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Clinical outcomes for many childhood brain tumours remain poor, despite our

increasing understanding of the underlying disease biology. Advances in

molecular diagnostics have refined our ability to classify tumour types and

subtypes, and efforts are underway across multiple international paediatric

neuro-oncology consortia to take novel biological insights in the worst

prognosis entities into innovative clinical trials. Whilst for the first time we are

designing such studies on the basis of disease-specific biological data, the levels

of preclincial evidence in appropriate model systems on which these trials are

initiated is still widely variable. We have considered these issues between

CONNECT, PNOC and ITCC-Brain, and developed a framework in which we

can assess novel concepts being brought forward for possible clinical translation.

Whilst not intended to be proscriptive for every possible circumstance, these

criteria provide a basis for self-assessment of evidence by laboratory scientists,

and a platform for discussion and rational decision-making prior to moving

forward clinically.
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Introduction

Despite remarkable advances being made in the treatment of

numerous paediatric cancers over the past 40 years (1), tumours of

the central nervous system remain the biggest cause of cancer-

related death in children and young adults (2). For many entities,

survival rates have remained unchanged for decades, and represent

a major unmet clinical need (3, 4). Previous generations of clinical

trials were necessarily based on an incomplete appreciation of the

unique biology of childhood brain tumour entities, and a lack of

preclinical evidence in appropriate model systems to show that they

were likely to be effective. The failure of these studies, therefore, can

now been seen as not unexpected (5). In recognition of this

devastating societal impact, over the past 10-15 years partnerships

between patients/families, clinical, translational and laboratory-

based scientists worldwide have dramatically improved access to

tissue and funding for childhood brain tumour research, which

coupled with the rapid advances in next-generation sequencing and

other molecular profiling techniques, has revolutionized our

understanding of the underlying biology of a plethora of

childhood brain tumours (6–9).

In the recent 2021 5th Edition of the WHO CNS Classification of

CNS tumours, a large proportion of entities were recognized as being

of paediatric ‘type’, or occurring largely in the children and young

adult populations (10). Underscoring this delineation is the

integrated diagnostic approach which includes key distinguishing

biological data, and the appreciation of distinct drivers of the

childhood disease types and the subtypes within (11). For many of

these tumours, we now have both novel targets for therapeutic

development, and a framework by which these children may be

stratified for clinical trial enrollment, which will lead to better

response assessment in a molecularly defined context. There is still

substantial uncertainty, however, around the amount and type of

preclinical data that is needed to develop trials that are more likely to

succeed compared to their predecessors. The key tenet for moving a

concept into the clinic is a strong biological rationale, with support

from robust preclinical data in appropriate model systems (12). Until

recently, these have been difficult to achieve, which coupled with

unselected patient populations has likely contributed to the lack of

success of clinical trials for children with brain tumours. As several

international paediatric neuro-oncology clinical trials consortia have

emerged to address the clinical issues, we now need international

consensus in developing more robust preclinical platforms to provide

data packages that can be reviewed objectively and systematically

prior to clinical implementation.
International childhood brain
tumour consortia

The present article is a result of discussions between three

international paediatric neuro-oncology clinical trials consortia.

Each has a slightly different focus, approach, tumour-type or

discipline expertise, and geographical footprint. The groups work

non-competitively to ensure access to the most promising trials in
Frontiers in Oncology 02
the most appropriate environments, and have a degree of overlap in

key personnel and centres worldwide.
CONNECT

CONNECT (the COllaborative Network for Neuro-oncology

Clinical Trials) is a collaborative of 18 international sites across

North America, Europe, UK, and Australia, with expertise in

paediatric brain tumour research and clinical trials. Its purpose is

to conduct scientifically rational pilot studies to assess feasibility

and early efficacy of incorporating promising novel agents to

established frontline therapeutic regimens in children with newly-

diagnosed, high-risk brain tumours. CONNECT serves as a clinical

research organisation providing concept and protocol development,

data and study management, drug shipping, and all operational

support. It has a diverse portfolio of trials in different childhood

brain tumour entities, partnering with multiple drug companies and

foundational supporters. The clinical network is supported by an

active Preclinical Group, whose goal is to provide scientific

assessment of novel concepts brought to the consortium for

clinical translation, and to assemble collaborative research teams

to provide additional experimental data as warranted.
PNOC

PNOC (Pacific Pediatric Neuro-Oncology Consortium) is an

international clinical trial consortium with 22 sites in the US as well

as sites in Switzerland, Israel, Netherlands, Canada and Australia

with recent expansion into Germany, Egypt and India. The mission

of PNOC is to develop biology driven trials and expand access to

innovative therapies globally for children and young adults with

brain tumors, Development of clinical trials is supported by disease

specific working groups composed of clinical, translational, imaging

and basic science experts spanning key entities such as high grade

glioma/diffuse midline glioma; ependymoma, germinoma,

medulloblastoma and craniopharyngioma amongst others. Data

collected as part of PNOC trials – such as imaging and genomic

data – is shared in real-time with the research community through

collaboration with the Children’s Brain Tumor Network (CBTN).
ITCC Brain

ITCC Brain is the CNS tumor-specific working group of ITCC

(Innovative Therapies for Children with Cancer), a consortium of

over 60 expert pediatric oncology centers and 25 leading research

laboratories from across Europe. ITCC Brain aims to provide a

framework for bringing together biologists and clinician scientists

generating cutting-edge basic and translational research findings,

with clinicians in large early-phase clinical trial centers, in order to

accelerate the translation of novel science into effective new

treatments for children with brain tumours. ITCC Brain has a

portfolio of investigator-initiated trials as well as providing support

for industry-led studies, and is working to expand this portfolio
frontiersin.org
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through well-planned studies based on strong preclinical data. The

group also works closely within the larger ITCC organization to

participate in entity-agnostic, biomarker-driven studies; and the

group also benefits from other ITCC-led initaitives such as the

ITCC-P4 pre-clinical platform [ref] and an upcoming platform for

integrating data across international pediatric precision

oncology progams.
Guidelines for new concepts

Prior to the initiation of a clinical trial, we believe a robust

process should be in place to critically review extant preclinical data

which support the concept, as well as the strategy for clinical

implementation. The intention here is not to produce binary ‘go/

no-go’ decisions, but rather to assess whether a threshold of

evidence has already been passed for which the clinical need

mandates the concept moving forward. This may necessarily be

different for distinct target patient populations, and if certain data

are felt to be lacking, constructive and realistic suggestions should

be made as to how to build confidence in the approach.

Independent reviewers will be asked to judge any new concept

proposal based on clinical significance, trial design including

embedded correlative studies (e.g. CNS penetration; molecular

profiling; subtype responses etc.) as well as feasibility in the

context of competing trials and available patient population to

conduct the proposed study. A strong biological rationale is

required, with preclinical evidence benchmarked against specific

idealized guidelines, with justification for any criteria not explicitly

met. In this perspective, we will focus mostly on the preclinical

aspects, but stress that these data dovetail with a careful, and early

inclusion of the following clinical considerations:
Clinical significance

The concept should address a clear unmet need, and represent a

novel therapeutic development. This could be in the upfront setting,

when an effective standard of care (SOC) has not been developed,

for tumours with an extremely short overall survival, such as

paediatric-type diffuse high-grade glioma (PDHGG), in particular

diffuse midline glioma (DMG); subtypes of medulloblastoma

(especially Group 3/4 or SHH, TP53-altered), atypical teratoid/

rhabdoid tumours (ATRT), embryonal tumours with multilayered

rosettes (ETMR) and others. This could also include tumours for

whom the current SOC is associated with long-term burden in

terms of quality of life (QOL), such as craniopharyngioma,

ependymoma etc.
Trial design

The concept should clearly outline the primary, secondary and

exploratory aims as well as endpoints. There ought to be a valid

statistical design, with innovative models to be encouraged to

maximise the information gained from a minimal number of
Frontiers in Oncology 03
patients. It should be clearly stated how correlative studies will be

used to interpret successes and failures, with inclusion of plans for

access to tumour tissue (including type of material, and regulation

of storage and availability for follow-up studies), genomic profiling

(either as part of the study or per SOC), and digitized histology and

radiology (with access and governance details). Plans for CSF and

plasma/serum collection (if feasible), and details of functional

(cognitive outcomes; vision, endocrine, QOL dependent on

disease subtypes) and imaging endpoints ought to be provided.

There should be a strategy for obtaining post-treatment tumour

tissue including autopsy collection protocols, and plans for

appropriate analysis of such tissue. In addition, over the last few

years efforts have been made to harmonize clinical trial endpoints

across consortia which will allow for more direct comparison

between different study therapies. Harmonizing correlative study

endpoints and biological correlates will further inform cross trial

comparison within a specific disease context.
Data sharing

Data should be made accessible in real time to the research

community without compromising clinical trial endpoints. This is

of critical importance across our consortia (and others) to ensure

rapid dissemination of both positive and negative data, application

of important lessons learned, and provide a means for cross-

validation of results, improving ongoing trial design, and

identifying appropriate patient populations for trial inclusion

beyond traditional research silos.
Feasibility

Documentation should be provided where other compounds in

the same mechanism of action class have already been evaluated

clinically (or preclinically) for the given or related indications.

There ought to be a plan for access of the relevant patient

population within the footprint of the clinical trials consortium to

which the application is submitted; there should also be an

evaluation of other competing trials within the consortium’s

portfolio, and that of other consortia.
Principles of preclinical assessment

We strongly recognize that there is no ‘one size fits all’ approach

to the process of assessment, and that each concept should be

judged on its own merits on the basis of the specific clinical need of

the patient populations proposed, and the feasibility of generating

the idealized preclinical data package in such a context. We

therefore indicate signposts for what a strong concept proposal

should ideally include, and have identified five principles that could

gu ide as s e s sment o f a da ta package pre sen ted fo r

consideration (Table 1).

Firstly, there should be a clearly defined target population

identified, based upon the mechanism of action of the
frontiersin.org
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investigational agent(s). In some instances, this will be relatively

wide, and may span tumour entities and genotypes, whilst in others

a highly restricted set of patients may be targeted. In terms of

preclinical assessment, distinction is not made on this basis, so long

as convincing rationale is provided. Secondly, evidence of efficacy of

the agent in multiple relevant preclinical models, both in vitro and

in vivo, is sought. The term ‘relevant’ here is to be contexualised by

the investigators and reviewers, and may depend on disease biology

and/or the agent being tested. There is complete recognition that

multiple models may not be available for all tumour types or

subgroups; here explanation and justification need simply be

provided for both the number and identity of models chosen.

Thirdly, there should be an assessment for the therapeutic

window and potential safety issues by reporting target expression

in the non-tumour compartments, through analysis of either novel

or published data. This is of particular relevance for agents targeting

wild-type targets, and for immunotherapies. Fourthly, data should

be provided showing penetration of the agent into tumour tissue at

clinically relevant doses; again this could be newly-generated data

by the investigators or from the literature/drug company internal

data, with recognition that extrapolation of doses from in vitro

assays is imperfect (13). Finally, there should be demonstration of

an on-target effect of the agent at clinically achievable doses in a

relevant model system. Assays developed to assess this should also

be evaluated for their ability to serve as predictive biomarkers for

trial inclusion and/or post-hoc response assessment.

With such overarching principles driving the initial

consideration of the suitability of a new concept being ‘ready’ for

clinical translation, we provide specific assessment criteria in

respect of in vitro and in vivo evidence that would aid

prioritization of ideas. As previously stated, it is recognized not

all circumstances will allow for all criteria to be met; where they

cannot, the guidelines are meant to serve as discussion points rather

than reasons for exclusion (Figure 1).
Specific in vitro criteria
Fron
◼ The agent to be tested should be potent in the models tested,

with evidence of a clear cellular effect in terms of cell

viability, cell death, cell differentiation or other

appropriate end-points. This may be demonstrated in

terms of effects observed (IC50/GI50 etc.) at sub-
tiers in Oncology 04
micromolar concentrations and/or showing a greater than

two-fold statistically significant differential sensitivity in

models representing the target population compared to (i)

an appropriate ‘normal’ cell type and/or (ii) other disease

subtypes and/or (iii) other disease entities.

◼ Assays should be carried out in multiple appropriately-

accredited models representing the heterogeneity of the

target population(s). Where available for a given entity or

subtype etc., this should be carried out in at least n=4-6

distinct models, with phenotypic/genotypic data for each

provided. Where available, both patient-derived and

genetically-engineered models are desirable for a given

target.

◼ There should be evidence of target modulation at doses

producing a cellular effect by an appropriate assay, western

blot, ELISA, mass spectrometry, etc.) in at least n=2 models.

Although not a prerequisite for preclinical assessment,

indications should be given as to the applicability of such

an assay that is translatable to the clinical setting a

predictive biomarker.

◼ For immunotherapies, evidence should be provided of target

antigen-specific tumour cell lysis, including where possible

of (primary) tumour cells with endogenous target antigen

expression. Here, level of target expression reflective of that

of primary tumours should be taken into account given that

immunotherapeutics commonly have a target density

threshold for efficacy (14).

◼ For combination studies, there should be evidence of at least

additivity, or better formal synergy, of the agents to be

combined by one or more appropriately designed assays,

including but not restricted to the Chou-Talalay median

effects model (15), BLISS independence score (16),

isobologram (17) etc.). This should be carried out in at

least n=2 models, where possible.

◼ Collaborative studies across laboratories are encouraged in

order to demonstrate reproducibility, as well as maximise

resources and expand the number of models available.

Where data is pooled in such a way, at least n=1 of the

models/assays should be consistently assessed across all

partner laboratories in order to assess comparability.
Specific in vivo criteria
◼ If clinical data from human studies is unavailable,

demonstration of drug penetration into the relevant

normal brain and/or tumour tissue of appropriate model

organisms. These experiments should be carried out at

tolerable doses resulting in concentrations at least greater

than the in vitro IC50/GI50 values, assessed by direct

measurement (using assays such as LC-MS, MALDI-TOF,

etc.) and/or appropriate biomarker modulation (e.g.

western blot, immunohistochemistry, etc.).
TABLE 1 Principles of preclinical assessment.

Clearly defined target population(s) based upon mechanism of action

Efficacy in multiple relevant models in vitro and in vivo

Safety assessment of off-tumour target expression, particularly for
immunotherapies

Data showing penetration into tumour tissue at clinically relevant doses

Demonstration of on-target effect at clinically achievable doses and availability of
predictive biomarkers
Guidelines for consideration of a preclinical data package for clinical translation.
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Fron
◼ For immunotherapies, if clinical data from human studies is

unavailable, demonstration of homing to and penetration

into tumour tissue of appropriate model organisms at

tolerable doses should be provided. Presence of the

immunotherapeutic agent at tumour sites can be

demonstrated by immunostaining using e.g. anti-idiotype

antibodies or detection of linked marker genes).

◼ There should be demonstration of a statistically significant

survival benefit of treated animals, typically >20%

prolongation of the median survival over vehicle (or

control biologic)-treated controls. For combination

studies, in addition, a statistically significant survival

benefit for the combination of >10% of the median

survival over the most effective single agent should be seen.

◼ As for in vitro, assays should be carried out in multiple

appropriately-accredited where available. This should be

undertaken at least n=3 distinct models representing the

target population(s), and grown in the relevant orthotopic

location where feasible. Where available, both patient-

derived and genetically-engineered models, with at least

n=1 in an immunocompetent background, are desirable.

These could be carried out in models in the same or

different species, with the latter encouraged.

◼ There should be evidence of a statistically significant

reduction in tumour burden on treatment provided,

assessed by an appropriate assay (e.g. MRI, biolumine

scent imaging, ddPCR etc.). As with in vitro, indications

should be given as to clinical translation of any

predictive biomarkers.

◼ Priority will be given to treatments which can be shown to

provide a survival advantage greater than SOC treatments

for a given patient population, in a preclinical trial

mimicking the appropriate clinical protocols (18). This

could include addition and/or comparison to a standard

radio/chemotherapy regimen, including surgical resection

where practicable, as well as ‘mouse hospital’ designs of
tiers in Oncology 05
multiple individual patient-derived models at, e.g. n=1

mouse each (19).
Application

Within our consortia, elements of these principles have been

generically applied since initiation, but not in a systematic way. By

formalizing standards, we aim to achieve two things. The first is to

provide an unbiased methodology for assessing concepts brought

forward from multiple sources and across disparate entities and

therapeutic targets, such that cross-review between the various

collaborative groups can be undertaken to the same criteria. Such

a harmonized but flexible approach also seeks to provide

investigators with a clear set of guidelines against which they may

judge their own extant data, and help to plan additional

experimental work. Inherent in this is a desire to encourage and

facilitate data sharing to avoid unnecessary duplication of effort.

The second critical goal is to provide a framework for discussion of

novel concepts, rather than a strict metrics-based exercise. A key

point is that that concepts may come from many different sources,

and certainly external to any of our consortia (or others). It is the

hope that having such guidelines would encourage researchers not

otherwise connected to such groupings to self-evalaute their own

data prior to engagement with clinical trials groups, but not in any

exclusionary way; the hope is to stimulate discussion and not to

restrict good ideas being brought forward at any stage.

We recognize the present limitations inherent in certain fields

which make adherence to certain points impossible, and aim to

highlight these caveats for frank conversation as to their importance

relative to the other evidence presented, and clinical need of the

target population. In this way, we also hope to flag areas that are in

need of further development by the field. It should also, however,

hold to account other areas in which the criteria could be, but are

often not, routinely met. An example is in the desire for

demonstration of efficacy and on-target effects etc. in multiple
FIGURE 1

Criteria for critical review. Key parameters against which data packages should be assessed. Rather than a metrics-based scoring system, a fully
justified benchmarking against each category should be provided.
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disease models. We appreciate that for certain high-risk childhood

brain tumour entities such as ETMR and ATRT they may be limited

(20, 21), or for others like Group 3/4 medulloblastoma they may be

imperfect representations of the human disease (22). For others

such as DMG however, large panels of patient-derived cells, PDXs

and GEMMs are widely available, and single cell line studies are

hard to justify (23–25). In all cases, we anticipate an iterative

process whereby the criteria provide a checklist for early

discussion, template for initial benchmarking, and a guidebook

for eventual translational decision-making.
Limitations and challenges

The proposed criteria are intended as positive and achievable,

with the goal of leading to therapies that are more likely to be

successful in the clinic (26, 27). They are meant to encompass the

most common treatment concepts brought forward to our

consortia, and will likely need refinement to include more

innovative modalities. We do not expressly provide specific

proposals for how to assess novel drug delivery methodologies,

for example, including such disparate approaches as nanoparticles

(28), convection-enhanced delivery (29) and focused ultrasound-

mediated opening of the blood-brain barrier (30), etc. Another

emerging area which may require distinct end-points clinically, and

therefore unique criteria preclinically, is that of cancer neuroscience

(31). We do not explicitly lay out a framework for assessing the

modulation of cancer cell – neuron interactions, nor what our

expectations should be in the preclinical context for such agents to

have a beneficial effect in patients. The same could be said to be true

of other microenvironment modulation strategies, such as targeting

tumour-associated immune cells or angiogenesis (32). Here, novel

model systems such as ex vivo tumour explant or organotypic

models which recapitulate the complex tumour milieu are being

developed to provide information complementary to that of current

models (33, 34). Further refinements to our in vivo strategy will

likely come to include a more thorough consideration of the age of

animals used for such studies, to better replicated the

developmental context in which these tumours arise (35), as well

as evaluating therapies in both male and female models, given the

sex-related biological differences which are beginning to emerge

(36). Moreover, as we aim to develop therapies which can spare

children and young adults from the toxic effects of chemotherapy

and radiation, we would need to include additional means to assess

how we improve QoL measures and control for the late effects of

therapies (27).

As our biological understanding of paediatric CNS tumours

increases, and we subclassify them into ever-more subtypes with

distinct drivers warranting unique therapies (37), we face a

challenge both in terms of generating preclinical data and moving

these concepts into clinical trial. Idealised criteria in which we hope

to see evidence of efficacy in multiple models, in vitro and in vivo,

makes little sense for ultra-rare, newly-defined subtypes, and

patient numbers for such entities mean traditional clinical trial

designs are unlikely to recruit sufficient numbers, even with
Frontiers in Oncology 06
international co-operation. It will be a challenge for the

community to determine to what extent we can relax or refine

our standards to assess novel concepts in these entities, and how

they may be robustly and safely tested in patients. We need also to

be cogniscent that positive results in model systems do not

necessarily predict for success in clinical trial (38–40). Although

we assume that the patient-centric and biologically-driven models

we have recently developed will be a substantial advance on what

went before, this is as yet unproven. Careful credentialling of the

models (and assays) required as part of the criteria are inherent in

generating preclinical data which will eventually prove effective in

the clinic, and need constant assessment and benchmarking in the

manner of the criteria we apply here to the data generated

with them.
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