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Local genetic correlations exist among neurodegenerative and
neuropsychiatric diseases
Regina H. Reynolds 1,2,13✉, Aaron Z. Wagen 1,3,4,13, Frida Lona-Durazo5,6, Sonja W. Scholz 7,8, Maryam Shoai9,10, John Hardy2,9,10,
Sarah A. Gagliano Taliun5,11 and Mina Ryten 1,2,12✉

Genetic correlation (rg) between traits can offer valuable insight into underlying shared biological mechanisms. Neurodegenerative
diseases overlap neuropathologically and often manifest comorbid neuropsychiatric symptoms. However, global rg analyses show
minimal rg among neurodegenerative and neuropsychiatric diseases. Importantly, local rg s can exist in the absence of global
relationships. To investigate this possibility, we applied LAVA, a tool for local rg analysis, to genome-wide association studies of 3
neurodegenerative diseases (Alzheimer’s disease, Lewy body dementia and Parkinson’s disease) and 3 neuropsychiatric disorders
(bipolar disorder, major depressive disorder and schizophrenia). We identified several local rg s missed in global analyses, including
between (i) all 3 neurodegenerative diseases and schizophrenia and (ii) Alzheimer’s and Parkinson’s disease. For those local rg s
identified in genomic regions containing disease-implicated genes, such as SNCA, CLU and APOE, incorporation of expression
quantitative trait loci identified genes that may drive genetic overlaps between diseases. Collectively, we demonstrate that complex
genetic relationships exist among neurodegenerative and neuropsychiatric diseases, highlighting putative pleiotropic genomic
regions and genes. These findings imply sharing of pathogenic processes and the potential existence of common therapeutic
targets.
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INTRODUCTION
Neurodegenerative diseases are a group of syndromically-defined
disorders that are characterised by the progressive loss of the
structure and function of the central nervous system. They are
typically grouped by their predominant neuropathological protein
deposit (e.g. synucleinopathies, like Parkinson’s disease and Lewy
body dementia, by α-synuclein deposition and Alzheimer’s disease
by deposition of amyloid), but more often than not, they present
with co-pathologies, suggesting that they might share common
pathogenic pathways1,2. This notion is supported by genome-wide
association studies (GWASs), which have (i) identified shared risk
loci across neurodegenerative diseases, such as APOE and BIN1 in
Alzheimer’s disease (AD) and Lewy body dementia (LBD), or GBA,
SNCA, TMEM175 in Parkinson’s disease (PD) and LBD and (ii)
demonstrated that genetic risk scores derived from one neuro-
degenerative disease can predict risk of another, as with AD and
PD scores predicting risk of LBD3–5. The importance of identifying
common pathogenic processes cannot be overstated, given the
implications for our mechanistic understanding of these diseases
as well as identification of common therapeutic targets benefitting
a wider range of patients.
From a clinical perspective, neurodegenerative diseases are

often also defined in terms of their predominant symptom (e.g.
AD by memory impairment or PD by parkinsonism), but in reality,
present as highly heterogenous diseases, with symptoms span-
ning multiple domains including neuropsychiatric symptoms6,7.

Indeed, a higher prevalence of depression has been observed in
individuals with dementia compared to those without dementia8.
Furthermore, depression and anxiety are more common in
individuals with PD compared to the general population, with
clinically significant symptoms in 30–35% of patients9,10. A similar
(albeit reversed) phenomenon has been observed in some
neuropsychiatric disorders, with a higher risk of dementia
diagnoses observed in individuals with schizophrenia (SCZ) versus
individuals without a history of serious mental illness11,12 and a
higher risk of PD in individuals diagnosed with depressive disorder
in mid or late life10,13,14. Together, these observations suggest the
possibility of intersecting pathways between neurodegenerative
and neuropsychiatric diseases.
Given these clinical and neuropathological overlaps, genetic

overlaps would also be expected. However, a study of global
genetic correlation between neurological phenotypes demon-
strated limited overlap between individual neurodegenerative
diseases as well as between neurodegenerative diseases and
neuropsychiatric disorders15,16. Genetic correlation (rg) is a
frequently used measure of genetic overlap, which is traditionally
studied on a genome-wide scale, and thus, represents an average
of the shared genetic effects across all causal loci in the genome17.
This global approach may not capture shared genetic effects that
are confined to particular regions of the genome (i.e. local rg s) or
local rg s that have opposing directions across the genome15,17.
Indeed, local rg s have been observed between neuropsychiatric
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traits18 and between AD and PD (specifically in the HLA19 and
MAPT loci20). In addition, previous work using approaches that can
detect polygenic overlap (including overlaps where there are
mixed patterns of allelic effect directions) have demonstrated a
global polygenic overlap between neurodegenerative and neu-
ropsychiatric diseases, such as AD and bipolar disorder (BIP)21, AD
and major depressive disorder (MDD)22,23, and PD and SCZ24.
Collectively, these studies indicate that local genetic overlaps
likely exist between neurodegenerative and neuropsychiatric
diseases.
Here, we assess local rg between 3 neurogenerative diseases

(AD, LBD and PD) and 3 neuropsychiatric disorders (BIP, MDD and
SCZ). All 6 disease traits represent globally prevalent diseases25,
have reasonably large GWAS cohorts3,5,26–30, and importantly,
have demonstrated evidence of a potential genetic overlap (but
have not, to our knowledge, been systematically assessed all
together for local rg). To estimate local rg from GWAS summary
statistics, we used the recently developed tool local analysis of [co]
variant association (LAVA)31. Unlike existing tools, such as rho-
HESS32 and SUPERGNOVA33, which only permit testing of local rg s
between two traits, LAVA is additionally able to model local
genetic relations using more than two traits simultaneously, thus
permitting exploration of local conditional genetic relations
between multiple traits (a particularly useful feature in the context
of neurodegenerative diseases like LBD, which has been
hypothesised to lie on a disease continuum between AD and
PD5,34). In addition, we use data from blood- and brain-derived
gene expression traits, in the form of expression quantitative loci
(eQTLs), to facilitate functional interpretation of local rg s between
disease traits.

RESULTS
Local analyses reveal genetic correlations among
neurodegenerative and neuropsychiatric diseases
We applied LAVA to 3 neurodegenerative diseases (AD, LBD and
PD) and 3 neuropsychiatric disorders (BIP, MDD and SCZ) (Table
1), all of which represent globally prevalent diseases25. Among
neurodegenerative diseases, AD and PD are the most common,
with a global prevalence of 8.98% and 1.12% in individuals >70
years of age6,7,25 and consequently, have large GWAS cohorts
(AD, N cases= 71,880; PD, N cases= 33,674)3,26. LBD is the
second most common dementia subtype after AD, affecting
between 4.2 and 30% of dementia patients35. As such, the LBD
GWAS cohort is small (N cases= 2591), but unlike AD and PD
neurodegenerative GWASs, 69% of the cohort is pathologically
defined5. Among neuropsychiatric disorders, MDD is the second
most prevalent, with an estimated 185 million people affected
globally (equivalent to 2.49% of the general population), while
BIP and SCZ have a prevalence of 0.53% and 0.32%, respec-
tively25. Accordingly, all 3 disorders have large, well-powered
GWASs (BIP, N cases= 41,917; MDD, N cases= 170,756; SCZ,
N cases= 40,675)28–30.
We tested pairwise local genetic correlations (rg s) across a

targeted subset of 300 local autosomal genomic regions that
contain genome-wide significant GWAS loci from at least one trait
(Supplementary Fig. 1, Supplementary Table 1). These genomic
regions, henceforth referred to as linkage disequilibrium (LD)
blocks, were filtered from the original 2,495 LD blocks generated
by Werme et al.31 using a genome-wide partitioning algorithm
that aims to reduce LD between LD blocks.
First, we performed a univariate test for every disease trait at

each of the 300 LD blocks to ensure sufficient local genetic signal
was present to proceed with bivariate local rg analyses. Pairs of
traits exhibiting a univariate local genetic signal of p < 0.05/300
were carried forward to bivariate tests, resulting in 1603 bivariate
tests across 275 distinct LD blocks. Using a Bonferroni-corrected

p value threshold of p < 0.05/1603, we detected 77 significant
bivariate local rg s across 59 distinct LD blocks, with 25 local rg s
between trait pairs where no significant global rg was observed
(Fig. 1a, b, Supplementary Tables 2, 3). These 25 correlations
included: (i) local rg s between all 3 neurodegenerative diseases
and SCZ; (ii) a local rg between PD and BIP; and (ii) 20 local rg s
between AD and PD. For 30 of the 77 local rg s, the genetic signal
of both disease traits may overlap entirely, as suggested by the
upper limit of the 95% confidence interval (CI) for explained
variance (i.e. r2, the proportion of variance in genetic signal of one
disease trait in a pair explained by the other) including 1. Notably,
the trait pairs where the upper limit of the 95% CI did not include
1 all involved at least one neurodegenerative disease, with the
one exception being a local rg between PD and SCZ, suggesting
that the genetic overlap between neurodegenerative diseases is
smaller than between neuropsychiatric disorders in the tested LD
blocks (Fig. 1c).
We found no overlap between local rg s from our study and

local genetic associations reported using rho-HESS, a tool for local
rg estimation19. Furthermore, we found no overlap between local
rg s from our study and shared genetic loci identified using the
conditional/conjunctional false discovery rate (FDR)
approach21,23,24, a tool for the estimation of global polygenic
overlap (Supplementary Note, Supplementary Table 4). We did,
however, demonstrate an overlap between local rg s from our
study and local rg s reported using LAVA in a study of 10
psychiatric disorders and 10 substance abuse phenotypes18.
Between the two studies, we were able to replicate 5 of the 7
overlapping local rg s (BIP and SCZ in LD block 457; SCZ and BIP or
MDD in LD block 951; MDD and SCZ in LD block 952; and BIP and
SCZ in LD block 2483; Supplementary Note; Supplementary Fig. 2;
Supplementary Table 4).

Local analyses associate disease-implicated genomic regions
with previously unrelated traits
Across the 77 local rg s, 22 involved trait pairs where both traits
had genome-wide significant single nucleotide polymorphisms
(SNPs) overlapping the LD block tested, 35 involved trait pairs
where one trait in the pair had genome-wide significant SNPs
overlapping the LD block tested and 20 involved trait pairs where
neither trait had genome-wide significant SNPs overlapping the
LD block tested (Fig. 2a). Thus, despite the targeted nature of our
approach (which biased analyses towards LD blocks that contain
genome-wide significant GWAS SNPs), 71% of the detected local
rg s linked genomic regions implicated by one of the six disease
traits with seemingly unrelated disease traits.
For example, LD block 1719 (chr11:112,755,447-113,889,019)

and 2281 (chr18:52,512,524-53,762,996) both contained genome-
wide significant GWAS SNPs from MDD and SCZ, an overlap which
was mirrored by a significant local rg between MDD and SCZ
(Fig. 2b). In addition, both LD blocks implicated disease traits that
did not have overlapping genome-wide significant GWAS SNPs in
the region, indicating unexplored disease trait associations. These
included (i) LBD in LD block 1719 (chr11:112,755,447-113,889,019),
which negatively correlated with SCZ (ρ=−0.65, p= 4.72 × 10−6)
and (ii) AD and PD, which were positively correlated in LD block
2281 (chr18:52,512,524-53,762,996, ρ= 0.41, p= 1.24 × 10−8).
Notably, both LD blocks contain genes of interest to traits
implicated by local rg analyses, including DRD2 in LD block 1719
(encodes dopamine receptor D2, a target of drugs used in both
PD7 and SCZ treatment36) and RAB27B in LD block 2281 (encodes
Rab27b, a Rab GTPase recently implicated in α-synuclein
clearance37).
Local rg analyses also highlighted relationships between

neurodegenerative traits in regions containing well-known,
disease-implicated genes, such as: (i) SNCA (implicated in
monogenic and sporadic forms of PD3,5) in LD block 681
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(chr4:90,236,972-91,309,863), where a negative local rg was
observed between AD and PD (ρ=−0.41, p= 6.51 × 10−13); (ii)
CLU (associated with sporadic AD26,38) in LD block 1273
(chr8:27,406,512-28,344,176), where a positive local rg was
observed between AD and PD (ρ= 0.36, p= 8.76 × 10−12); and
finally, (iii) APOE (ε4 alleles associated with increased AD risk39)
in LD block 2351 (chr19:45,040,933-45,893,307), where rg s were
observed between LBD and both AD and PD (LBD-AD: ρ= 0.59,
p= 1.24 × 10−139; LBD-PD: ρ=−0.29, p= 2.75 × 10−7) (Fig. 2c).
We also noted a positive correlation between AD and PD in LD

block 2128 (chr16:29,043,178-31,384,210), which contains the
AD-associated KAT8 locus26 and the PD-associated SETD1A
locus3 (of note, rare loss-of-function variants in SETD1A are
associated with schizophrenia40). Given concerns that UK
Biobank (UKBB) by-proxy cases could potentially be misdiag-
nosed (particularly in AD41), resulting in spurious rg s between
AD and PD, we performed sensitivity analyses using GWASs for
AD and PD that excluded UKBB by-proxy cases, the results of
which indicated this was not the case (Supplementary Fig. 3,
Supplementary Table 5, Supplementary Note).

Fig. 1 Overview of local and global genetic correlations between neurodegenerative diseases and neuropsychiatric disorders. a Chord
diagram showing the number of significant bivariate local rg s (p < 0.05/1603) between each of the disease traits across all LD blocks. Positive
and negative correlations are coloured red and blue, respectively. b Comparison between the global rg s estimated by LDSC (bottom) and the
mean local rg from LAVA (top) across all tested LD blocks. Significant global rg s (p < 0.05/15) are indicated with *. The number of significant
local rg s is indicated by a number in each tile. c Bar plot showing the number of significant local rg s between disease trait pairs. The fill of the
bars indicates the number of significant LD blocks for which the upper limit of the r2 95% confidence interval (CI) included 1.
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Local heritability of Lewy body dementia in an APOE-
containing LD block is only partly explained by Alzheimer’s
disease and Parkinson’s disease
Eleven LD blocks were associated with >1 trait pair, of which 8 LD
blocks had a trait in common across multiple trait pairs. In other
words, the genetic component of one disease trait (the outcome
trait) could be modelled using the genetic components of
multiple predictor disease traits. To explore the independent
effects of predictor traits on the outcome trait, as well as potential
confounding between predictors, we applied local multiple
regression.
A total of 14 multivariate models were run across all 8 LD blocks.

In 2 of these models, all predictor traits were found to significantly
(and by extension, independently) contribute to the local
heritability of the outcome trait (Fig. 3a, Supplementary Table 6).
For example, in the APOE-containing LD block 2351
(chr19:45,040,933-45,893,307), fitting a conditional model that
included both AD and PD as predictor traits of LBD demonstrated
that both independently contributed to the genetic signal of LBD.

In 4 models, only one predictor trait was significant, suggesting
that one predictor may account for the relationship of the outcome
trait with other non-significant predictors (Fig. 3a, Supplementary
Table 6). In the remaining 8 models, all predictor traits were non-
significant, despite significant bivariate correlations, which could
indicate collinearity between predictors (Supplementary Fig. 4).
Examples of the latter two situations (i.e. 0 or 1 significant predictor
trait) are given in the Supplementary Note.
We noted that all models with a neuropsychiatric outcome trait

and neuropsychiatric predictor traits had a high multivariate r2

(range: 0.53-1), with upper confidence intervals including 1
(Fig. 3b), suggesting that the genetic signal of the neuropsychia-
tric outcome trait could be entirely explained by its predictor traits
in these LD blocks. In contrast, in LD block 2351, the multivariate
r2 was 0.43 (95% CI: 0.38 to 0.5), a result that held using GWASs for
AD and PD that excluded by-proxy cases (r2 = 0.49, 95% CI: 0.44 to
0.57; Supplementary Fig. 3). Thus, while AD and PD jointly
explained approximately 40% of the local heritability of LBD, a
proportion of the local heritability for LBD was independent of AD
and PD.

Trait GWAS SNPs (p < 5e-8)

LD block SNPs

A B

A B

A Bor

Fig. 2 Local analyses associate disease-implicated genomic regions with previously unrelated traits. a Bar plot (left) showing the number
of traits within trait pairs demonstrating significant local rg s that had genome-wide significant SNPs overlapping the tested LD block (as
illustrated by the schematic on the right). b Two LD blocks illustrating the situations depicted in (a). Edge diagrams for each LD block show the
standardised coefficient for rg (rho, ρ) for each significant bivariate local rg. Significant negative and positive rg s are indicated by blue and red
colour, respectively. c Heatmaps show the rho for each bivariate local rg within the LD block. Asterisks (*) indicate rg s that were replicated
when using AD and PD GWASs that excluded UK Biobank by-proxy cases. Significant negative and positive rg s are indicated by blue and red
fill, respectively. Non-significant rg s have a grey fill. In both (b, c) panels are labelled by the LD block identifier, the traits with genome-wide
significant SNPs overlapping the LD block (indicated in the brackets) and the genomic coordinates of the LD block (in the format
chromosome:start-end, GRCh37).
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Incorporation of gene expression traits to facilitate functional
interpretation of disease trait correlations
To dissect whether regulation of gene expression might underlie
local rg s between disease traits, we performed local rg analyses
using expression quantitative trait loci (eQTLs) from eQTLGen42

and PsychENCODE43, which represent large human blood and
brain expression datasets, respectively (Table 1). We used LAVA to
study relationships between gene expression and disease traits on
account of its ability to model the uncertainty in eQTL effect
estimates (unlike the commonly used TWAS framework, which as
a result, has an increased type 1 error rate44). In addition, where
three-way relationships were observed between 2 disease traits
and an eQTL, we computed partial correlations to determine
whether correlations between disease traits could be explained by
the eQTL.
We restricted analyses to the 5 LD blocks highlighted in Fig. 2

(LD block 681, chr4:90,236,972-91,309,863; LD block 1273,
chr8:27,406,512-28,344,176; LD block 1719, chr11:112,755,447-
113,889,019; LD block 2281, chr18:52,512,524-53,762,996; LD block
2351, chr19:45,040,933-45,893,307), which contained genes of

interest to at least one of the disease traits implicated by local rg
analyses. From these LD blocks of interest, we defined genic
regions (gene start and end coordinates ± 100 kb) for all over-
lapping protein-coding, antisense or lincRNA genes (n= 92).
We detected a total of 135 significant bivariate local rg s across

47 distinct genic regions (FDR < 0.05), with 43 local rg s across 27
distinct genic regions between trait pairs involving a disease trait
and a gene expression trait (Supplementary Fig. 5, Supplementary
Table 7). We noted that the explained variance (r2) between trait
pairs involving a disease trait and a gene expression trait tended
to be lower than between trait pairs involving two disease traits
(Supplementary Fig. 6), an observation that aligns with a recent
study that found only 11% of trait heritability to be mediated by
bulk-tissue gene expression45.
With the exception of the SNCA-containing LD block 681

(chr4:90,236,972-91,309,863), where eQTLs for only 1 out of 5
genes tested in the block were correlated with a disease trait
(negative rg between blood-derived SNCA eQTLs and PD), the
expression of multiple genes was associated with disease traits
across the remaining LD blocks (Fig. 4a). In addition, the
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expression of several genes was associated with more than one
disease trait (Fig. 4b). For example, blood- and brain-derived
ANKK1 eQTLs (DRD2-containing LD block 1719, chr11:112,755,447-
113,889,019) were negatively correlated with both MDD and SCZ,
which themselves were positively correlated (Fig. 4c). A SNP

residing in the coding region of ANKK1 (rs1800497, commonly
known as TaqIA SNP) has been previously associated with
alcoholism, schizophrenia and eating disorders, although it is
unclear whether this SNP exerts its effect via DRD2 or ANKK146.
Conditioning the local rg between MDD and SCZ on ANKK1 eQTLs
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weakened the strength and significance of the rg , suggesting that
the shared risk of MDD and SCZ in the overlapping ANKK1 and
DRD2 genic regions may be partly driven by ANKK1 gene
expression (eQTLGen: MDD~SCZ, rg = 0.72, p= 0.000132;
MDD~SCZ|ANKK1, rg = 0.60, p= 0.0203; PsychENCODE: MDD~SCZ,
rg = 0.67, p= 0.000271; MDD~SCZ|ANKK1, rg = 0.61, p= 0.00441;
Supplementary Table 9).
A high degree of eQTL sharing across disease traits was

observed in the CLU-containing LD block 1273 (chr8:27,406,512-
28,344,176), with blood-derived eQTLs from 5 out of the 6 genes
implicated in local rg s found to correlate with both AD and PD
(Fig. 4b, d). This included situations where eQTL-disease trait
correlations had (i) the same direction of effect across both
disease traits (as observed with PBK, PNOC and SCARA5) or (ii)
opposing directions of effect across both disease traits (as
observed with CLU and ESCO2) (Fig. 4d). Notably, while a
significant positive local rg was observed between AD and PD in
the PBK and SCARA5 genic regions (reflecting the positive local rg
observed between AD and PD across the entire LD block), no local
rg was observed between AD and PD in the CLU genic region,
suggesting that the shared risk of AD and PD in LD block 1273
may be driven by the expression of genes other than the AD-
associated CLU (Fig. 4e). Indeed, while conditioning the local rg
between AD and PD on SCARA5 eQTLs had little effect on the
strength and significance of the correlation (AD~PD, rg = 0.16,
p= 0.000135; AD~PD |SCARA5, rg = 0.15, p= 0.000487; Supple-
mentary Table 9), the local rg between AD and PD was weakened
and no longer significant after conditioning on PBK eQTLs,
indicating the PBK eQTLs may partly explain the local rg between
AD and PD (AD~PD, rg = 0.14, p= 0.0187; AD~PD |PBK, rg = 0.07,
p= 0.259; Supplementary Table 9).
Compared to LD block 1273, the degree of eQTL sharing across

disease traits was lower in the APOE-containing LD block 2351
(chr19:45,040,933-45,893,307), with eQTLs from 4 out of 16 genes
implicated in local rg s found to correlate with AD and one of PD
or LBD (Fig. 4b, f). Shared eQTL genes were only observed in blood
and included BCL3, CLPTM1, PVRL2 and TOMM40, with expression
of BCL3 and CLPTM1 positively correlating with AD and PD and
expression of PVRL2 and TOMM40 positively correlating with AD
and LBD. As the exception, PVR eQTLs were negatively associated
with both AD and PD albeit in different tissues: AD in brain and PD
in blood. Expression of the remaining 11 genes was exclusively
associated with either AD (n= 8) or PD (n= 3). No significant local
rg was observed between APOE eQTLs and AD (FDR < 0.05),
although a nominal positive rg was observed in blood (ρ= 0.178, ρ
CI= 0.007 to 0.352, p= 0.039; Supplementary Fig. 5e, Supplemen-
tary Table 7). Overall, these results indicate that risk of
neurodegenerative diseases (in particular, AD) is associated with
expression of multiple genes in the APOE-containing LD block.
Further, they add to a growing body of evidence suggesting that
in parallel with the well-studied APOE-ε4 risk allele, there are
additional APOE-independent risk factors in the region (such as
BCL347 and PVRL248) that may contribute to AD risk.

For a complete overview of all genic regions tested across the 5
LD blocks of interest, see Supplementary Fig. 5 and Supplemen-
tary Table 7.

DISCUSSION
Despite clinical and neuropathological overlaps between neuro-
degenerative diseases, global analyses of genetic correlation (rg)
show minimal rg among neurodegenerative diseases or across
neurodegenerative and neuropsychiatric diseases. However, local
rg s can deviate from the genome-wide average estimated by
global analyses and may even exist in the absence of a genome-
wide rg, thus motivating the use of tools to model local genetic
relations.
Here, we applied LAVA to 3 neurodegenerative diseases and 3

neuropsychiatric disorders to determine whether local rg s exist in
a subset of 300 LD blocks that contain genome-wide significant
GWAS loci from at least one of six investigated disease traits. We
identified 77 significant bivariate local rg s across 59 distinct LD
blocks, with 25 local rg s between trait pairs where no significant
global rg was observed, including between (i) all 3 neurodegen-
erative diseases and SCZ and (ii) AD and PD. Local rg s highlighted
expected associations (e.g. AD and LBD in the APOE-containing LD
block 23515, chr19:45,040,933-45,893,307) and putative new
associations (e.g. AD and PD in the CLU-containing LD block
1273, chr8:27,406,512-28,344,176) in genomic regions containing
well-known, disease-implicated genes. Likewise, incorporation of
eQTLs confirmed known relationships between diseases and
genes, such as the association of AD with CLU expression38 and PD
with SNCA expression in blood49, and revealed putative new
disease-gene relationships. Together, these results indicate that
more complex aetiological relationships exist between neurode-
generative and neuropsychiatric diseases than those revealed by
global rg s. Further, they highlight potential gene expression
intermediaries that may account for local rg s between disease
traits.
These findings have important implications for our under-

standing of neurodegenerative diseases and the extent to which
they overlap. An overlap between the synucleinopathies and AD is
often acknowledged in the context of LBD, which has been
hypothesised to lie on a disease continuum between AD and
PD5,34. In support of this continuum, LBD was found to associate
with both AD and PD in the APOE-containing LD block 2351
(chr19:45,040,933-45,893,307). Multiple regression analyses con-
firmed that AD and PD were significant predictors of LBD
heritability in LD block 2351. Importantly, when AD and PD were
modelled together, they explained only ~ 40% of the local
heritability of LBD in LD block 2351, implying that LBD represents
more than the union of AD and PD. Further, the associations of AD
and PD with LBD had opposing regression coefficients, suggesting
that the contribution of AD and PD to LBD in the APOE locus may
not be synergistic. This mirrors the observation that genome-wide
genetic risk scores of AD and PD do not interact in LBD5, and may
indicate that different biological pathways underlie the association

Fig. 4 Incorporation of gene expression traits to facilitate functional interpretation of disease trait correlations. a Bar plot of the number
of eQTL genes (as defined by their genic regions) tested in each LD block. The fill of the bars indicates whether eQTL genes were significantly
correlated with at least one disease trait. b Bar plot of the number of eQTL genes that were significantly correlated with at least one disease
trait. The fill of the bars indicates whether eQTL genes in local rg s were correlated with one or more disease traits. c, d, f Heatmaps of the
standardised coefficient for rg (rho) for each significant gene expression-disease trait correlation (FDR < 0.05) within LD block (c) 1719, (d) 1273
and (f) 2351. Genes are ordered left to right on the x-axis by the genomic coordinate of their gene start. Panels are labelled by the eQTL
dataset from which eQTL genes were derived (either PsychENCODE’s analysis of adult brain tissue from 1387 individuals or the eQTLGen meta-
analysis of 31,684 blood samples from 37 cohorts). e Edge diagrams for representative genic regions show the rho for each significant
bivariate local rg (FDR < 0.05). GWAS and eQTL nodes are indicated by grey and white fill, respectively. Panels are labelled by the gene tested
and the eQTL dataset from which eQTL genes were derived. In (c–f) significant negative and positive rg s are indicated by blue and red colour,
respectively. Coordinates for LD blocks (in the format chromosome:start-end, GRCh37): 681, chr4:90,236,972-91,309,863; 1273, chr8:27,406,512-
28,344,176; 1719, chr11:112,755,447-113,889,019; 2281, chr18:52,512,524-53,762,996; 2351, chr19:45,040,933-45,893,307.
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between LBD and AD/PD. Indeed, only blood-derived PVRL2 and
TOMM40 eQTLs were found to correlate with both AD and LBD,
while no shared eQTL genes were detected between PD and LBD.
Less acknowledged is the genetic overlap between AD and PD,

with no global rg reported between the two diseases16,50 and no
significant evidence for the presence of loci that increase the risk
of both diseases51. As the exception, genetic overlaps have been
reported between AD and PD in the HLA19 and MAPT loci20,
hinting that pleiotropy may exist locally. In support of local
pleiotropy, we observed 20 local rg s between AD and PD in
genomic regions containing disease-implicated genes, such as
SNCA (LD block 681, chr4:90,236,972-91,309,863) and CLU (LD
block 1273, chr8:27,406,512-28,344,176). In the case of the CLU-
containing LD block 1273 (chr8:27,406,512-28,344,176), incorpora-
tion of eQTLs demonstrated an association of AD and PD with the
expression of 5 genes, although partial correlations suggested that
only PBK expression could explain the correlation between AD and
PD. PBK encodes a serine-threonine kinase involved in regulation
of cellular proliferation and cell-cycle progression52, which has
been shown to be overexpressed in proliferative cells, including
neural precursors cells in the subventricular zone of the adult
brain52,53. The remaining associations between eQTLs and AD or
PD, which included an association between the ferritin receptor
SCARA554 and both AD and PD, appeared to operate indepen-
dently across diseases. Notably, cellular iron overload and iron-
induced oxidative stress have been implicated in several
neurodegenerative diseases such as AD and PD54,55. In contrast,
only blood-derived SNCA eQTLs were associated with PD in LD
block 681 (chr4:90,236,972-91,309,863), suggesting that the
association between AD and PD at the SNCA locus could be
driven by tissue- or context-dependent gene expression or
alternatively other molecular phenotypes.
A few studies have demonstrated genetic overlaps between

neurodegenerative and neuropsychiatric diseases, such as AD and
BIP21, AD and MDD22,23, and PD and SCZ24, while others have
demonstrated no overlap16,56, with divergences in outcomes
ascribed to differences in methodology and cohort22. Here, we
observed a local rg between BIP and PD, in addition to local rg s
between schizophrenia and all 3 neurodegenerative diseases,
which in the case of LBD was observed in an LD block containing
the gene DRD2 (LD block 1719, chr11:112,755,447-113,889,019).
Notably, parkinsonism in dementia with Lewy bodies (DLB, one of
the two LBDs), is often less responsive to dopaminergic
treatments than in PD57. Furthermore, methylation of the DRD2
promoter in leucocytes has been shown to differ between DLB
and PD58, while D2 receptor density has been shown to be
significantly reduced in the temporal cortex of DLB patients, but
not AD59, suggesting that the DRD2 locus may harbour markers
that could distinguish between these neurodegenerative diseases.
Our study adds to the body of evidence in favour of a shared
genetic basis between neurodegenerative and neuropsychiatric
diseases, although further work will be required to determine
whether this genetic overlap underlies the clinical and epidemio-
logical links observed between these two disease groups.
This study is not without its limitations, with several limitations

related to the input data. These limitations include: (i) the
variability in cohort size (sample size is a key determinant of the
power to detect the association of a variant with a trait), which in
the case of the smallest GWAS, LBD, may explain the limited
number of local rg s observed involving this trait; (ii) the risk of
misdiagnosis (particularly in GWASs that include broader defini-
tions of a disorder, such as the MDD GWAS, which includes the UK
Biobank broad definition of depression as well as clinically-derived
phenotypes for MDD); (iii) the lack of X chromosome in all but one
trait (notably, the X chromosome is not only longer than
chromosome 8-22, but according to Ensembl v10660 encodes
858 and 689 protein-coding and non-coding genes, respectively);
and (iv) the lack of genetic diversity (i.e. all traits used were

derived from individuals of European ancestry). Given that
population-specific genetic risk factors exist, such as the lack of
MAPT GWAS signal in the largest GWAS of Asian patients with
PD61, and that transethnic global rg s between traits such as gene
expression are significantly less than 162, it is imperative that
studies of local rg are expanded to include diverse populations.
Among methodological limitations, analyses were restricted

only to genomic loci with evidence of trait association. Exploring
all genomic loci may show further loci of pleiotropy between
conditions, but is beyond the scope of the current study.
Furthermore, as mentioned by the developers of LAVA31, local rg
s could potentially be confounded by association signals from
adjacent genomic regions, a limitation which is particularly
pertinent in our analysis of gene expression traits where LD
blocks were divided into smaller (often overlapping) genic
regions. Additional fine-mapping (both computational and
biological) could be helpful in narrowing down the set of
potentially causal variants and consequently the genomic regions
of interest63.
Importantly, as with any genetic correlation analysis, an

observed rg does not guarantee the presence of true pleiotropy.
Spurious rg s can occur due to LD or misclassification17. Here, we
attempted to address the potential misclassification of by-proxy
cases via sensitivity analyses using GWASs for AD and PD that
excluded UKBB by-proxy cases. We replicated 2 of the 3 significant
local rg s observed in 2 LD blocks when using GWASs with by-
proxy cases (Supplementary Note). However, we were unable to
test for local rg s across the remaining 19 LD blocks due to
insufficient univariate signal, which could reflect (i) a genuine
contribution of by-proxy cases to trait h2 in the region or (ii) a lack
of statistical power to detect a genetic signal. Given the
substantial decrease in cohort numbers when UKBB by-proxy
cases are excluded from AD and PD GWASs (Table 1), a lack of
statistical power seems the more likely explanation, warranting a
revisit of this analysis as clinically-diagnosed and/or
pathologically-defined cohorts increase in size.
Finally, even where observed rg s potentially represent true

pleiotropy, LAVA cannot discriminate between vertical and
horizontal pleiotropy (refs.17,31). Thus, while incorporation of gene
expression can provide testable hypotheses regarding the under-
lying genes and biological pathways that drive relationships
between neurodegenerative and neuropsychiatric diseases,
experimental validation is required to establish the extent to
which these genes represent genuine intermediary phenotypes.
In summary, our results have important implications for our

understanding of the genetic architecture of neurodegenerative
and neuropsychiatric diseases, including the demonstration of
local pleiotropy particularly between neurodegenerative diseases.
Not only do these findings suggest that neurodegenerative
diseases may share common pathogenic processes, highlighting
putative gene expression intermediaries which may underlie
relationships between diseases, but they also infer the existence of
common therapeutic targets across neurodegenerative diseases
that could be leveraged for the benefit of broader patient groups.

METHODS
Trait pre-processing
Summary statistics from a total of 8 distinct traits were used,
including 6 disease traits and 2 gene expression traits. Disease
traits included 3 neurodegenerative diseases (Alzheimer’s disease,
AD; Lewy body dementia, LBD; and Parkinson’s disease, PD) and 3
neuropsychiatric disorders (bipolar disorder, BIP; major depressive
disorder, MDD; and schizophrenia, SCZ)3,5,26–30. Gene expression
traits were used to facilitate functional interpretation of local
genetic correlations (rg) between disease traits. Gene expression
traits included expression quantitative trait loci (eQTLs) from
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eQTLGen42 and PsychENCODE43, which represent large human
blood and brain expression datasets, respectively. All traits used
were derived from individuals of European ancestry. Details of all
summary statistics used can be found in Table 1.
Where necessary, SNP genomic coordinates were mapped to

Reference SNP cluster IDs (rsIDs) using the SNPlocs.Hsa-
piens.dbSNP144.GRCh37 package64. In the case of the PD GWAS
without UK Biobank (UKBB) data (summary statistics were kindly
provided by the International Parkinson Disease Genomics
Consortium), additional quality control filtering was applied,
including removal of SNPs (i) with MAF < 1%, (ii) displaying an I2

heterogeneity value of ≥80 and (iii) where the SNP was not
present in at least 9 out of the 13 cohorts included in the meta-
analysis.

Global genetic correlation analysis and estimation of sample
overlaps
Across disease trait pairs, LD score regression (LDSC) was used to
(i) estimate the observed-scale SNP heritability of each trait (which
assumes a continuous liability, and thus may differ from liability-
scale estimates of SNP heritability), (ii) determine the global rg and
(iii) estimate sample overlap65,66. All disease traits had significant
SNP-based heritability (Z-score > 2) and met with the criteria
suggested for reliable estimates of genetic correlation, which
include: (i) heritability Z-score > 1.5 (optimal > 4), (ii) mean Chi
square of test statistics > 1.02, and (iii) intercept estimated from
SNP heritability analysis is between 0.9 and 1.167 (Supplementary
Table 2). We note that the heritability Z-score of LBD was 2.27,
which is below the optimal suggested, and as such, can be
expected to produce larger standard errors around estimates of
global rg.
Summary statistics for each trait were pre-processed using

LDSC’s munge_sumstats.py (https://github.com/bulik/ldsc/blob/
master/munge_sumstats.py) together with HapMap Project Phase
3 SNPs68. For the LD reference panel, 1000 Genomes Project Phase
3 European population SNPs were used69. Both HapMap Project
Phase 3 SNPs and European LD Scores from the 1000 Genomes
Project are made available by the developers of LDSC65,66 from the
following repository: https://alkesgroup.broadinstitute.org/
LDSCORE/ (see Box 1 for details).
The estimated sample overlap was used as an input for LAVA,

given that potential sample overlap between GWASs could impact
estimated local rg s31. Any shared variance due to sample overlap
was modelled as a residual genetic covariance. As performed by
Werme et al.31, a symmetric matrix was constructed, with off-
diagonal elements populated by the intercepts for genetic
covariance derived from cross-trait LDSC and diagonal elements
populated by comparisons of each trait with itself. This symmetric
matrix was then converted to a correlation matrix. Importantly, it is
not possible to estimate sample overlap with eQTL summary
statistics, but given that the cohorts used in the GWASs were
different from the cohorts included in the eQTL datasets, we
assumed sample overlap between GWASs and eQTL datasets to
be negligible. Thus, they were set to 0 in the correlation matrix.
However, given the inclusion of GTEx samples in both eQTL
datasets and our inability to estimate this overlap, downstream
LAVA analyses were performed separately for each eQTL dataset.

Defining genomic regions for local genetic correlation
analysis
Between disease traits. Genome-wide significant loci
(p < 5 × 10−8) were derived from publicly available AD, BIP, LBD,
MDD, PD and SCZ GWASs. Genome-wide significant loci were
overlapped with linkage disequilibrium (LD) blocks generated by
Werme et al.31 using a genome-wide partitioning algorithm.
Briefly, each chromosome was recursively split into blocks using (i)
a break point to minimise LD between the resulting blocks and (ii)

a minimum size requirement. The resulting LD blocks represent
approximately equal-sized, semi-independent blocks of SNPs, with
a minimum size requirement of 2,500 SNPs (resulting in an
average block size of around 1Mb). Only those LD blocks
containing genome-wide significant GWAS loci from at least one
trait were carried forward in downstream analyses, resulting in a
total of 300 autosomal LD blocks. Of the 22 possible autosomes,
21 contained LD blocks with overlapping loci, with the highest
number of LD blocks located in chromosome 1 and 6
(Supplementary Fig. 1). LD block locations were in reference to
build GRCh37 and are presented in the format: LD block identifier,
chromosome:start-end.

Between disease and gene expression traits. A total of 5 LD blocks,
as highlighted by bivariate local rg analysis of disease traits, were
used in this analysis (LD block 681, chr4:90,236,972-91,309,863; LD
block 1273, chr8:27,406,512-28,344,176; LD block 1719,
chr11:112,755,447-113,889,019; LD block 2281, chr18:52,512,524-
53,762,996; LD block 2351, chr19:45,040,933-45,893,307). From
these LD blocks of interest, we defined genic regions for all
protein-coding, antisense or lincRNA genes that overlapped an LD
block of interest. Genic regions were defined as the start and end
coordinates of a gene (Ensembl v87, GRCh37) with an additional
100 kb upstream and 100 kb downstream of gene start/end
coordinates. We included a 100-kb window as most lead cis-eQTL
SNPs (i.e. the SNP with the most significant p-value in a SNP-gene
association) lie outside the gene start and end coordinates and are
located within 100 kb of the gene (in eQTLGen, 55% of lead-eQTL
SNPs were outside the gene body and 92% were within 100 kb
from the gene42). These genic regions (n= 92) were carried
forward in downstream analyses. For a given genic region, we
then used all SNPs for which eQTL summary statistics for the
relevant gene were available (e.g. all SNP-gene pairs that relate to
CLU in the CLU genic region).

Estimating bivariate local genetic correlations
Between disease traits. The detection of valid and interpretable
local rg requires the presence of sufficient local genetic signal. For
this reason, a univariate test was performed as a filtering step for
bivariate local rg analyses. Bivariate local rg analyses were only
performed for pairs of disease traits which both exhibited a
significant univariate local genetic signal (p < 0.05/300, where the
denominator represents the total number of tested LD blocks).
This step resulted in a total of 1,603 bivariate tests spanning 275
distinct LD blocks. Bivariate results were considered significant
when p < 0.05/1603.
We compared local rg s to existing results from studies of: (i) AD

and PD using rho-HESS19; (ii) AD and BIP21, AD and MDD23, PD and
SCZ24, all of which used a conditional/conjunctional FDR approach
(conditional FDR is an extension of the standard FDR method, and
re-ranks the test statistics of a primary phenotype based on the
strength of the association with a secondary phenotype, while
conjunctional FDR is used post-hoc to identify shared genetic loci);
and (iii) 10 psychiatric disorders and 10 substance abuse
phenotypes using LAVA18. For all comparisons, genomic coordi-
nates were used to overlap either SNPs21,24 or genomic
regions18,19 with LD blocks. SNPs were converted from rsIDs to
their GRCh37 genomic coordinates using the SNPlocs.Hsa-
piens.dbSNP144.GRCh37 package64. In all comparisons, local rg s
from this study were filtered to include only overlapping disease
traits. Results are described in the Supplementary Note.

Between disease and gene expression traits. For each genic region,
only those disease traits that were found to have a significant local
rg in the associated LD block were carried forward to univariate
and bivariate analyses with eQTL summary statistics. As previously
described, a univariate test was performed as a filtering step for
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bivariate local rg analyses. Thus, bivariate local rg analyses were
only performed (i) if the gene expression trait (i.e. eQTL genes)
exhibited a significant univariate local genetic signal and (ii) for
pairs of traits (disease and gene expression) which both exhibited

a significant univariate local genetic signal. A cut-off of p < 0.05/92
(the denominator represents the total number of tested genic
regions) was used to determine univariate significance. A 100-kb
window resulted in a total of 354 bivariate tests spanning 55

Box 1—key resources

Resource Source/Reference Identifier/URL

Deposited Data

Ensembl GRCh37 v87 Ensembl genome
browser60

http://ftp.ensembl.org/pub/grch37/current/gtf/homo_sapiens/

eQTLGen eQTLs Vosã et al.42 https://www.eqtlgen.org/cis-eqtls.html

GWAS, Alzheimer’s disease (clinically diagnosed+ UK
Biobank proxy cases and controls)

Jansen et al.26 https://ctg.cncr.nl/software/summary_statistics

GWAS, Alzheimer’s disease (clinically diagnosed) Kunkle et al.27 https://www.niagads.org/igap-rv-summary-stats-kunkle-p-value-
data

GWAS, Bipolar disease Mullins et al.28 https://www.med.unc.edu/pgc/download-results/

GWAS, Lewy body dementia Chia et al.5 https://www.ebi.ac.uk/gwas/studies/GCST90001390

GWAS, Parkinson’s disease excluding 23andMe Nalls et al.3 https://pdgenetics.org/resources

GWAS, Major depressive disorder Howard et al.29 https://www.med.unc.edu/pgc/download-results/

GWAS, Schizophrenia Pardiñas et al.30 https://www.med.unc.edu/pgc/download-results/

LAVA LD blocks Werme et al.31 https://github.com/cadeleeuw/lava-partitioning

LDSC: HapMap Project Phase 3 SNPs International HapMap 3
Consortium68

https://alkesgroup.broadinstitute.org/LDSCORE/; file name:
w_hm3_snplist

LDSC: 1000 Genomes European LD Scores 1000 Genomes Project
Consortium69

https://alkesgroup.broadinstitute.org/LDSCORE/; file name:
eur_w_ld_chr.tar.bz2

PsychENCODE eQTLs Wang et al.43 http://resource.psychencode.org/

Software

Bioconductor http://www.bioconductor.org; RRID:SCR_006442

BiocManager (v 1.30.16) Morgan71 https://CRAN.R-project.org/package=BiocManager

CRAN http://cran.r-project.org/; RRID:SCR_003005

circlize (v 0.4.13) Gu et al.72 https://github.com/jokergoo/circlize; RRID:SCR_002141

cowplot (v 1.1.1) Wilke75 https://CRAN.R-project.org/package=cowplot; RRID:SCR_018081

data.table (v 1.14.2) Dowle and Srinivasan76 https://CRAN.R-project.org/package=data.table

doSNOW (v 1.0.19) Microsoft and Weston77 https://CRAN.R-project.org/package=doSNOW

foreach (v 1.5.1) Microsoft and Weston78 https://CRAN.R-project.org/package=foreach

GenomicRanges (v 1.42.0) Lawrence et al.79 https://bioconductor.org/packages/release/bioc/html/
GenomicRanges.html; RRID:SCR_000025

ggbeeswarm (v 0.6.0) Clarke and Sherrill-Mix80 https://CRAN.R-project.org/package=ggbeeswarm

ggplot2 (v 3.3.5) Wickham73 https://ggplot2.tidyverse.org; RRID:SCR_014601

ggpubr (v 0.4.0) Kassambara81 https://CRAN.R-project.org/package=ggpubr; RRID:SCR_021139

ggraph (v 2.0.5) Pedersen74 https://CRAN.R-project.org/package=ggraph; RRID:SCR_021239

gtools (v 3.9.2) Warnes et al.82 https://CRAN.R-project.org/package=gtools

here (v 1.0.1) Müller83 https://CRAN.R-project.org/package=here

janitor (v 2.1.0) Firke84 https://CRAN.R-project.org/package=janitor

LAVA (v 0.0.6; commit #7be342) Werme et al.31 https://github.com/josefin-werme/LAVA

LDSC (v 1.0.1) Bulik-Sullivan et al.66 https://github.com/bulik/ldsc

openxlsx (v 4.2.4) Schauberger and
Walker85

https://CRAN.R-project.org/package=openxlsx; RRID:SCR_019185

qdapTools (v 1.3.5) Rinker86 http://github.com/trinker/qdapTools

readxl (v 1.3.1) Wickham and Bryan87 https://CRAN.R-project.org/package=readxl; RRID:SCR_018083

R (v 4.0.5) R Core Team70 http://www.r-project.org/; RRID:SCR_001905

rtracklayer (v 1.50.0) Lawrence et al.88 https://bioconductor.org/packages/release/bioc/html/
rtracklayer.html; RRID:SCR_021325

SNPlocs.Hsapiens.dbSNP144.GRCh37 (v 0.99.20) Pagès64 https://bioconductor.org/packages/release/data/annotation/html/
SNPlocs.Hsapiens.dbSNP144.GRCh37.html

tidyverse (v 1.3.1) Wickham et al.89 https://www.tidyverse.org/; RRID:SCR_019186
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distinct genic regions. Bivariate results were corrected for multiple
testing using two strategies: (i) a more lenient FDR correction and
(ii) a more stringent Bonferroni correction (p < 0.05/n_tests, where
the denominator represents the total number of bivariate tests).
We discuss results passing FDR < 0.05, but we make the results of
both correction strategies available (Supplementary Table 7,
Supplementary Table 8).
We evaluated the effect of window size on bivariate correlations

by re-running all analyses using a 50-kb window. Following
filtering for significant univariate local genetic signal (as described
above), a total of 267 bivariate tests were run spanning 50 distinct
genic regions. We detected 110 significant bivariate local rg s
(FDR < 0.05), 83 of which were also significant when using a 100-
kb window (Supplementary Fig. 7). We observed strong positive
Pearson correlations in local rg coefficient and p-value estimates
across the two window sizes, indicating that our results are robust
to the choice of window size (Supplementary Fig. 7). Of note,
p-value estimates between disease and gene expression traits
tended to be lower when using the 50-kb window, as compared
to the 100-kb window, as evidenced by the fitted line falling
below the equivalent of y= x. This observation may be a reflection
of stronger cis-eQTLs tending to have a smaller distance between
SNP and gene42. In contrast, p-value estimates between two
disease traits were comparable across the two window sizes.
Partial correlations were computed where three-way relation-

ships were observed between 2 disease traits and an eQTL. The
partial correlation reflects the correlation between 2 traits (e.g.
disease X and Y) that can be explained by a third trait (e.g. eQTL,
Z). Thus, a partial correlation approaching 0 suggests that trait Z
captures an increasing proportion of the correlation between traits
X and Y. Due to the three-way nature of the relationships, 3
possible conformations were possible (i.e. X~Y|Z, X~Z|Y and Y~Z|
X); partial correlations were computed for all 3.

Local multiple regression
For LD blocks with significant bivariate local rg between one
disease trait and ≥2 disease traits, multiple regression was used to
determine the extent to which the genetic component of the
outcome trait could be explained by the genetic components of
multiple predictor traits. In those LD blocks where a three-way
relationship was observed between 3 disease traits (e.g. X, Y and Z
were all significantly correlated with one another), 3 possible
conformations of 2 predictor models were possible (i.e. X~Y+ Z,
Y~X+ Z, and Z~X+ Y). In these situations, each disease trait was
separately modelled as the outcome trait, resulting in 3
independent models within the LD block.
These analyses permitted exploration of the independent

effects of predictor traits on the outcome trait, as well as possible
confounding between predictors. A predictor trait was considered
significant when p < 0.05.

Sensitivity analysis using by-proxy cases
As UK Biobank (UKBB) by-proxy cases could potentially be
mislabelled (i.e. parent of by-proxy case suffered from another
type of dementia) and lead to spurious rg s between neurode-
generative traits, we performed replication analyses using GWASs
for AD27 and PD that excluded UKBB by-proxy cases. LD blocks
were filtered to include only those where significant bivariate local
rg s were observed between LBD and either by-proxy AD or by-
proxy PD GWASs, in addition to between by-proxy AD and by-
proxy PD GWASs. These criteria limited the number of LD blocks to
21. Bivariate local correlations were only performed for pairs of
traits which both exhibited a significant univariate local genetic
signal (p < 0.05/21, where the denominator represents the total
number of tested loci), which resulted in a total of 10 bivariate
tests spanning 6 distinct loci. Results are described in the
Supplementary Note. We additionally performed multiple

regression in LD block 2351 using LBD as the outcome and AD
and PD (both excluding UKBB by-proxy cases) as predictors. A
predictor trait was considered significant when p < 0.05.

R packages
All analyses were performed in R (v 4.0.5)70. As indicated in the
accompanying GitHub repository (https://github.com/
RHReynolds/neurodegen-psych-local-corr), all relevant packages
were sourced from CRAN, Bioconductor (via BiocManager71) or
directly from GitHub. Figures were produced using circlize, ggplot2
and ggraph72–74. All open-source software used in this paper is
listed in Box 1.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Analyses in this study relied on publicly available data, all of which are listed in Box 1.
In the case of the PD GWAS without UK Biobank (UKBB) data, summary statistics were
kindly provided by the International Parkinson Disease Genomics Consortium:
https://pdgenetics.org/.

CODE AVAILABILITY
Code used to pre-process GWASs, run genetic correlation analyses and to generate
figures for the manuscript are available at: https://github.com/RHReynolds/
neurodegen-psych-local-corr (https://doi.org/10.5281/zenodo.6587707). All other
open-source software used in this paper is listed in Box 1.
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