actual reward function
due to noise in the Q values, so the system may achieve a suboptimal
local solution.

Using gk in (31), we can find that the choice and the evaluation of
the actions are achieved by two different networks in both the DDQN
algorithm and the GSDRL algorithm, respectively. As shown in Fig.
9, the GSDRL algorithm has gradually learned the ability to make
corresponding decisions when the number of episodes reaches about
3000 times. However, the reward curve of the DDQN algorithm gets
stable after about 5500 times. Thus, by rectifying the action method,
the GSDRL algorithm can further accelerate the convergence speed
and obtain more reward.

Fig.10 presents the collection and forwarding probability of Type
I and Type II nodes of the three algorithms. To ensure the timeliness
of high-priority nodes, the UAV prefers to collect the Type II nodes
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Fig. 10: The collection and forwarding probability versus the
speed for the Type I and Type II nodes.
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Fig. 11: The energy efficiency of the algorithms versus the
speed.

and forwards them to the DC as soon as possible. As the fly speed
of the UAV increases, it can approach the nodes more quickly,
and completes the data collection and forwarding task in less time,
so the collection and forwarding probability also increases. The
GSDRL algorithm adopts an action guidance strategy to accelerates
the convergence speed of the network. When compared with the
other algorithms, regardless of Type I and Type II nodes, the GSDRL
algorithm can complete data collection and forwarding task with a
probability close to 1 when the speed is greater than 20 m/s.

As can be seen from Fig.11, the energy efficiency of the algorithms
decreases as the speed increases. Among them, the DQN algorithm
has the lowest energy efficiency. Although the DDQN algorithm
achieves more efficient than the GSDRL algorithm. However, we
can find it from Fig.10 that the DDQN algorithm fails to ensure the
timeliness of the Type II nodes. To reduce the AoI of the Type II
nodes, the GSDRL algorithm flies to a suitable position to forward
the data to the DC as soon as possible. Although this results in
a larger flight distance and more energy consumption, the GSDRL
algorithm can simultaneously take into account the timeliness of the
two different types nodes.

As shown in Fig. 12 that with the increase of UAV flight speed, the
UAV can quickly get closer to the near vicinity of the SNs and the DC
to reduce the average AoI. When compared with the existing baseline
algorithms, the proposed algorithm can find a better location for the
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Fig. 12: AoI versus speed for the GSDRL, DDQN and DQN
algorithms.
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Fig. 13: The collection and forwarding probability versus the
speed for the Type II nodes.

UAV to perform the task. It also has achieved the best strategy to
complete the task for data collection and forwarding according to the
real-time environment. When compared with the DQN and DDQN
algorithms, if the speed is 20 m/s, the AoI of the GSDRL algorithm
can be reduced by about 63.85% and 36.76%, respectively.

Performance comparisons for two different data collection strate-
gies are presented in Fig.13 and Fig.14. For a fixed data collection
strategy, the UAV first collects the data of all nodes, then sends
the data to the DC together. Then, the GSDRL algorithm adopts a
dynamic data collection strategy. As can be seen from Fig.13, as the
UAV’s speed increases, the collection and forwarding probability of
Type II nodes also increases. This is because the UAV can approach
the Type II nodes more quickly, and completes the data collection
and forwarding task in less time. By adopting the dynamic collection
strategy, the GSDRL algorithm can optimize fly trajectory according
to the specific environment, so the probability of collecting and
forwarding for the Type II nodes of the GSDRL algorithm is higher
than that of the fixed data collection strategy. Besides, the GSDRL
algorithm tries to collect and forward the data of the Type II nodes as
soon as possible, finds a short trajectory to collect the Type I nodes.
Thus, we can also find that the average AoI of the GSDRL algorithm
is lower than that of the fixed collection strategy in Fig.14.
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collection data strategy and the GSDRL algorithm.

V. CONCLUSION

For an UAV to perform the task of data collection and forwarding,
we model it as a sequential decision-making problem with the goal
of minimizing the average AoI of the system. A guided search deep
reinforcement learning algorithm is presented to solve the problem
in this paper. The proposed scheme optimizes data collection and
forwarding strategy to meet the timeliness requirements of different
users. A fixed mode is taken by the traditional data collection method
generally, where the UAV given an initial location executes the
task according to a preplanned flight trajectory. Different from the
traditional data collection methods, the proposed scheme is more
flexible. The agent selects an optimal strategy to cope with the
diverse conditions. For the larger search space, we design an action
guided search method to speed up the convergence of the network
parameters and find a better flight trajectory. Simulation experiments
show that the GSDRL algorithm has strong adaptability to the adverse
environment. It can choose reasonable actions based on the real-time
environment. When compared with the fixed data collection strategy,
the GSDRL algorithm finds better locations for the UAV to collect
and forward the data. It can ensure the timeliness of the Type II
nodes, also reduces the average AoI of nodes. Except for a single
UAV data collection, multiple drones assisted each other is a new
issue to be discussed to perform data collection task.

APPENDIX

We assume that Ψ = PSN
T

/
Pσ2 and y = B0× log2 (1 + Ψx) ≥

0, we can get

dy =
B0

ln 2
× Ψ

1 +Ψx
dx, (32)

where B0 is the signal bandwidth. According to (8) and (9), we can
obtain that the CDF of y is

Fy (y) = P (Y ≤ y)

= P (B0log2 (1 + ΨX) ≤ y)

= P

(
X ≤ 1

Ψ

(
2y/B0 − 1

))
= Fx

(
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Ψ

(
2y/B0 − 1

))
. (33)

Combining (9) and (33), we can get the PDF of y is given by
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According to (32), so the expected value of y is
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where Ei (•) denotes the one-argument exponential integral function.
Combining (10) and (35), we can get
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