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Background: Individuals with a diagnosis of schizophrenia are known to be at high
risk of premature mortality due to poor physical health, especially cardiovascular
disease, diabetes, and obesity. The reasons for these physical health outcomes
within this patient population are complex. Despite well-documented
cardiometabolic adverse effects of certain antipsychotic drugs and lifestyle
factors, schizophrenia may have an independent effect.

Aims: To investigate if there is evidence that schizophrenia is causally related to
cardiometabolic traits (blood lipids, anthropometric traits, glycaemic traits, blood
pressure) and vice versa using bi-directional two-sample Mendelian
randomization (MR) analysis.

Methods: We used 185 genetic variants associated with schizophrenia from the
latest Psychiatric Genomics Consortium GWAS (n = 130,644) in the forward
analysis (schizophrenia to cardiometabolic traits) and genetic variants
associated with the cardiometabolic traits from various consortia in the reverse
analysis (cardiometabolic traits to schizophrenia), both at genome-wide
significance (5 × 10−8). The primary method was inverse-variance weighted MR,
supported by supplementary methods such as MR-Egger, as well as median and
mode-based methods.

Results: In the forward analysis, schizophrenia was associated with slightly higher
low-density lipoprotein (LDL) cholesterol levels (0.013 SD change in LDL per log
odds increase in schizophrenia risk, 95% CI, 0.001–0.024 SD; p = 0.027) and total
cholesterol levels (0.013 SD change in total cholesterol per log odds increase in
schizophrenia risk, 95% CI, 0.002–0.025 SD; p = 0.023). However, these
associations did not survive multiple testing corrections. There was no
evidence of a causal effect of cardiometabolic traits on schizophrenia in the
reverse analysis.

Discussion: Dyslipidemia and obesity in schizophrenia patients are unlikely to be
driven primarily by schizophrenia itself. Therefore, lifestyle, diet, antipsychotic
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drugs side effects, as well as shared mechanisms for metabolic dysfunction and
schizophrenia such as low-grade systemic inflammation could be possible reasons
for the apparent increased risk of metabolic disease in people with schizophrenia.
Further research is needed to examine the shared immunemechanism hypothesis.

KEYWORDS

schizophrenia, Mendelian randomization, single-nucleotide polymorphism,
cardiometabolic traits, metabolic syndrome

1 Introduction

Schizophrenia is a psychiatric disorder affecting approximately
1% of the world population (Goh et al., 2022). Compared to the
general population, individuals with schizophrenia have significant
reductions in average life expectancy by 14.5 years; this premature
mortality is primarily attributed to physical illness, including type
2 diabetes mellitus and cardiovascular disease (Papanastasiou, 2013;
Afzal et al., 2021; Goh et al., 2022). In addition, a systematic review
and meta-analysis by Afzal et al. (2021) of 120 studies from
43 countries demonstrated that people with severe mental illness
have a drastically higher prevalence and odds of obesity than the
general population.

The reasons for adverse cardiovascular and metabolic health
conditions within this patient population are complex and
multifactorial. Despite well-documented cardiometabolic side
effects of certain antipsychotic drugs, schizophrenia may have an
independent effect, and this has been suggested by the high
prevalence of metabolic syndrome in drug-naïve patients with
schizophrenia (Papanastasiou, 2013; Smith et al., 2020; Goh
et al., 2022). Indeed, antipsychotic-naïve patients with first-
episode psychosis have a 2.5-fold risk for metabolic syndrome
compared to age–and gender-matched controls (Goh et al.,
2022). Furthermore, drug-naïve patients with schizophrenia and
their unaffected first-degree relatives demonstrate several features of
metabolic syndrome, such as increased visceral fat, dyslipidaemia,
impaired glucose tolerance, and insulin resistance (Papanastasiou,
2013; Perry et al., 2016; Pillinger et al., 2017; Goh et al., 2022). Thus,
antipsychotic medication is not the sole contributor to adverse
cardiometabolic outcomes and schizophrenia itself may be a risk
factor for the onset of metabolic syndrome.

The direction of this relationship is yet to be established. A
longitudinal study demonstrated that persistently high fasting
insulin levels from 9 years of age was associated with a higher
risk of developing psychosis at 24 years, indicating possible early-
life origins of the observed schizophrenia-diabetes association (Perry
et al., 2021a). Individuals at clinical high risk for psychosis (i.e., do
not have a diagnosis and are untreated) have shown metabolic
abnormalities, such as dyslipidaemia, hypertension, obesity/
overweight, and insulin resistance, which are not explained by
medication adverse effects (Cadenhead et al., 2019; Dickens et al.,
2021).

However, limitations of existing studies include possible
confounding and reverse causation, which makes inferring
causality difficult (Davies et al., 2018). We used a genetic
epidemiological method called Mendelian randomization (MR) to
examine whether schizophrenia is potentially causally related to
cardiometabolic traits and vice versa. MR uses genetic variants as

instrumental variables (IVs) to examine whether an exposure is
likely to be causally related to an outcome (Davies et al., 2018).
Genetic variants are randomly allocated during conception and are,
therefore, independent of potential confounding environmental
factors. However, for MR analysis, genetic variants are subject to
three assumptions in order to be valid IVs and these assumptions
must be evaluated when interpreting the results: they must be
robustly associated with the exposure; they must not be
associated with confounders; they must not affect the outcome
unless it is through the exposure (i.e., pleiotropy is absent)
(Davies et al., 2018; Teumer, 2018).

Previous MR studies have yielded discordant findings, and
mostly focus on the cardiometabolic traits-schizophrenia
relationship, with limited insight into potential the reverse
association (Hartwig et al., 2016; Li et al., 2018; Polimanti et al.,
2018; Adams et al., 2021; Aoki et al., 2022). Thus, in this study, a
bidirectional, two-sample MR analysis was conducted using the
largest summary-level dataset on schizophrenia from the Psychiatric
Genomic Consortium (PGC), investigating the effect of
schizophrenia on the risk of cardiometabolic traits, as well the
effect of cardiometabolic traits on the risk of schizophrenia.

2 Materials and methods

2.1 Study design overview

We conducted a bidirectional MR study to investigate the causal
association of schizophrenia on cardiometabolic traits, including
anthropometric traits [body mass index (BMI), waist-hip ratio
(WHR)], glycaemic traits (HbA1c, fasting glucose, fasting
insulin), blood lipids [triglycerides, high-density lipoprotein
(HDL), low-density lipoprotein (LDL), total cholesterol] and
blood pressure (systolic and diastolic blood pressure). We also
performed the analysis in the reverse direction, i.e., we
investigated the causal association of cardiometabolic traits on
schizophrenia. A flowchart presenting the study design is shown
in Figure 1.

2.2 Data

To derive a reliable conclusion on the causal association between
schizophrenia and cardiometabolic factors, a two-sample
framework was used, i.e., the exposure and the outcome were
measured using two non-overlapping samples. Summary-level
datasets were obtained from large consortia of genome-wide
association studies as summarized data are available for larger
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sample sizes, improving the power to detect a causal effect (Burgess
et al., 2020). Due to the paucity of diverse datasets for some of the
key traits, only studies with data on individuals of a European
ancestry were included. Individual-level studies and multi-ancestry
studies were excluded (unless they provided separate data for
Europeans). The datasets used are summarized in Table 1.

The largest and most up-to-date GWAS was selected for
schizophrenia from the PGC, including a total of 53,386 cases

and 77,258 controls of European ancestry (Trubetskoy et al.,
2022). The GWAS summary statistics were downloaded from the
PGC website (available at https://www.med.unc.edu/pgc/). Cases
were defined as individuals diagnosed with schizophrenia spectrum
disorder based on DSM-IV criteria.

Summary-level data for BMI and WHR was selected from the
Genetic Investigation of ANthropometric Traits (GIANT)
consortium, including up to 322,154 and 21,244 individuals,

FIGURE 1
Study workflow of the two-sample, bidirectional MR analysis investigating the association between schizophrenia and cardiometabolic traits. BMI,
body mass index; CM, cardiometabolic; GIANT, Genetic Investigation of ANthropometric Traits; IVW, inverse-variance weighted; FG, fasting glucose; FI,
fasting insulin; LD, linkage disequilibrium; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; MR, Mendelian randomization; SCZ,
schizophrenia; SNPs, single-nucleotide polymorphisms; WHR, waist-hip ratio.

TABLE 1 Sample characteristics for exposures and outcomes in the Mendelian randomization analysis. BMI, body mass index; GIANT, Genetic Investigation of
Anthropometric Traits; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; MVP, Million Veteran Program; PGC, Psychiatric Genomics
Consortium; SD, standard deviation; WHR, waist-hip ratio.

Trait Sample size References Consortium Population Units

Schizophrenia 53,386 cases and 77,258 controls Trubetskoy et al. (2022) PGC European Log odds

BMI 322,154 Locke et al. (2015) GIANT European SD (kg/m2)

WHR 21,244 Shungin et al. (2015) GIANT European SD

Blood lipids 215,551 Klarin et al. (2018) MVP European SD (mg/dl)

Fasting glucose 200,622 Chen et al. (2021b) MAGIC European mmol/l

Fasting insulin 151,013 Chen et al. (2021b) MAGIC European pmol/l

Hba1c 46,368 Soranzo et al. (2010) MAGIC European %

Systolic blood pressure 757,601 Evangelou et al. (2018b) International Consortium of Blood Pressure European mmHg

Diastolic blood pressure 757,601 Evangelou et al. (2018b) International Consortium of Blood Pressure European mmHg
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respectively (Locke et al., 2015; Shungin et al., 2015) (available at
https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium). Summary data for blood lipids were obtained
from the Million Veteran Program GWAS, including
215,551 individuals of European ancestry (Klarin et al., 2018).
This data is available through dbGaP at https://www.ncbi.nlm.
nih.gov/gap/using the accession number phs001672.v1.p1. For
glycaemic traits, the MAGIC consortium was used (https://
magicinvestigators.org/). Data for fasting glucose and fasting
insulin were derived from a sample of 281,416 individuals, and
HbA1c was derived from a sample of 46,368 individuals. Both
samples included adults of European descent (Soranzo et al.,
2010; Chen et al., 2021a). Summary-level data for blood pressure
traits were selected from the United Kingdom Biobank and the
International Consortium of Blood Pressure, including up to
757,601 individuals (Evangelou et al., 2018a). Summary statistics
for blood pressure are available from the GWAS Catalog (https://
www.ebi.ac.uk/gwas/publications/30224653).

2.3 Genetic instruments

To ensure that the genetic variants used in the analysis were
valid IVs, several quality control steps were conducted using the
TwoSampleMR package in R (Hemani et al., 2018). Firstly, the MR
assumptions indicate that the IVs must be strongly associated with
the exposure, thus, the SNPs were filtered and only SNPs strongly
associated with the exposure at genome-wide significance (P < 5 ×
10−8) were selected. Secondly, to determine linkage disequilibrium
(LD) between SNPs, we used the clump_data function (Hemani
et al., 2018). This function utilises the PLINK clumping method:
SNPs in linkage disequilibrium 10,000 kb pairs apart at an R2

threshold of 0.01 were pruned against the European
1000 Genomes reference panel. Among pairs of SNPs with R2

above this threshold, the SNP with the strongest evidence of
association with the key trait (smallest p-value) was retained and
the other SNP in the pair was excluded. Genetic variants not found

in the reference panel were excluded. Genetic variants not found in
the reference panel were excluded. Finally, harmonization was
conducted using the harmonise_data function as the MR analysis
involved the use of two independent datasets with genetic variants
which may not share the same allele pair. Thus, harmonization
ensured that the effect of a SNP on the exposure, and the effect of the
same SNP on the outcome, corresponded to the same allele (Burgess
et al., 2020). Genetic variants that did not share the same allele pair
between datasets were identified and corrected. Alternatively,
palindromic SNPs, i.e., SNPs with alleles on the forward strand
that are the same as on the reverse strand, were excluded from the
analysis (Burgess et al., 2020). The SNPs that remained after this
selection process were used as IVs in theMR analysis. Summary data
of the genetic instruments were subsequently extracted from the
outcome dataset, including effect of the SNP on the outcome (beta or
odds ratio), standard error, p-value, effect allele, other allele, effect
allele frequency, and sample size.

2.4 Statistical analyses

All statistical analyses were conducted using the TwoSampleMR
package in R. Statistical significance was defined as p < 0.05.
Individual SNP estimates (βIV) were obtained using the ratio
method, where the effect of the SNP on the outcome (βZY) was
divided by the corresponding effect of the SNP from the exposure
(βZX) (Teumer, 2018).

βIV � βZY/βZX

The ratio estimates were subsequently pooled using inverse
variance weighted (IVW) analysis to derive an IVW effect
estimate (Teumer, 2018). However, the IVW method requires
that all SNPs are valid instruments (there is no horizontal
pleiotropy) or are invalid in a way that the overall bias is zero
(the horizontal pleiotropy is balanced). Thus, IVW analysis was
followed by weighted median method, which allows up to 50% of the
SNPs to be invalid instruments, i.e., violate the MR assumption,

FIGURE 2
Mendelian randomization estimates (beta and 95% confidence intervals) for the association between schizophrenia (exposure) and cardiometabolic
traits (outcome) using the inverse variance weighted method. BMI, body mass index; CI, confidence interval; DBP, diastolic blood pressure; HDL, high-
density lipoprotein; LDL, low-density lipoprotein; SBP, systolic blood pressure; SNP, single nucleotide polymorphism; TC, total cholesterol; WHR, waist-
hip ratio.
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providing unbiased effect estimates even in the presence of
unbalanced horizontal pleiotropy. In addition, the weighted mode
clusters the IVs based on the similarity of their estimates, and the
cluster with the greatest number of SNPs is chosen and is given the
most weight for as the final causal estimate. If the IVs contributing to
the largest cluster are unbiased, then the causal estimate from this
method is unbiased (Hemani et al., 2018).

Altogether, we tested 11 different causal associations using
univariable MR analysis. To account for multiple testing, we used
a Bonferroni-corrected p-value of p < 0.05/11 = 5 × 10−3 as being
statistically significant. A p-value <0.05 was suggestive evidence of a
causal association.

2.5 Sensitivity analyses

Sensitivity analyses was conducted using the TwoSampleMR
package in R. MR-Egger regression was conducted to test for
pleiotropy. If the horizontal pleiotropic effects are in a particular
direction, constraining the slope to go through zero will lead to bias.
Thus, MR-Egger allows the intercept to pass through a value other
than zero rather than constraining the slope to go through zero. This
method, therefore, returns an unbiased estimate even if the IVs are
invalid (Hemani et al., 2018). Heterogeneity between the estimates
was quantified using Cochran’s Q statistic using the IVW method
and MR-Egger regression. Finally, a “leave-one-out” analysis was
performed whereby the MR was repeated while sequentially
excluding each SNP to identify any SNPs with a potentially large
effect.

3 Results

3.1 Potential causal effect of schizophrenia
on cardiometabolic traits

In the forward analysis, up to 185 LD-independent SNPs
significantly associated with schizophrenia were identified
(Supplementary Table S1). However, not all these SNPs were
found in the summary-level dataset for the cardiometabolic traits.
In addition, palindromic SNPs were excluded in the harmonization
process. This left 164, 164, 163, 153, 117, 80, 150, 150, 178, 178, and
93 SNPs as IVs for MR analyses of schizophrenia on HDL, LDL,
triglycerides, total cholesterol, BMI, WHR, systolic blood pressure,
diastolic blood pressure, fasting glucose, fasting insulin and HbA1c,
respectively. IVW effect estimates were computed for each
cardiometabolic trait in turn. This was followed by computing
effect estimates using additional robust methods (MR-Egger,
weighted-median and -mode) to address instrumental validity.
Cochran’s Q statistic was calculated to quantify heterogeneity
between estimates and a “leave-one-out” analysis was conducted
to identify any SNPs with a potentially large effect.

We found evidence for associations between schizophrenia and
LDL (0.013 SD change in LDL per log odds increase in
schizophrenia, 95% CI, 0.001–0.024 SD; p = 0.027) and total
cholesterol level (0.013 SD change in total cholesterol per log
odds increase in schizophrenia, 95% CI, 0.002–0.025 SD; p =
0.023) using the primary IVW analysis method (Figure 2). The
effect sizes for the causal association between schizophrenia and
LDL and total cholesterol were relatively consistent across the

FIGURE 3
Mendelian randomization scatter plot for the association between schizophrenia (exposure) and (A) LDL and (B) total cholesterol (outcomes). Each
black dot represents the estimate of an individual genetic variant and its corresponding 95% confidence interval. LDL, low-density lipoprotein; MR,
Mendelian randomisation; SCZ, schizophrenia; SNP, single nucleotide polymorphism.
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different methods (Supplementary Table S2). This is further
demonstrated in their respective scatter plots (Figure 3).
However, the effect sizes for these associations are very small and
did not survive correction for multiple testing. Using the MR-Egger
regression test, we did not find evidence for horizontal pleiotropy for
LDL or total cholesterol. The MR-Egger intercept provided no
evidence against the null hypothesis of no unmeasured pleiotropy
(LDL, intercept p = 0.937; total cholesterol, intercept p = 0.563).
Iterative removal of each individual SNP using leave-one-out
analysis did not affect the IVW estimates for LDL or TC,
suggesting that they were not driven by one singular SNP
(Supplementary Figure S1E,F). However, Cochran’s Q statistic
demonstrated evidence of heterogeneity between the effect
estimates between the 164 LDL and 153 total cholesterol
associated genetic variants (LDL, heterogeneity p = 8.80 × 10-10;
total cholesterol, heterogeneity p = 1.11 × 10-9).

Furthermore, schizophrenia was not associated with BMI
(β, −0.010 SD; 95% CI, −0.032–0.013 SD; p = 0.392), WHR (β,
0.013 SD; 95%, CI −0.009–0.034 SD; p = 0.241), HDL (β, −0.006 SD;
95% CI, −0.023–0.011 SD; p = 0.480), triglycerides (β, 0.005 SD; 95%
CI, −0.010–0.019 SD; p = 0.512), fasting glucose (β, 0.001 mmol/L;
95% CI, −0.005–0.006 mmol/L; p = 0.837), fasting insulin (β,
0.001 pmol/L; 95% CI, −0.006–0.008 pmol/L; p = 0.708), HbA1c
(β, −0.008%; 95% CI, −0.020%–0.004%; p = 0.180), systolic blood
pressure (β, −0.042 mmHg; 95% CI, −0.364–0.279 mmHg; p =
0.796) or diastolic blood pressure (β, 0.032 mmHg; 95%
CI, −0.144–0.208 mmHg; p = 0.721) using the primary IVW
analysis method (Figure 2) or other methods (Supplementary
Table S2). The MR-Egger intercept revealed generally minimal
pleiotropy and leave-one-out analysis demonstrated robustness of
the effect estimates (Supplementary Table S2, Supplementary Figure
S1). However, Cochran’s Q test demonstrated heterogeneity for all
traits except HbA1c (Supplementary Table S2).

3.2 Potential causal effect of
cardiometabolic traits on schizophrenia

In the reverse analysis, 105, 71, 93, 72, 68, 29, 455, 454, 87, 43,
and 11 LD-independent, genome-wide significant SNPs were
identified for HDL, LDL, triglycerides, total cholesterol, BMI,
WHR, systolic blood pressure, diastolic blood pressure, fasting
glucose, fasting insulin and HbA1c, and respectively. After
excluding SNPs missing in the summary-level dataset for
schizophrenia and palindromic SNPs, 101, 65, 84, 66, 67, 28, 392,
393, 75, 38, and 11 SNPs remained as instrumental variables. Effect
estimates were derived using IVW, MR-Egger, weighted-median
and -mode analysis. Finally, sensitivity analyses were conducted:
Cochran’s Q statistic and “leave-one-out” analysis.

Cardiometabolic traits were not associated with schizophrenia,
including BMI (OR, 1.069; 95% CI, 0.887–1.288; p = 0.482), WHR
(OR, 1.005; 95% CI 0.843–1.198 SD; p = 0.954), HDL (OR, 0.982;
95% CI, 0.900–1.072; p = 0.690), LDL (OR, 1.016; 95% CI,
0.923–1.118; p = 0.512), total cholesterol (OR, 1.000; 95% CI,
0.892–1.121; p = 0.996), triglycerides (OR, 1.068; 95% CI,
0.985–1.158; p = 0.113), fasting glucose (OR, 0.863; 95% CI,
0.735–1.012; p = 0.069), fasting insulin (OR, 0.874; 95% CI,
0.618–1.236; p = 0.445), HbA1c (OR, 1.104; 95% CI, 0.899–1.355;

p = 0.345), systolic blood pressure (OR, 1.000; 95% CI, 0.994–1.006;
p = 0.926) or diastolic blood pressure (OR, 1.002; 95% CI,
0.992–1.012; p = 0.710) and schizophrenia using the primary
IVW analysis method (Figure 4) or other methods
(Supplementary Table S3). Leave-one-out analysis demonstrated
robustness of the effect estimates (Supplementary Figure S2).
However, the MR-Egger intercept indicated potential pleiotropy
for LDL and HbA1c. In addition, Cochran’s Q test demonstrated
heterogeneity for all traits except HbA1c (Supplementary Table S3).

4 Discussion

In this study, we conducted bidirectional two-sample MR
analyses using publicly available large-scale genomic summary
data to examine potential causal effects of schizophrenia on
cardiometabolic traits and vice versa. Our data do not suggest
evidence for a possible causal effect of schizophrenia on
cardiometabolic traits, or of cardiometabolic traits on
schizophrenia. Although we report a potential causal effect of
schizophrenia on LDL and total cholesterol levels, the magnitude
of these associations were small and did not survive multiple testing
correction. Taken together, our findings suggest that
cardiometabolic alteration in schizophrenia patients is unlikely to
be fully attributable to an independent effect of schizophrenia on
these outcomes. Rather, dyslipidaemia and obesity in schizophrenia
patients may be attributable to other factors such as lifestyle, adverse
effects of antipsychotic medications, as well as inflammation.

Individuals with schizophrenia show deficits in cognition,
perception, and volition, which can impact their activities of
daily living, self-care, finances, and lifestyle (Henderson et al.,
2015). For example, they are more likely to have low physical
activity, a diet with high-calorie fast foods (also related to
income) and higher rates of alcohol and tobacco consumption
(Henderson et al., 2015; Goh et al., 2022). Evidence shows that
healthcare services struggle to engage people with severe mental
illness in screening and other health-promoting campaigns and that
tailored interventions are required to reach this population
successfully (Osborn et al., 2019; Hassan et al., 2020).

The self-medication hypothesis proposes that patients with
schizophrenia may use substances to cope with their symptoms
(Awad and Voruganti, 2015). In the United States, up to 75% of
individuals with schizophrenia are smokers, compared to 25% of the
general population. A similar Spanish study found that 54.5% of
patients with schizophrenia in Spain are current daily smokers,
compared to 31.5% of the general population. Smokers were also
significantly more likely to be affected by a cardiovascular event than
the non-smokers (Henderson et al., 2015). An MR study by
Wootton et al. (2020) supported this hypothesis by
demonstrating that genetic liability for schizophrenia was
significantly associated with lifetime smoking. However, evidence
was stronger for smoking as a risk factor for schizophrenia,
indicating a potential bidirectional mechanism.

Aside from the aforementioned risk factors, the use of second-
generation antipsychotics by patients with schizophrenia have been
shown to lead to key features of metabolic syndrome, including
weight gain, obesity, impaired glucose tolerance, and dyslipidaemia
(Henderson et al., 2015; Goh et al., 2022; Richards-Belle et al., 2023).

Frontiers in Genetics frontiersin.org06

Saadullah Khani et al. 10.3389/fgene.2023.1150458

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1150458


Despite their benefits to treat symptoms of psychosis, clozapine and
olanzapine are most commonly linked to these cardiometabolic
traits (Huhn et al., 2019). Indeed, 52% of patients undergoing
clozapine treatment demonstrate metabolic syndrome (Mitchell
et al., 2013). These traits may be attributed to the effect of
antipsychotics on the hypothalamus, which activates hunger and
inhibits satiety, which subsequently affects lipid and glucose
metabolism by acting on the liver, pancreatic β-cells, adipose
tissue, and skeletal muscle in the periphery. For example,
adiponectin is a cytokine secreted by the adipose tissue with
insulin-sensitising and anti-inflammatory effects (Achari and
Jain, 2017). Patients with schizophrenia treated with
antipsychotics demonstrate lower adiponectin levels, particularly
those with metabolic syndrome, compared with healthy controls.
These patients had increased insulin resistance, hypertension,
hypertriglyceridemia, and lower HDL levels. Leptin is also an
adipokine involved in regulating energy balance by inhibiting
hunger. Previous studies have shown that patients with
schizophrenia taking antipsychotics have higher leptin levels,
particularly in those taking second-generation antipsychotics
(Chen et al., 2020; Goh et al., 2022). In a recent study by Zhang
et al. (2021) leptin levels of patients with schizophrenia were
positively correlated with BMI. Thus, the use of antipsychotic
medication may initiate a vicious cycle whereby increased
adipose tissue mass induces a state of hyperleptinaemia,
increasing appetite suppression to regulate energy balance.
However, hyperleptinaemia leads to a lack of sensitivity to leptin,
also known as leptin resistance, ultimately contributing to an
increased appetite, further weight gain and further leptin
production (Chen et al., 2021b; Genchi et al., 2021; Goh et al., 2022).

Alternatively, previous studies have demonstrated that
inflammation may play an important role in mediating this
association. Perry et al. (2021b) conducted an MR study and
identified a weak association between HDL, triglycerides and
schziophrenia, which increased in strength when using
inflammation-related IVs. Similarly, MR studies have
demonstrated a causal link between inflammatory markers and

schizophrenia risk (Lin et al., 2019; Perry et al., 2021b;
Khandaker et al., 2021; Williams et al., 2022). Thus,
inflammation may be a common cause for cardiometabolic traits
and schizophrenia.

In this study, we employed a bidirectional MR framework, which
avoided reverse causality and minimized residual confounding. We
built upon previous MR studies using an updated set of instruments of
schizophrenia from the PGC, thus improving the power to detect a
causal association and accurately estimate the magnitude of the effect.
We also included a complete set of traits (blood lipids, anthropometric
traits, blood pressure, and glycaemic traits) to be comprehensive and
fully representative of metabolic syndrome. However, genetic variants
are subject to three assumptions which must be considered when
interpreting the results. The first assumption, which indicates that
the genetic variants are associated with the exposure of interest, was
satisfied by excluding SNPs that did not reach genome-wide
significance (P > 5 × 10−8). The second assumption which states
that the genetic variants must not be associated with confounders
should be satisfied as the genetic variants are randomly allocated during
conception. The third assumption, which requires the genetic variants
do not affect the outcome unless it is through the exposure, is difficult to
explicitly test but our sensitivity analyses indicated that pleiotropy was
unlikely to affect the results. Furthermore, this study was restricted to
individuals of European ancestry as these were the datasets with
appropriate sizes to enable the MR analysis. Nevertheless, despite
using the largest dataset available for schizophrenia, our study could
still have lacked statistical power. Whether these results also apply to
other populations will require investigating in diverse, large-scale
samples which are currently being collected.

In conclusion, using a bidirectional MR framework we found that
the relationship between schizophrenia and various cardiometabolic
traits is unlikely to be a causal one. Thus,multiple hypotheses to account
for this relationship has been raised in the literature, including lifestyle
factors (e.g., smoking, diet, activity), antipsychotic medication,
inflammation, among others. Ultimately, we need further research
with larger global populations to elucidate the links between
schizophrenia and metabolic syndrome.

FIGURE 4
Mendelian randomization estimates (odds ratio and 95% confidence intervals) for the association between cardiometabolic traits (exposure) and
schizophrenia (outcome) using the inverse variance weightedmethod. BMI, bodymass index; CI, confidence interval; DBP, diastolic blood pressure; HDL,
high-density lipoprotein; LDL, low-density lipoprotein; OR, odds ratio; SBP, systolic blood pressure; SNP, single nucleotide polymorphism; WHR, waist-
hip ratio.
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