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Mixture models are one of the most widely used statistical tools when
dealing with data from heterogeneous populations. Following a Bayesian
nonparametric perspective, we introduce a new class of priors: the Normal-
ized Independent Point Process. We investigate the probabilistic properties of
this new class and present many special cases. In particular, we provide an
explicit formula for the distribution of the implied partition, as well as the
posterior characterization of the new process in terms of the superposition
of two discrete measures. We also provide consistency results. Moreover, we
design both a marginal and a conditional algorithm for finite mixture mod-
els with a random number of components. These schemes are based on an
auxiliary variable MCMC, which allows handling the otherwise intractable
posterior distribution and overcomes the challenges associated with the Re-
versible Jump algorithm. We illustrate the performance and the potential of
our model in a simulation study and on real data applications.

1. Introduction. Mixture models are a very powerful and natural statistical tool to
model data from heterogeneous populations. In a mixture model, observations are assumed
to have arisen from one of M (finite or infinite) groups, each group being suitably modelled
by a density. The density of each group is referred to as a component of the mixture, and
is weighted by the relative frequency (weight) of the group in the population. This model
offers a conceptually simple way of relaxing distributional assumptions and a convenient and
flexible way to approximate distributions that cannot be modelled satisfactorily by a standard
parametric family. Moreover, it provides a framework by which observations may be clus-
tered together into groups for discrimination or classification. For a comprehensive review of
mixture models and their applications see [14, 36] and [15]. Each observation is assumed to
have arisen from one of 0 < M ≤ ∞ groups:

(1.1) fY (y | P) =
∫
�

f (y | θ)P (dθ) =
M∑

j=1

wjf (y | τj ),

where {f (y | θ), θ ∈ � ⊂ R
d} is a parametric family of densities on Y , while P is an almost

sure discrete measure on �, and it is referred to as mixing measure. Here {τj , j = 1, . . . ,M}
is a collection of points in �, that defines the support of P . For each j = 1, . . . ,M , the
density f (y | τj ) is the kernel of the mixture, and is weighted by wj , the relative frequency
of the group in the population. In what follows M will denote the number of components in a
mixture, that is, of possible clusters/subpopulations, while by number of clusters, k, we mean
the number of allocated components, that is, components to which at least one observation
has been assigned. What needs to be highlighted (see [49]) is that even when in a finite
mixture model M is fixed, that is, the number of components (possible clusters) of the data
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generating process is fixed, still we need to estimate k, the actual number of clusters in the
sample (allocated components). Already [41] had pointed out this difference, noticing that the
posterior distribution of the number of components M might assigns considerable probability
to values greater than the number of allocated components.

In a Bayesian parametric framework (i.e., M < ∞ almost surely) the most popular ap-
proaches are (i) fix M and then focus mainly on density estimation (ii) treat M as a random
parameter and make it the focus of inference. See, for instance, [40, 47, 50] and [34, 37]
for more details. Although in the Bayesian paradigm there are approaches based on model
choice criteria, such as DIC, it is usually preferable to perform full posterior inference on M

as well, eliciting an appropriate prior. A fully Bayesian approach is often based on the re-
versible jump Markov chain Monte Carlo [8, 47] or, alternatively, on the marginal likelihood
p(y | M). Both methods present significant computational challenges. On the other hand, in
Bayesian nonparametrics M is set equal to infinity (i.e., M = ∞) and the focus of inference
is only k.

In this work, we stress the importance of the distinction between M and k as it allows us
to collocate nonparametric and parametric mixtures in exactly the same framework. This is
achieved by exploiting the crucial observation by [50] that a finite mixture model is simply a
realization of a stochastic process whose dimension is random and has an infinite dimensional
support. Extending this approach, we introduce a new class of random measures, Normalized
Independent Finite Point Processes, obtained by normalization of a point process and use
it as mixing measures in Model (1.1). We derive the family of prior distributions induced
on the data partition by providing a general formula for exchangeable partition probability
functions [42]. The class we propose is rich and includes as particular case the popular finite
Dirichlet mixture model. Finally, we characterize the posterior distribution of the Normalized
Independent Finite Point Process. Our construction is exactly in the spirit of Bayesian non-
parametrics, as it is based on the normalization of a point process, leading to an almost surely
discrete measure.

Among the main achievements of this work, there is the construction of two Gibbs sam-
pler schemes, a marginal and a conditional one, to simulate from the posterior distribution
of the Normalized Finite Independent Point Process. While the conditional algorithm allows
sampling all parameters in the model including the mixing measure, marginal schemes in-
tegrate out the random measure and rely on the predictive structure of the process. Both
these schemes overcome many of the challenges associated with the Reversible Jump Markov
chain Monte Carlo [21, 47] and the marginal algorithm recently proposed by [37]. The lat-
ter restricts the class of prior distributions for the weights and limits the analysis to linear
functionals of the posterior distribution (see [19], for a discussion of these issues).

The key result (associated to the nonparametric construction of the process) is to be able
to propose transdimensional moves which are automatic and naturally implied by the prior
process (see [17] for a recent and related contribution).

In Section 2, we introduce the finite mixture model framework, highlighting the connec-
tion between parametric and nonparametric constructions. Section 3 introduces a working
example which elucidates the main methodological contribution. In Section 4, we introduce
the prior process, the Normalised Independent Finite Point Process, and discuss its cluster-
ing properties, while in Section 5 we characterise its posterior distribution. In Section 6, we
briefly describe how the new prior can be used as a component in more complex hierarchies.
In Section 7, we show how the new construction leads to efficient marginal and conditional
algorithms. Section 8 provides consistency results. We demonstrate the proposed approach
on a benchmark example, the Galaxy data, in Section 9, as well as on an application in pop-
ulation genetics in Section 10. Section 11 concludes the paper.
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2. Finite mixture models. Let Y1, . . . , Yn be a set of observations taking values in an
Euclidean space Y . Exploiting the latent variable representation of a mixture model, we as-
sume

(2.1)

Yi |θi
ind∼ f (y | θi), i = 1, . . . , n,

θi |ci,τ
ind∼ δτci

(dθi),

τm | M iid∼ P0(dτ), m = 1, . . . ,M,

ci | M,w ∼ MultinomialM(1,w1, . . . ,wM),

w | M ∼ PW(w | M), M ∼ qM,

where f (y | θ) is a parametric density on Y , which depends on a vector of parameters θ .
Here δτ is the Dirac measure assigning unit mass at location τ and τ = {τ1, . . . , τM}. The
vector of parameters τm assumes values in � ⊂ R

d and is assigned a nonatomic prior density
p0 corresponding to the probability measure P0 on �. The number of components is given
a prior qM . Conditionally on M , the vector of weights w = (w1, . . . ,wM), which represents
the probability of belonging to each mixture component, is given a prior probability PW on
the simplex of dimension M − 1. Finally, c = (c1, . . . , cn) denote the latent allocation vector
whose element ci denotes to which component observation Yi is assigned, ci ∈ {1, . . . ,M}.
Usually PW is assumed to be a DirichletM(γ, . . . , γ ) distribution, while typical choices for
qM include a discrete uniform on some finite space, a Negative Binomial or a Poisson dis-
tribution. In this work, we propose a richer construction, where the prior on w is obtained
by normalising a finite point process. Advantages of the proposed approach include: (i) ex-
tension of the family of prior distributions for the weights; (ii) full Bayesian inference on all
the unknowns (in particular M and w); (iii) possibility of inducing sparsity through appro-
priate choice of hyper-parameters; (iv) ease of interpretation; (v) possibility of extending the
construction to covariate dependent weights and (vi) extension to more general processes.

The theoretical developments are based on the key observation that a realization M , w, τ
from the prior on the mixture model parameters defined in equation (2.1) in terms of hierar-
chical parametric distribution qM , PW , P0 defines an almost surely (a.s.) finite-dimensional
random probability measure on the parameter space �, that is, P(dθ) = ∑M

m=1 wmδτm(dθ).
This implies that the joint probability distribution on M , w and τ induces a distribution on
P , whose support is the space of the a.s. finite-dimensional random probability measures on
�. Moreover, it is straightforward to prove (see [2]) that by letting θi = τci

, as in equation
(2.1), the variables θ1, . . . , θn can be considered as a sample from P . From this observation,
the link between infinite (nonparametric) and finite mixture models becomes evident as the
model in equation (2.1) becomes

(2.2)

Y1, . . . , Yn

∣∣θ1, . . . , θn
ind∼ f (y; θi),

θ1, . . . , θn

∣∣P iid∼ P,

P =
M∑

m=1

wmδτm(dθ) ∼ P,

where P is the law of P defined via qM , PW , P0. The main theoretical contribution of this
work is to give a constructive definition of P , for which the weights wm are the normalised
jumps of a finite point process and the parameters τm are defined in terms of realisations of the
same point process. Note that [50], while highlighting the connection between finite mixture
models and point processes, defines the point process on the complex space of normalized
weights. We refer also to Chapter 7 of [15] and Chapter 2 of [14] for further discussion about
this link.
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3. A simple example. In this section, we illustrate the key ideas of this work using the
popular finite Dirichlet process mixture model (FDMM):

(3.1) w | M ∼ Dirichlet(γ, . . . , γ ), M − 1 ∼ Poisson(λ).

Let Sm,m = 1, . . . ,M , be independent random variables with Gamma(γ,1) distribution, and
let T = ∑M

m=1 Sm. Then wm can be represented as Sm/T , that is, the weight vector w can be
obtained through normalization of Gamma random variables. To perform Bayesian inference
in the FDMM, we need the conditional law of w (or equivalently of S = (S1, . . . , SM)) and
τ = (τ1, . . . , τM) given a realization of M and c1, . . . , cn:

(3.2)

L(S,τ | M,c1, . . . , cn) ∝
(

n∏
i=1

Sci

T

)
M∏

m=1

Gamma(dSm;γ,1)P0(dτm)

= 1

T n

(
n∏

i=1

Sci

)
M∏

m=1

Gamma(dSm;γ,1)P0(dτm).

The Gamma random variables are a priori independent as well as the cluster-specific param-
eter vectors. The main challenges when sampling from (3.2) are given by the fact that the Sm

are dependent as they are normalised by their sum T and by the fact that their number M is
random. We deal with the first problem by introducing an auxiliary variable Un, and with the
second by a marginalization trick, which requires collapsing S and τ .

Let (c�
1, . . . , c

�
k), k ≤ M , be the unique values among the c1, . . . , cn. This implies that

some of the M components in the mixture can be empty. Let M(a) = k be the number
of allocated components and let M(na) be the number of unallocated components, with
M = M(a) + M(na). We denote with the superscripts (a) and (na) the variables corresponding
to the allocated and unallocated components respectively, and with M(na) the set of indices
of the unallocated components. This implies that equation (3.2) can be rewritten as

1

T n

(
M(a)∏
j=1

S
nj

c�
j

)
M(a)∏
j=1

Gamma(dSc�
j
;γ,1)P0(dτc�

j
)

∏
m∈M(na)

Gamma(dSm;γ,1)P0(dτm),

where nj = #{ci = c�
j , i = 1, . . . , n}. Finally, we have

1

T n

(
M(a)∏
j=1

S
nj+γ−1
c�
j

e
−Sc�

j P0(dτc�
j
) dSc�

j

) ∏
m∈M(na)

Sγ−1
m e−SmP0(dτm)dSm,

where a Gamma kernel is recognizable for all the unnormalsied weights. Nevertheless, these
variables are dependent with the dependence structure determined by their sum T , M(a) and
M(na). Let Un | T ∼ Gamma(n,T ), so that

	(n)

T n
=

∫ ∞
0

e−T uun−1 du.

The marginal distribution of Un exists and can be derived by solving the integral∫ ∞
0 Gamma(u;n, t)Gamma(dt;nγ,1). Then we can write the joint law of S, τ , Un as

L(S,τ ,Un | M,c1, . . . , cn)

∝ e−T u un−1

	(n)

(
M(a)∏
j=1

S
nj+γ−1
c�
j

e
−Sc�

j P0(dτc�
j
) dSc�

j

)

× ∏
m∈M(na)

Sγ−1
m e−SmP0(dτm)dSm du
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∝ e−u
∑

m Sm
un−1

	(n)

(
M(a)∏
j=1

S
nj+γ−1
c�
j

e
−Sc�

j P0(dτc�
j
) dSc�

j

)
(3.3)

× ∏
m∈M(na)

Sγ−1
m e−SmP0(dτm)dSm du

∝ un−1

	(n)

(
M(a)∏
j=1

S
nj+γ−1
c�
j

e
−Sc�

j
(1+u)

P0(dτc�
j
) dSc�

j

)

× ∏
m∈M(na)

Sγ−1
m e−(u+1)SmP0(dτm)dSm du.

Through the introduction of the latent variable Un, we gain posterior conditional indepen-
dence of the unnormalized weights Sj since the random variable T n now appears in the
form euT . In this way, the full conditional of the unnormalised weights factorises in a prod-
uct of Gamma densities, whose hyperparameters depend only on the cluster numerosity and
the latent variable Un. This conjugacy clearly offers advantages when designing MCMC
algorithms. Moreover, we can marginalize over all the S’s and the τ ’s parameters in equa-
tion (3.3). This allows us to derive the full conditional of M and design a transdimensional
collapsed Gibbs Algorithm (see Supplementary Material Appendix E [3]). Finally, we can
marginalize also over M and this latter step is crucial to derive theoretical properties of the
model as well as the full conditional distribution for Un. For instance, it yields a closed form
solution for the exchangeable product partition function of the Finite Dirichlet process mix-
ture model. Further details are given in Section 4, while a full derivation is presented in Sup-
plementary Material Appendix D.2.1. Note that in the same setting the telescopic sampling
scheme recently proposed by [17] adopts a similar strategy, introducing a latent variable cor-
responding to M(na). This latter algorithm improves computational efficiency as compared to
a Reversible Jump scheme, but still needs to resort to a truncation.

In the remainder of the paper, we show that this construction is general and applies to
any (i.e., non-Dirichlet) mixture models where the weight wm are set equal to Sm/T and the
jumps Sm are realizations of a point process. Exploiting the augmentation trick, we cover a
large class of P and are able to derive theoretical results which allow for efficient posterior
inference.

4. Normalized independent finite point processes. A point process X = {ξ1, . . . , ξM}
is a set of unordered points of a complete separable metric space X .

DEFINITION 4.1. Let ν(·) and qM(m),m = 0,1, . . . be a density on X and a probability
mass function respectively. X is an independent finite point process, X ∼ IFPP(ν, qM), if its
Janossy density [7] can be written as

(4.1) j (ξ1, . . . , ξm) = m!qM(m)

m∏
j=1

ν(ξj ).

If X = R
d , then j (ξ1, . . . , ξm) dξ1 . . . dξM is the probability that there are exactly m points

in the process, one in each of the distinct infinitesimal regions (ξm, ξm + dξm). In Supple-
mentary Material Appendix B we review some concepts from point process theory. In our
approach, we use the Janossy measure to assign a prior for P in equation (2.2). In particular,
qM(·) corresponds to the prior on the number of components M , while ν(·) defines the joint
prior for the unnormalised weights and the locations of the mixture.
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Let � ⊂ R
d , for some positive integer d and let X be R

+ × �. Here, � is the space of
the mixture locations (i.e., the kernel parameters), while R

+ is the space of the unnormalised
weights. We denote with ξ = (s, τ ) a point of X . Let ν(s, τ ) be a density on X such that
ν(s, τ ) = h(s)p0(τ ), where h(·) is a density on R

+ and p0(·) is a density on �. The density
h(·) defines the prior on the unnormalised weights and corresponds to the Gamma density
in the example of Section 3, while p0(·) is a nonatomic density which specifies a prior for
the mixture locations. Finally, we assume that the prior probability of M = 0 is zero, that is,
qM(0) = 0. In what follows, it is easier to introduce a slight change of notation and define
IFPP(h, qM,p0) = IFPP(ν, qM) to highlight the dependence of the process also on p0(·). We
consider the independent finite point process P̃ = {(S1, τ1), . . . , (SM, τM)} with parameters
h, p0 and qM , that is, P̃ ∼ IFPP(h, qM,p0). Let M := {1, . . . ,M} be the set of indexes
corresponding to the points of the process. Since we assume qM(0) = 0, the random variable
T := ∑

m∈M Sm is a.s. larger than 0 leading to the following definition.

DEFINITION 4.2. Let P̃ = {(S1, τ1), . . . , (SM, τM)} ∼ IFPP(h, qM,p0), with qM(0) = 0.
A normalized independent finite point process (Norm-IFPP) with parameters h, p0 and qM

is a discrete probability measure on � defined by

(4.2) P(A) = ∑
m∈M

wmδτm(A)
d= ∑

m∈M

Sm

T
δτm(A),

where T = ∑
m∈M Sm and A denotes a measurable set of �. We refer to the process in

equation (4.2) as P ∼ Norm-IFPP(h, qM,p0).

EXAMPLE 4.1 (Finite-Dirichlet process). Let h be the Gamma(γ,1) density, with shape
parameter γ > 0 and rate 1. Then the Norm-IFPP is a finite Dirichlet process, as in equation
(4.2). Conditionally on M > 0, the jump sizes (w1, . . . ,wM) of P are a sample from the
M-dimensional DirichletM(γ, . . . , γ ) distribution (see Section 3).

EXAMPLE 4.2 (Finite σ -Stable process). Let ψ(u) = exp(−uσ ), u > 0 with 0 < σ < 1.
From the Lévy–Khintchine formula in [29], ψ(u) is the Laplace transform of the σ -Stable
density [44]:

h(s;σ) = − 1

π

∞∑
k=0

(−1)k

k! sin(πσk)
	(σk + 1)

sσk+1 .

Then the process P , whose jumps have density h(s;σ) is defined as a (normalized) finite
σ -Stable.

The finite dimensional process defined in equation (4.2) belongs to the wide class of
species sampling models (see [42]) and this allows us to use all the efficient machinery de-
veloped for such models. Let (θ1, . . . , θn) be a sample from a Norm-IFPP. It is well known
that sampling from a discrete probability measure induces ties among the θis and, therefore,
a random partition of the observations. Let ρn := {C1, . . . ,Ck} indicate a partition of the set
{1, . . . , n} in k subsets, where Cj = {i : θi = θ�

j } for j = 1, . . . , k ≤ n, and let {θ�
1 , . . . , θ�

k }
denote the set of distinct θis associated to each Ci . The marginal law of (θ1, . . . , θn) has a
unique characterization:

L(θ1, . . . , θn) = L
(
ρn, θ

�
1 , . . . , θ�

k

) = π(n1, . . . , nk)

k∏
j=1

P0
(
dθ�

j

)
,
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where nj = #(Cj ),
∑k

j=1 nj = n and π(·) is the exchangeable partition probability function
associated to the random probability P (see [42]). For each n, the eppf π is a probability law
on the set of partitions of {1, . . . , n}, which determines the (random) number of clusters k

and the numerosity of each cluster Cj . The eppf is a key tool in Bayesian analysis as mixture
models can be rewritten in terms of random partitions and such equivalence is often exploited
to improve computational efficiency, in particular of marginal algorithms [33].

THEOREM 4.1. Let (n1, . . . , nk) be a vector of positive integers such that
∑k

j=1 nj = n.
Then, the eppf associated with a Norm-IFPP(h, qM,p0) is

(4.3) π(n1, . . . , nk) =
∫ +∞

0

un−1

	(n)
�(u, k)

k∏
j=1

κ(nj , u) du,

where

�(u, k) :=
{ ∞∑

m=0

(m + k)!
m! ψ(u)mqM(m + k)

}
,

ψ(u) is the Laplace transform of the density h(s), that is,

(4.4) ψ(u) :=
∫ ∞

0
e−ush(s) ds

and

κ(nj , u) :=
∫ ∞

0
snj e−ush(s) ds = (−1)nj

d

dunj
ψ(u).

PROOF. See Supplementary Material Appendix C.1. �

The main challenges when computing the eppf of a Norm-IFFP are the evaluation of
�(u, k) in equation (4.3) and of the Laplace transform ψ and its cumulants κ in Theorem 4.1.

EXAMPLE 4.3 (Finite-Dirichlet process, continued). Recall that the Laplace transform
and its cumulants for a Gamma(γ,1) density are given by ψ(u) = 1

(u+1)γ
, and κ(nj , u) =

1
(u+1)

nj +γ

	(γ+nj )

	(γ )
, u > 0, nj = 1,2, . . . Then, applying Theorem 4.1, we obtain that the eppf

is

(4.5)

p(n1, . . . , nk) =
{ ∞∑

m=0

(m + k)!
m! qM(m + k)

	((k + m)γ )

	((k + m)γ + n)

}
k∏
j

	(γ + nj )

	(γ )

= V (n, k)

k∏
j=1

	(γ + nj )

	(γ )
.

See also Chapter 2 in [43] and [37].

EXAMPLE 4.4 (Finite σ -Stable, continued). By construction, the Laplace transform of
the σ -stable density is ψ(u) = exp(−uσ ), u > 0 with 0 < σ < 1. From equation (13) in [12],
we obtain its cumulants as

κ(nj , u) = e−uσ

unj

nj∑
l=1

uσl
∣∣C(nj , l;−σ)

∣∣,
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where C(n, l;σ) denotes the central generalized factorial coefficient (see [6], formula (2.67)
for details). Finally, the eppf is given by

(4.6)

p(n1, . . . , nk)

=
∫ ∞

0

1

u	(n)

∞∑
m=0

(m + k)!
m! e−(m+k)uσ

qM(m + k)

k∏
j=1

nj∑
l=1

∣∣C(nj , l;−σ)
∣∣du.

Note that for special choices of qM , we are able to give an integral representation for the
the infinite sum in equation (4.5) and find an analytical solution for the one in equation (4.6),
allowing for efficient computations. See Supplementary Material Appendix D.1 for details.

The number of components of the finite mixture M is given by a realisation of the process
in equation (4.2). On the other hand, k denotes the number of nonempty (allocated) compo-
nents, with k ≤ M . This difference has been noted before in the literature (see, e.g., [16, 37,
41]). Moreover, marginalising over the cluster sizes, it is also possible to derive the implied
prior distribution on the number of clusters, k, which corresponds to the number of allocated
components.

COROLLARY 4.1. Under the assumptions of Theorem 4.1, the marginal prior probability
of sampling a partition with k clusters is given by

(4.7) p�
k =

∫ +∞
0

un−1

	(n)

{ ∞∑
m=0

(m + k)!
m! ψ(u)mqM(m + k)

}
Bn,k

(
κ(·, u)

)
du,

where k = 1, . . . , n, and Bn,k(κ(·, u)) is the partial Bell polynomial [43] over the sequence
of coefficients {κ(n,u), n = 1,2, . . . }.

PROOF. See Supplementary Material Appendix C.2. �

Moreover, from de Finetti’s theorem, it follows that k converges almost surely to M as
n → ∞.

EXAMPLE 4.5 (Finite Dirichlet process, continued). Equation (4.5) implies that the finite
Dirichlet process is a member of the family of Gibbs partition distributions [33, 42]. The
Gibbs type structure allows us to simplify the prior for the number of allocated components
given in equation (4.7), which becomes

(4.8) p�
k = V (n, k)γ kS

−1,γ
n,k = V (n, k)(−1)nC(n, k;−γ ), k = 1, . . . , n,

where S
−1,γ
n,k is the Generalized Stirling number computed for k compositions of n objects

with parameters −1 and γ (see equation (1.20) in [43]), while for any nonnegative integer
n ≥ 0, 0 ≤ k ≤ n and real numbers α, C(n, k;α) denotes the central generalized factorial
coefficient. Here we mention that these indices can be easily computed using the recursive
formula

C(n, k;α) = αC(n − 1, k − 1;α) + (kα − n + 1)C(n − 1, k;α)

with C(1,1, α) = α.
Note that, when qM is a shifted Poisson, if γ = α/�, for α > 0, and � → ∞, then P

converges in distribution to the Dirichlet process with mass parameter α (see Supplementary
Material Appendix C.5 for a proof). Similarly, we recover the Dirichlet process when qM

assigns mass one to M̃ , γ = α/M̃ and M̃ goes to infinity. This case has been extensively
investigated in the Bayesian nonparametric literature from both computational and method-
ological perspective (see [28], for a thorough discussion).
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5. Posterior characterization of a Norm-IFPP process. Let the random variable Un =
	n/T , where 	n ∼ Gamma(n,1), T = ∑

i∈M Si , 	n and T are independent. It is easy to
show (see the Supplementary Material Appendix C.4) that if P ∼ Norm-IFPP(h, qM,p0)

then, for any n ≥ 1, the marginal density of Un is given by

(5.1) fUn(u;n) = un−1

	(n)
(−1)n

d

dun
E

(
ψ(u)M

)
,

where ψ(u) is the Laplace transform of the density h, as defined in equation (4.4). The pos-
terior distribution of Un, given θ = (θ1, . . . , θn), is crucial to perform posterior inference and
allows us to derive the posterior distribution of the unnormalised process P̃ . To this end,
we need to show that a posteriori, conditionally on Un, P̃ is the superposition (union) of
two independent processes: an IFPP and a finite process with fixed locations at (θ�

1 , . . . , θ�
k ).

Note that k corresponds to the number of allocated jumps M(a) and M is equal to the sum
of k and the number M(na) of unallocated jumps, assuming values in N ∪ {0}. The process
of unallocated jumps is a latent variable which links the parametric part of the model in P

to a nonparametric process. This link is essential for computations as it will become clearer
in Section 7, where we discuss the algorithm. The results below are conditional on the real-
izations of the random variable Un, which is a typical strategy in the theory of normalised
random measures, since working on the augmented space allows us to exploit the quasi-
conjugacy of the process P (see [30]). We now present the main theoretical contribution of
this work.

THEOREM 5.1. If P ∼ Norm-IFPP(h, qM,p0), then the unnormalized process P̃ , given
θ� = (θ�

1 , . . . , θ�
k ), n = (n1, . . . , nk) and Un = u, is the superposition of two processes:

P̃
d= P̃ (na) ∪ P̃ (a),

where:

1. The process of unallocated jumps P̃ (na) is an independent finite point process with
Janossy density given by

jm

(
(s1, τ1), . . . , (sm, τm)

) = m!q�
m

m∏
j=1

h�
u(sj )p0(τj ),

where h�
u(s) ∝ e−ush(s), q�

m ∝ (m+k)!
m! ψ(u)mqM(m + k), ψ(u) is the Laplace transform of

h, and m is a realization of M(na), the number of unallocated jumps, taking values in
{0,1,2, . . . }.

2. The process of allocated jumps P̃ (a) is the unordered set of points (S1, τ1), . . . , (Sk, τk),
such that, for j = 1, . . . , k, τj = θ�

j and the distribution of Sj is proportional to snj e−ush(s).

3. Conditionally on M(a) and Un = u, P̃ (a) and P̃ (na) are independent.

Moreover, the posterior law of Un given θ = (θ1, . . . , θn) depends only on the partition ρn

and has density on the positive reals given by

fUn(u | ρn) ∝ un−1

	(n)

{ ∞∑
m=0

(m + k)!
m! ψ(u)mqM(m + k)

}
k∏

j=1

κ(nj , u).

PROOF. See Supplementary Material Appendix C.3. �

The result in Theorem 5.1 is the finite dimensional counterpart of Theorem 1 in [30]
for normalised completely random measure. This theorem allows building an efficient block
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Gibbs sampler for finite mixture models. Since the order in which the points of a point pro-
cess arise is not important, without loss of generality, given a realization of the posterior
process P̃ , we assume that, in P̃ = {S1, . . . , SM}, M = k + M(na), that is, the first k points
{S1, . . . , Sk} correspond to the allocated jumps, while the last M(na) to the unallocated ones.

EXAMPLE 5.1 (Finite Dirichlet process, continued). Conditionally on Un = u, h�
u is still

a Gamma density (see Section 3) with parameters γ and u+ 1. Moreover, q� has closed form
for particular choices of qM as detailed in Supplementary Material Appendix D.1. Thus,
the process corresponding to the unallocated jumps is still a Finite Dirichlet process with
updated parameters. The unnormalised weights, Sj , of the k allocated jumps are a posteriori
independent and have a Gamma distribution with parameters nj + γ and (u + 1).

EXAMPLE 5.2 (Finite σ -Stable, continued). In this case, conditionally on Un = u, h�
u

is an Exponential tilted stable density e−ush(s) (or generalized Gamma), while the density
of the the unnormalised weights, Sj , of the k allocated jumps is a Gamma tilted density
s−nj e−ush(s). Properties of the Exponential tilted density are presented in [9] and [24], while
Gamma tilted σ -stable densities are discussed in [12].

In general, there are two possible alternatives to define a Norm-IFPP: either to choose a
parametric density as h or to select the Laplace transform of h, ψ . In Supplementary Material
Appendix D, we extensively discuss special choices of h and ψ which allow for analytical
derivation of the eppf and of the posterior distribution. In addition to the two examples dis-
cussed in the manuscript, we also describe: (i) uniform weights; (ii) Gamma approximation;
(iii) the Bessel process. Finally, in the same Appendix, choices of qM that allow for easy
computations are discussed.

6. Norm-IFFP hierarchical mixture models. Most real world applications of discrete
random measures involve an additional layer in the model hierarchy and convolve the random
measure with a continuous kernel as described in equation (2.2). In our context, the random
measure is a Norm-IFFP. This leads to models of the form

(6.1)

Y1, . . . , Yn

∣∣θ1, . . . , θn
ind∼ f (y | θi),

θ1, . . . , θn

∣∣P iid∼ P,

P ∼ Norm-IFPP(h, qM,p0),

where f (y | θi) is a parametric density on Y , for all θ ∈ � ⊂ R
d . We point out that p0

is the density of a nonatomic probability measure P0 on �, such that E(P (A)) = P0(A)

for all A ∈ B(�). Model (6.1) will be addressed here as a Norm-IFFP hierarchical mixture
model. The model can be extended by specifying appropriate hyperpriors. It is well known
that this model is equivalent to assuming that the Yi ’s, conditional on P , are independently
distributed according to the random density (1.1). We point out that Model (6.1) admits as
a special case the popular finite Dirichlet mixture model (see [37, 40, 47, 50]) discussed in
more details in Section D.2.1. The posterior characterization given in Theorem 5.1, as well
as the analytical expression for the eppf given in Theorem 4.1, allow us to devise conditional
or marginal algorithms to perform inference under Model (6.1) as discussed in Section 7.
Moreover, Building upon [23], in Section 8 we prove consistency results for the number of
components as well deriving an optimal contraction rates for component parameters the class
of Norm-IFPP under minimal assumptions on the density h(s) of the unnormalized weights.
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7. Posterior inference. To perform posterior inference tailored MCMC algorithms need
to be devised. The two most popular strategies in Bayesian nonparametrics are marginal [38]
and conditional algorithms [27, 31]. Our construction allows for straightforward extension of
such strategies to the finite mixture case, offering a convenient alternative to the often ineffi-
cient and labour intensive reversible jump. To implement marginal algorithms it is desirable
(although not necessary, but at the cost of extra computations) to be able to compute the eppf
of the process, and, therefore, the sum in equation (4.3) to obtain the probability of a random
partition. On the other hand, for conditional algorithms we need to sample from the posterior
distribution of a Norm-IFPP which requires a closed form expression for the Laplace trans-
form in Theorem 5.1. More specifically, it is essential to be able to sample from the posterior
distribution of the number of the nonallocated jumps, q�

m, as well as from the distribution of
the allocated and unallocated jumps, that is, the densities proportional to e−ush(s) (Exponen-
tial tilted) and snj e−ush(s) (Gamma tilted). Specific solutions for well-known processes will
be presented in Supplementary Material Appendix D. Here we give a general outline of both
algorithms.

7.1. Marginal algorithm. As mentioned before, a sample θ1, . . . , θn from P induces a
partition of the set of the data indexes, denoted by ρn = {C1, . . . ,Ck}, such that i ∈ Cj implies
that datum i belongs to cluster j . Marginal algorithms rely on the fact that, by integrating out
the measure P , the only parameters left in equation (2.2) are the random partition ρn and the
cluster specific parameters θ�

1 , . . . , θ�
k . Posterior sampling strategies for ρn are based on the

Chinese restaurant process [1], which describes the (a priori) predictive generative process
for ρn, and relies on the evaluation of the eppf associated with P . Nevertheless, when P

corresponds to the Norm-IFPP model, this evaluation can be computationally burdensome
due to the integral with respect to u in equation (4.3). To design efficient algorithms we adopt
a disintegration technique following a strategy similar to the one suggested by [30] and [13]
for NRMI. Indeed, we can define the joint law of the random partition ρn and the latent
variable Un defined in Section 5 as follows:

(7.1) L(ρn,Un) = π(n1, . . . , nk;u)
un−1

	(n)
�(u, k)

k∏
j=1

κ(nj , u) du,

where �(u, k) := {∑∞
m=0

(m+k)!
m! ψ(u)mqM(m + k)}. Equation (7.1) is a well-defined joint

distribution since the marginal density of Un exists and is given in equation (5.1). This enables
us to give a generalized Chinese restaurant representation of the generative process of the
partition ρn jointly with the latent variable Un, in which the observations are represented as
customers in a restaurant with infinite many tables representing the clusters.

The predictive probability (conditionally on Un+1 = u) that customer n + 1 seats to a new
unoccupied table Ck+1 is

P(n + 1 ∈ Ck+1|u,ρn) ∝ π(n1, . . . , nk,1;u)

π(n1, . . . , nk;u)
= �(u, k + 1)

�(u, k)
κ(1, u)(7.2)

while the predictive probability that it seats to an existing table is

P(n + 1 ∈ Cj |u,ρn) ∝ π(n1, . . . , nj + 1, . . . , nk;u)

π(n1, . . . , nj , . . . , nk;u)
= κ(nj + 1, u)

κ(nj , u)
(7.3)

for j = 1, . . . , k. Note that, for each new customer i, a variable Ui is drawn. After n customers
have entered the restaurant, the seating arrangement of customers around tables corresponds
to a partition ρn of {1, . . . , n} with numerosity (n1, . . . , nk), nj = #Cj . The main difference
with the standard Chinese process consists in updating the cluster allocation of customer n+1
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conditional on the Un+1. The strategy of conditioning on a sequence of auxiliary variables to
generalise the Chinese restaurant process was introduced for infinite dimensional measures
by [30]. Here, we have derived the finite dimensional counterpart.

We can now describe the marginal algorithm based on the generalised Chinese process,
by exploiting the exchangeability of the partition ρn obtained under such process. As a con-
sequence, for each i, we can assume that the ith observation is the last customer. Then we
can update ρn using Gibbs sampling whereby the cluster assignment of one datum i is up-
dated one at a time. Let ρ−i

n = {C−i
1 , . . . ,C−i

k−i } be the partition in k−i clusters obtained from
the partition ρn when the ith datum is removed. We denote the cluster assignment of the ith
observation to cluster C−i

j of size n−i
j , with the event {i ∈ C−i

j }, while with {i ∈ C−i

k−i+1}
we denote the event that the ith observation is assigned to a new (empty) cluster. The full
conditional of the allocation events given ρ−i

n , y = (y1, . . . , yn) and Un = u is obtained mod-
ifying (7.2)–(7.3), as shown in the top panel of Figure 1, where yCj

denotes the vector of
observations yl such that l ∈ Cj and M(yCj

) = ∫
�

∏
l∈Cj

f (yl | θ)p0(θ) dθ is the marginal
distribution of the data within cluster Cj with sampling model f (yl | θ) and prior p0(θ).

We can also perform posterior inference on M under the marginal algorithm by sampling
M(na) from

q�
m ∝ (m + k)!

m! ψ(u)mqM(m + k).

The algorithm is summarised in Figure 1 and relies on the conjugacy of the kernel f (y|θ) and
the density p0(τ ). Nevertheless the algorithm can be easily extended to the nonconjugate case

FIG. 1. Marginal Gibbs sampler scheme; the conditioning arguments of all full conditionals have been omitted
to simplify notation. We point out that steps 4 and 5 are needed only if the parameters of the density of the
unnormalised jumps h and of the prior on the number of components qM are assumed to be random.
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FIG. 2. Blocked Gibbs sampler scheme; the conditioning arguments of all full conditionals have been omitted to
simplify notation. We point out that steps 4 and 5 are needed only if the parameter of the density of unnormalized
jumps h and of the prior on the number of components qM are assumed random.

following a similar strategy to Algorithm 8 of [38] (see also [13]). The marginal algorithm
for the Finite Dirichlet process is detailed in Supplementary Material Appendix E.2.

7.2. Conditional algorithm. Conditional algorithms allow us to draw from the joint dis-
tribution of (M,τ ,S, c) in equation (2.1), where wi = Si/T , which in turn defines a draw of
the random probability measure on �: P(dθ) = ∑M

m=1 wmδτm(dθ). As the algorithm sam-
ples from the posterior distribution of the random measure, we are able to perform full pos-
terior inference, at least numerically, on any functional of such distribution [19]. Moreover,
it is simple to make inference on the hyper-parameters of the distributions of M and S. An
outline of the MCMC algorithm is given in Figure 2. The scheme follows directly from The-
orem 5.1, adapted to the mixture case. Note that in Step 2 of the algorithm, the relabelling
of the mixture components is essential so that the nonempty components correspond to the
first k components. Moreover, Step 7 of the algorithm requires a standard Bayesian update of
the cluster-specific parameters, which can be performed using any MCMC strategy in case
of lack of conjugacy. The conditional algorithm for the FDMM is described in details in
Supplementary Material Appendix E.1 and it is implemented in the R-package AntMAN [4].

8. Consistency. In a recent paper, [23] show that in the particular case of the FDMM
with random number of components it is possible to obtain both a consistent estimate of the
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number of mixture components, and more notably, an optimal posterior contraction rate for
component parameters, under a general set of conditions. It is worth emphasizing that all
these results are possible only under the assumption that the model is well-specified, that is,
the true but unknown population density lies in the support of the prior process. In this section
we extend the results by [23] to the class of Norm-IFPP under minimal assumptions on the
density h(s) of the unnormalized weights.

We assume that the data Y1, . . . , Yn are an i.i.d. sample from a mixture density fY (y|P �) =∫
f (y|θ) dP �(θ), where P � is a discrete mixing measure with unknown number of support

points m� ≤ ∞ residing in the compact � ⊂ R
d . Moreover, we make the following assump-

tions (see Supplementary Material Appendix C.6 for details and definitions):

P.1 The parameter space � is compact, while the kernel density f is first-order identifiable
and admits the uniform Lipschitz property up to the first order.

P.2 The base distribution P0 is approximately uniform, that is, minτ∈� p0(τ ) > c0 > 0,
where p0 is the density of P0.

P.3 There exists ε� > 0 such that
∫

f (y|P �)2/f (y|P)dy ≤ M(ε�) as long as W1(P,P �) ≤
ε� for any P ∈ Om� where M(ε�) depends only on ε�, P �, and �. Here W1 denotes the
Wasserstein distance of order one and P � indicates the true density.

P.4 The prior qM places positive mass on the set of natural numbers, that is, qM(m) > 0
for all m = 1,2, . . .

P.5 For each τ ∈ R
d , let B(τ, ε) = {τ ′ ∈ R

d : ‖τ − τ ′‖ < ε} the l2 ball of radius ε, then

lim
ε→0

(
min
τ∈�

μ(B(τ, ε) ∩ �)

μ(B(τ, ε))

)
≥ c1 > 0.

This condition essentially requires that a Rd -balls with a center in �, irrespective of its radius,
has at least c1% of mass in �.

P.6 There exists a t� > 0 such that, for each 0 < δ < t�, the density h is bounded away
from 0 in the interval [δ, t�].

THEOREM 8.1. Let L(Y |P �) denote the probability law of the infinite sequence
Y1, Y2, . . . which forms an i.i.d. sample from fY (y|P �) where fY (y|P �) = ∫

f (y | θ) dP �(θ).
Under the assumptions P.1–P.6 for a mixture model with Norm-IFPP as mixing measure, we
have that

A-1

(8.1) P
(
M = m�|Y1, . . . , Yn

) → 1 a.s. L
(
Y |P �),

where m� is the true number of components.
A-2

(8.2) P
(
P ∈ Ḡ(θ) : W1

(
P,P �) � (logn/n)1/2|Y1, . . . , Yn

) → 1

in L(Y |P �)-probability,

where Ḡ(θ) denotes the space of all discrete measures including those with countably infinite
support on �.

PROOF. See Supplementary Material Appendix C.6. �

Result A-1 has been proved by [40], while A-2 is an extension of a result in [23]. The
Theorem provides further support for employing finite mixtures when the number of mixture
components is unknown and object of inference. Nevertheless, the Bayesian nonparametric
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approach is appealing especially from a computational point of view when there are many
components with small probabilities.

We conclude this section with a final consideration. When the true mixing distribution P �

has infinite support points, consistency results are available for the case of Dirichlet Process
location mixtures (see Theorem 6 in [39]). Our conjecture is that similar results hold for the
class of Norm-IFPP. To this end, we would need to prove that the assumptions in Theorem 2
in [39] hold. Furthermore, we need to show that the prior is fairly diffused on the space
of discrete distributions. This latter property implies that there exists a lower bound for the
probability that the Wasserstein distance between the process P ∼ Norm-IFPP and the true
P � is small. Lemma 5 in [39] proves this property for the infinite Dirichlet process and
Lemma 4.3 in [23] for the finite Dirichlet process with γ depending on M . For models beyond
location mixture, we believe the question remains open and this is object of current research.

9. Galaxy data. We illustrate our model using the Galaxy dataset [48], which offers a
standard benchmark for mixture models. It contains n = 82 measurements on velocities of
different galaxies from six well-separated conic sections of space. Values are expressed in
km/s, scaled by a factor of 10−3. We fit Model (6.1), using a Gaussian density N (μ,σ 2) on
R as f (y | τ), τ = (μ,σ 2). We specify the following prior p0(μ,σ 2) = N (μ;m0, σ

2/κ0) ×
Inv-gamma(σ 2;ν0/2, ν0/2σ 2

0 ). Here Inv-Gamma(a, b) denotes the Inverse-Gamma distribu-
tion with mean b/(a − 1) (if a > 1). We set m0 = x̄n = 20.8315, κ0 = 0.01, ν0 = 4, σ 2

0 = 0.5
(see [10]). Finally, we assume a shifted Poisson(�) as prior on M and a Gamma(γ,1) as a
prior for Sm (i.e., a finite Dirichlet process as mixing distribution). We implement the con-
ditional algorithm described in Supplementary Material Appendix E.1 to perform posterior
inference, which offers an efficient alternative to the Reversible Jump. In particular, we focus
on density estimation and inference on the number of mixture components and clusters.

We fit the model with � and γ fixed, with the aim of comparing the performance of our
algorithm with the reversible jump sampler of [47] as implemented in the mixAK R-package
[32]. We set the prior hyperparamters for the model implemented in mixAK R-package in
such a way that their prior specification closely match ours, with the only difference that the
scale parameters in the Inverse Gamma prior is treated as random in mixAK, while for us it
is fixed.

Our conditional algorithm has been implemented in the R package AntMAN [4], with post
processing of the MCMC results in R. For each MCMC run, we have discarded the first
5000 iterations as burn-in and thinned every 10, obtaining a final sample size of 5000. We
have considered different scenarios, and in Figure 3 we show the predictive density with 95%
credible bounds for one of them.

First of all, we fix the hyperparameters γ and � in equation (2.1) in such a way that
the prior mean for the number of clusters is (A) E(k) = 1; (B) E(k) = 5; (C) E(k) = 10.
In order to compare the conditional algorithm with the Reversible Jump, we compute the
integrated autocorrelation time (IAC) and the effective sample size (ESS) for the number M

of components for the all combinations of hyper-parameters. Posterior results are summarised
in Table 1: it is evident that our algorithm outperforms the reversible jump in terms of both
the IAC and ESS. In the same table, we report as well the running times in seconds.

Note that, through an appropriate choice of (�,γ ), we are able to introduce in the model
a desired level of sparsity. In Figure 4, we report the posterior distribution of the number of
clusters (allocated components) for the same combinations of hyper-parameters in Table 1.
The results are in line with previous analyses of the same data (see, for instance, [22], Table 1
and Figure 5). It is clear that the posterior distribution of the number of clusters is robust to
the choice of hyper-parameters within each scenario (A, B and C), since the prior mean on
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FIG. 3. Density estimation for m0 = x̄n = 20.8315, κ0 = 0.01, ν0 = 4, σ 2
0 = 0.5. The hyperparameter settings

of the mixing distribution are specified in simulation scenario in D.1 corresponding to the optimal value of the
LPML index.

the number of allocated components is constant. To gain more insight, in Figure 5 we show
the posterior distribution of M(na), the number of unallocated components. We highlight:
(i) these posteriors are more concentrated on large number for large values of � (ii) for the
same value of � the level of sparsity increases for small values of γ (see variations within
columns). Large values of � and small values for γ favour a posterior distribution for M(na)

centred on large values. We conclude that � controls the number of unallocated clusters,
while γ controls degree of sparsity of the mixture. In Supplementary Material Appendix G,
we present further results obtained setting a prior on γ and �.

Finally, in Supplementary Material Appendix F an extensive simulation study is carried
out to compare the performance of the marginal algorithm for FDMM with the marginal
algorithm for the finite σ -Stable mixture process, as well as with the performance of the con-
ditional algorithm for the FDMM. Furthermore, in Section F.5, we investigate the robustness
of posterior inference with respect to different prior specifications on M .

TABLE 1
Posterior mean of M , integrated autocorrelation times ρ̂ and running time in seconds for the Marginal Gibbs

sampler (GS) in Supplementary Material Appendix E.1 and the Reversible Jump (RJ) MCMC implemented in the
R-package mixAK

GS RJ

(�,γ ) E(M|data) ESS IAC sec. E(M|data) ESS M IAC M sec.

A (100,2e−4) 102.96 4637.69 1.50 7.74 103.23 2.32 727.32 43.43
(10,2e−3) 13.69 4235.77 0.54 2.52 13.05 18.04 253.28 33.01
(1,10e−2) 4.19 913.42 2.70 1.64 4.17 230.76 11.80 33.36

B (100,1e−2) 103.49 4602.13 0.54 9.81 100.45 11.57 190.16 68.08
(10,0.143) 13.56 2166.03 1.31 2.58 15.27 301.55 8.21 72.46

(5,0.5) 8.63 1019.06 2.32 2.07 8.06 1034.58 2.30 67.08

C (1000,2.8e−3) 1001.07 5000.00 1.51 110.58 995.09 1.21 890.70 80.47
(100,3.2e−2) 101.48 4172.39 0.55 10.34 103.33 23.05 76.70 75.90

(10,1.8) 11.51 888.67 2.85 2.85 11.04 921.14 2.52 69.20
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FIG. 4. Posterior distribution of k for the three scenarios.

10. Population structure: Taita thrush data. In population genetics, population struc-
ture refers to the presence of systematic differences in genetic markers’ allele frequencies
between subpopulations due to variation in ancestry. This phenomenon arises from the bio-
geographical distribution of species, due to the fact that either natural populations occupy
a vast geographic area and cannot act as randomly mating or geographical barriers reduce
migration between different regions. Consequently population structure affects the dynamics
of alleles in populations and impacts the type of statical analysis to perform in many appli-
cations, for example, in genetic association studies. A variety of statistical approaches have
been proposed to infer population structure. Arguably the most widely used method is the
one proposed by [45] based on Bayesian mixture models and implemented in the software
STRUCTURE [46]. [45] assume that individuals come from one of M (fixed) subpopulations
and population membership and population specific allele frequencies are jointly estimated
from the data. Independent priors on the allelic profile parameters of each population are

FIG. 5. Posterior distribution of M(na) for the three scenarios.
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specified and posterior inference is performed through MCMC. In [45], the number of mix-
ture components is fixed and their method clusters individual in one of a fixed number of
populations. Determination of the number of populations in a sample is achieved using a
model selection criteria based on MCMC estimates of the log marginal probabilities of the
data and the Bayesian deviance information criterion, though it has been noted by [11] that
such estimates are highly sensitive to prior specifications regarding the relatedness of the
populations. To avoid such model selection, [25] propose a method for the analysis of popu-
lation structure based on a Dirichlet process mixture model and implemented in the software
Structurama [26], which does not require the specification of a fixed and finite M .

We now illustrate the performance of our method in a population structure problem, using
an empirical data set of n = 237 Taita thrushes kindly made available by Dr P. Galbusera.
A previous smaller version of these data [18] has been analysed by [45] and [25] as bench-
mark example. The Taita Hills in Kenya represent the northernmost part of the Eastern Arc
Mountains biodiversity hotspot of Kenya and Tanzania. They are isolated from other high-
lands by over 80 km of semiarid plains in either direction. During the last 200 years, indige-
nous forest cover in the Taita Hills has decreased by circa 98% and the critically endangered
Taita thrush, endemic to the Taita Hills, is currently restricted to the fragments of Mbololo,
Ngangao and Chawia [5]. These fragments are separated from each other by cultivated areas
and human settlements. Each bird was sampled at L = 6 microsatellite loci. The Taita thrush
is diploid, that is, has two sets of chromosomes and for each locus we have genotype data. At
locus l, we observe Jl unique alleles. The number of copies of allele j at locus l in individual
i is denoted by Yilj ∈ {0,1,2} and the number of copies of all alleles observed at locus l in

individual i is denoted by Yil = ∑Jl

j=1 Yilj . The allelic information for individual i at locus l

is contained in the vector Yil = (Yil1, Yil2, . . . , YilJl
), with the constrain

∑Jl

j=1 Yilj = 2. Given
M possible populations, let τmlj denote the frequency of allele j al locus l in population m,
let τml = (τml1, . . . , τmlJl

) be the vector of allele frequencies at locus l in population m and
let τm = (τm1, . . . , τmL). Finally, let ci ∈ {1, . . . ,M} be the allocation variable of bird i, that
is, ci = m if the bird comes from population m. Following [25], we assume that

f(yil|τml) = P(Yil = yil | τml, ci = m) ∝
Jl∏

j=1

τ
yilj

mlj , yilj ∈ 0,1,2.

We assume independence across loci, so that, if Yi = (Yi1, . . . , YiL) is the multidimensional
array of the allelic information at the L loci for individual i, we have

(10.1) f(yi | τm, ci = m) = P(Yi = yi | τm, ci = m) =
L∏

l=1

f(yil | τml).

We fit Model (2.1), with the sampling model defined in equation (10.1). The mixing measure
is a finite Dirichlet process as in Supplementary Material Appendix D.2.1, with the following
prior specification: M has a shifted Poisson prior distribution with parameter �, P0 is the con-
volution of L independent Dirichlet distributions with parameter 1, γ in the finite Dirichlet
process has a Gamma prior with parameter (0.1,0.1), � has a Gamma prior with parameter
(3/2,1/2). For the parameter γ we have specified a vague prior distribution, while the hyper-
parameters in the prior for � are chosen so that the prior mean is 3, corresponding to the three
geographical fragments, and the prior variance is large. We employ the conditional algorithm
described in Supplementary Material Appendix E to perform posterior inference. The mode
of the posterior distribution for k is at 3 (E(k | data) = 3, Var(k | data) = 0.03), as well as
the one of the posterior of M (E(M | data) = 3.12, Var(M | data) = 0.42). From Figure 6 it
is evident that the three clusters coincide with the three geographical fragments, except in
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FIG. 6. Posterior estimate of the clustering allocation: each colour correspond to a cluster. Note that he two
green thrushes have been captured in Ngangao, but have the genetic profile of the Mbololo birds. The opposite is
true for thrush B1441.

three cases where the birds appear to be out of the obvious clusters. This could be due to rare
migration events [18]. We have also fitted the same model using the marginal algorithm for
FDMM and for the σ -Stable mixture model. In the latter case the prior for σ is Uniform(0,1),
for a fairer comparison, as we specify a vague prior distribution on γ . The clustering results
and posterior inference on k and M are very similar, with the marginal algorithm for the
σ -Stable process approximately two times slower than the other two. Moreover, looking at
the the posterior distribution of the hyperparameters � of qM , γ for the Dirichlet prior and
σ for the σ -Stable process, we notice that the correlation between the hyper-parameters is
higher for the marginal algorithm for the FDMM and smallest for the σ -Stable. We find that
the Spearman’s correlation coefficient between � and γ is −0.47, and −0.19 for � and σ

(see Figure 7). High correlation between parameters deteriorates the mixing of the algorithm,
for instance, the effective sample size of � is equal to 2945 for the marginal algorithm for
FDMM, 3925 for the conditional algorithm for FDMM, 4006 for the marginal algorithm for
the σ -Stable.

An important goal of population structure analysis is not only to uncover the group struc-
ture of the observations, but also to identify variables that best distinguish the different pop-
ulations. The results could lead to a better understanding of the evolutionary patterns of pop-
ulation differentiation. To this end we would like to identify the microsatellite loci that most
influence the clustering structure. Variable selection for clustering is a challenging problem
since there is no observed response to inform the selection and the inclusion of unneces-
sary variables could complicate or mask the recovery of the clusters. As such there are few
contributions in the literature. Here we opt for a model choice method proposed by [20] in
the generalised linear model framework, which we adapt to our context. The approach of
[20] focuses on the predictive properties of a model and, employing the Kullback–Leibler
distance as discrepancy measure, aims to assess the relevance of some restriction on the pa-
rameter � (leading to a simpler model) with respect to a full model described by a density
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FIG. 7. Scatterplot between posterior samples of γ v.s. � for the finite Dirichlet process (right panel) and the
σ v.s. � for the σ -Stable (left panel). The samples are obtained in both cases from marginal algorithm.

f (y | θ). More in details, for each locus l, let Yl = (Y1l , . . . , Ynl), θil = τml if ci = m and
θl = (θ1l , . . . , θnl). Let f (yl | θl) be the full general mixture model:

(10.2) f (yl | θl) ∝
n∏

i=1

Jl∏
j=1

θ
yijl

ilj .

We define a model choice hypothesis H0 through a restriction on the parameter space, that is,
θl ∈ �0 ⊂ �, where �0 is the subset of the parameter space such that θilj = θ̃lj for each i. In
our application, H0 represents a fully parametric model for locus l. [20] define the projection
θ⊥
l of θl according to the Kullback–Leibler distance d to be the point in �0 that achieves the

infimum

d
{
f (· | θl), f

(· | θ⊥
l

)} = inf
θ̃l∈�0

d
{
f (· | θl), f (· | θ̃l)

}
,

where θ̃l = (θ̃l1, . . . , θ̃lJl
) and f (· | θ⊥

l ) is the projection of f (· | θl). Obviously small values
of d support H0. We opt for this approach because, instead of phrasing the problem in terms
of the classical dichotomy between null and alternative hypothesis, it interprets model choice
in terms of the approximation efficacy of a more parsimonious model, focusing on whether or
not θl is far away from the subspace �0. In Figure 8, we show the posterior distribution (under
the FDMM) of d{f (· | θl), f (· | θ⊥

l )} for each locus l. It is evident that locus PC3 contributes
the least to the clustering structure as the distance is concentrated near zero, implying the
its allele frequencies are similar across Taita thrush populations. The other loci, in particular
PAT43, present allele frequency differences among the three groups, which in our case well
correspond to geographical locations.

11. Conclusions. In this work, we contribute to the growing understanding of mixture
models by providing an unifying framework which encompasses both finite and infinite mix-
tures. The construction we propose differs from this previous attempts (see [34, 35]), as it
is based on the normalization of a point process, which is a standard trick in Bayesian non-
parametrics. We introduce the Norm-IFFP prior process and we provide theoretical results
characterizing the induced prior on the partition of the observations and the posterior dis-
tribution of this process. This construction is very general, allowing the definition of prior
processes beyond the finite Dirichlet mixture model. We give consistency results for both the
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FIG. 8. Posterior distribution of the KL divergence for each microsatellite locus.

number of components and of clusters. Our framework allows for efficient computations (in-
herited from the nonparametric construction) and for data driven estimation of both number
of clusters and components, as well as of any functional of interest.

Acknowledgement. We would like to thank Dr Peter Galbusera at the Royal Zoological
Society of Antwerp for sharing the enriched Taita Thrush Dataset. We are also grateful to
Judith Rousseau, Igor Prünster and XuanLong Nguyen for their advice.

Maria de Iorio is also affiliated to the Department of Statistical Science at University Col-
lege London (UK). Raffaele Argiento is also affiliated to Collegio Carlo Alberto Torino (IT).

Funding. Dr Argiento is grateful to National University of Singapore for the funding
provided.

SUPPLEMENTARY MATERIAL

Supplement to “Is infinity that far? A Bayesian nonparametric perspective of finite
mixture models.” (DOI: 10.1214/22-AOS2201SUPP; .pdf). We provide an extensive simula-
tions study, further results for the Galaxy dataset, important examples, details of the MCMC
algorithms and proofs of the theorems in the main manuscript.
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