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Abstract— Providing imaging during interventional treat-
ments of cardiovascular diseases is challenging. Magnetic Res-
onance Imaging (MRI) has gained popularity as it is radiation-
free and returns high resolution of soft tissue. However,
the clinician has limited access to the patient, e.g., to their
femoral artery, within the MRI scanner to accurately guide
and manipulate an MR-compatible catheter. At the same time,
communication will need to be maintained with a clinician,
located in a separate control room, to provide the most
appropriate image to the screen inside the MRI room. Hence,
there is scope to explore the feasibility of how autonomous
catheterization robots could support the steering of catheters
along trajectories inside complex vessel anatomies.

In this paper, we present a Learning from Demonstration
based Gaussian Mixture Model for a robot trajectory optimi-
sation during pulmonary artery catheterization. The optimisa-
tion algorithm is integrated into a 2 Degree-of-Freedom MR-
compatible interventional robot allowing for continuous and si-
multaneous translation and rotation. Our methodology achieves
autonomous navigation of the catheter tip from the inferior
vena cava, through the right atrium and the right ventricle
into the pulmonary artery where an interventions is performed.
Our results show that our MR-compatible robot can follow
an advancement trajectory generated by our Learning from
Demonstration algorithm. Looking at the overall duration of the
intervention, it can be concluded that procedures performed by
the robot (teleoperated or autonomously) required significantly
less time compared to manual hand-held procedures.

I. INTRODUCTION

Cardiovascular diseases (CVDs) are currently responsible
for approximately 19.1 million deaths worldwide each year,
accounting for approximately 32% of global deaths [1].
CVDs have become the leading cause of death worldwide,
including arrhythmias, aortic aneurysms and coronary artery
diseases [1]. Cardiac catheterization is becoming increasingly
important in the diagnosis and treatment of CVD. During
catheterization, a thin tube is inserted into the patient’s
vasculature using some form of vascular access e.g., through
a sheath in the femoral artery or vein [2]. A vital aspect of
catheterization is visual feedback, conventionally obtained
by X-ray fluoroscopy, which is required to steer and guide
the catheter tip to the target position [3].
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Though X-ray based cardiac catheterization is ubiquitous,
this imaging modality exposes both patients and clinicians
to ionizing radiation, resulting in a significant cancer risk.
In addition, X-ray provides poor soft tissue contrast that
can make some procedures more difficult. The last 20 years
has seen Magnetic Resonance Imaging (MRI) becoming
increasingly used for real-time guidance for medical inter-
ventions, as it provides high quality radiation free images.
This includes MR guided cardiac catheterization, which is
now a clinical routine in some centers. However, there are
some disadvantages of MRI, particularly the limited access
to the patient, which makes catheter manipulation more
difficult [5]. To overcome this challenge, as well as the dif-
ficult communication in the MRI environment, teleoperated
robotic systems have been developed. For instance, Kundrat
et al. designed an MR-compatible pneumatic endovascular
robotic manipulation platform that mimics the clinician’s
movements for translation and rotation of an Electrophys-
iology (EP) catheter. This platform provides intravascular
haptic feedback [6], an important aspect clinical catheter-
ization. Tavallaei et al. proposed a 2-Degree-of-Freedom
(DoF) MR-compatible catheter navigation system for cardiac
catheterization based on USMs, with a master-slave structure
designed to allow accurate catheter navigation [7], [8].

Automation has been introduced for interventional and
surgical robotic devices with the aim for the robot to execute
tasks autonomously [9]. For instance, Calinon et al. proposed
a machine learning framework for extracting relevant fea-
tures for task presentation, using Gaussian Mixture Models
(GMM) and its regression and enabling the computation
of optimal trajectories for surgical tasks [10]. Tsai et al.
designed a robot for autonomous operation for suturing in
a restricted space, enabling autonomous surgery through
algorithms from human-robot interaction and reinforcement
learning [11], [12]. Another example includes the work by
Chi et al., who applied reinforcement learning and GMM to a
catheterization robot and achieved trajectory optimisation for
aortic interventions, improving the success and stability of
the operation and reducing the risk of perforation during the
procedure [13], [14]. For cardiac catheterization, introducing
robotic autonomy may benefit navigation through the com-
plex vascular geometry in terms of safety, procedure time,
resource utilization [15]. Reinforcement Machine Learning
(RL) has been successfully applied to complex tasks in
dynamic environments enabling robots to learn by imitation
based on demonstrations [16], [17]. For instance, RL has
been implemented in a minimally invasive surgical robotic
systems with 4 DoFs for remote trajectory optimisation



and navigation of catheters for cardiac electrophysiological
interventions [18]. Research on trajectory optimisation for
aortic interventions and EP catheterization has significantly
progressed through the application of RL [19], [20]. There
is however scope to further explore the feasibility of other
automation algorithms for catheterizations [21], [22]. Learn-
ing from demonstration has great potential to achieve au-
tonomous catheter advancement [23], [24], [25].

In this paper, we present a Learning from Demonstration
(LfD) based Gaussian Mixture Model (GMM) for a robot
trajectory optimisation during right heart catheterization.
The optimisation algorithm is integrated into a 2-Degree-of-
Freedom (DoF) MR-compatible interventional robot allow-
ing for continuous and simultaneous translation and rotation.
Our meth achieves autonomous navigation of the catheter tip
from the inferior vena cava (IVC), through the right atrium
(RA) and the right ventricle (RV) into the pulmonary artery
(PA) where pressure measurements are conventionally made.

The remaining paper is organised as follows: An overview
of the interventional robotic system with the catheter tip
tracking is presented in Section II. In Section III, data
acquisition of the catheter tip trajectories are carried out.
The data is used for a LfD based GMM for the optimisation
and validation of catheter tip trajectories. Section IV and V
summarise the discussion and conclusion.

II. OVERVIEW OF THE INTERVENTIONAL ROBOTIC
SYSTEM WITH CATHETER TIP TRACKING

A. Compact 2-DoF interventional robot design

For robotic right heart catheterization to be conducted in-
side an MRI scanner, a 2 DoF MR-compatible interventional
robot has been developed (see CAD drawing in Fig. 1). Two
piezoelectric ultrasonic motors (USMs) by Tekceleo, France
are used to allow continuous rotational and translational
motion (see Fig. 1(a)). These USMs are MR-compatible and
suitable to operate safely in an MRI scanner. The structure
is made of 3D printed resin material (Draft Resin, Formlabs)
with an overall dimension of 130x90x115mm3. Fig. 1 (b)
shows how a catheter can be clamped between two rollers
(the master and slave rollers) to then achieve translational
movements of the catheter through rotation of the ultrasonic
motor (WLG-30). A layer of silicone material (Ecoflex
00-50, 2mm)) surrounds the master roller to prevent the
catheter from being crimped by the rigid structure when
being clamped and to increase the friction between the rollers
and catheter, hence, transmitting motion. A groove in the
centre of the rollers provides guidance for the catheter, thus
avoiding deflections or any misalignment during translation.
Rotational motion of the catheter is achieved using the
second USM (WLG-75) transferring the rotational motion
to the central axis of the catheter through a gearing system.
The translational section remains clamped to the catheter so
that rotation and translation can happen simultaneously. From
Fig. 1, it can also be seen that an MR-compatible slip ring
is integrated to ensure seamless transmission of power and
control signals to the rotating structure of the robot. Manual
input to the two USMs can be given via a joystick.
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Fig. 1. (a) Side view and (b) top view of our 2-DoF MR-compatible robotic
manipulator for pulmonary artery catheterization (PAC). The system is made
of two piezoelectric ultrasonic motors (USMs) allowing translational and
rotational motion of the catheter.

B. Catheter tip tracking platform inside a phantom

In order to achieve both manual and robotic manipulation
of the catheter into the target position of the pulmonary artery
phantom, a robotic manipulation platform for catheterization
is designed as shown in Fig. 2. Two joystick interfaces
enable the remote control of the 2-DOF interventional robot
achieving simultaneous translational and rotational move-
ment of the catheter. A 5-DoF tracker is mounted to the tip
of the catheter allowing for monitoring and recording real-
time position and orientation (P = (t, Tx, Ty, Tz, Rx, Ry))
of the tip for our learning algorithm. The tracking sensor
is connected to a magnetic field generator (Aurora, NDI,
Canada). The pulmonary artery phantom is made of 3D
printed material Vero Clear using a PolyJet Objet 500
Connex. The phantom includes the inferior vena cava (IVC),
right atrium (RA), right ventricle (RV) and pulmonary artery
(PA). A USB camera captures the movement of the catheter
from a top view inside the phantom environment.

III. LFD-BASED GMM AND EXPERIMENTAL RESULTS

A. Methodology

The LfD-based GMM for robot trajectory optimization is
divided into four parts [26], [27]:
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Fig. 2. Interventional robotic platform and phantom environment for
pulmonary artery catheterization. Through a joystick interface, the 2-DoF
robot advances the catheter inside the pulmonary artery. The catheter is
equipped with a 5-DoF magnetic tracker connected to an NDI Aurora
tracking system. A USB camera monitors the phantom environment from a
top view as shown in the top right figure.

• Collecting position and rotation data sets from demon-
stration. In this step, the trajectory data of the demon-
strated catheter tip is obtained by means of the NDI
electromagnetic tracking sensor (see Section III-B).

• Learning and training of the GMM from the trajectory
data. The catheter tip trajectory data set is imported
into the GMM for training and learning to estimate its
probability density distribution (see Section III-C).

• Generating a smoothed trajectory for the interventional
robot. The trained GMM dataset is processed by the
Gaussian Mixture Regression (GMR) to generate an
optimal trajectory of the catheter tip based on LfD (see
Section III-C).

• Operating the robot advancing and pulling back the
catheter along the optimised trajectory, then comparing
with other modes of operation (see Section III-D).

B. Data collection for trajectory optimisation

Manual hand-held catheterization procedures inside the
phantom environment were performed including the ad-
vancement and pullback of the catheter starting from the
IVC, through the RA and RV into the PA and vice versa.
The catheter tip position and rotation information of 50 rep-
etitions have been collected by the electromagnetic position
sensor with a sampling frequency of 40 HZ. The recorded
trajectory dataset was then imported into the GMM.

Robot-assisted catheterization involved an operator using
the joystick interface to control the advancement and pull-
back of the catheter tip inside the phantom environment using
the robot (as shown in Fig.1). The same trajectories has been
followed as during the manual procedure, starting from the
IVC, through the RA and RV into the PA. Again, the time-
dependent position and rotation of the catheter tip has been
recorded for 50 repetitions have been recorded. In addition,
the USB camera in Fig.2 observed the movement of the

catheter position information in real-time.
The results from the catheter tip tracking experiments are

shown in Figs. 3(a)-(c). In particular, Fig. 3(a) illustrates the
trajectories of the catheter tip advancements in the x − y
(top) and x − z (bottom) planes. For the catheter pullback
procedure, the trajectories are plotted in Fig. 3(b) in the
x − y (top) and x − z (bottom) planes. Fig. 3(c) shows
a 3D visualisation of the catheter advancement (top) and
pullback (bottom) trajectories inside a 3D CAD model of the
pulmonary artery phantom. The trajectories for the catheter
advancements and pullbacks are distinguishable as the tra-
jectories for the advancements are more distributed among
the inner volume of the phantom. The larger distribution
results from the challenging task to steer the catheter along
the complex anatomy starting from the IVC, through the RA
and RV into the PA. In comparison, pulling back the catheter
does not involve navigation but extracting the medical device.

C. LfD-based GMM

Time-dependent catheter tip trajectory data is imported
into a GMM in MatLab software. Trajectory information is
then generated by training the model and retrieving gener-
alised trajectory data through Gaussian Mixture Regression
(GMR). In particular, a GMM model with N components can
be defined for a data set represented by λ by the probability
density function in (1).

P (λ) =

N∑
n=1

P (N)P (λ|N) (1)

P (N) is a priori and P (λ|N) is the conditional prob-
ability density function. The GMMs are then trained with
an Expectation Maximisation (EM) algorithm to estimate
the maximum log-likelihood of the GMM parameters. The
optimal number of components N (1 to 10) of the GMM is
found based on the Bayesian Information Criterion (BIC)
in (2).

BIC = −
K∑
j=1

log(P (ςj)) +
np

2
log(K) (2)

ςj is the trajectory datapoints, K is the number of points for
one trajectory and np is the number parameters for a mixture
of N components. The model with the highest BIC score has
been selected. The optimal trajectory of the catheter tip by
GMR can estimate the expected catheter tip trajectory, where
the expected distribution of the catheter trajectory within the
phantom can be defined as in (3).

ωn =
P (λ|n)∑N
n=1 P (λ|i)

(3)

ωn represents the expected distribution of catheter tips
at different time steps. Trajectory data sets of catheter
advancements and pullbacks after the GMM and GMR will
then return new optimised trajectories for both procedures.
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Fig. 3. Catheter tip trajectories: (a) 50 repetitions of catheter advancements shown in the x− y plane (top) and x− z plane (bottom) when robotically
operated, (c) 50 repetitions of catheter pullbacks shown in the x− y plane (top) and x− z plane (bottom) when robotically operated, (c) 50 repetitions of
catheter advancements (top) and pullbacks (bottom) shown inside the phantom CAD model when robotically operated, (d) 20 repetitions of the LfD based
GMR generated trajectory (red colour) and executed robot-assisted trajectory of the catheter tip when advanced (top) and pulled back (bottom) inside the
phantom CAD model.

D. Experimental results of the GMR generated trajectory
and discussion

Experiments have been carried out to demonstrate that
the generated trajectories using the method in Section III-C
can be autonomously executed by our catheterization robot.
In Fig. 3(d) the red curve shows the resulting trajectory
plotted inside the CAD model of the pulmonary artery
phantom for the catheter advancement (top) and pullback
(bottom). This trajectory has been given as input to our 2-
DoF catheterization robot. The robot then steered the tip
of the catheter through the phantom along the generated
trajectory. The magnetic sensor recorded the position of
the catheter tip which is plotted in blue colour for the
advancement (top) and pullback (bottom) procedure.

For the advancement trajectory in Fig. 3(b) (top), the
executed trajectory by the catheterization robot deviates from
the LfD based GMM generated trajectory in some sections.
The largest deviations can be observed before entering the
RA and the PA. These errors might occur as the catheter
will need to follow a larger bending trajectory with only
being able to either translate or rotate the tip. With regards
to the results of the experiments however, it can be seen that
the robot-assisted pullback trajectory (Fig. 3(d) (bottom)) is
similar to the trajectory generated by the LfD based GMM
algorithm.

In Table I, the average and fastest time required for
the advancement and pullback of the catheter for three

different type of modes (i.e., manual hand-held, teleoperated
robotic and autonomous robotic mode) is reported. From
the summarised data, it can be concluded that the times
required for the manual hand-held procedures are always
larger compared to the procedures performed by the robot.
For the advancement of the catheter, involving the 2-DoF
robot is at least 15% quicker (about 5 s) quicker than the
manual procedure. Comparing the teleoperated with the
autonomous procedure, it can be seen that the advancement
of the catheter can be accelerated by about 15% (about 4 s)
in autonomous mode. This trend can also be seen in the
times for the pullback of the catheter. However, the time
differences are less significant (less than 1 s) due to the
simpler procedure compared to advancing the robot from the
IVC to the PA.

IV. CONCLUSIONS

This paper presents a LfD based GMM for a robot tra-
jectory optimisation during right heart catheterization using
50 repetitions of catheter advancements and pullbacks. We
integrated the generated trajectory into our 2-DoF MR-
compatible interventional robot steering a PA catheter from
the IVC, through the RA and the RV into the PA where
pressure measurements are conventionally made. The results
of the experiment supports the feasibility of using the LfD
based on GMM and GMR for trajectory optimisation of the
catheter operated by robot. In addition, it can be concluded



TABLE I
TIME COMPARISON OF DIFFERENT MODES OF PERFORMING THE INTERVENTION IN THE PULMONARY ARTERY PHANTOM

Evaluation Mode of procedure
criteria Manual hand-held Teleoperated robotic Autonomous robotic

Average time for advancement 32.5s 27.5s 23.7s
Fastest time for advancement 30.5s 25.6s 21.7s

Average time for pullback 10.7s 9.8s 8.9s
Fastest time for pullback 9.6s 8.4s 8.1s

that procedures performed by the robot in a teleoperated or
autonomous mode requires significantly less time compared
to manual hand-held procedures.

It is worth mentioning that the experiments were con-
ducted in a non-pulsating phantom environment. Future work
will enhance the phantom environment connecting a pulsatile
blood pump (Harvard Apparatus, The USA) to the phantom.
The pulsatile blood pump truly simulates the pumping action
of the heart. Considering the variability of the shape of the
pulmonary artery in real cases, 5 patient-specific shapes for
the PA phantoms will be tested to evaluate the feasibility
and applicability of the robotic system. In addition, we
will collaborate with clinical cardiologists and clinicians to
collect trajectory data and feedback from robotic operation
to improve the autonomy of the robot.

REFERENCES

[1] ”Cardiovascular Diseases”, World Health Organization, 2020. [On-
line]. Available: https://www.who.int/health topics/cardiovascular dis-
eases, accessed September 2022.

[2] V. Fuster, B.B. Kelly, ”Rajesh Vedanta Global Cardiovascular Health:
Urgent Need for an Intersectoral Approach”, Journal of the American
College of Cardiology, pp. 1208-1210, 2011.

[3] Y. Manda, K. Baradhi, ”Cardiac Catheterization Risks and Complica-
tions”, StatPearls Publishing, Treasure Island (FL), 2021.

[4] J. Jayender, M. Azizian, RV Patel, ”Autonomous Image-Guided
Robot-Assisted Active Catheter Insertion”, IEEE Transactions on
Robotics, vol. 24, no. 4, pp. 858-871, 2008.

[5] S.B. Kesner, R.D. Howe. ”Force Control of Flexible Catheter Robots
for Beating Heart Surgery”, IEEE International Conference on
Robotics and Automation, pp. 1589-1594, 2011.

[6] D. Kundrat, G. Dagnino, T.M.Y. Kwok, M.E.M.K. Abdelaziz, W.
Chi, A. Nguyen, C. Riga, G.-Z. Yang, ”An MR-Safe Endovascular
Robotic Platform: Design, Control, and Ex-Vivo Evaluation”, in IEEE
Transactions on Biomedical Engineering, vol. 68, no. 10, pp. 3110-
3121, 2021.

[7] M.A. Tavallaei, Y. Thakur, S. Haider, M. Drangova, ”A Magnetic-
Resonance-Imaging-Compatible Remote Catheter Navigation Sys-
tem”, in IEEE Transactions on Biomedical Engineering, vol. 60, no.
4, pp. 899-905, 2013.

[8] M.A. Tavallaei, M.K. Lavdas, D. Gelman, M. Drangova, ”Magnetic
resonance imaging compatible remote catheter navigation system with
3 degrees of freedom”, International Journal of CARS, vol. 11, pp.
1537–1545, 2016.

[9] A. Attanasio, B. Scaglioni, E. De Momi, P. Fiorini, P. Valdastri,
”Autonomy in Surgical”, in Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, pp. 651-679, 2020.

[10] S. Calinon, F. Guenter, A. Billard, ”On Learning, Representing, and
Generalizing a Task in a Humanoid Robot”, in IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286-298, 2007.

[11] Y.-Y. Tsai, B. Xiao, E. Johns, G.-Z. Yang, ”Constrained-Space Opti-
mization and Reinforcement Learning for Complex Tasks”, in IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 683-690, 2020.

[12] I. Andras, E. Mazzone, F.W.B. van Leeuwen, ”Artificial intelligence
and robotics: a combination that is changing the operating room”,
World Journal of Urology, vol. 38, pp. 2359–2366, 2020.

[13] W. Chi, G. Dagnino, T.M.Y. Kwok, A. Nguyen, D. Kundrat, M.E.M.K.
Abdelaziz, C. Riga, C. Bicknell, G.-Z. Yang, ”Collaborative Robot-
Assisted Endovascular Catheterization with Generative Adversarial
Imitation Learning,” IEEE International Conference on Robotics and
Automation, pp. 2414-2420, 2020.

[14] W. Chi, J. Liu, H. Rafii-Tari, R. Celia, B. Colin, G.-Z. Yang,
”Learning-based endovascular navigation through the use of non-rigid
registration for collaborative robotic catheterization”, International
Journal of Computer Assisted Radiology and Surgery. vol. 13, pp.
855–864, 2018.

[15] C. Ye, J. Yang, H. Ding, ”Bagging for Gaussian mixture regression in
robot learning from demonstration”, Journal of Intelligent Manufac-
turing, vol.33, pp. 867–879, 2022.

[16] J. Woo, H.-S. Song, H-J. Cha, B-J. Yi ”Advantage of Steerable
Catheter and Haptic Feedback for a 5- DOF Vascular Intervention
Robot System”, Applied Sciences. vol. 9, no.20, pp. 4305, 2019.

[17] K.H. Lee Lee, K.C.D. Fu, Z-Y. Guo, Ziyan, Z-Y. Dong, Martin
C.W. Leong, C.L. Lee, A.P.W. Lee, W.Luk, K-W. Kwok, ”MR Safe
Robotic Manipulator for MRI-Guided Intracardiac Catheterization”, in
IEEE/ASME Transactions on Mechatronics, vol. 23, no. 2, pp. 586-
595, 2018.

[18] M.E.M.K. Abdelaziz, D. Kundrat, M. Pupillo, G. Dagnino, T. Kwok,
W. Chi, G. Vincent, F. Siepel, C. Riga, S. Stramigioli, G-Z. Yang,
”Toward a Versatile Robotic Platform for Fluoroscopy and MRI-
Guided Endovascular Interventions: A Pre-Clinical Study”, IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 5411-5418, 2019.

[19] H. Su, A. Mariani, S.E. Ovur, A. Menciassi, G. Ferrigno, E. De Momi,
”Toward Teaching by Demonstration for Robot-Assisted Minimally
Invasive Surgery”, in IEEE Transactions on Automation Science and
Engineering, vol. 18, no. 2, pp. 484-494, 2021.

[20] C.M. Heunis, Y. P. Wotte, J. Sikorski, G.P. Furtado, S. Misra, ”The
ARMM System - Autonomous Steering of Magnetically-Actuated
Catheters: Towards Endovascular Applications”, in IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 705-712, 2020.

[21] G.R. Sutherland, S. Lama, L. S. Gan, S. Wolfsberger, K. Zareinia,
”Merging machines with microsurgery: Clinical experience with neu-
roArm”, Journal of Neurosurgery, vol. 118, no. 3, pp. 521–529, 2013.

[22] F. Frank, A. Paraschos, P. van der Smagt, B. Cseke, ”Constrained
Probabilistic Movement Primitives for Robot Trajectory Adaptation”,
in IEEE Transactions on Robotics, vol. 38, no. 4, pp. 2276-2294, 2022.

[23] Y. Wu, F. Zhao, T. Tao, A. Ajoudani, ”A Framework for Autonomous
Impedance Regulation of Robots Based on Imitation Learning and
Optimal Control”, in IEEE Robotics and Automation Letters, vol. 6,
no. 1, pp. 127-134, 2021.

[24] Z. Jin, A. Liu, W.-A. Zhang, L. Yu, ”An Optimal Variable Impedance
Control With Consideration of the Stability”, in IEEE Robotics and
Automation Letters, vol. 7, no. 2, pp. 1737-1744, 2022.

[25] S. Guo, J. Cui, Y. Zhao, Y. Wang, Y. Ma, W. Gao, G.Mao, ”Shun-
ming Hong Machine learning–based operation skills assessment with
vascular difficulty index for vascular intervention surgery”, Medical,
Biological Engineering and Computing, Vol. 58, pp. 1707–1721, 2020.

[26] P. Sharma, A. Gupta, D. Ghosh, V. Honkote, G. Nandakumar, D.
Ghose, ”PG-RRT: A Gaussian Mixture Model Driven, Kinematically
Constrained Bi-directional RRT for Robot Path Planning”, 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 3666-3673, 2021.

[27] L. Wang, S. Jia, G. Wang, Likun Wang, T.S.R. Alison, ”Enhancing
learning capabilities of movement primitives under distributed prob-
abilistic framework for flexible assembly tasks”, Neural Computing
and Applications, 2021.


