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Abstract:  

Background. The population-level summary measure is a key component of the estimand for 

clinical trials with time-to-event outcomes. This is particularly the case for non-inferiority 

trials, because different summary measures imply different null hypotheses. Most trials are 

designed using the hazard ratio (HR) as summary measure, but recent studies suggested that 

the difference in restricted mean survival time (DRMST) might be more powerful, at least in 

certain situations. In a recent letter, we conjectured that differences between summary 

measures can be explained using the concept of the non-inferiority frontier and that for a fair 

simulation comparison of summary measures, the same analysis methods, making the same 

assumptions, should be used to estimate different summary measures. The aim of this paper is 

to make such a comparison between three commonly used summary measures: HR, DRMST 

and difference in survival (DS) at a fixed time point. Additionally, we aim to investigate the 

impact of using an analysis method that assumes proportional hazards on the operating 

characteristics of a trial designed with any of the three summary measures.  

Methods. We conduct a simulation study in the proportional hazards setting. We estimate 

DRMST and DS non-parametrically, without assuming proportional hazards. We also 

estimate all three measures parametrically, using flexible survival regression, under the 

proportional hazards assumption. 

Results. Comparing HR assuming proportional hazards with the other summary measures not 

assuming proportional hazards, relative performance varies substantially depending on the 

specific scenario. Fixing the summary measure, assuming proportional hazards always leads 

to substantial power gains compared to using non-parametric methods. Fixing the modelling 



3 

 

approach to flexible parametric regression assuming proportional hazards, DRMST is most 

often the most powerful summary measure among those considered.  

Conclusions. When the hazards are likely to be approximately proportional, reflecting this in 

the analysis can lead to large gains in power for DRMST and DS. The choice of summary 

measure for a non-inferiority trial with time-to-event outcomes should be made on clinical 

grounds; when any of the three summary measures discussed here is equally justifiable, 

DRMST is most often associated with the most powerful test, on the condition that it is 

estimated under proportional hazards.  

1. Background 

Randomised clinical trials are often designed using a time-to-event variable as primary 

outcome, especially in disease areas (e.g. cancer1) where interest is mainly in estimating the 

effect of treatment on survival. Using a time-to-event outcome naturally allows us to account 

for censoring2 and is more efficient than using simple binary outcomes3.  

When designing a trial, it is important to carefully define the estimand(s) of interest. In the 

framework recently proposed by ICH4, one of the building blocks in the definition of an 

estimand is the population-level summary measure used to describe results. For binary 

outcomes, commonly-used summary measures include the risk difference (absolute), risk 

ratio and odds ratio (both relative)5. By contrast, for time-to-event outcomes, the vast 

majority of clinical trials are designed using the hazard ratio (relative) as the summary 

measure1.  

The hazard ratio is defined as the ratio of hazard rates between the treatment and control 

arms. Its interpretation is clear under the assumption that the hazards in the two groups are 
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proportional over time. However, this assumption is often not reasonable, for example when 

the hazards in two groups only differ at early, or later, stages of follow-up.  

When interest is in an absolute contrast between the arms or when the proportional hazards 

assumption does not hold, alternative summary measures might be preferable. Promising 

summary measures include Difference in Restricted Mean Survival Time (DRMST)6, defined 

as the difference in the mean survival times in the two groups up to a fixed time horizon τ, or 

the difference in survival proportion at time τ (DS).  

In non-inferiority trials, rather than testing whether an active treatment is better than a control 

one, we aim to show that it is not worse by a certain amount (known as the non-inferiority 

margin) or more; given ancillary advantages of this active treatment, this is then considered 

enough to recommend its use. The margin is defined on the scale of the chosen summary 

measure.  

In superiority trials, if assuming proportional hazards, the null hypotheses for different 

summary measures are the same across the event rate range, so choice of summary measure 

does not affect power. However, this is not true for non-inferiority trials. As a consequence, a 

test based on DRMST is often more powerful for the same sample size than one based on the 

hazard ratio. Uno et al7 suggested this might always be the case, providing examples, but 

without matching the margins for different summary measures, i.e. without ensuring the 

smallest non-tolerable event risk in the research arm was the same between different 

summary measures in the comparison. Weir and Trinquart8 subsequently matched the 

margins, showing similar results but finding some situations where hazard ratios might be 

preferable. Freidlin, Hu and Korn9 later investigated situations where a test based on the 

hazard ratio is more powerful. In Quartagno et al10, we explained these results using the 
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concept of Non-Inferiority frontiers11, i.e. curves that show the non-inferiority regions 

defined by the null when plotting research vs. control event rates, rather than focusing on the 

point margin only. We hypothesized that, because of the different null hypotheses, a test of 

non-inferiority based on DRMST would always be at least as powerful as a test based on HR, 

provided we estimate the two summary measures using the same model, and hence under 

identical assumptions. That is, when the HR appears to be more powerful than DRMST, the 

comparison is confounded by the two summary measures being based on different models 

used for estimation.  

The aim of this paper is two-fold: first, we introduce and evaluate a method of estimating 

DRMST and DS under the proportional hazards assumption using flexible parametric 

survival models, comparing the power of this estimation method to that of standard non-

parametric methods. Second, we test through simulation the above hypothesis about the 

superior power of DRMST, by estimating different summary measures under the same 

flexible parametric survival model and comparing with HR in terms of power, type I error 

and interpretation of results. We include simulations for superiority trials to show that power 

gains are unique to the non-inferiority setting. 

 

2. Methods 

 

 

Suppose we wish to design a trial to test whether treatment A is superior/non-inferior to 

control C in terms of a time-to-event primary outcome. This might be, for example, time to 

death, or time to disease progression. 
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We define SC(t) as the probability that an individual in the control group survives up to time t, 

and SA(t) the corresponding probability for an individual in the research treatment arm. 

Similarly, we define hC(t) and hA(t) as the hazard rates at time t for an individual in the control 

and research arms respectively.  

2.1. Population-level summary measures 

What population-level summary measure could we use to compare the two arms? Here we 

describe three options, and later we explain how these can be estimated.  

Hazard ratio (HR). This is the most common measure used in trials. It is defined as the ratio 

of the two hazard rates: 

𝐻𝑅 =
ℎ𝐴(𝑡)

ℎ𝐶(𝑡)
 

This is easily interpretable under the assumption that the two hazards are proportional, and 

hence that the chance of experiencing an event in the research arm at a specific time is always 

HR times that in the control arm, whatever the time. The interpretation under non-

proportional hazards is less straightforward and generally requires some definition of average 

hazard ratio12,13.  

The hazard ratio is an ideal summary measure when (i) we are interested in a relative 

difference measure and (ii) the hazards are likely to be approximately proportional. When 

either condition does not hold, other summary measures may be preferable.  

Difference in Restricted Mean Survival Time (DRMST). This is defined as the expected 

difference in survival time between the research and control groups, ignoring survival after a 

certain time τ. Algebraically, this is the difference between the integrals of the survival 

functions for the two groups within a fixed time horizon τ: 
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𝐷𝑅𝑀𝑆𝑇(τ) = ∫ 𝑆𝐴(𝑡)𝑑𝑡
τ

0

− ∫ 𝑆𝐶(𝑡)𝑑𝑡
τ

0

 

It corresponds to the difference between the areas under the two survival curves. One 

advantage of DRMST is that its interpretation does not rely on the proportional hazards 

assumption. Another one is that it accounts for survival at each time point within the selected 

interval [0, τ], rather than just focusing on survival at time τ. However, this can also be a 

disadvantage in situations where interest actually lies in survival at time τ only and early 

differences are not considered important, or conversely whenever any difference after τ 

would still be relevant. Furthermore, the choice of τ (required) is an awkward complication 

compared with HR. 

DRMST is a a measure of absolute difference between the arms; it can be estimated in 

various ways, and this might be using a proportional hazards model, but does not lose its 

interpretation in the absence of proportional hazards.  

Difference in Survival (DS). A common critique of DRMST is that it places too much 

weight on early differences in survival. In certain disease areas, only the final survival 

probability matters. An alternative summary measure is the difference in the survival 

proportions at a specified time τ: 

𝐷𝑆(τ) = 𝑆𝐴(τ) − 𝑆𝐶(τ) 

DS is an absolute summary measure, relevant in the presence or absence of proportional 

hazards.  

DS is a good summary measure when interest lies only in survival by a certain time point, so 

that whether events happened earlier or later does not matter as long as they happened before 
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that time point. As with DRMST, this implies that we are not interested in what happens after 

time τ. 

2.2. Estimation methods 

Non-parametric methods. The most famous non-parametric method is the Kaplan-–Meier 

method for the estimation of the survival curves14. This can be used to estimate both DRMST 

and DS. In the absence of censoring, DS could also be estimated by methods that do not 

estimate the whole survival curve, but only dichotomise survival at the pre-defined time 

point.  

While non-parametric methods for the estimation of hazard ratios have been developed15, 

they are not commonly used in practice16. 

Semi-parametric methods. These, and specifically the Cox proportional hazards model, are 

by far the most used in clinical trials. They assume a parametric form for the covariate effect, 

but leave the baseline hazard distribution unspecified. While this is an advantage when the 

goal is to estimate the HR, it is not possible to estimate DRMST and DS with associated 

confidence intervals without resorting to bootstrap. 

Fully-parametric methods. These methods assume a parametric model for both parts of the 

hazard function. Common options include exponential and Weibull functions for the baseline 

hazard ℎ0(𝑡). However, in the absence of prior knowledge about the likely distribution of the 

baseline hazards, flexible methods based on estimation with spline functions17 might be 

preferable. With flexible parametric survival models, it is straightforward to estimate HR, but 

even the estimation of DRMST and DS under proportional hazards with the associated 

confidence intervals only requires simple post-processing of the model parameter estimates. 

See appendix for details.  
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Choice of methods. In clinical trials, most often non-parametric methods are used to estimate 

DRMST and DS, while HR is almost always estimated using semi-parametric methods (i.e. 

the Cox proportional-hazards model). In this paper, though, we additionally use fully-

parametric models to estimate all summary measures, in order to make a fairer comparison 

between them by using the same model. While using flexible fully-parametric models to 

estimate HR is not expected to lead to noticeable differences compared to Cox models18, we 

hypothesise that using the same models to estimate DRMST and DS under proportional 

hazards could lead to substantial power gains compared to standard non-parametric methods.  

2.3. Non-inferiority trials 

The choice of population-level summary measure is particularly important in non-inferiority 

trials. In such trials, the non-inferiority margin has to be chosen, and this is expressed as a 

value of the population-level summary measure of treatment effect that would be considered 

non-tolerable even in presence of secondary advantages of the research treatment. 

The choice of summary measure is more important than in superiority trials because different 

measures imply different null hypotheses10 (see supplementary material for further details).  

Despite this issue, it is possible to match margins between different summary measure by 

using the expected values, though the null hypotheses remain different.  

2.4. Simulation study 

We now describe a simulation study to investigate our research questions19. 

Aim. The aims of this simulation study are:  

1) To compare different summary measures when analysing under the proportional 

hazards assumption.  
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2) To compare the impact of assuming proportional hazards in the estimation method on 

the properties of the different summary measures; 

Data generating mechanisms. We use the data generating mechanisms described by Freidlin 

et al9. Participants are recruited uniformly over 3 years and are followed until the end of 6 

years from start of trial recruitment. The baseline hazard is constant, so that survival times 

follow an exponential distribution, and the scale parameter is chosen to lead to 3-year 

survival of 20%, 60% or 90%. Data are generated from the null and alternative hypothesis of 

both superiority trials with varying effect magnitude and non-inferiority trials with varying 

margins. Sample sizes are chosen to lead to commonly used power levels, i.e. greater than 

80%, when designing the trial using hazard ratio. Precise parameter values are listed in 

Tables 1 and 2.  

For all scenarios, we simulate 10,000 repetitions, which should give a Monte Carlo standard 

error around 0.15% for type I error and below 0.5% for power across scenarios.  

Estimands. We assume that all patients are followed up to the end of 6 years of the study, 

and adherence to randomized group is perfect. Hence our comparison focuses on the 

population-level summary measure. We compare HR, DRSMT at 3 years and DS at 3 years.  

Methods. We estimate all summary measures after fitting a flexible parametric survival 

model under proportional hazards, with two internal spline knots placed at the 33% and 67% 

quantiles of the uncensored survival times. We fit this flexible parametric model on the time-

since-randomisation scale, either using all available information or censoring after 3 years. 

These two options correspond to the ‘staggered’ and ‘non-staggered’ scenarios in Freidlin et 

al9 and they are both included to show how part of the expected power gain with flexible 

parametric models comes from the fact that, assuming proportional hazards, data after 3 years 

would inform estimation through the proportional hazards assumption. Additionally, we 
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estimate DRMST and DS non-parametrically: for the former, we use the Kaplan-–Meier 

(KM) method with the Greenwood variance formula20; for the latter we compute the 

difference in proportions at 3 years and a Wald confidence interval. Note that non-parametric 

results are unaffected by inclusion of data beyond 3 years, because of the lack of 

distributional assumptions.  

Performance Measures. We focus on power and type I error.  

Implementation. For a handful of repetitions, flexible parametric models experienced 

convergence issues. Because our main interest is in comparing summary measures, rather 

than methods, we decided to simply discard and replace such repetitions. Of note, since this 

happened in seven repetitions out of approximately 300,000 across scenarios, it is unlikely to 

have had any impact even in the comparison of different methods.  

3. Results 

3.1. Simulation study 

Figures 1 and 2 show the results in terms of type I error and power respectively, for 

superiority trials and non-inferiority trials. Corresponding numerical results are in Tables a 

and b in the additional online material for superiority trials (scenarios 1-12) and in Tables 1 

and 2 for non-inferiority trials (scenarios 13-24).  

Type I error evaluation. Type I error is controlled in most scenarios and methods, although 

there are a few scenarios where the delta method approximation of the standard error used for 

DRMST and DS leads to slight inflation (Figure 1). This is most likely due to limited sample 

size, as the inflation disappears with larger samples. We propose possible solutions to this in 

the discussion section.  
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Comparison of summary measures. When using standard methods (i.e. non-parametric 

models for DRMST and DS and proportional hazards models for HR), the relative 

performance of DRMST and HR varies with scenarios as described in Freidlin et al9, while 

DRMST is more powerful than DS only for 20% survival (Table 2, scenarios 21-24). 

However, if we compare DRMST, DS and HR under the same assumptions, i.e. estimating 

them with flexible proportional hazards parametric models using either data up to 3 years or 

all the available data (Figure 2), as expected from theory, power is always similar for 

superiority trials (scenarios 1-12). In non-inferiority trials (scenarios 13-24), DRMST fares 

much better in some scenarios, slightly better in some others, and marginally worse in 

scenario 21.  

When comparing DS with DRMST and HR, conclusions depend on the specific scenario, but 

DRMST is always at least as powerful as DS, and is more powerful in several NI scenarios 

(Figure 2).  

Impact of proportional hazards assumption. Estimating DRMST and DS using flexible 

parametric models under the proportional hazards assumption always leads to gains in power 

compared to non-parametric estimation. Using all the data, rather than censoring at 3 years, 

leads to another increase in power, even for estimands defined at 3 years, like DRMST and 

DS. This is because, under the proportional hazards assumption, even later events can help 

learn more about earlier time points.  

3.2. The PATCH clinical trial 

PATCH (ISRCTN70406718) is a non-inferiority randomised controlled trial comparing two 

different strategies of androgen suppression in men with prostate cancer21. Standard therapies 

(LHRH analogue injections) are effective at lowering testosterone and controlling cancer,  
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but can cause serious long-term side effects, particularly osteoporosis. Transdermal oestradiol 

patches are an alternative approach with potentially a better side effect profile22.  

Patients with locally advanced but non-metastatic disease and those with metastatic disease 

were originally evaluated as a single group within the trial. However, with evolving standards 

of care, expected outcomes for these different groups of patients have diverged. 

Consequently, the trial was recently divided into two separate non-inferiority trials: 

1) Non-metastatic disease trial: The primary outcome measure is metastasis-free 

survival, and the trial is 85% powered to detect non-inferiority within a non-

inferiority margin on the hazard ratio scale of 1.27, with a 5% one-sided significance 

level. This assumes that 3-year metastasis-free survival would be 83% in the control 

arm; it requires around 510 events, out of a target sample size of 1,345 patients.  

2) Metastatic disease trial: The primary outcome measure is overall survival, and the 

trial is 80% powered to detect non-inferiority within a margin of 1.19 on the hazard 

ratio scale, with a 5% one-sided significance level. This is under the assumption that 

3-year overall survival in the control arm will be around 66%; it requires around 822 

deaths, out of a target sample size 1,500.  

Both trials have allocation ratio 1.08:1, because an original phase II design with 2:1 

allocation ratio was expanded seamlessly to a larger phase III trial with 1:1 allocation ratio. 

The hazard ratio margin was originally justified based on an absolute DS; for example, for 

non-metastatic disease the margin was set as a difference in survival at 3 years of 4 

percentage points and the corresponding hazard ratio margin was back-calculated from the 

control arm rate. The corresponding DRMST margin with 𝜏=3 years would have been equally 

justifiable. To match the margins used for the hazard ratio, we calculated a DRMST margin 
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of 0.0658 and a DS margin of 4.00 percentage points for non-metastatic patients, and a 

DRMST margin of 0.0879 and a DS margin of 5.00 percentage points for metastatic patients.  

We generated data similar to the simulation study, but using the trial design parameters, and 

compared power for both cohorts to detect non-inferiority using each of the three summary 

measures, again using parametric and non-parametric methods. 

Table 3 shows the results. Assuming proportional hazards leads to greater power and should 

therefore be preferred, since hazards are expected to be approximately proportional in the 

PATCH trial. In terms of summary measures, DRMST seems preferable, leading to power 6 

and 4.5 percentage points higher in the two cohorts.  

 

4. Discussion 

In this paper we have compared three population-level summary measures for clinical trials 

with time-to-event outcomes when analysed under a correct proportional hazards assumption.  

When the hazards are proportional, analyzing the data with a model that reflects their 

proportionality leads to big improvement in power, compared to the standard approach of 

estimating DRMST and DS non-parametrically.  

When using standard methods for estimation, i.e. Cox models for HR and non-parametric 

methods for DRMST and DS, the relative performance of summary measures varies 

substantially depending on the design parameters, as previously observed9. However, if using 

the methods proposed here, which base the estimation of all summary measures on fitting the 

same flexible parametric model under proportional hazards, we can conclude that: 
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- For superiority trials, the null hypotheses correspond for all three summary measures, 

and therefore testing on any summary measure leads to similar power levels. 

- For non-inferiority trials, DRMST assuming proportional hazards is almost always at 

least as powerful as – and often more powerful than – HR, except in rare cases, e.g. in 

Scenario 21, where survival probability at 𝜏 approaches zero and the non-inferiority 

margin is large. The relative performance for DS depends on design parameters.  

Thus, some of the apparent differences between HR and DRMST observed in Freidlin et al9 

were due to the different modelling assumptions of the estimators. For readers interested in 

the reasons for these results, the supplementary material includes a short discussion using our 

recently proposed graphical tool, the non-inferiority frontier10,11.  

In this article, we have assumed proportional hazards throughout. Non-proportionality of 

hazards may potentially have huge impact in terms of power and/or type I error. Therefore, 

future work will investigate this and possibly derive specific methods to address it. For 

example, weighting could be used to get an unbiased estimate of the average HR23 under non-

proportionality of the hazards13, and the same approach could be investigated in the future for 

other summary measures. At present though, for DRMST and DS, non-parametric methods 

should be preferred when the hazards are not expected to be proportional.  

The delta method that we used for estimating standard errors for DRMST and DS from the 

flexible parametric model relies on asymptotic arguments and can hence be poorly calibrated 

with smaller sample sizes. Preliminary simulations suggest that a non-parametric bootstrap 

strategy might lead to better control of type I error; however, while this might be preferable 

for a single analysis, it was too computationally intensive for this simulation study. Further, 

the non-parametric bootstrap itself relies on asymptotic arguments so would need to be 
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studied further. Importantly, while type 1 error might be wrongly controlled in some of our 

scenarios, this did not appear to have the potential to have any impact on the conclusions of 

our study in terms of power.  

While most trials that target the HR use Cox models, we used flexible parametric models here 

for comparability of models across summary measures, since we could not find an analytic 

way to estimate standard errors around DRMST based on Cox model estimates without 

resorting to bootstrap. Nevertheless, results of separate simulations (not shown) confirm18 

that differences between Cox and flexible parametric models are minimal. Relatedly, since 

both Cox and flexible parametric methods can handle various types of baseline hazard 

function, while data were always generated from exponential models in the proportional 

hazards scenarios of our simulations, we expect results would not differ under different 

baseline hazard distributions.  

4.1. Recommendations  

1. The choice between different summary measures should be driven first by clinical 

considerations. Power considerations should only determine choice of summary 

measure among summary measures that are acceptable clinically.  

2. All assumptions and analysis methods being equal, it is advisable to choose the most 

powerful summary measure. This is often the DRMST, provided it is estimated under 

proportional hazards.  

3. Whenever the proportional hazards assumption is likely to hold, reflecting it in the 

analysis is recommended in order to maximise power. 
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4.2. Conclusions 

Both the choice of summary measure and analysis method are very important for clinical 

trials designed with time-to-event outcomes, particularly for non-inferiority trials. Simply 

relying on the hazard ratio estimated with a Cox model as a default should be discouraged. 

Clinical considerations should come first to choose a meaningful summary measure. If 

clinical considerations are equal and the hazards are likely to be proportional, then DRMST 

estimated under proportional hazards seems preferable, since it nearly always has power 

better or the same as HR or DS. 
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Scenario Design parameters Type I error 

S(3) 
control 

Sample 
size 

Non-inferiority margin Non-parametric Flexible parametric under PH 
using data to 3 years 

Flexible parametric under PH 
using all data 

HR DRMST(3) DS(3) DRMST(3)  DS(3)  HR DRMST(3) DS(3)  HR DRMST(3)  DS(3) 

13 90% 250 2 0.143 9% 2.84% 2.04% 2.63% 3.60% 2.69% 2.55% 4.02% 2.78% 

14 90% 450 1.75 0.108 7% 2.95% 2.11% 2.73% 3.32% 2.77% 2.59% 3.58% 2.83% 

15 90% 1000 1.5 0.073 5% 2.43% 2.03% 2.38% 2.61% 2.46% 2.63% 3.12% 2.79% 

16 90% 3750 1.25 0.037 2% 2.53% 2.30% 2.53% 2.58% 2.52% 2.45% 2.84% 2.68% 

17 60% 75 2 0.469 24% 2.39% 1.76% 2.49% 2.72% 2.32% 2.36% 2.92% 2.23% 

18 60% 125 1.75 0.366 19% 2.51% 2.01% 2.72% 3.00% 2.64% 2.61% 2.81% 2.41% 

19 60% 250 1.5 0.253 14% 2.51% 2.13% 2.84% 2.75% 2.60% 2.65% 2.65% 2.52% 

20 60% 1000 1.25 0.132 7% 2.51% 2.28% 2.47% 2.47% 2.48% 2.62% 2.56% 2.53% 

21 20% 50 2 0.596 16% 2.45% 1.98% 2.31% 2.36% 5.44% 2.28% 2.30% 5.13% 

22 20% 75 1.75 0.490 14% 2.49% 1.97% 2.50% 2.44% 4.15% 2.56% 2.50% 3.93% 

23 20% 150 1.5 0.360 11% 2.65% 1.88% 2.61% 2.58% 3.40% 2.53% 2.58% 3.13% 

24 20% 450 1.25 0.199 7% 2.62% 2.02% 2.60% 2.61% 2.71% 2.51% 2.50% 2.64% 
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Table 1: Comparison of type I error rates for tests based on different summary measures in proportional hazards non-inferiority scenarios. Monte Carlo standard 

errors can be computed as √
𝒑(𝟏−𝒑)

𝒏
, and are generally in the order of 0.15%. Initialisms: DRMST(3) = Difference in Restricted Mean Survival Time to 3 years, DS(3) = 

Difference in 3-year Survival probability, HR = Hazard Ratio, PH = Proportional Hazards, S(3) = 3-year Survival probability. 
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 Design parameters 

 
Power 

 
  

S(3) 
cont
rol 

Sample 
size 

Non-inferiority margins Non-Parametric 
Flexible parametric under PH 

using data to 3 years 
Flexible parametric under PH 

using all data 

Scenario HR DRMST(3) DS(3) DRMST(3)  DS(3)  HR DRMST(3) DS(3)  HR DRMST(3)  DS(3) 

13 90% 250 2 0.143 9% 85.0% 89.6% 69.0% 93.7%* 91.9% 83.5% 98.2%* 97.8% 

14 90% 450 1.75 0.108 7% 86.1% 91.0% 75.1% 93.7%* 92.5% 88.9% 98.5%* 98.2% 

15 90% 1000 1.5 0.073 5% 85.6% 92.2% 81.3% 93.7% 93.2% 92.8% 98.5%* 98.3% 

16 90% 3750 1.25 0.037 2% 83.8% 91.3% 85.8% 92.3% 91.9% 95.7% 98.3% 98.2% 

17 60% 75 2 0.469 24% 84.8% 82.1% 75.6% 92.5% 85.9% 85.9% 97.2% 94.0% 

18 60% 125 1.75 0.366 19% 84.2% 82.7% 78.7% 91.6%* 86.8% 89.1% 97.0% 94.4% 

19 60% 250 1.5 0.253 14% 83.5% 85.2% 81.5% 90.6% 87.6% 91.0% 96.6% 95.0% 

20 60% 1000 1.25 0.132 7% 86.7% 90.3% 88.8% 92.8% 91.8% 95.4% 97.4% 96.9% 

21 20% 50 2 0.596 16% 81.9% 48.7% 87.0% 86.0% 62.0%* 90.2% 89.4% 66.6%* 

22 20% 75 1.75 0.490 14% 82.0% 54.2% 85.8% 85.7% 66.9%* 89.7% 89.5% 71.5%* 

23 20% 150 1.5 0.360 11% 84.8% 61.6% 88.1% 88.4% 75.7%* 91.5% 91.5% 80.5%* 

24 20% 450 1.25 0.199 7% 82.0% 67.7% 85.0% 85.4% 79.3% 89.6% 89.9% 84.2% 
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Table 2: Comparison of power for tests based on different summary measures in proportional hazards non-inferiority scenarios. Monte Carlo standard errors can 

be computed as √
𝒑(𝟏−𝒑)

𝒏
, and are generally in the order of 0.3-0.4%.  *= scenario where type I error was >3%. Initialisms: DRMST = Difference in Restricted Mean 

Survival Time, DS(3) = Difference in 3-year Survival probability, HR = Hazard Ratio, PH = Proportional Hazards, S(3) = 3-year Survival probability. 
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Table 3: Power of the 2 cohorts in the PATCH trial using different summary measures to define the margin, and analysing the trial either non-parametrically or 
parametrically using flexible parametric survival models under proportional hazards. Initialisms: DRMST = Difference in Restricted Mean Survival Time, DS = 
Difference in 3-year Survival probability, HR = Hazard Ratio, KM = Kaplan-Meier, MFS = Metastatis-Free Survival, NI = Non-Inferiority, OS = Overall Survival, PH = 

Proportional Hazards. 

 

 

  Design parameters Power 

 
  

S(3) 
cont
rol 

Sample 
size 

(Total) 

Non-inferiority margins Non-Parametric 
Flexible parametric under PH 

using all data 

Scenario HR DRMST(3) DS(3) DRMST(3)  DS(3)  HR DRMST(3) DS(3)  

13 83% 1345 1.27 0.0658 4% 55.4% 60.6% 85.6% 91.6% 89.8% 

14 66% 1500 1.19 0.0879 5% 57.6% 62.9% 79.4% 83.9% 82.6% 
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Figure 1: Type I error for different methods across scenarios. The nominal level is 2.5%. In the legend DRMST = Difference in Restricted Mean Survival Time, DS = 
Difference in 3-year Survival probability, HR = Hazard Ratio, Non-par = Non-parametric analysis method, Flex = Flexible fully-parametric survival model under 
proportional hazards, all = using all data, up to 3 = using data to 3 years. 
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Figure 2: Power of different flexible parametric models under proportional hazards across scenarios, either using data up to 3 years only (left panel) or all the data 
(right panel). Initialisms: DRMST = Difference in Restricted Mean Survival Time, DS = Difference in 3-year Survival probability, HR = Hazard Ratio. 


