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Fig. 1. Overview of OpenMPD: MPD content (left) can be defined in terms of descriptors (positions, amplitudes and colour). OpenMPD coordinates and
synchronizes all the processes involved, even if each operates at a different rate (e.g., 10KHz for the acoustic solver, 60Hz for render). OpenMPD can be
integrated with higher-level client engines (Unity) and used to present novel MPD content (right).

Phased arrays of transducers have been quickly evolving in terms of software
and hardware with applications in haptics (acoustic vibrations), display (levi-
tation) and audio. Most recently, Multimodal Particle-based Displays (MPDs)
have even demonstrated volumetric content that can be seen, heard, and
felt simultaneously, without additional instrumentation. However, current
software tools only support individual modalities and they do not address
the integration and exploitation of the multimodal potential of MPDs. This
is because there is no standardized presentation pipeline tackling the chal-
lenges related to presenting such kind of multi-modal content (e.g., multi-
modal support, multi-rate synchronization at 10 KHz, visual rendering or
synchronization and continuity). This paper presents OpenMPD, a low-level
presentation engine that deals with these challenges and allows structured
exploitation of any type of MPD content (i.e., visual, tactile, audio). We char-
acterize OpenMPD’s performance and illustrate how it can be integrated
into higher-level development tools (i.e., Unity game engine). We then illus-
trate its ability to enable novel presentation capabilities, such as support of
multiple MPD contents, dexterous manipulations of fast-moving particles or
novel swept-volume MPD content.
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1 INTRODUCTION
Phased arrays of transducers support interactive applications in sev-
eral domains, such as haptics, levitation or parametric audio. Recent
advances in ultrasound control have demonstrated the ability to si-
multaneously combine all these capabilities, resulting in a new type
of technology that we here refer to as Multimodal Particle-based
Displays (MPDs). MPDs use physically levitated particles as display
elements, either as sparse 3D voxels [Ochiai et al. 2014; Omirou et al.
2015; Sahoo et al. 2016]; as anchors to control levitated props (e.g.
threads or 2D shapes) [Morales et al. 2019; Omirou et al. 2016]; or
as quickly moving particles revealing 3D content, by exploiting the
Persistence of Vision (PoV) effect [Fushimi et al. 2019].

Crucially, such visual MPD content can be combined with other
modalities such as haptics or parametric audio [Hirayama et al. 2019;
Plasencia et al. 2020], creating multimodal experiences that users
can see, hear and feel with their bare eyes, ears and hands, and
opening novel opportunities for entertainment or digital signage.
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While hardware and algorithms for MPD presentation are becom-
ing available, there is a lack of a standardized underlying presenta-
tion engine, as to allow controlled and simple exploitation of the
novel range of capabilities of MPDs. This situation is akin to the
appearance of OpenGL. While acceleration hardware and rendering
algorithms existed before, OpenGL provided manufacturers and
programmers with a standard rendering interface, enabling the ex-
ploitation of the full capabilities of the hardware and simplifying the
creation and portability of 3D applications. We here aim to provide
an advanced equivalent to OpenGL, to the field of MPDs.
This paper introduces OpenMPD (see Figure 1), a low-level pre-

sentation engine allowing structured exploitation of any combina-
tion of MPD content (i.e., visual, tactile, audio) while dealing with
the challenges specific to MPD content presentation (formalised as
C1-C4 in Section 3).

For instance, our multi-rate runtime cycle (C2) allows us to com-
bine very high computation rates for the sound-field (i.e., 10K sound-
fields per second, for optimum acoustic control [Hirayama et al.
2019]), with lower rates for control and rendering processes (i.e.,
hundreds of Hz, as typically used by rendering engines or tracking
devices supporting interaction). Our low-level synchronization (C4)
allows us to retain accurate interoperation among these processes.
All of these enable novel capabilities, such as enabling colour pro-
jection onto high-speed particles and swept displays, as well as or
dexterous manipulations of PoV content changing shape or precisely
merging with other PoV paths.

We first describe the abstractions allowing the definition of mul-
timodal content for OpenMPD. Next, we describe the stages within
theOpenMPD presentation engine, detailing key algorithms for data
marshalling, acoustic and visual rendering, and synchronization.
We then characterize its performance and illustrate how OpenMPD
can be integrated into higher-level tools (i.e., Unity game engine), as
a way to facilitate content creation and stimulate MPD adoption. Fi-
nally, we use this platform to showcase the presentation capabilities
of OpenMPD, such as in allowing combinations of multiple MPD
primitives, dexterous manipulation of PoV paths (e.g., high-speed
particles morphing into different shapes or merging with other par-
ticles, to create PoV contents jointly), as well as novel swept-volume
MPD content.

2 RELATED WORK AND BACKGROUND
Particle trapping and control has been an extensive field of research
within physics, following a range of approaches [Brandt 1989]. Al-
most all of these approaches have been explored for display pur-
poses, either by using air flows [Heo and Bang 2014], magnets [Lee
et al. 2011], optical [Smalley et al. 2018] or electro-magnetic traps
[Berthelot and Bonod 2019]. However, only acoustics-based particle
displays have demonstrated the multi-modal capabilities of MPDs.
Hence, we focus our review on the range of existing acoustics-

based (i.e., ultrasound) displays, particularly, on the requirements
of the different types of content that they enable (i.e., visual, tactile,
auditive). These requirements will inform the features OpenMPD
must support. Finally, we analyse existing tools supporting the
definition of such MPD content (i.e., visual, tactile and sound, either

Table 1. Summary of existing MPD contents and associated requirements.

individually or combined) and identify existing gaps in this space,
justifying the need for our presentation engine.

2.1 Levitation-based displays
Single frequency ultrasound, the most conventional approach to-
wards acoustic levitation, was first observed to trap dust particles
in the lobes of a standing wave more than 150 years ago [Stevens
1899] and has been used to support different types of content, which
we analyse next and summarize in Table 1.

The earliest type of content was the levitation of independent
particles, used as 3D display voxels. Early approaches only allowed
control of particles at constrained locations [Omirou et al. 2015,
2016; Sahoo et al. 2016], or as a group [Ochiai et al. 2014]. Later
advances enabled free 3D positioning of one [Marzo et al. 2015] or
several particles [Marzo and Drinkwater 2019] at interactive rates.
Using spatially structured particles (i.e. particles connected to

physical props, such as threads [Marzo and Drinkwater 2019] or
cloth [Fender et al. 2021; Freeman et al. 2019; Morales et al. 2019]),
allowed for content featuring continuous and expressive projection
surfaces. The underlying requirements regarding ultrasound control
algorithms and framerate remained unchanged.
Volumetric PoV Content was demonstrated by leveraging single

[Hirayama et al. 2019] or multiple fast-moving particles [Plasencia
et al. 2020], even in the presence of physical objects [Hirayama et al.
2022] but this required algorithms supporting high update rates of
the particle positions and trapping intensities (i.e. ideally, above
10KHz). While colouring of PoV Content was solved for the single
particle case [Hirayama et al. 2019], a rendering/illumination solu-
tion is still yet to be proposed for the multi-particle case [Plasencia
et al. 2020], and one we address in Section 5.4.
Finally, as a common feature of these types of content (indepen-

dent particles, spatially structured and PoV ), they all rely on external
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elements to reveal content (i.e., the particles and props), which
should not be dropped. Once these elements are loaded into the
traps, they must retain trap continuity throughout the experience,
avoiding sudden jumps as to keep particles/props within the traps.
The same algorithms supporting PoV Content also support Tac-

tile and Audio source content [Plasencia et al. 2020], but their re-
quirements vary depending on the approach. Approaches such as
Amplitude Modulation (AM) require low position update rates, but
their amplitudes need to be rapidly modulated to create different
tactile sensations [Carter et al. 2013; Hoshi et al. 2010]. In contrast,
approaches based on Position Modulation (PM), such as lateral [Taka-
hashi et al. 2018] or spatio-temporal modulation [Frier et al. 2018],
rely on very high position update rates. Parametric audio quality
(i.e., reproducible frequencies) is directly related to the algorithm’s
ability to quickly modulate amplitudes (i.e., instead of positions).

Even if all these contents can be created by the same algorithms
(GS-PAT), their exploitation requires dealing with very different and
demanding requirements, which we summarized in Table 1.

2.2 Content creation support for MPDs
At the moment of writing, there are no platforms explicitly designed
to support the creation of the complete range of multi-modal content
supported by MPDs. However, some limited support can be found
for each independent modality by the platforms below.

Ultraleap SDK [Ultraleap 2022] provides a robust API supporting
a range of tactile approaches (i.e., AM, PM), sensing devices and
integration within Unity. Their solution, however, is only limited to
haptics and their proprietary algorithm [Long et al. 2014]. Ultraino
[Marzo et al. 2017] provides a java API to generate levitation traps
and even animations. However, the toolkit is focused on acoustics,
providing support for low-level simulations rather than for the
creation of interactive experiences (e.g., no support for high update
rates or sensor devices). Ultraino includes the algorithm described
by [Morales et al. 2019], providing a way to optimize the placement
of particles on cloth props (i.e., LeviProps) for optimum trapping.
However, no further support is provided for other key features such
as projection, real-time synchronization or trap continuity. OptiTrap
[Paneva et al. 2022] is another example of a content creation tool.
In this case, the algorithm accepts the shape/PoV path to render,
and computes the position and timing of the traps that will lead to
optimum rendering. However, this algorithm itself does not provide
the low-level mechanisms allowing presentation and relies on an
early release of OpenMPD for presentation.
ArticuLev [Fender et al. 2021] stands as the closest candidate to

support MPD presentation. Its main focus is to support initializa-
tion for levitation-based displays, detecting props (beads, threads
or cloth) and levitating them to their initial location to allow the
application to start. However, the platform also provides high-level
tool to assemble, articulate and animate them, as well as integration
into Unity to facilitate development. However, ArticuLev fails to
support high position update rates (i.e., maximum 3KHz, instead
of the 10 KHz required for optimum MPD control), relies on a sub-
optimum algorithm (i.e., Naïve/BP [Marzo and Drinkwater 2019]),
provides no support for amplitude modulation (used by audio and
tactile content); and lacks low-level synchronization mechanisms

required for projection on multi-particle PoV Content and dexterous
manipulations (e.g., morphing PoV shapes or combining them).

3 OPENMPD: CHALLENGES AND SCOPE
The MPD contents in Table 1 frame the design space of applications
that OpenMPD must support. Its aim is to provide a standardized
presentation engine for their systematic exploitation, which entails
addressing the following 4 main challenges:

• Structured multi-modal content definition (C1): OpenMPD
allows structured declarative definition of all types of con-
tent in Table 1. These definitions allow real-time control and
mofidication of content (e.g., changing visual shapes, audio
or tactile textures) and are presented in Section 4.

• Variable update rates (C2): OpenMPD provides a multi-rate
engine, with synchronized interoperation of 3 processes: sound-
field computation (i.e., 10 KHz), rendering and client logic (at
hundreds of hertz), as detailed in Sections 5.1-5.3.

• Multi-particle PoV rendering (C3):OpenMPD provides a projector-
based rendering algorithm to colour multi-particle PoV con-
tent, synchronized to the sound-field computation, described
in Section 5.4.

• Continuity and synchronization requirements (C4): OpenMPD
provides mechanisms to retain trap continuity of the content
(i.e., for independent particles, spatially structured or PoV ).
That is, the levitated components (particles, props) must re-
main within their traps, even if the shapes change to reveal
a new content (i.e., change in PoV shape), or to support dex-
terous manipulations (i.e., controlled interactions among fast-
moving particles). Exploiting these requires an interplay of
content definition (see Section 4.3), software (see Section 5.2)
and hardware mechanisms (detailed next).

3.1 Hardware support and scope of application
The current OpenMPD implementation supports state-of-the-art
algorithms for acoustic manipulation (i.e., Naïve/BP, IBP [Marzo
and Drinkwater 2019]; and GSPAT [Plasencia et al. 2020]), all of
them operating at optimum rates of 10 KHz. We also use top-bottom
setups with 256 transducers per board (see Figure 2a), as the most
common setup used in current MPD systems [Freeman et al. 2018;
Hirayama et al. 2019; Omirou et al. 2016; Plasencia et al. 2020].

Fig. 2. Example setup: A) OpenMPD system using a top-bottom setup with
512 transducers and an LC projector; B) OpenMPD integration into Unity.
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We currently support 2 hardware platforms. The first one is Sonic-
Surface [Morales et al. 2021], an open-hardware design that already
benefits from a community of early adopters, but is limited to lower
update rates (i.e., 100Hz). The second one is our own hardware,
created as an extension of SonicSurface but modified for higher
update rates (10 KHz), 128 levels of phase resolution and 64 levels
of amplitude resolution. Beyond these, the key difference between
both hardware platforms lies in their synchronization mechanisms.
The boards in SonicSurface apply phase updates as soon as a mes-
sage arrives. This introduces variability in the time at which each
board is updated, due to communication delays or OS interruptions,
significantly hindering performance if used at high rates of 10 KHz.
Our custom boards include a hardware synchronization mechanism
ensuring both boards are updated at the same time and at a rate of
10 KHz. Our Supplementary material provides a detailed description
of both devices (design, fabrication), as well as an evaluation of the
relevance of such hardware synchronization.
It is also worth noting that OpenMPD can be adapted to other

layouts, update rates (e.g., 8, 13, 20 or 40 KHz) or hardware designs
[Foisy 2021; Inoue et al. 2018; Marzo et al. 2017; Zehnter and Ament
2019], with further details in Supplementary Material.
OpenMPD is designed to deal with the low-level presentation

challenges above, but also to be integrated with higher-level tools
(i.e. Unity in Figure 2b) which can deal with other aspects, such as
defining the client logic, interfacing with input devices or content
detection and initialization [Fender et al. 2021]. Sections 4 and 5
focus on OpenMPD, detailing content definition, its internal stages
and mechanisms, while Section 6 showcases our integration with
higher level tools (Unity) and examples created on top of them.

4 HIERARCHICAL CONTENT DEFINITION
Solvers such as GS-PAT support the (acoustic) delivery of all the
types of content summarized in Table 1 (i.e., illumination will re-
quire the rendering technique described in Section 5.4). In all cases,
content can be defined as a combination of points, and each point
is defined as a series of 3D positions and amplitudes over time.

For instance, Figure 3 shows an example of a multimodal content
definition. The positions define the location of the trap over time (i.e.,
a PoV content), while the amplitudes encode the audible sound and,
in both cases, they are sampled at 10 KHz. The visual appearance
(i.e., parts of the shape to be coloured in blue, in Figure 3) can be
trivially included as a colour buffer (i.e., colour at each point).

However, even if this definition only contains one cyclic repetition
of the PoV content (i.e., 1,000 samples, revealed within 0.1s), this
would still require up to 9,000 floating point values to encode it (i.e.,
assuming homogeneous coordinates and RGBA colour encoding).
Any animation (e.g., a butterfly flapping its wings over 2 seconds)
would require even larger definitions (e.g., 20K samples, for a total
of 180K floating points).

Such naïve definitions would be hardly compatible with real-time
updates of the content (e.g., to move it or change the audio), if all this
data needed to be updated at the intended rate of 10 KHz. Instead,
OpenMPD uses a hierarchical definition for content, somewhat
similar to mesh rendering in OpenGL, as described next.

Fig. 3. OpenMPD structured content definition. (A) Low-level descriptors
are used to define the content’s positions, amplitudes and colours in local
coordinates and are sampled at high rates (10KHz). (B) Primitives group
descriptors to define MPD contents, which can be freely placed in space
using a 4x4 matrix and presented in the device (C).

4.1 Low-level Descriptors: Position, Amplitude and Colour
Descriptors contain low-level definitions of MPD content as buffers
of colours, amplitudes or positions in coordinates local to the content
(Figure 3a). This allows for a declarative definition of MPD content,
as a combination of position, amplitude and colour descriptors, with
each element being freely interchangeable.
As such, descriptors are equivalent to OpenGL resources like

vertex arrays or textures, which can then be reused across several
OpenMPD contents. Descriptors are stored in GPU memory and are
internally managed by the engine to present the content at 10 KHz.

OpenMPD assumes all Descriptors (independently of their nature)
contain a minimum, cyclic definition, which will be repeated until a
new Descriptor is used (i.e., to morph into a new shape, or to play a
new sound or tactile pattern).

4.2 High-level Primitives
Primitives contain high-level definitions for MPD content and are
somewhat equivalent to an OpenGL rendering call. The Primitive
groups the resources (i.e., position, amplitude and colourDescriptors)
defining the MPD content and a 4x4 matrix to place the Primitive
freely within the levitator (scene) with minimum CPU/GPU traffic.

Fig. 4. Cyclic definitions can be ensured by matching the initial and final
positions of each path (𝑝𝑎 (0) = 𝑝𝑎 (𝑛)); Transition continuity is ensured by
sharing the same starting positions (𝑝𝑎 (0) = 𝑝𝑏 (0)), and velocity vectors
(𝑑𝑎 (0) = 𝑑𝑏 (0)), or by using accommodation paths (C).
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While OpenGL rendering calls are stateless (i.e., the state is repre-
sented by the parameters used in the call and thread context), Open-
MPD Primitives do retain an internal state. This state describes the
matrix used (i.e., update the matrix, instead of several KB of data),
the Descriptors currently bound to the Primitive, and their indices
(i.e., current Descriptor sample, represented as p(t), a(t) and c(t) in
Figure 3). This state is required in order to retain synchronization
and continuity, as explained in Section 4.3.
Please note that the state is associated with the Primitive and

not to its Descriptors (see Figure 3b). Thus, several primitives can
reuse the same Descriptor to render the same shape or audio, but
at different points in space (i.e., Descriptors are in local coordinates;
Primitives’ matrices can adjust them to different device’s coordi-
nates) and progress in time (i.e., different values for p(t), a(t) and
c(t)).

Even if Primitives share one Descriptor (e.g., positions), each Prim-
itive can combine it differently with other descriptors. That is, even
if sharing the same position descriptor, each Primitive can use a
different colour buffer (i.e., to tailor its visual aspect from ‘A’ to
‘C’, as in the example in Figure 1, left), or use a different amplitude
descriptor with varying amplitudes, to add sound.
For simple contents, Primitives can use descriptors containing

a single sample (i.e., descriptors with a fixed position and a fixed
amplitude for an independent particle). More complex contents, such
as PoV Content or AM Tactile will require descriptors defining the
shape (e.g., 0.1s of a 3D path for PoV Content) or tactile texture (e.g.,
5ms of time-varying amplitudes, for a 200Hz tactile pattern).

It must be noted that the length of each of theDescriptors bound to
a Primitive can differ. As such, they can retain the minimum length
required to encode a given path, sound effect or tactile sensation,
independently of the other Descriptors they will be used with.

4.3 Dexterous manipulations: Continuous and
synchronized transitions

The structured definitions above can describe any type of MPD
content as well as dynamic changes by swapping descriptors. How-
ever, the most demanding transitions (e.g., PoV Content) must retain
trap continuity to be feasible. OpenMPD facilitates this by assum-
ing cyclic descriptors and ensuring that descriptor changes are

enqueued and only applied when the current descriptor is finished
(e.g., when 𝑝 (𝑡) reaches the end of the buffer, in Figure 3).

This way, the content creator can define compatible continuous
transitions, by ensuring that the descriptors involved a match their
initial positions and velocities, as seen in Figures 4a and 4b. Such
continuous transitions might not be achievable for certain shapes
due to different initial positions, such as the ‘M’ shape in Figure 4d.
In this case, an accommodation path can be used to join the initial
positions in both descriptors (e.g., see 𝑝𝑐 (0) and 𝑝𝑚 (0) in Figure 4c)),
and will become necessary to morph shapes or slowly accelerate a
particle to reach the initial state to render a PoV shape.
It must be noted that accommodation paths are by nature non-

cyclic descriptors (i.e., they connect different starting positions/
states of two paths) and would lead to continuity failure if run
cyclically (i.e., in Figure 4c, a particle reaching the end of the accom-
modation path at 𝑝𝑚 (0) would be dropped, as the next trap would be
created in the non-adjacent initial position 𝑝𝑐 (0)). As such, the ac-
commodation pathmust be immediately enqueued together with the
new cyclic path, so that continuity is retained. That is, a transition
from shapes ‘A’ to ‘M’ in Figure 4 must be achieved by enqueueing
paths 𝑃𝑎 and 𝑃𝑚 to the primitive as a single transaction (commit),
but no changes are required to paths 𝑃𝑎 or 𝑃𝑚 .

5 OPENMPD: PRESENTATION ENGINE
The previous section defined the steps a developer must take to
create content. Here we focus on the structure and mechanisms
within OpenMPD that allow such content to be presented.

The OpenMPD presentation engine is summarized in Figure 5.
Boxes represent main data structures while computing resources
are represented as rounded rectangles distributed across the CPU
(i.e., threads) and GPU (i.e., high-performance acoustic solvers, as
OpenCL kernels; and PoV rendering, as OpenGL shaders).

The threads involved include both core OpenMPD threads, such
as sound-field computation or visual rendering, but also services
called from the client thread(s) to control the MPD experience.

We here describe the main data structures and functionalities in
OpenMPD, according to each of its main threads (i.e., OpenMPD

Fig. 5. Summary of our OpenMPD implementation, detailing data structures (square boxes), computing elements (CPU threads, OpenCL kernels and OpenGL
shaders, all as rounded boxes) and main data flows among processes.
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or client). A comprehensive description (all classes and methods)
can be found in Supplementary Material and our GitHub page 1.

5.1 MPD_Context and the client thread:
Clients interact with OpenMPD through an MPD_Context. Such
context encapsulates all details related to an MPD experience on a
given device, exposing the interfaces required to declare and con-
trol all MPD content (i.e., lollipops, in Figure 5). An MPD_Context
currently supports up to 32 simultaneous primitives, considered
enough as only up to 12 independent particles have been levitated
to date with these setups [Marzo and Drinkwater 2019] and prior
MPD experiences involve even fewer primitives [Plasencia et al.
2020].

An MPD_Context operates in a dual scene premise. Client calls to
Define/Update MPD content (e.g., primitives and/or descriptors) are
temporarily applied to the Modified scene. However, such changes
will not come into effect until a call to commit is invoked, at which
point the Current scene is updated. This is crucial to ensure updates
on the scene happen in a synchronized manner, which is required
for continuity control (i.e., accommodation followed by cyclic paths,
as in Section 4.3) and dexterous manipulations (Section 6.2). Also,
descriptor updates can be computed offline on the client thread and
applied when ready, not interfering with the 10 KHz update rate.
It is worth noting that changes to the transformation matrix in

each primitive are an exception to this general rule and are applied
immediately to both scenes (i.e., smoothed for continuity, as ex-
plained in Section 5.2). This allows the client to control primitive
position/orientation in real-time (i.e., see move interface in Figure
5), with commits being reserved for changes to the structure of
the scene/content, where fine synchronization might be needed.
Finally, the internal state of each primitive (shown as the current
Desc_Indices in Figure 5) is not exposed to the client. These are solely
managed byOpenMPD to ensure synchronization at the sound-field
rate (i.e., 10 KHz) as well as trap continuity.

5.2 OpenMPD control thread
This is arguably the most relevant thread within OpenMPD, dealing
with the hybrid CPU/GPU architecture, performing datamarshalling
required to feed related services (e.g., sound-field computation and
visual rendering) and retaining synchronization between their dif-
fering rates (i.e., 10 KHz for sound-field, 60-1440Hz for rendering,
200-300Hz for client logic). The functionality in this thread is di-
vided into 3 steps, summarized next.

5.2.1 Write State: This stage copies the Current scene into the
GPU in a single CPU/GPU transaction, copying all potential 32
primitives, even if only a few are active. The specific primitives
to be presented are encoded in a separate buffer (CurrentTargets),
defining the number of primitives currently being used and their
IDs.

5.2.2 Solve/Data Marshalling. This stage encapsulates the core
functionality in this thread, executed in a single OpenCL kernel
(MPD_Marshal.cl). The kernel accesses the data on the different

1https://github.com/RMResearch/OpenMPD.git

Primitives’ descriptors, adapting them into the formats required by
the sound field and rendering threads, as shown in Figure 6.
First, the position and amplitude descriptors in each primitive

are interleaved (Figure 6), producing arrays of target positions and
amplitudes to be fed to the acoustic solver at the target 10 KHz
rate. Second, position and colour information are transformed into
vertices describing a coloured strip per primitive (i.e., the particle
trail to be rendered). While the sound-field computation is assumed
to be fixed at 10 KHz, visual rendering will operate at much lower
rates and the marshal accounts for these variable rates. That is,
when rendering at 60Hz (Figure 6), the coloured strips typically
span a window of 33 ms (2 frames) worth of positions and colours
from the descriptors’ current indices (see Section 5.4). This accounts
for variability in rendering time and delays related to the projec-
tor’s processing, but the offset and size of this time window are
adjustable by the client. Finally, the positions generated from the
Descriptors (for the acoustic solver or visual rendering) must be
multiplied by the Primitives’ matrices. However, the client thread is
only expected to update such matrices at conventional interactive
rates (e.g., 200Hz, in the example in Figure 6), while the marshal
must deal with position samples at a 10 KHz rate, which could cause
discontinuities (i.e., 10K/200=50 samples using one matrix, 50 using
the next one).

To avoid this, the marshal computes a matrix for each sample as
a simple linear interpolation between the two latest matrix updates
provided by the client. Such matrix interpolations introduce errors
whichwill only be negligible if orientation updates betweenmatrices
are small. By default, our example client (Section 6) limits the update
of Primitive nodes to 400 mm/s and 400 degrees/s (i.e., a 2-degree
difference between updates, for our example client at 200Hz), to
ensure interpolation does not introduce issues. These limits are
adjustable by the developer, but otherwise transparent.

5.2.3 Update State: As the last step, the marshal updates the state
of each Primitive. This includes updating the indices in each of its
descriptors, as to indicate the current position/colour/amplitude
to be used. This also includes identifying when an iteration has
been completed in any given descriptor, transitioning to the next
descriptor in the queue (e.g., at the end of an accommodation path)
or resetting the index to the beginning of the descriptor (i.e., for a
cyclic path). This step is critical to support the controlled transitions
described in Section 4.3 and illustrated in Section 6.2.

5.3 Sound-field computation thread:
This thread is in charge of delivering the data generated by the
control thread to the acoustic solver, retrieving the resulting sound-
field and transmitting it to the MPD device. OpenMPD currently
supports 2 devices: i) the open-hardware device by (Morales et al.,
2021) which updates transducers as soon as a message is received;
and ii) our custom extension, with higher update rates and applying
updates in synchronization with a real-time engine. Other devices
can be included as detailed in Supplementary Material, but these 2
illustrate devices’ constraints that OpenMPD needs to deal with.

In order to support these, OpenMPD includes 2 modes of opera-
tion: one for devices with hardware synchronization (see Section
3.1) and another using software synchronization. In the first case,
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Fig. 6. Data marshalling to feed independent processes. The current Primitive state (left) is used to feed the acoustic solver, interleaving data and feeding it
at 10KHz. Buffers for visual rendering are updated, selecting the positions and colours to be rendered in the next frame. Position updates (provided at 200
matrices/s) are interpolated to produce 10K matrices/s and fed to the solver.

Fig. 7. Color projection example: particle moving along a closed path and
color projection onto each section of the path.

the thread sends update packages at the intended rate (10 KHz), but
it is the devices’ responsibility to apply them at the correct time,
using their internal real-time clock. In the second case, the thread
uses the CPU clock to determine when each package should be sent,
and the device is expected to apply them as soon as they arrive.
Critical deadlines cannot be ensured in this way, as communication
delays or the OS thread scheduler might introduce variable delays.
This thread also encapsulates 3 different acoustic solvers: Naïve

[Marzo and Drinkwater 2019], IBP [Marzo and Drinkwater 2019]
; and GS-PAT [Plasencia et al. 2020], all implemented on top of
OpenCL for multi-platform support. The Naïve solver was selected
because of its relative simplicity, while GS-PAT provides more ro-
bust solutions and is compatible with devices allowing phase and
amplitude modulation. IBP provides similar robustness to GS-PAT
but is limited to phase-only devices (i.e., suboptimum for audio and
haptics) and provides limited support for high computing rates (i.e.,
limited to less than 8 simultaneous primitives). A characterization
of their performance, stability, the effect of synchronization and
support for different primitives is later discussed in Section 5.5.

5.4 Visual rendering
OpenMPD includes a projector-based solution for visual rendering
of any MPD content, particularly necessary for multiple, high-speed
particles (i.e., a challenge not covered to date). Support is provided
via extension DLLs, remaining independent from specific technolo-
gies (e.g., OpenGL, DirectX). Our example OpenGL implementation
(GL_Renderer, to the bottom left of Figure 5) illustrates this behaviour
and is used in our client integration in Section 6.

Fig. 8. Projection technology. (A) DLP projectors cause rainbow effects on
the content; (B) LC projectors allow for correct colour reproduction.

In order to remain implementation agnostic, the control thread
shares the (position and colour) descriptor definition buffers with
the rendering DLL, which is responsible for translating them into
the adequate format (e.g., OpenGL vertex buffers). During runtime,
the control thread specifies the indices within these buffers (particle
positions), as well as the transformation matrices that should be
used in the current frame, as seen in Section 5.2. The number of
particle positions (indices) to reveal in each frame can be tailored by
the client as to adapt to the projector’s framerate used (e.g., 33ms of
positions in Figure 6). This allows projection only on the parts of
the path that the particle will reveal during that frame (see Figure 7),
minimizing interference with other contents projected (e.g., paths
overlaid on the image projected on a LeviProp).
Please note that projector synchronization plays a key role to

effective rendering with OpenMPD. While OpenMPD will retain
synchronization across processes (control, sound-field and render)
and acoustic boards, mechanisms derived from VESA Adaptive Sync
must be used to retain projector frame synchronization.

The client thread is in turn responsible for launching the required
(OpenGL) rendering threads, as well as invoking the rendering DLL
once per frame, providing the P (Projection) and V (View) matrices
describing the position of the virtual cameras. The client is also
responsible for projector calibration (i.e., P and V matrix), as well
as the rendering of any content other than particles. This retains
OpenMPD independence from the details of the underlying 3D
scene, which is solely managed by the client. Our solution is also
compatible with multi-projector setups, at the expense of clients
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Table 2. OpenMPD performance per solvers and number of Primitives.

calling the rendering DLL once per frame and camera/projector, as
illustrated in Section 6.3.
Rendering on high-speed particles requires projectors that do

not make use of time-multiplexing techniques. Figure 8a shows the
effects of using such a projector (DLP technology) to render a white
path on a PoV particle moving along a circle. Time multiplexing
causes a rainbow effect on the path (i.e., alternating red, green and
blue patches, due to the colour wheel), not reproducing the intended
colours. Figure 8b shows correct colouring can be achieved by using
an LC projector, avoiding such rainbow effects.

5.5 Performance characterization and validation
Our performance characterization and validation is divided into 2
sections, depending on whether they characterize the performance
of key OpenMPD mechanisms (see 5.5.1.), or if they validate the per-
formance of previously existing elements (e.g., solvers) integrated
within OpenMPD (summary in 5.5.2, details in SM3).

5.5.1 OpenMPD Characterization: Table 2 characterizes the com-
puting rates of the 3 solvers supported, for a variable number of
primitives (2, 4, 8, 12 and 16). The column Max Rate describes the
maximum rate that each solver can achieve (capped at transducers
rate of 40 KHz), as the number of particles increases.

It is worth clarifying why IBP andNaïve achieve higher maximum
rates thanGS-PAT (i.e., given thatGS-PAT was designed explicitly for
high rates). In order to push IBP and Naïve above 10 KHz, we make
aggressive use of the local memory cache in every OpenCL comput-
ing group. However, the caches in the GPUs tested (i.e., GTX1050Ti,
GTX 1660) can only hold data (i.e., propagation matrices) for up to
8 primitives on a 512-transducer device.
In contrast, our GS-PAT implementation uses the general GPU

VRAM, with worse performance but allowing higher scalability.
Similar optimizations could be included for GS-PAT, at the expense
of a more complex control (e.g., use the cache but dynamically swap
to the VRAM implementation, for more primitives).

In any case, these tests show how all solvers provide rates above
the target rate of 10 KHz (with IBP and Naïve limited to 8 points).
However, while maximum rates are important, maintaining a stable
framerate is much more critical. Any descriptor contains shapes, au-
dio and tactile textures, all sampled at a specific target rate (e.g.,10 KHz),

Fig. 9. Testing scenarios used. (A) The Cyclic scenario tested primitives
cyclically traversing a circular path. (B) Transitions combines circular and
linear paths. (C) Example of the Transitions case, shown as a POV Primitive.

and accurate delivery relies on them being presented at that exact
rate. Other features, such as trap continuity and dexterous manipu-
lations also heavily rely on a stable framerate over time.

As a next step, we tested the ability of each solver to retain stable
framerates at a fixed rate (10 KHz), as the number of Primitives
changed. We tested 2 different scenarios: Cyclic and Transitions. The
Cyclic scenario used several Primitives cyclically travelling along a
circular path, at even distances. The Transitions scenario presents
Primitives repeatedly transitioning between a circular and a linear
path descriptor (see Figure 9), to see if these transitions affected
framerate stability. We conducted 20 profiling sessions of 5 seconds
per case (solver and number of primitives) and report the average
framerate and standard deviations measured in Table 2.
The results show very stable framerates with minimum stan-

dard deviations, even where trap continuity is required, illustrating
OpenMPD’s ability to support all primitives in Table 1. Solvers
without amplitude control are not suitable for some haptics and
audio primitives, and developers must select a suitable solver.

5.5.2 OpenMPD Validation. The characterization above focuses
on OpenMPD’s software capabilities to present content, indepen-
dently of its actual feasibility. We also conducted speed tests with
single and multiple particles (i.e., for display/levitation), as well
as characterization (spectrograms) of OpenMPD’s ability to deal
with variable amplitudes (i.e., for audio and haptics). These tests
compare the performance of our 3 solvers, either using native C++
clients or our Unity integration, and with and without the hardware
synchronization mechanism introduced by our hardware.
The details of these tests are relegated to Supplementary Ma-

terial SM3, as they are more closely related to characterizing the
performance of previously existing acoustic solvers, rather than key
mechanisms within OpenMPD. However, the results validate the
ability of OpenMPD to represent all required modalities, providing
consistent results for all solvers (albeit according to each solver’s
capabilities). The results also show the relevance of our hardware
synchronization mechanism, sometimes tripling the maximum ac-
celerations achievable when compared to a device without such
mechanism. Finally, the results show negligible effects of the type
of client used (native C++ or Unity), indicating minimum overhead
is added by integrating OpenMPD into a higher-level tool.
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Fig. 10. Examples of simple content creation with our client: (A) Initial empty scene (top), with its virtual representation (middle) matching the real device 1:1
(bottom); (B) Example of using Primitives as Unity nodes, to support independent particles; (C) extended with extra Unity nodes to support LeviProps; (D)
Updating the Primitives position descriptors to produce PoV content.

6 EXAMPLE CLIENT AND APPLICATIONS
We created an example OpenMPD client, using Unity 3D as the host
game engine (see Figure 10). Unity was chosen as an illustrative
example, but also due to its wide adoption and community support.
In any case, OpenMPD is not limited to this and could be integrated
into other game engines (e.g., Unreal, Ogre3D).
We used this Unity integration to implement a set of examples,

showcasing key functionalities within OpenMPD. Details on how
to implement these, as well as additional examples (i.e., multimodal
primitives and OptiTrap shapes) with OpenMPD and this Unity in-
tegration, can be found in Supplementary Material SM4. For further
examples, tutorials and up-to-date documentation on OpenMPD
and our Unity integration, please refer to our GitHub website1.

6.1 Basic OpenMPD content creation
Figure 10a shows an empty OpenMPD scene, used as the starting
point to create applications. The scene contains a node (Levitation
Device) with a 3D model of the device used, as well as a script
providing access to OpenMPD functions (i.e., a C# sharp wrap-
per for our C++ DLLs). The Unity integration operates under the
premise of maintaining a 1:1 match between the virtual scene and
the real world. The 3D model of the device allows content creators
to define primitives within the device’s working volume, and the
OpenMPD script deals with differing axis conventions between
the client (Unity) and the device (see different axis orientations in
middle and bottom images in Figure 10a).
Developers can create MPD content simply by adding Primitive

prefab nodes to the 3D scene (Figure 10b). Physical traps are au-
tomatically created in the real device to match the position of the

virtual Primitive nodes, which the developer can control simply by
moving the nodes in the Unity scene. By default, Primitives use fixed
position (i.e., one sample at (0,0,0,1)) and amplitude descriptors (i.e.,
one sample with amplitude 1), easily supporting applications using
independent particles (see Figure 10b, bottom).

More complex content can be created by adding additional Unity
components, like a 3D textured triangle to create a LeviProp (i.e.,
spatially structured particles, in Table 1). In Figure 10c, we use a
Parent Unity scene node, to group and move children Primitives as a
whole, and other conventional Unity nodes to add a 3D object (e.g.,
triangle polygon) with a dynamic texture (VideoPlayer).
Other types of content in Table 1 require replacing the default

descriptors in each Primitive. For instance, in Figure 10d, the default
(fixed) position descriptors have been replaced by descriptors defin-
ing a circular PoV path (e.g., Circle_Pos). The Unity scene (middle)
shows the positions for each Primitive, as well as the coloured visual
paths (see Section 5.4), which are synchronized with the acoustic
solver and physical particles (Figure 10d, bottom).

Replacing the amplitude descriptor in any of these primitives by
one encoding a time-varying can transform any of these primitives
into a AM Tactile Content or an Audio Source (Table 1). This is
illustrated in our video figure and Supplementary material includes
tutorials to demonstrate both the creation of haptics and audio.

Please note, the developer must make sure to follow the consider-
ations discussed in Section 4 when creating descriptors (i.e., cyclic
definitions, accommodation paths, grouping synchronized transi-
tions into a single commit) in order to ensure correct operation.
Similarly, the developer will need to calibrate the LC projector (i.e.,
intrinsics/extrinsics) and apply such settings to the camera (i.e. P,V
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Fig. 11. Dexterous manipulation via Primitivemovement: (A) Three Primitives
overlap, to render a single PoV circle; Primitives change orientation (B) or
position (C), allowing synchronized transition to other effects.

matrices), to ensure correct projection of the virtual content onto
the physical particles and props.

Our GitHub implementation1 contains some utility Unity scripts
to help support some of these steps (e.g., define descriptors, projector
calibration) and other types of content (AM/PD Tactile and Audio
contents, as shown in the video figure). This is far from a complete
content creation suite and one that we will continue to extend,
(hopefully) with the support of theOpenMPD developer community.

6.2 Dexterous Manipulations with OpenMPD
The examples in the previous section and the accompanying video
figure demonstrate the use of OpenMPD to create the range of
content described in Table 1, with simple integration into a higher-
level client host (Unity). However, OpenMPD’s synchronization
mechanisms allow for new types of content arising from the accu-
rate control of high-speed moving particles, which we refer to as
dexterous manipulations.
Figure 11 extends the example in Figure 10d, by modifying the

location (i.e., matrix) of each of the 3 Primitives in the circle. Inde-
pendent rotations applied to each Primitive can create an atom-like
structure, as seen in Figure 11b. Alternatively, each circle can be
translated up and down (Figure 11c). In either case, it is Open-
MPD synchronization that allows particles to split or to merge back
into a circle, avoiding particle collisions. Please note that all these
manipulations simply require updates to each Primitives’ matrix
(i.e., updated at the client’s rate of 200-300Hz), with OpenMPD
transparently managing synchronization with the solver at 10 KHz.
Figure 12 illustrates another example of dexterous manipulation,

this time as the result of synchronized updates to their position
descriptors. Here, the 3 previous Primitives tracing the circle are
each provided an accommodation path and a new circle descriptor
(all committed into a single transaction). This allows controlled
transitions from a circle (Figure 12a) to 3 independent PoV circles
(Figure 12b), or back to the initial circle (Figure 12c), when Primitive’s
paths are updated again.
Please note that it is the developer’s responsibility to design

and use compatible paths (i.e., accommodation or cyclic paths, with
position/speed continuity; see Section 4.3). Our examples illustrate
how correct usage of OpenMPD mechanisms enables such control.

Fig. 12. Dexterous manipulation via descriptor control: (A) Three Primitives
rendering a PoV circle. (B) Using accommodation paths to transition to a
new initial position (and speed); (C) Primitives in their new cyclic state.

6.3 Swept volume MPD content
This section describes an example of MPD content inspired by swept-
volume volumetric displays (see Figure 13), such as Voxon Vx1 [Vox
2022] or Perspecta [Cossairt et al. 2007]. Such content is imple-
mented as a spatially structured particles primitive (i.e., a LeviProp
[Morales et al. 2019]), built with a square of 3x3cm SuperOrganza
fabric attached to 4 particles. The prop quickly spins around the
vertical axis at 5 revolutions per second, so that each 3D voxel is
revealed at 10Hz (i.e., PoV rate). We use a custom rendering engine
(implemented using OpenGL and glfw), allowing access to the low-
level synchronization and timing options, required to maintain the
consistency of the projection on the prop. This is combined with
a LightCrafter projection engine. This projector allows 24 binary
images (1bpp) to be encoded into a single RGB colour image (24bpp),
allowing a final rendering rate of 1440 fps. As it only uses one colour
channel at 1bpp, no issues related to DLP time multiplexing occur.

To reveal our model 10 times per second at 1440 fps, we precom-
puted 144 slices of our example model (i.e., Stanford bunny) and
stored them in a single texture array. The projection was managed
as a conventional projection mapping problem, with a scene re-
producing the 4 Primitives (with required descriptors), the physical
prop (i.e., textured quad matching the shape and location of the
LeviProp) and the virtual cameras matching the intrinsics and ex-
trinsics of our projector. Even though we use V-Sync for rendering,
small variabilities in the output timing would result in instability
and jitter on the content projected. We avoided this by making use
of the processors’ clock, and adjusting the textures to render at each
point according to the time measurements.

Our setup uses a mirror, physically splitting our projector output
into two separate outputs (i.e., virtual cameras), each from a differ-
ent perspective. This ensures that at least one camera/projection
is able to project onto the prop, even if the prop is parallel to the
other view (i.e., the prop’s normal is perpendicular to the camera’s
Z vector). This example illustrates the relevance of the low-level
synchronization between the rendering process and the acoustic
solver described in Section 5.4, but also the ability to combine par-
ticle rendering with other outputs produced by the client (i.e., the
texture slices, revealing the bunny) and multi-projector support.
Our solution is still limited by the remaining hardware used. A
graphics card providing accurate and steady frame delivery (e.g.,
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Fig. 13. Example swept volume MPD Content. (A) Diagram of our setup, including PATs, a projector and a LeviProp, spinning 5Hz (each voxel revealed at
10Hz); (B) Image of the real setup and example slice across a section of the model; (C) Final result.

Quadro Sync) would remove the need for dynamically adjusting pro-
jection or would allow for synchronized multi-projector solutions
(i.e., instead of physically splitting the output of a single projector).
Manual tuning of the GPU to projector delay is required (i.e., see
‘Test’ pattern in our video figure), which could be avoided by using
techniques such as those in [Knibbe et al. 2015].

7 DISCUSION
OpenMPD provides an open platform to support the delivery of
novel and underexplored types of content enabled by MPD tech-
nologies. The current implementation covers the range of existing
MPD primitives, the most common setups and acoustic solvers, and
provides dedicated mechanisms to retain low-level synchronization,
key for visual rendering of multi-particle PoV content, or to enable
dexterous manipulations.

However, beyond this set of individual features,OpenMPD stands
as an effort to standardize the definition and exploitation of MPD
content. We strongly believe this is an important and timely step
towards increased adoption of MPD technologies. First, it provides
an open standard for the diverse range of PAT devices available.
Practitioners [Foisy 2021], researchers [Inoue et al. 2018; Marzo et al.
2017; Zehnter and Ament 2019] or companies [Ultraleap 2022]) can
contribute OpenMPD drivers for their devices, advancing towards
reusability and portability of MPD applications. This can also facili-
tate reproducibility and baseline comparisons against prior art for
new advances (e.g., solvers, devices) in the field.
Second, our advocacy for open-software, combined with open-

hardware and integration with a popular engine (Unity) attempts to
facilitate access to this technology to researchers, 3D developers and
media artists, as a way to stimulate the development of a community
around this technology. Such contributions could include simply
novel applications (i.e., by using the current implementation), novel
tools to support content creation (i.e., by extending our Unity scripts)
or even contributions to the core of OpenMPD (i.e., improvements
to performance, extend rendering to DirectX, CUDA or Vulcan,
support for novel acoustic solvers).

Interactions with our early adopters (i.e., researchers and artists
across 9 countries and 4 continents) showed us the very different
approaches and workflows that each of them uses. The mechanisms,
guidelines and tools included in OpenMPD, while necessary for the
exploitation of MPD content, are far from sufficient to address their
content creation needs. Specific higher-level content creation tools
are needed (e.g., akin to Gimp or Blender for 3D industries), as the
content creator is still responsible for providing feasible content

(e.g., path descriptors). While this philosophy is no different to, say,
OpenGL (e.g., the clientmust provide correct winding order, normals,
tangents, etc.), the aspects that an OpenMPD developer needs to
consider to create feasible content involve specific challenges related
to dealing with a physical system.
For instance, as illustrated by [Paneva et al. 2022], the content

defined by the developer must comply with the maximum speeds
and accelerations that the device can provide. Their algorithm allows
a single particle to reveal the desired shape while complying with
these constraints. However, content creation algorithms should also
be considered to deal with multiple particles (i.e., to reveal the same
shape or to deal with several independent MPD primitives), to allow
dynamic transformations (e.g., rotations, translations), or even to
deal with the variability in the props used (i.e., particles, cloth).
Other required additions would include the integration of tools

to deal with the detection and initialization stages of MPDs [Fender
et al. 2021] and dedicated support for sensor technologies. Further
advances could include intuitive tools to define PoV paths, but also
their colour and amplitude at each point, better rendering methods
(e.g., beyond our projector-based solution) or even support for larger
transducer arrays or other transducer layouts.

8 CONCLUSION
We presented OpenMPD, a low-level presentation engine support-
ing all types of MPD content proposed to date, integrating state of
the art acoustic algorithms and dealing with the pitfalls and syn-
chronization requirements required to support real time control of
the MPD content (e.g., interactive control), visual rendering (e.g.,
multi-particle and/or swept-volume PoV content) and device control
at optimum rates (i.e., 10 KHz).
We provided the abstractions required to allow structured def-

inition of all types of MPD content (i.e., in terms of Descriptors
and Primitives), and described the OpenMPD implementation, fo-
cussing on the mechanisms that allow it to cope with multi-rate
processes (i.e., acoustic solvers at 10 KHz, visual render and logic
at hundreds of Hz), multi-particle PoV rendering and low-level
synchronization mechanisms to ensure trap continuity. We also
characterize the performance of our engine, demonstrating stable
framerates around 10 KHz, independently of the number of particles
or solver used (i.e., Naïve, IBP or GS-PAT ). We then demonstrated
integration of OpenMPD into a high-level engine (Unity), using
it to illustrate a range of contents raging from independent parti-
cles to LeviProps, PoV content, as well as novel possibilities, such
as dexterous manipulations and swept-volume MPD content. Most
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importantly, OpenMPD offers a completely open platform aiming
to standardize and stimulate access and adoption of MPD technol-
ogy.
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